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Abstract

In this paper we consider an inventory system with two suppliers. A supply

agreement is made with one of the suppliers, to deliver a �xed quantity Q every

review period. The replenishment decisions for the other supplier are governed by a

(R; S) replenishment policy; that is, when the inventory position at a review period

is below the order-up-to level S, an order is placed at the second supplier such that

the inventory position is raised up to S. In this paper an algorithm is developed for

the determination of the decision parameters S and Q such that the total relevant

costs are minimized, subject to a service level constraint; these costs are de�ned as

the sum of the holding, purchasing, and ordering costs. Based on the numerical

results, conclusions follow about the division of the purchase volume among the two

suppliers.
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1 Introduction

When setting up an inventory policy, �rst of all it has to be decided whether to source all of

the replenishments from one supplier, or to divide the orders among two or more sources.

Both single sourcing and multiple sourcing have advantages and disadvantages (see, for

example, Fearon [4]). The selection of suppliers heavily depends on the purchase price (in

addition to possible discounts) and the lead time characteristics of a supplier. Adapting

to discounts or other supply agreements often implies that the timing and sizes of future

replenishment orders are more or less predetermined. Hence the choice of adapting to

discounts is a trade o� between purchase price and ordering 
exibility. Often a choice is

made for either a 
exible but expensive supplier or a rigid but cheap supplier. Yet, it may

be pro�table to use two suppliers as follows. A rigid supplier is used to obtain discounts

or a low purchase price for the majority of the purchase volume, and a 
exible supplier

is used to react to short term changes in demand. For example, the largest share of the

purchase volume is purchased at a manufacturer, and the remaining part at a distributor
or wholesaler.

In this paper we consider such a multiple sourcing purchasing strategy. General supply
agreements are made with the main supplier to deliver a �xed quantity Q, every review
period. It is assumed that the lead time is deterministic. At review epochs the inventory
position (de�ned as the stock on hand plus outstanding orders minus backorders) is eval-
uated. When the inventory position is below the order-up-to level S, an order is placed

at the second supplier, such that the inventory position is raised to the order-up-to level.
Also the replenishment order from the second supplier will arrive after a deterministic lead
time.

Notice that this multiple sourcing strategy is a combination of a push system (the main
supplier delivers every review period a predetermined quantity) and a pull system (the

replenishment orders placed at the second supplier are governed by an (R;S) replenishment
policy). When using more than one source, one must decide how to divide the purchase
volume. In this paper we develop an algorithm for the determination of the decision
parameters, that is, the order-up-to level S and the �xed order quantity Q ordered from
the main supplier, such that the total relevant costs (the sum of the holding, purchasing,
and ordering costs) are minimized, subject to a service level constraint. Note that Q

determines the partitioning of the purchase volume.

In the literature much attention is paid to multiple sourcing models (also known as
order splitting); see, for example, Sculli and Wu [8], Hong and Hayya [5], and Lau and
Zhao [6]. The main idea of order splitting is the reduction of lead time uncertainties by

splitting the replenishment orders over more than one supplier, each time a replenishment

is initiated. Hence, the order splitting strategy di�ers from the two-supplier strategy
as de�ned above, in the sence that in order splitting each supplier is used every time a

replenishment is placed, whereas in the two-supplier strategy the second supplier is used
only when necessary.

The rest of this paper is organized as follows. In section 2 the two-supplier model is

de�ned in more detail, and a method is presented to compute the optimal decision param-
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eters. In section 3 the proposed method is veri�ed by a number of simulation experiments.

Furthermore, for a number of situations the optimal values for the decision parameters

are computed by the algorithm; moreover, the shape of the total relevant cost function is

analysed. In section 4 conclusions are presented, and lines of future research are indicated.

2 The two supplier model

We address an inventory replenishment strategy which is a combination of a pull and a

push system. The main supplier, denoted as supplier 1, will deliver each review period

a �xed quantity of size Q. We assume that the lead time is deterministic. Hence, the

interarrival times of the replenishment orders are equal to the length of the review period.

