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Abstract

We study a �nancial network characterized by the presence of depositors, banks and their

shareholders. Belonging to a �nancial network is bene�cial for both the depositors and banks�

shareholders since the return to investment increases with the number of banks connected. How-

ever, the network is fragile since banks, which invest on behalf of the depositors, can gamble

with depositors�money (making an investment that is dominated in expected terms) when not

su¢ ciently capitalized. The bankruptcy of a bank negatively a¤ects the banks connected to it

in the network. First, we compute the social planner solution and the e¢ cient �nancial network

is characterized by a core-periphery structure. Second, we analyze the decentralized solution

showing under which conditions participating in a fragile �nancial network is ex-ante optimal.

In particular, we show that this is optimal when the probability of bankruptcy is su¢ ciently low

giving rationale of �nancial fragility as a rare phenomenon. Finally, we analyze the e¢ ciency of

the decentralized �nancial network. Again, if the probability of bankruptcy is su¢ ciently low

the structure of the decentralized �nancial network is equal to the e¢ cient one, yielding an ex-

pected payo¤ arbitrarily close to the e¢ cient one. However, the investment decision is not the

same. That is, in the decentralized network some banks will gamble as compared to the socially

preferred outcome.
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1 Introduction

It is sometimes observed that �nancial systems turn out to be fragile. With this economists mean

that an adverse shock is able to cause the collapse of the entire �nancial system, implying large

consumption losses for investors. As a consequence, it is usually claimed that fragility should be

avoided altogether. This paper challenges this view showing that such fragility could be indeed

an optimal feature of �nancial networks.

We characterize a �nancial network with the presence of banks, consumers, and banks�share-

holders. The economy is made of several regions (countries, sectors) each with its own repre-

sentative bank. Consumers need to deposit their endowment into banks to take advantage of

the investment opportunities in the economy. Shareholders, which are di¤erent agents from de-

positors, provide bank capital and decide the type of investment the bank will choose. Banks

have two types of asset in which they can invest. One asset is safe and the other asset is risky.

The second asset is risky since it delivers the same return as the safe asset if it succeeds and

nothing if it fails, however it gives private bene�ts to banks�shareholders. The second asset is

clearly dominated for depositors and it is a pure gambling asset. Once the type of investment is

chosen, both the deposits and the bank capital will be invested in that type of asset. It turns out

that poorly capitalized banks �nd it convenient to gamble. This mimics the usual risk-shifting

problem due to limited liability.

Banks also choose whether to join or not the �nancial network. Participating in the network

is bene�cial for both the depositors and banks� shareholders since the return to both types of

investment increases with the number of banks connected. This captures the idea that more

connections give access to more investment opportunities. However, the decision of belonging

to the network entails a trade-o¤. The possible bankruptcy of a bank that gambles a¤ects the

connected banks in the network (we make the assumption that when a bank fails all the directly

linked banks will be bankrupt as well).

We also allow for the possibility of bank capital transfers among banks. These transfers can be

interpreted as direct investment in the bank capital of other banks, or exchange of (asymmetric)

cross holding of bank capital. The only aim of these bank capital transfers is to solve the moral

hazard problem.

The �rst-best (e¢ cient) solution is achieved by avoiding the moral hazard problem. A so-

cial planner that allocates bank capital in each bank, can guarantee this allocation under the

assumption that a su¢ cient amount of aggregate bank capital is available in the economy. If not,

a constrained �rst-best allocation will be achieved (i.e., allowing some bank to gamble). In this

case, the lower the aggregate bank capital, the lower is the expected payo¤ from the (now fragile)

�nancial network.

Since the transmission of a crisis depends on the links established by the failing bank, contagion

is greater the larger is the number of links. Then the optimal network structure is not necessarily

the fully connected one. In particular, the e¢ cient structure is characterized by a core-periphery

shape. The core includes all banks that (i) invest in the safe asset and (ii) form a complete network

structure among them. The periphery includes all the banks that gamble. Gambling banks could

be connected among themselves and/or with the core. Only when the risk of bankruptcy is
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su¢ ciently low the e¢ cient structure becomes the fully connected one.

In the decentralized environment the bank capital is allocated randomly across the di¤erent

banks. Same banks now have too few capital and will gamble. In the decentralized network the

�rst-best (e¢ cient) allocation cannot be reached unless capital endowments are high. However,

for a probability of bankruptcy arbitrarily low we can assure that (i) joining a fragile �nancial

network is ex-ante optimal, (ii) the structure of the decentralized �nancial network is the same as

the e¢ cient one, and (iii) the fragile network delivers a total payo¤ arbitrarily close to the �rst-

best (e¢ cient) one. The last two results are obtained even considering bank capital transfers. The

intuition is the following. When the probability of failure is arbitrarily low, the cost of �nancial

fragility becomes lower than the cost of bank capital transfer, and this will make depositors and

shareholders willing to take the risk of �nancial instability.

The main result is that �nancial fragility (that is, the collapse of the entire system) is a rare

event since banks and depositors will not enter such network, unless it is ex-ante convenient. Con-

sequently, the fragile �nancial networks can be �optimal�since they are ex-ante Pareto-improving

with respect to the autarky situation. However, even when the decentralized network has the

same structure of the e¢ cient one and it is delivering almost the same total payo¤, it could

be that some banks invest in the gambling asset in the decentralized network while they would

choose the safe asset in the e¢ cient one. That is, the core of the e¢ cient network can be larger

than the core of the decentralized network.

The theory of networks has recently been successfully applied in several economics �elds.

However, very few attempts have been made to use such theory to understand the working of

�nancial systems. One exception is represented by Leitner�s [10] model, which gives a rationale

of �nancial networks that are able to spread contagion. We share with Leitner the same goal,

extending however his approach in two directions. On the one hand, we model a decentralized

formation of the �nancial network specifying the incentives of the agents involved (i.e., depositors

and banks� shareholders). On the other hand, we provide a new rationale for fragile �nancial

network formation. Financial networks in Leitner�s [10] model induce private bailouts because of

the threat of contagion. With this and given that formal commitments are impossible, networks

may be ex ante optimal because by them banks obtain mutual insurance. The bailouts are

implemented by means of money transfers between banks. The idea behind Leitner�s model is

that banks (and depositors) can be surprised by an unexpected liquidity shock which is able to

make bankrupt at least one bank in the system (see Allen and Gale, [2]). The possibility that

this original failure can spread to the entire system give the rationale of belonging to a �nancial

system. We show that we do not need necessarily the presence of lack of commitment or, which is

the same, money transfers among banks, to give rationale of an ex-ante optimal �nancial network.