Furthermore, each review period the inventory position is monitored, in order to make

a replenishment decision for the second supplier. When the inventory position, say x, is

below the order-up-to level, denoted by S, an order of size S � x is placed at supplier

2. The lead times of replenishment orders from supplier 2 are deterministic and equal to
L. Note that the actual lead time of the �rst supplier is not relevant for the reordering
decision concerning the second supplier. The reason for this is that the ordering decisions
for supplier 2 are based on the inventory position and hence only the moments at which

this inventory position is changed are relevant. Therefore we can, without loss of generality,
choose the length of the lead time of supplier 1 also equal to L, implying that the arrivals
of replenishment orders from the two suppliers coincide in time. In summary, at each
review epoch �rst the inventory position is raised with size Q (because a replenishment
order at supplier 1 is booked, which will arrive L periods later), and secondly the inventory

position is compared with the order-up-to level S in order to make a replenishment decision
for supplier 2.

The time axis is divided into time units (e.g. days), and the demands per time unit
are independent and identically distributed (i.i.d.) random variables. Since the demand
process is a discrete time process, we assume that L is an integral number of time units.

Furthermore, it is assumed that customer orders are handled at the end of a day just before
the replenishment orders are handled.

Customer orders which cannot be delivered directly from stock will be backordered. As
performance criterion the P2-service measure is used (see Silver and Peterson [9]), which

is de�ned as the long-run fraction of demand delivered directly from shelf, denoted by

�(S;Q).
In determining the total average relevant costs per review period (TRC), we distinguish

between ordering, purchase, and holding cost. The ordering costs are proportional to the
number of replenishment orders, but independent of the size of a replenishment order. The

purchase costs are proportional to the size of the replenishment order. Both the ordering

costs and the purchase costs may depend on the supplier. The holding costs are propor-
tional to the size of the physical stock level. However, in spite of the di�erence in purchase
costs of the products, all the items in stock have the same unit value (for example the

market value). Notice that in case one would like to di�erentiate between holding costs
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for products of di�erent suppliers, a speci�cation of the customers delivery rule is required

(for example �rst deliver products with the largest purchase price). In order to derive an

expresion for TRC, we de�ne:

Variables describing the underlying stochastic processes:
Dn demand during the n-th period;

D(t1; t2) the total demand during the interval (t1; t2];

L the deterministic lead time of both suppliers;

Cost parameters:
mi the purchase costs per unit at supplier i, (i 2 f1; 2g);

Ki the ordering costs per order at supplier i, (i 2 f1; 2g);

h the holding costs per unit per period;

r the opportunity factor ($/$/year);

Decision variables:
R the length of the review period;
�(S;Q) the customers service level;
Q the �xed order quantity delivered each review period by supplier 1;
S the order-up-to level for supplier 2;

Performance measures:
�(S;Q) the probability that an order is placed at supplier 2

during an arbitrary review period;

�target the target service level;
 (S;Q) the average expected physical stock level at the beginning of an

arbitrary time period;
Xn the inventory position at the n-th review period

immediately after a replenishment order at supplier 2 is placed, if any;
Wn = Xn � S.

The total relevant cost during a review period R can now be written as

TRC(S;Q) = h (S;Q) +m1Q+m2IE(D(0; R) �Q)+ +K1IQ>0 +�(S;Q)K2 (1)

where IB denotes the indicator function of set B, and x+ = maxf0; xg.

Note that TRC(S;Q) has a discontinuity at Q=0, which corresponds to the single source

situation in which only supplier 2 is used.
The problem can now be formulated as

minfTRC(S;Q) j �(S;Q) � �target; 0 � Q � IED(0; R); S � 0g: (2)

Clearly, in order to solve (2) we need expressions for �(S;Q),  (S;Q), and �(S;Q).
In the two supplier model it is possible that the inventory position at a review period is
larger than the order-up-to level S. To �nd an expression for �(S;Q) we use the renewal

reward theorem, which justi�es the focus on a single tagged replenishment cycle (see,
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for example Tijms [10]). In Figure 1 we assume that 0 is an arbitrary review moment

in time. Furthermore, we consider the �rst complete replenishment cycle after 0, where

a replenishment cycle is de�ned as the time interval between two successive arrivals of

replenishment orders of supplier 1. In Figure 1 we have chosen L such that 2R � L < 3R.