Nier et al. [11] consider the link between network models and �nancial stability. However,

their approach is to take the network structure as given and study how an exogenous shock is

transmitted through the network. Gale and Kariv [8] show that trade that is restricted to happen

on a network generates an e¢ cient outcome as far as the agents are su¢ ciently connected in the

network. Babus [4] studies �nancial network �nding that preventing the collapse of the system

is a su¢ cient (but not necessary) condition to guarantee the stability of the network.

Outside the network literature, various contributions have analyzed �nancial fragility and
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contagion. Our approach shares the same scope with the strand of literature that model contagion

as the outcome due to the presence of �nancial links among banks. In particular, banks are

connected through interbank deposit markets that are desirable ex-ante, but during a crisis the

failure of one institution can have negative payo¤ e¤ects on the institutions to which it is linked

(see Rochet and Tirole, [12]; Allen and Gale, [2]; Aghion, Bolton and Dewatripoint, [1]; Freixas,

Parigi and Rochet, [7]). A common feature of these models is the reliance on some exogenous

unexpected shock that causes a �nancial crisis to spill over into other �nancial institutions. In

Allen and Gale [2] and Aghion, Bolton and Dewatripont [1] �nancial contagion is due to an

unexpected aggregate liquidity shortage. Allen and Gale also �nd that the more connected

the interbank deposit market is the more resilient is the system to contagion. Freixas, Parigi

and Rochet [7] model �nancial contagion as a solvency shock to a particular bank �nding that,

similarly to Allen and Gale [2], the degree of interbank connections enhance the resiliency of the

banking system to withstand the insolvency problem.

More recently, Brusco and Castiglionesi [5] have attempted to model contagion in the banking

system without relying on unexpected shocks. All events are anticipated and contractible by the

agents. The present model captures many features of the Brusco and Castiglionesi�s approach. In

particular, the possibility of banks bankruptcy comes from the banks�gambling behavior, which

occurs when banks are not su¢ ciently capitalized. The liquidity coinsurance mechanism (built

as in Allen and Gale to face idiosyncratic liquidity shocks) implies that a bank�s default will

cause the linked banks to fail. Thus, the more connected is the banking system the larger the

extent of contagion. If this is the correct reason that more links mean more contagion, one has

to wonder how robust this result is when endogenous links are considered. The present paper

directly addresses this issue.

On general ground, our model is in line with the results of Allen and Gale [3]. They show that

�nancial default is not always best avoided. Their result holds also with incomplete contract, but

it crucially depends on the presence of complete markets for aggregate uncertainty. We do not

consider aggregate uncertainty, but we extend the analysis to �nancial fragility. In our model

there are only idiosyncratic shocks (i.e., the gambling behavior of the banks) and contracts are

incomplete since it is not possible to contract out bank�s moral hazard behavior. When a bank

defaults all the linked banks will be bankrupt as well, however this does not represent necessarily

a market failure because the incidence of �nancial fragility can be constrained e¢ cient.

The paper is organized as follows. Section 2 sets up the model. Section 3 presents an example

of the network formation. Section 4 analyzes the planner problem, characterizing the �rst-best

solution. Section 5 shows the �nancial network formation and studies its optimality. Section 6

characterizes the e¢ ciency of the decentralized �nancial network. Section 7 presents a discussion

of the modeling choices. Section 8 contains the conclusions, and the Appendix contains the proofs.

2 The Model

There are three dates t = 0; 1; 2 and one divisible good called �dollars� ($). The economy is

divided into n regions, each with its own representative bank. Let N = f1; 2; :::; ng be the set of
the regions and banks. Each region is populated by a continuum of consumers endowed with 1 $
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at t = 0. However, they consume at t = 2. In order to access the investment opportunities of the

economy, each consumer has to deposit his endowment in the representative bank of the region

he belong to.

Each representative bank i randomly receives an endowment ei 2 [0; 2] of dollars, which

represents the bank capital and it is owned by banks�shareholders (or investors). Consumers and

investors are di¤erent type of agents in the economy. The pair (N; e), with N = f1; 2; :::; ng and
e = (e1; e2; :::; en) is called an economy.

We also allow for transfer of bank capital across banks. Let xi = ei + ti be the bank capital

for a bank i 2 N after transfers have been made (i.e., ti is the transfer and can be positive or

negative). Then each bank expects to have 1 + xi dollars to invest in t = 1. A vector of bank

capitals x = (x1; x2; :::; xn) is called feasible for a given economy (N; e) if (i) xi � 0 for all i, and
(ii)

P
i2N xi =

P
i2N ei. Let X denote the set of all feasible vectors of bank capital for a given

economy (N; e). The sequence of events is reported in Table 1.

Table 1. Sequence of events

Time Events

t = 0 1. Bank�s capital is realized;

2. Financial network is chosen.

t = 1 1. Bank�s capital transfers are made;

2. Projects are chosen and investments are undertaken.

t = 2 1. Projects cash �ows are realized;

2. Depositors are paid.

Banks have access to two types of project (the investment can be made either in one or the

other type of project):

1. The safe project b yields R > 1 dollars in t = 2 per dollar invested in t = 1.

2. The �gambling�project g yields R > 1 dollars with probability � (we assume �R > 1), and

0 dollars with probability (1� �) in t = 2 per dollar invested in t = 1. This project yields
also a private bene�t B > 0 to bank�s shareholders.

Private bene�ts are realized by banks� shareholders at the moment of the investment (so

they do not have dollar value, consider them as perks or investment in family business). Then

the gambling asset becomes a simple device to mimic the risk shifting problem that characterizes

�nancial institutions protected by limited liability. Conditional on the bank choosing the gambling

asset, notice that as � ! 1 the moral hazard problem vanishes. This is true since as � ! 1 the

probability of the bank going bankrupt becomes negligible.

Let Ki � N be the set of banks to whom bank i is directly linked, then the number of

banks connected to bank i is ki 2 f0; 1; :::; n � 1g. The vector K = (K1;K2; :::Kn) captures the

interdependence among the banks, and it represents the �nancial network. We restrict ourselves

to undirected networks, i.e., the links in the networks are bidirectional: bank i is related to bank

j only if bank j is related to bank i. Formally, i 2 Kj if and only if j 2 Ki. Let K denote the set
of all possible �nancial networks for a given economy (N; e).
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We assume that the per unit return of the investment (both safe and gambling) is increasing in

the number of banks linked with the investing bank i. We indicate the increase of return for each

unit of investment with the function f(ki) with f 0(ki) > 0, and f 00(ki) < 0 for all ki 2 [0; n� 1].
We assume that f(0) = 1 and f(n� 1) = �, with � > 1, that is f(ki) 2 [1; �].

The return of bank i for each unit invested in t = 0 is then equal to f(ki)R in t = 2.

Consequently a bank that makes the investment in autarky (ki = 0) will obtain the lowest return

R, while a bank that is connected with all the other banks (ki = n� 1) will achieve the highest
return �R. This assumption has the natural interpretation that more connections give access

to more investment opportunities. Since depositors are assumed to be risk averse, then f (k)

represents the gain in utility coming from diversi�cation.

Let si 2 fb; gg be the choice of project of a bank i. The vector s denotes the investment
strategy pro�le, that is s = fsigi2N . Let S denote the set of all possible investment pro�les for
a given economy (N; e). For given network K 2 K and strategy pro�le s 2 S, let pi(K; s) be
the probability that the project chosen by agent i succeeds. This probability needs to take into

account the possible use of the gambling asset in the �nancial network K:

pi(K; s) =
Y

j2Ki[fig
�j (sj) ; (1)

where �j (sj) is de�ned as

�j(sj) =

(
1 if sj = b;

� otherwise.

Note that, when bank i and all its neighbors are investing in the safe project b, then the probability

of success is 1. However, if bank i or one of its neighbors is investing in the gambling asset, while

the rest are investing in the safe asset, the system will not collapse with probability �. This

happens since the safe projects work and the gambling asset realizes on positive payo¤s. If there

are exactly two neighbors who are investing in the gambling asset, then the probability of success

is �2, and so on and so forth. Again, as � ! 1, the moral hazard problem vanishes and the

collapse of the �nancial system becomes a rare event.

We are implicitly assuming that once the project of a bank fails, its neighbors will also be

bankrupt with probability equal to 1. This implies that we are going to analyze the properties of

a network with a very strong form of fragility. Consequently, if we �nd conditions under which it

can be optimal or even e¢ cient to joint such network, this implies that the same conditions still

apply for networks characterized by less strong fragility. In other words, we put ourselves in the

worst possible scenario to show our results.1

Finally, notice that among the strategies of the banks there is no possibility of avoiding the

investment. Since the banks can choose to be connected or not to the network, it is always

possible for them to be disconnected and invest in autarky. Given that R > �R > 1 banks and

depositors will always choose to invest.

1Clearly, a more attractive and realistic assumption is that the performance of each bank depends on its

investment decisions. This would generate a more complicated probability distribution over returns. However,

with a less fragile �nancial system, the main results of the paper would carry over.
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The expected investors payo¤ of bank i choosing a strategy si is de�ned as

mi(K;x; s) =

(
pi(K; s)f(ki)Rxi if si = b;

pi(K; s)f(ki)Rxi +B otherwise,
(2)

given (i) the bank capital after transfers xi = ei + ti, (ii) the �nancial network K chosen at date

0 with the corresponding return to investment f(ki)R to bank i, and (iii) the strategies of all the

other banks s�i, with s = (si; s�i). Note that equation (2) means that investors in bank i get

the pro�t from their corresponding investment xi times the probability that the project succeeds.

Furthermore when investors in bank i gamble, they obtain private bene�ts B independently of

the gambling asset being successful or not. The expected amount of dollars for depositors in bank

i is given by

Mi(K;x; s) = pi(K; s)f(ki)R. (3)

For the given network K and strategy pro�le s = (si; s�i); let gi (K; s�i) denote the number

of neighbors of an agent i in the network K choosing the gambling project. To avoid abuse of

notation, we will simply make use of gi instead of gi (K; s�i), unless this simpli�cation would lead

to confusion. By de�nition, gi 2 [0; ki]. Then the probability of success pi(K; s) can be written
as

pi(K; s) =

(
�gi if si = b;

�gi+1 otherwise.

Let us analyze the incentives that investors in bank i have to choose the safe asset or to

gamble, for a given �nancial network K chosen at t = 0. Investors will place the bank�s resources

in the safe asset whenever the possible capital loss incurred in gambling is higher than the private

bene�ts. Then for given f(ki) and s�i investors in bank i will invest in the safe asset if and only

if

�gif(ki)Rxi � �gi+1f(ki)Rxi +B.

This implies that bank i will invest in the safe asset if and only if

xi �
B

(1� �)�gif(ki)R
,

that is, banks with relatively low level of bank capital have incentive to invest in the gambling

asset while relatively high capitalized banks do not have this incentive.

In order to normalize the parameters of the model so to have a cut o¤ value of xi inside the

possible realization of bank capital, we assume B = 1� xi.2 Then the former condition becomes

xi �
1

1 + (1� �)�gif(ki)R
� I�[ki; �; gi],

which is less than 1. This means that some banks �nd it optimal to invest in the safe asset even if

they are not well capitalized. Note that the risk of capital loss vanishes when � ! 1, and in this

2The normalization makes clear that when the bank capital is su¢ ciently high with respect the amount of

deposits (i.e., 1) the private bene�ts do not compensate the risk of loosing bank capital. However, if bank capital is

low with respect the amount of deposits then the private bene�ts can become higher than the risk of losing bank�s

capital (banks are protected by limited liability).
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case all the banks with a capital less than 1 will gamble. Then if xi 2 [I�(k; �; gi); 2] depositors in
bank i will get �gif(ki)R. Otherwise, if xi 2 [0; I�(ki; �; gi)), depositors in bank i get �gi+1f(ki)R.

The cut o¤ value I�(ki; �; gi) is decreasing in ki, increasing in gi, and increasing in � if and

only if � > gi
1+gi

. Recall that investors�payo¤s from investing safe and gambling are given in

(2). The level of capital I�[ki; �; gi] makes investors in bank i indi¤erent between investing safe

or gamble. As far as gi is di¤erent from zero, both payo¤s will increase due to an increase in

�. However, to establish the e¤ect of � on I�[ki; �; gi] we have to look at the marginal e¤ect of

an increase in � on investing safe or gambling. For example, if the increase in the payo¤ from

investing safe is larger than the increase in the payo¤ of gambling, then I�[ki; �; gi] decreases.