Hence, just before a replenishment decision is made at epoch 0 there are two outstanding

orders at supplier 1 (each of size Q), and there are at most two outstanding orders at

supplier 2 (denoted by Q0 and Q1). At the review moment 0 the inventory position

is raised with a size of Q due to replenishments of supplier 1, and since the inventory

position still is below S, a replenishment order of size Q2 is placed at supplier 2. Let I1
be the net stock (de�ned as the physical stock minus backorders) at the beginning of the

tagged replenishment cycle (time period L), and I2 the net stock at the end of the tagged

replenishment cycle (time period R + L). By tracing the sample path of the inventory

position from 0 to R+L neglecting all the replenishments that are made after time epoch

0 (denoted by the tagged inventory position) there is a clear relation between the inventory

position just after time epoch 0 and the net stock at the beginning and end of the tagged
replenishment cycle. Using the fact that the expected backlog at the beginning and at the
end of the replenishment cycle are equal to IE(�I1)

+ and IE(�I2)
+ respectively, we can

derive the following expression for the service level

1� �(S;Q) =
IE(�I2)

+ � IE(�I1)
+

IE(I1 � I2)
: (3)

In order to derive expressions for IE(�I1)
+ and IE(�I2)

+ we have to distinguish between
the situation X0 = S and X0 > S. Then it is easy to see that

IE(�I1)
+ = �(S;Q)IE((D(0; L) �X0)

+jX0 = S)

+
�
1��(S;Q)

�
IE((D(0; L) �X0)

+jX0 > S) (4)

and

IE(�I2)
+ = �(S;Q)IE((D(0; R + L) �X0)

+jX0 = S)

+
�
1��(S;Q)

�
IE((D(0; R + L) �X0)

+jX0 > S) (5)

For IE(I1 � I2), we �nd

IE(I1 � I2) = IED(L;R + L) (6)

By substituting (4-6) into (3), we �nd

1 � �(S;Q) = �(S;Q)
IE(D(0; R + L)� S)+ � IE(D(0; L) � S)+

IED(L;R + L)
(7)

+
�
1 ��(S;Q)

�IE((D(0; R + L)�X)+jX > S)� IE((D(0; L) �X)+jX > S)

IED(L;R + L)
:

5



2R 3R 4R

Q

Q0

Q

Q1

Q

Q2

I1

I2

0 R

S

L L

net stock
inventory position
tagged inventory position

Figure 1: Evolution of the net stock and inventory position during a tagged replenishment

cycle

A widely used method to approximate expressions of the form IE(A�B)+, is to approximate
the distribution functions of A and B by that of mixture of Erlang distribution. In that
case a closed form expression for IE(A�B)+ exists, (see, for example, Tijms and Groenevelt
[10]). In order to �t a mixture of Erlang distribution function only the �rst two moments
of the associated stochastic random variable are required. Using this technique (7) can be

computed when (besides an expression for �(S;Q)) expressions for IED(0; L), IED(0; L)2,
IED(0; R + L), IED(0; R + L)2, IE(XjX > S), and IE(X2jX > S) are available.

The �rst two moments of D(0; L) and D(0; R+L) can be obtained by using well-known
results for the �rst two moments of a the sum of a �xed number of i.i.d. random variables:

IED(0; L) = LIED (8)

IED(0; L)2 = L�2D + (LIED)2: (9)

Analoguously expressions for the �rst two moments of D(0; R + L) are obtained.

Consider the inventory positions at successive review epochs (immediately after a re-
plenishment order at supplier 2 is placed, if any). Then it is easy to see that the following

relation holds:
Xn+1 = maxfS;Xn +Q�D(nR; (n + 1)R)g: (10)

Then using the relation between Wn and Xn gives

Wn+1 = maxf0;Wn +Q�D(nR; (n + 1)R)g: (11)
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Relation (11) is equivalent to the relation for the waiting times of two successive cus-

tomers in a GIjDj1 queue with the distribution of the interarrival times equal to FD(0;R)(:)

and with deterministic service of length Q.

Chaudry [1] gives an extensive overview of the available literature concerning the wait-

ing times in a GIjDj1 queue. Most methods in literature require �nding the roots of an

equation (for example, in Chaudry [1] the roots of equation ~A(s)e�s=� = 1 are required,

where ~A(s) is the Laplace transform of the interarrival times of customers). Although this

method is exact, we do not use this approach. The reason for this is that the method is

relatively hard to implement. We use the approximate, however straightforward to imple-

ment, moment-iteration method for the waiting times in the GIjGj1 queue (see De Kok

[2]); this method computes values for IP (W > 0), IE(W jW > 0), and IE(W 2jW > 0).