The intuition is that the bank needs less bank capital in order to be indi¤erent between investing

safe and gambling. Formally, when � increases, the increase in the investors�payo¤ for investing

safe is gi�gi�1f(ki)Rxi and for gambling is (gi + 1)�gif(ki)Rxi. Thus, when the ratio
gi

(gi+1)�
is

smaller than 1 the cut o¤ value I�[ki; �; gi] is increasing in �. Otherwise, when the ratio
gi

(gi+1)�

is greater than 1, it is decreasing in �.

Finally, we assume that depositors are risk-averse and investors are risk-neutral. Depositors�

utility function is de�ned on the possible outcomes, i.e. the utility of a strategy pro�le s that

depositors in bank i are getting is denoted by ui(s), where ui(s) = ui(Mi(s)). We next turn our

attention on an example to show the intuition behind the �nancial network formation. In this

way, we can highlight the di¤erent forces that are behind the network formation in the Leitner�s

[10] model and ours.

3 Network Formation: An Example

In Leitner�s model there is one (safe) asset with return R > 1 that has a cost of one dollar. In

order to realize the return R, all the linked agents in the network need to invest the one dollar.

Assume there are two agents: Agent 1 (randomly chosen) has an endowment e1 = 2 and agent

2 has an endowment equal to e2 = 0. Let u1(:) and u2(:) the utility of agent 1 and agent 2,

respectively.

First-best (e¢ cient) allocation. The social planner reaches e¢ ciency by transferring one unit

of endowment from agent 1 to agent 2 getting a level of utility u1(R) = u2(R) for both. In

this case the sum of utilities of the two agents is higher than not doing the transfer, that is

u1(1 + R) + u2(0) < u1(R) + u2(R) (which is always satis�ed assuming the same functional

utility for the two agents, i.e. u1(:) = u2(:) = u with u quasiconcave). In other words, the loss

in utility of the �rst agent is compensated by the gain in utility of the second agent, that is

u1(1 +R)� u1(R) < u2(R)� u2(0):
No linked agents. In this case agent 1 decides whether to make a transfer or not. Without

transfer she gets u1(1 + R) and agent 2 gets zero. If she makes the transfer she will get u1(R)

and also agent 2 will get u2(R). So no transfer will be made, and u2(0) = 0.

Linked agents. In this case agent 1 needs agent 2 to invest. Without the transfer we have

u1(2) and u2(0), as agents can always choose autarky, and in a Nash equilibrium agent 1 will see

that agent 2 cannot invest: If the transfer is made we have that u1(R) = u2(R), as the social

planner coordinates both agents to invest (note that, no one investing is also a Nash equilibrium
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and the agents get u1(1) and u2(1), respectively). Then, when R � 2, agent 1 bails out agent 2
through the transfer and being linked achieves e¢ ciency. When R < 2 there is no transfer in case

of the network, or, in other words, agent 1 does not bail out agent 2.

Network formation. Let unli and uli be the utility levels achieved by agent i when she is not

linked and when she is linked, respectively. When the agents are not linked, agent 1 will get

unl1 (1 + R). When the agents are linked, the payo¤ of agent 1 depends on making or not the

transfer. We have ul1(R) when the transfer is made, and u
l
1(2) when the transfer is not made.

Accordingly, in both cases we have unl1 > ul1. Consequently, agent 1 would not enter in the

network if she knew her endowment. The assumption in Leitner�s model is that agents may agree

to join the network before they know the realization of the endowments. This uncertainty makes

the agents willing to be connected.

Assume there are only two realizations (equally likely) of (e1; e2): (2; 0) and (0; 2). Then if

the agents choose to be connected they will get a total expected utility of

1

2
[u1(R) + u2(R)] +

1

2
[u1(R) + u2(R)] (4)

if R > 2, and an expected utility of

1

2
[u1(2) + u2(0)] +

1

2
[u1(0) + u2(2)], (5)

otherwise. If they decide not to be connected they would get a total expected utility of

1

2
[u1(1 +R) + u2(0)] +

1

2
[u1(0) + u2(1 +R)]: (6)

Note that, under regular conditions, (4) is greater than both (5) and (6), so that it is always

�rst-best (or Pareto) e¢ cient to join the network, make the transfer, and have both agents invest

one unit. The implementability of the �rst-best depends on the value of R. If R < 2 the �rst-

best is not implementable (or attainable). The agent that turns out to be highly endowed will

never bail out the other agent and this results in the empty network. If R � 2 the network is

implementable (or, according to Leitner, it is second-best). Although participating in the network

and bailing out is Pareto e¢ cient, the network is implementable (or second-best) only for a range

of values of R. In this example, being unlinked is better than being linked when R < 2. However,

in a completely decentralized framework, agents will never build a network if they know their

endowment in advance, even if it is implementable or second-best (that is, even if R � 2).
The �nancial network in Leitner [10] plays the role of a coordinating device for agents a¤ected

by lack of commitment. This can be achieved by means of transfers, which in a decentralized

economy could be implemented by private bailouts. The network allows ex-post bailout in case

some of the agents (randomly chosen) do not have enough resources. Events that cause such

agents being short of resources in �nancial systems can be rationalized by aggregate unexpected

liquidity shocks (see Allen and Gale, [2]). Therefore, agents have to agree on bailing out each

other before their endowments are realized.

We show that the uncertainty on endowments, and consequently the ex-post transfers, is not

a necessary condition to give rationale of entering into a fragile �nancial network. Depositors

and investors can �nd it optimal to belong to a fragile �nancial network even knowing their

endowment and without making ex-post bail out.
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Consider an economy with two banks. Since n = 2, we have ki 2 f0; 1g for i = 1; 2. The

return to investment in autarky is then f(0)R = R and, when the two banks are connected the

return is f(1)R = �R > R. The �rst bank is endowed with a level of bank capital equal to

e1 = I�(0; �; 0) + " and the second bank has a bank capital equal to e2 = I�(1; �; 0) � ". Here,
" > 0 and recall that I�(0; �; 0) = 1

1+(1��)R and I
�(1; �; 0) = 1

1+(1��)�R . In other words, the �rst

bank has enough bank capital to invest in the safe asset even when in autarky, while the second

bank has a level of bank capital not large enough to invest safe even when the banks are connected

and the �rst bank invests in the safe asset. Since I�(1; �; 1) = 1
1+(1��)��R , and assuming �� � 1,

we have that

I� (1; �; 0) < I� (1; �; 1) < I� (0; �; 0) � 1. (7)

We assume that the values of the parameters are such that e1+ e2 = I�(1; �; 0)+ I� (0; �; 0) =

2I� (1; �; 1). The two banks have a total amount of dollars to invest equal to 1 + e1 and 1 + e2,

respectively. That is, the amount of deposits (equal to 1 dollar) plus the bank capital. Recall

that as � tends to 1, the cut o¤ values I� (1; �; 0), I� (1; �; 1) and I� (0; �; 0) all tend to 1:

Social Planner. The �rst-best is given by both banks choosing the safe asset, since the social

planner does not value private bene�ts. Given this, the project will yield the highest pro�t if the

banks are connected as � > 1. In order to achieve this outcome, the social planner is assumed

to choose the bank capital, the network and, if necessary, to coordinate the banks in the safe

investment. In this case the planner makes a transfer of " dollars from bank 1 to bank 2. We

have to clarify that the social planner acts as a substitute of the random draw of bank capital. The

planner pools the overall bank capital endowment, equal to 2I� (1; �; 1), and he assigns I� (1; �; 1)

to each bank (so the transfer is �ctitious) connecting them in the �nancial network. In this way

banks� investors �nd it optimal to invest (without pro�table individual deviations) in the safe

asset getting a return �RI� (1; �; 1) and depositors in both banks get u(�R). The total expected

money that the social planner can achieve is then 2�RI� (1; �; 1) + 2�R = �R(2 + e1 + e2).3

Not Linked. In this case the return of investment is equal to R. First note that investors in

bank 1 will never make a transfer to bank 2 since the success of their project is independent of the

investment decision of bank 2. Investors in bank 1 will invest in the safe project. Hence, investors

in bank 1 get [I� (0; �; 0) + "]R and depositors expect u1(R). Investors in bank 2 gamble getting

[I� (1; �; 0) � "]�R + B, consequently depositors in bank 2 get u2(�R). Note that depositors in
3 In this example the planner does not need to coordinate the banks investment decision since the total amount

of bank capital 2I� (1; �; 1) is su¢ cient to make the two bank willing to invest safe even if the other is gambling.

So that investing safe is a dominant strategy. However, for lower level of total amount of bank capital this outcome

is not guaranteed. For example, if the total amount of bank capital is 2I� (1; �; 0), and the planner equally splits

it among the two banks, then the two banks can invest in the safe asset if they expect the other bank to do the

same. However, if they expect the other bank to gamble they will gamble as well since the individual bank capital

is less than I� (1; �; 1). Under the assumption that the planner can coordinate the investment decision, he would

obtain the same allocation as in the text. For lower levels of total bank capital the planner cannot reach the

�rst-best even with coordination. In this case we have a constrained �rst-best. Assume for example that total bank

capital is I� (0; �; 0) < 2I� (1; �; 0). In this case the planner achieves the highest allocation putting all the bank

capital in one bank and nothing in the other. The former invests safe while the latter gambles. If the planner does

not link together the two banks, the total return is R[1 + � + I� (0; �; 0)]. If the planner chooses to link the two

banks then the total return is ��R[2 + I� (0; �; 0)]. It is e¢ cient to choose the fragile �nancial system as long as

�� > 1+�+I�(0;�;0)
2+I�(0;�;0) . This condition is always satis�ed since �� > 1.

10



bank 2 are willing to deposit their dollar in the bank since �R > 1.

Linked. In this case the return to investment is equal to �R > R. However, when the two

banks belong to the �nancial network the investment decision of one bank a¤ects the probability

of success of the other bank. Since bank 2 always gambles, this behavior reduces the possibility

of success for the depositors and investors in bank 1. A way to avoid this event is to make a bank

capital transfer to bank 2. So we have four cases that bank 1 faces: a) investing safe without

transfer; b) gambling without transfer; c) investing safe with transfer; d) gambling with transfer.

Let us examine the four cases in turn.

Case a). Depositors in bank 1 expect to get u1(��R) and investors in bank 1 will get

[I� (0; �; 0) + "]��R. Depositors in bank 2 will receive u2(��R), while the payo¤ for investors

in bank 2 is [I� (1; �; 0)� "]��R+B.
Case b). Depositors in bank 1 will get u1(�2�R) and investors in bank 1 would get [I� (0; �; 0)+

"]�2�R+B. Since � > �2, depositors in bank 1 prefer to invest in the safe asset. Also investors in

bank 1 prefer to invest in the safe asset since, by de�nition, we have x1 = e1 > I� (1; �; 1). Then,

case b) cannot be an equilibrium.

When a transfer is made from bank 1 to bank 2 (in order to solve its moral hazard problem)

we have to check if investors in bank 2 still have incentive to gamble (no commitment to use the

transfer properly). We assume that when a bank is indi¤erent between gambling or safe, it will

choose safe.

Case c). Since investors in bank 1 are planning to transfer and play safe, they will choose the

minimal transfer that will make bank 2 change from choosing the gambling asset to choosing the

safe asset. This will result in x2 = I�(1; �; 0), and, consequently, the transfer has to be equal to

t1 = x2�e2 = I� (1; �; 0)� [I� (1; �; 0)�"] = ". Capital in bank 1 is then x1 = e1�t1 = I�(0; �; 0).
Depositors in bank 1 get u1(�R) and investors in bank 1 get �RI�(0; �; 0). Depositors in bank 2

then get u2(�R), and investors in bank 2 get �RI�(1; �; 0).

Case d). Since bank 1 is planning to gamble, a transfer equal to " will not induce investors

in bank 2 switching from gambling to invest in the safe asset, as by de�nition, x2 would be equal

to I� (1; �; 0), which is smaller than I� (1; �; 1). In this case investors in bank 1 will have to make

a transfer resulting in a level of capital for bank 2 of at least I� (1; �; 1). Since the total amount

of capital in the economy is 2I� (1; �; 1), this will result in bank 1 keeping at most I� (1; �; 1) as

its own capital. Then the transfer has to be at least

I�(0; �; 0)� I�(1; �; 1) + " = I�(1; �; 1)� I�(1; �; 0) + "

given that I�(1; �; 0) + I�(0; �; 0) = 2I�(1; �; 1). Take t1 = I�(1; �; 1) � I�(1; �; 0) + " + �, with
� very close to zero (the reader may check that the bigger the � the smaller the payo¤ for

investors in bank 1). Depositors in bank 1 would get u1(��R) and investors in bank 1 would get

��R[I� (1; �; 1)� �] +B. Thus, depositors prefer investing in the safe asset than gambling when
the transfer is made. However, it may not be necessary preferred for investors in bank 1.