Note that IP (W > 0) is independent of S (see relation (11)). Using Xn = Wn + S we get

the following relations

�(S;Q) = 1 � IP (W > 0); (12)

IE(XjX > S) = IE(W jW > 0) + S; (13)

IE(X2jX > S) = IE(W 2jW > 0) + 2SIE(W jW > 0) + S2: (14)

To obtain an expression for  (S;Q) we again consider a tagged replenishment cycle.
Notice that lead times do not cross in time because they are deterministic. Therefore,
all the outstanding orders, at the ordering epoch of the associated replenishment order of

the tagged replenishment cycle, have arrived at the beginning of the tagged replenishment
cycle. Hence the net stock (de�ned as the physical stock minus backlog) at the beginning of
time epochs during the tagged replenishment cycle, t 2 fL;R+L�1g, equals X�D(0; t).
Then using again the renewal reward theorem, it is easy to see that the expected average
physical stock is given by

 (S;Q) =
1

R

R+L�1X

t=L

IE(X �D(0; t))+

=
1

R

R+L�1X

t=L

�(S;Q)IE(S �D(0; t))+ + (1��(S;Q))IE(X �D(0; t)jX > S)+: (15)

For an extensive exposition of the expected average physical stock in a (R;S) inventory

model see, for example, De Kok [3].

Now the TRC can be calculated for given values of S and Q. Note that for any given Q,
the minimal value for S can be determined by solving �(S;Q) = �target. Let S

�(Q;�target)

denote the optimal value of S as function of Q and �target. Then (2) can be reformulated
into a one-dimensional optimization problem, namely

minfTRC(S�(Q;�target); Q) j 0 � Q � IED(0; R)g: (16)

To solve (16) we used a local search procedure on the interval (0; IED(0; R)] (see, for

example Press et al. [7]), and compared the solution with the single source situation:
TRC(S�(0; �target); 0). In our numerical investigations we did not �nd a counter example

for the statement that the total relevant cost function is convex for Q 2 (0; IED(0; R)].
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3 Numerical experiments

In order to verify the algorithm which is developed in the previous section, and to inves-

tigate the shape of the total relevant cost function and the optimal values of the decision

varaibles, we carried out three experiments. In experiment 1 we compared the target ser-

vice level (�target) with the realised service level based on the optimal value of S for given

Q, where the realised service level is computed by discrete event simulation. Furthermore,

in experiment 2 and 3 the total relevant costs and the optimal values for the decision

variables are calculated for various values for the system and cost parameters.

In the three experiments that follow we take one week as the basic time unit, and one

year equal to 48 weeks. The starting values of the system and cost parameters for each

of the three experiments are given in Table 1. In the �rst experiment the algorithm as

Table 1: basic setting parameters for the experiments
R IED cD L �target m1 m2 K1 K2 r

(weeks) (units/week) (weeks) ($/unit) ($/repl.) ($/$/year)

exp. 1 4 5 1 5 0.95 - - - - -
exp. 2 4 5 1 5 0.95 90 100 100 100 0.20

exp. 3 1 5 2 1 0.99 98 100 25 25 0.20

proposed is veri�ed by simulation. We simulated the system during 500.000 time units. In
Figure 2 we varied �target as 0:90, 0:91; : : : ; 0:99, 0:995, 0:999, and �xed Q equal to 15; then
the order-up-to level S�(15; �target) is computed, and the actual service �sim associated with

the computed order-up-to level S�(15; �target) is obtained by simulation. In Figure 3 we
again varied �target as 0:90, 0:91; : : : ; 0:990, 0:995, 0:999, and �xed Q equal to 15, however
now we compared the expected average physical stock level computed by the algorithm
(see formula (15)) with the average physical stock level computed by simulation. From
both the experiments it is clear that the algorithm performs very well.

In the second experiment we computed TRC(S�(Q;�target); Q), where Q is varied be-
tween 0 and IED(0; R). We de�ne � as the fraction of the purchase volume delivered by
supplier 1, that is � := Q

IED(0;R)
. In Figure 4 we considered TRC(S�(Q;�target); Q) and

varied r between 0:04, 0:20 and 0:40 ($/$/year). First of all we notice that the TRC is

very high for � almost equal to one. In this situation the load of the associated queueing
system is near to one, which means long waiting lines. Therefore, the expected inventory

position at the beginning of a cycle is very high, which implies high average stocks. This is
also intuitively clear, since for Q almost equal to IED(0; R) there is no ordering 
exibility,

which means that in periods when demand is low unnecessary supplies are pushed into the
system. Furthermore, we considered situations in which the opportunity factor is extremely

low (r = 0:04 $/$/year) and extremely high (r = 0:40 $/$/year). Under this variation the

optimal � does not vary much. This means that independent of the opportunity factor a

large share of the replenishments should be sourced by supplier 1.