Let us compare strategies a), c) and d). The one yielding the highest payo¤ for investors will

be the continuation equilibrium after banks 1 and 2 have joined the network. Investors in bank

1 prefer a) to c) if and only if

�[I�(0; �; 0) + "] � I�(0; �; 0). (8)
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As � is arbitrarily high, this expression converges to " � 0. On the other hand, they will prefer
a) to d) if and only if

��R[I�(0; �; 0) + "� I�(1; �; 1) + �] > 1� I�(1; �; 1) + �.

Again, as � is arbitrarily high, this expression converges to �R["+ �] � � that always holds true
for " � 0. So if investors in bank 1 bear the decision of making the bank transfer, they will never
make it (ex-ante) for su¢ ciently high �.4

Network formation. In order to see what are the incentives of being in a network, we have to

confront the two possible equilibrium situations: the autarky (that is, when banks are not linked)

and equilibrium a).

Given that bank 1 depositors get u1(R) in autarky and u1(��R) when the banks are linked,

they will prefer to join the network if and only if

�� > 1,

which is true. Investors in bank 1 will prefer to be in the network with respect being in autarky

if and only if

��R[I�(0; �; 0) + "] > R[I�(0; �; 0) + "],

which always hold for �� > 1. Therefore, both depositors and investors in bank 1 �nd it optimal

to enter the network. Depositors in region 2 always prefer the network given that they obtain

��R greater than �R obtained in autarky. Investors in region 2 also prefer to join the network

since

��R[I�(1; �; 0)� "] +B > �R[I�(1; �; 0)� "] +B.

To sum up, equilibrium a) is optimal for all the agents in the economy and it will be preferred to

autarky or equilibrium c) if � is su¢ ciently high.

Finally, let us consider the e¢ ciency of the equilibria. The total amount of dollars that the

social planner would achieve is �R(2 + e1 + e2) = 2�R[1 + I�(1; �; 1)]. Note that this is the same

amount of total dollars that equilibrium c) delivers. Then equilibrium c) is able to deliver the

e¢ cient total amount of money. However, according to (8), we know that when � is high enough

the bank capital transfer becomes relatively more costly than the risk of �nancial instability, and

equilibrium c) would not be played in a decentralized environment.

In autarky the �nancial system would deliver a total amount of dollars equal to R + �R +

[I�(0; �; 0) + "]R + [I�(1; �; 0) � "]�R. Notice that the last expression is necessarily strictly less
than the �rst-best outcome. Indeed, the maximum amount of dollars that the �nancial system

can achieve when both banks are in autarky is when both of them invest in the safe asset. In this

4The reader could note that depositors in bank 1 would prefer instead equilibrium c) to a). This is true under

the assumption that the investors pay the tranfer ". If the transfer would be paid by depositors they would prefer

equilibrium a) to c) if and only if

(1� �)�R � ".

Also this expression converge to " � 0 as � ! 1, and depositors would oppose the tranfer for su¢ ciently high �.

What is crucial for equilibrium a) to be preferred to equilibrium c) is that the transfer has to be relatively more

costly than the risk of �nancial instability.
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case, the �nancial system gets R(2 + e1 + e2) = 2R[1 + I�(1; �; 1)] dollars, which is strictly less

than the e¢ cient amount.

Under equilibrium a) instead the total amount of dollars that the �nancial network achieves

is

2��R+ [I�(0; �; 0) + "]��R+ [I�(1; �; 0)� "]��R = 2��R[1 + I�(1; �; 1)].

If � = 1, the total dollars available would be exactly the e¢ cient amount of dollars that a social

planner would deliver. For � ! 1, the �nancial network characterized by equilibrium a) is able to

deliver an amount of dollars close to the e¢ cient amount. That is, as � ! 1 equilibrium a) gets

arbitrarily close to the �rst-best. Furthermore, the equilibrium network structure is equal to the

e¢ cient one (both banks being linked).

The di¤erence between equilibrium a) and the e¢ cient one lies in the investment strategies

chosen by the two banks. While in the e¢ cient network both banks invest in the safe asset, in

the decentralized network one of the banks is gambling. However, for very small probability of

bankruptcy, the structure of the network becomes more relevant in determining the total payo¤

of the system.

This example shows that a fragile �nancial network can deliver the �rst-best outcome when

moral hazard problem is nearly negligible. In other words, joining a fragile �nancial network,

that is a network characterized by a small probability event that is potentially able to cause the

meltdown of the entire system, not only can be an ex-ante optimal decision but it could allow to

achieve a payo¤ arbitrarily close to the �rst-best solution (i.e., unconstrained e¢ cient). We are

going to check if this result survives in a more general setting.

4 First-best Solution

In order to characterize the results of the model, we need to introduce some de�nitions. Let (N; e)

be a given economy, as de�ned in Section 2. An allocation is a vector (K;x; s), where: (i) x 2 X ,
(ii) K 2 K, and (iii) s 2 S. An allocation thus speci�es a reallocation of initial endowments of
capital x, a network K and an investment decision s for each bank.

Let the function m(K;x; s) be as de�ned in equation (2). An allocation (K;x; s) is an Invest-

ment Nash Equilibrium (INE) for a given economy (N; e) if

mi(K;x; s) � mi(K;x; (s�i; ~si)) for all i in N ,

with ~si 2 fb; gg. In other words, an allocation is an INE for a given economy if taking the

�nancial network and capital as given there are no unilateral pro�table deviations in the choice

of the investment asset, with no possibility for further transfers of bank capital. Note that, if an

allocation is an INE for a given economy it has to hold that

xi � I�(ki; �; gi) if si = b for all i 2 N .

The �rst-best solution is characterized by the social planner problem, which is de�ned as

follows.
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De�nition 1 Let pi(K; s) be de�ned as in equation (1) for any given (K; s). Given an economy
(N; e), an allocation (K�; x�; s�) is a (constraint) �rst-best (CFB) if it maximizes

X
i2N

pi(K; s)f(ki)R (xi + 1) ; (9)

subject to

xi � 0, for all i 2 N (10)X
i2N

xi =
X
i2N

ei; (11)

xi � I�(ki; �; gi) if si = b (12)

We will refer to x� as the optimal capital allocation, K� as the optimal �nancial network and

s� as the optimal investment decision.

Note that we are assuming that the planner is able to perfectly transfer the initial endowments

of capital across banks, �x a �nancial network and suggest investment plans to the banks. We

allow banks to unilaterally deviate from investment decisions (see constraint (12)). This restricts

the social planner problem in a way that moral hazard has to be taken into account. Finally,

note that the social planner does not care about private bene�ts B, and only maximizes the total

amount of money that is generated in the economy. Indeed, the expression

pi(K; s)f(ki)R (xi + 1)

does not include B even when si = g. On the contrary, the payo¤ mi(K;x; s) +Mi(x;K; x) as

de�ned in equations (2) and (3) includes B when si = g.

We �rst characterize the optimal distribution of bank capital made by the social planner in

the CFB allocation.

Proposition 1 Let (K�; x�; s�) be a CFB for a given economy (N; e). Then,

1. For every bank i such that s�i = g: if there exists another bank j with k�j � k�i such that

either s�j = b and gj � gi; or s�j = g and gj < gi, then x�i = 0.

2. For every bank i such that s�i = b and gi > 0: if there exist another bank j with k�j � k�i
such that either s�j = b and gj < gi or s

�
j = g with gj < gi � 1, then x�i = I�(k�i ; �; gi).

Proposition 1 states that once the minimal capital that induces to choose the safe asset is

met, the planner will distribute the extra amount of bank capital into the nodes that yield a

higher return, either because they are better connected or because they face a smaller risk of

bankruptcy.

We then establish the shape of the e¢ cient �nancial network. The following proposition states

that the CFB allocation consists of a core-periphery network structure. In this structure, the core

banks choose the safe asset and are all connected to each other. The peripheral banks choose the

gambling asset and can be eventually connected to some core banks and some peripheral banks
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depending on the value of the parameters. Note that the structure where all banks play safe, is

a special core-periphery structure where the periphery consists of no banks, that is all banks are

in the core.

Proposition 2 Let (K�; x�; s�) be a CFB for a given economy (N; e). Then, for every pair of

banks i and j such that s�i = s
�
j = b we have that i 2 K�

j and j 2 K�
i .

The intuition is as follows. When two banks are choosing the safe asset, it is always better to

have them connected than unconnected. This is true since one more neighbor always increases in-

vestment opportunities. Given that both banks are choosing the safe asset, linking them together

does not impose any additional risk. Indeed, if a bank has enough bank capital to choose the

safe asset in a given �nancial network, then the same capital will be su¢ cient to avoid gambling

if the bank has one more neighbor that invests in the safe asset.

Note that the total amount of capital available restricts the number of banks that will invest

in the safe asset in the CFB allocation. It is easy to see that, as far asX
i2N

ei � nI�(n� 1; �; 0)

the CFB consists of xi � I�(n � 1; �; 0), for all i, K�
i = Nnfig, and s�i = b. In other words, as

far as the planner has enough bank capital, the CFB allocation is equal to the (unconstrained)

�rst-best where moral hazard is completely avoided and all banks are connected investing in the

safe asset. When the planner does not have enough bank capital, i.e. whenX
i2N

ei < nI
�(n� 1; �; 0),

the structure of the CFB allocation changes depending on the relative magnitude between the

risk of gambling and the bene�ts of the �nancial network.

On the one hand, the higher � and the lower is the risk of contagion, so the CFB yields

structures where the periphery is more and more connected, until in the limit the CFB �nancial

network is the complete network. On the other hand, the lower � and the higher is the the risk

of contagion, and then the CFB allocations yield structures where the periphery is less and less

connected, until in the limit the CFB �nancial network only connects banks that invest in the

safe asset. That is, the CFB is characterized by the complete network on the core and the empty

network on the periphery. This is formally stated in the following two propositions.

Proposition 3 Let (K�; x�; s�) be a CFB for a given economy (N; e) and assume that � �
f (n� 2)
f (n� 1) . Then

1. K�
i = Nnfig for all i 2 N .

2. Let c� be the biggest number in f1; 2; :::; ng such thatX
i2N

ei � c�I�(n� 1; �; n� c�),

then the number of banks investing in the safe asset in the CFB is equal to c�:
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The intuition is straightforward. When � is high enough, the risk of bankruptcy is su¢ ciently

low such that it cannot outweigh the advantages of portfolio diversi�cation represented by f (k).

Therefore, connecting two banks always yields more money than leaving them unconnected. Note

that it is convenient to add a gambling bank into the network as long as

�f(ki + 1) > f(ki).

Consequently, if the condition

� � f (n� 2)
f (n� 1)

is satis�ed, then it is optimal to add the gambling banks into the network until the (n � 1)th
bank (i.e., the last bank). Thus, the structure that maximizes the (total) expected amount of

money generated in the economy is the complete network structure.

Proposition 4 Let (K�; x�; s�) be a CFB for a given economy (N; e) and assume that 0 < � <
1

f (1)
. Then

1. g�i = 0 for all i such that s
�
i = g:

2. Assume further that � <
1

�+ 2 (n� 1) (�� 1) . Then

(a) K�
i = ; for all i such that s�i = g.

(b) Let c� be the biggest number in f1; 2; :::; ng such thatX
i2N

ei � c�I�(c� � 1; �; 0),

then the number of banks investing in the safe asset in the CFB is equal to c�.

As before, the same intuition applies. When � is very low, the risk of bankruptcy can outweigh

the advantages of �nancial diversi�cation and it becomes optimal not to connect a bank investing

in the gambling asset to another bank. However, we have to di¤erentiate between linking a

gambling bank to another gambling bank or to a safe one.

Note that it is not optimal to connect two gambling banks whenever

�gif(ki) > �
gi+1f(ki + 1) =) f(ki) > �f(ki + 1).

Since f(ki) is quasiconcave, then if the condition

� <
f (0)

f (1)
=

1

f(1)

holds, then it is never optimal to connect two gambling banks.

However, the planner could �nd it optimal to link a gambling bank to a safe bank if the ex-

pected gain of the former are higher than the expected loss of the latter. Proposition 4 establishes

a su¢ cient condition under which this possibility does not occur. Note that the condition

� <
1

�+ 2 (n� 1) (�� 1)
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can be written as ��� 1+2(n� 1)�(�� 1) < 0. Consequently, the condition implies that �� < 1.
On the one hand, note that when the planner links a gambling bank to a safe bank the

expected gain is strictly less than 2(n � 1)�(� � 1)R. To see why, notice that a gambling bank
can gain at most

� [f(ki)� 1] (ei + 1)R

when it is connected to ki safe banks. Since f(:) is increasing and ei < 1, that gain is strictly

smaller than 2�(�� 1)R. The number of banks that are in the periphery can be at most (n� 1)
since one bank has to invest in the safe asset. Then, considering any possible way of joining

any number of gambling banks to safe banks, the total expected gain cannot be larger than

2(n � 1)�(� � 1)R. On the other hand, the loss for a safe bank to be connected to gi gambling
banks is

[�gif(ki + gi)� f(ki)] (ei + 1)R.