Finally, these experiments indicate that the optimal value of � is rather high. The
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reason for this is the large di�erence between m1 and m2, which results in a purchase cost
di�erence of $ 2400 per year; hence the expected average physical stock has to di�er at
least with 120 units, which is half the yearly demand.

Important parameters that determine the pro�tability of using two suppliers instead of
one supplier are the �xed costs K1 and K2. In Figure 5 we computed the optimal value
of � where we varied m1. Furthermore we varied the �xed costs K1 and K2 as follows
fK1 = 200;K2 = 100g, fK1 = 0;K2 = 0g, fK1 = 100 ; K2 = 200g and fK1 = 0 ; K2 =

100g. Note that for fK1 = 0;K2 = 0g the optimal value for � can take all values between
0 and 1, however only for small di�erences between m1 and m2 the optimal value for � is
smaller than 0.8. When K1 > K2 the optimal value � drops to 0 before m1 is equal to m2,
which means that only supplier 2 is used. Moreover, it is worthwhile to notice that when
K1 < K2 it is even pro�table to source products from supplier 1 even when m2 > m1.

Hence, the increasing purchase cost is compensated by a decreasing ordering cost.
In the third experiment we considered a basic setting in which the lead time of supplier

2 is small, the variance of the customers demand sizes are high, and the di�erences between
m1 and m2 are small. In Figure 6 we again considered TRC(S�(Q;�target); Q) and varied
the coe�cient of variation of the demand size (cD) between 0:25, 1:00, and 2:00. The

optimal value of � for cD = 0:25; 1:0 and 2:0 is 0.980, 0.845 and 0.655 respectively. This
indicates that the coe�cient of variation of the demand size has a major impact on the

value of the optimal �. For small values of cD the optimal � is almost equal to one, and
for large values of cD the optimal value of � is relative small. This is to be expected, since

one would use the 
exible supplier whenever the demand process is erratic.
In Figure 7 we computed the optimal value of � where we varied m1. Furthermore we

varied the coe�cient of variation of the demand size (cD) between 0:25, 1:00 and 2:00.
Again, we can conclude that the cD has a major impact on the optimal value of �.
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4 Conclusions and future research

In this paper we considered an inventory policy with two suppliers. A general supply

agreement is made with one of the suppliers to deliver a �xed quantity Q every review

period, whereas the replenishment decisions for the other supplier are governed by the
(R;S) replenishment policy. Hence, when the inventory position at a review period is
below the order-up-to level, S, an order is placed at supplier 2, such that the inventory

position is raised to S. An algorithm is derived for the determination of the decision

parameters S and Q for which the total relevant costs are minimized subject to a service
level constraint.

Through comparisons with simulation rusult, the algorithm developed in this article
appeared to perform excellent for all the experiments we considered. Furthermore, the

numerical results showed the e�ectiveness and pro�tability of the multiple sourcing strategy
above the single sourcing strategy. It is clear that the pro�tability depends on the ratios
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between the ordering costs and purchase costs. However, the coe�cient of variation of the

demand turns out to be a determining factor for the optimal value of Q. Only for large

values of cD it is pro�table to purchase a large share of the purchase volume from the


exible and expensive supplier (supplier 2).

Although no numerical counter examples where found for the conjecture that the total

relevant cost function is not convex in Q (neglecting the discontinuity at zero), a rigorous

proof is needed to justify that TRC(S�(Q;�target); Q) is indeed convex.

Several extensions are worthwhile to be considered. The generalization to stochastic

lead times (with the non-overtaking restriction) will lead to complex expressions for the

service equation. When the replenishment orders of supplier 2 are not restricted to arrive

within a certain review period, the number of replenishments of supplier 1 within a replen-

ishment cycle will not be �xed, which even complicates the determination of the service

equation more.

Another important extension is to allow a stochastic replenishment quantity for supplier

1. The analysis is straightforward, when using the approximate methods, presented in this
paper, for obtaining values for the inventory position at review epochs.

Furthermore, other inventory control systems could be used for supplier 2. However, the
key step will be the determination of the inventory position at the possible replenishment

epochs for the second supplier. For periodic review strategies this will again be possible
using the approach presented in this paper; for continuous review replenishment policies
the way to go is less clear.
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