Given that f(:) is increasing and � < 1, the minimum loss is given by [��� 1] (ei + 1)R, which is
strictly less than [��� 1]R. If the minimum loss plus the maximum gain is still negative, that is

(��� 1)R + 2(n� 1)�(�� 1)R < 0, then it cannot be optimal to connect a gambling bank with
a safe bank.

Consider again the two-banks case discussed in Section 3. Since n = 2, we have

f (n� 2)
f (n� 1) =

f (0)

f (1)
=
1

�
.

Assume �rst that � is high, such that �� � 1. The CFB allocation will depend on the aggregate
amount of bank capital. When e1+e2 � 2I�(1; �; 0) the two banks are linked investing in the safe
asset. In this case the CFB allocation is an unconstrained �rst-best. When I�(1; �; 1) < e1+e2 �
2I�(1; �; 0) the two banks being linked is still an optimal �nancial network, but there is not enough

capital for both banks to invest safe. One of the two banks invests optimally in the gambling

asset, imposing the risk of contagion on the other bank. Finally, when 0 < e1 + e2 � I�(1; �; 1),
the CFB allocation still recommends both banks to be connected investing in the gambling asset.

Now assume that � is low, such that �� < 1. Also in this case the CFB allocation will depend

on the amount of aggregate bank capital. When e1 + e2 � 2I�(1; �; 0) the two banks will still

be linked investing in the safe asset. However, when I�(1; �; 1) � e1 + e2 < 2I�(1; �; 0) the two
banks being linked might not be an optimal �nancial network anymore since one bank invests in

the gambling asset. It would be optimal to connect them if and only if

� � e1 + e2 + 1

�(e1 + e2 + 2)� 1
� �.

Otherwise, if � < �, it is optimal to be disconnected. Note that

� >
1

�+ 2 (�� 1) ,

where � <
1

�+ 2 (�� 1) is the su¢ cient (but not necessary) condition for an empty periphery in

Proposition 4. Finally, when 0 � e1+ e2 < I�(1; �; 1), there is not enough aggregate bank capital
to guarantee at least one bank investing safe, and then it is optimal to disconnect the two banks.
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4.1 Examples of E¢ cient Network Structures

In this Section we provide examples of e¢ cient network structures focusing on the case of four

banks. We consider the four banks case since it has been widely used in previous banking literature

(see Allen and Gale [2]; Brusco and Castiglionesi, [5]).

Let X
i

ei = E

the total bank capital available. With four banks, when the aggregate bank capital satis�es

the condition E � 4I�(3; �; 0), then the e¢ cient network structure is the complete one with

everybody linked with everybody else and investing in the safe asset. That is, the core of the

�nancial network is made of four banks.

When the aggregate bank capital is such that E < 4I�(3; �; 0), then avoiding moral hazard

in the complete network structure is no longer possible. Consequently, the core of the �nancial

network will be made of three (or less) banks.

Figure 1 shows four core-periphery network structures under the assumption that the core

is made of three banks. In particular, the two banks represented at the top and the one at the

bottom right are investing in the safe asset while the one at the bottom left is investing in the

gambling asset.
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FIGURE 1

Clearly, the e¢ cient structure depends both on the total capital available and on how � relates

to the di¤erent values of the function f(k). Let us now be more speci�c about the total capital

available and the values of � and f(k). Table 2 reports the minimal capital requirements for

network structures 1, 2, 3 and 4 represented in Figure 1.

Table 2. Minimum aggregate capital for network structures 1, 2, 3 and 4

Structure Minimum Capital

1 3I�(2; �; 0) = E1

2 2I�(2; �; 0) + I�(3; �; 1) = E2

3 I�(2; �; 0) + 2I�(3; �; 1) = E3

4 3I�(3; �; 1) = E4:

In order for structure 1 to be feasible (i.e., to be an INE), the aggregate bank capital has

to be at least E1. Otherwise, it would not be feasible. The same reasoning applies to the other
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structures. For each feasible network structure with three banks in the core, there are di¤erent

ways of allocating the total capital endowment. The optimal choice depends on how the values

of �f (3) and f (2) are related.

Recall that the social planner has to meet the minimal individual capital requirement since

the CFB has to be an INE. Then he has to allocate the remaining capital, if any, to the banks

with the highest return (given the network). Assume that �f(3) > f(2). This implies that a bank

with three neighbors, with one of them investing in the gambling asset, obtains higher returns of

a bank with two neighbors investing in the safe asset.

Under the assumption that �f(3) > f(2) we have E1 > E2 > E3 > E4. The social planner will

choose then the structure that maximizes the total amount of money generated by the network.

Table 3 speci�es the total amount of money generated by each structure in Picture 1 under the

assumption that �f(3) > f(2).

Table 3. Total amount of money generated by structures 1, 2, 3 and 4

Structure Total Amount

1 f(2)[E + 3] + �

2 �f(3)[E + 1� 2I�(2; �; 0)]+
+2f (2) [I�(2; �; 0) + 1] + �f (1)

3 �f(3)[E + 2� I�(2; �; 0)]+
+f (2) [I�(2; �; 0) + 1] + �f (2)

4 �f(3)[E + 4]

From Table 3 it is clear that the total amount of money generated by structure 4 is larger than

the one generated by structure 3, which is larger than the one generated by structure 2, which is

larger than the one generated by structure 1. Consequently, whenever feasible, the planner would

choose structure 4. This is the case when E4 < E < 4I�(3; �; 0).

Under the conditions �f(3) > f(2) and E4 < E < 4I�(3; �; 0), the planner chooses network

structure 4 with the corresponding optimal capital allocation. Intuitively, when � is high enough

the optimal network structure is the complete one. Note the di¤erence with the previous case,

where the core of the complete network was made of four banks. Now the complete network is

fragile, while before it was safe. The same complete structure can be characterized by di¤erent

degree of �nancial fragility. If E4 > E then the core of the networks has to be made of two banks

(or less).

The same reasoning would apply if we have f(2) > �f (3). In this case the inequality between

the minimum capitals in Table 2 becomes E1 < E2 < E3 < E4. If f(2) > �f (3) and E1 < E <

4I�(3; �; 0) then the planner chooses network structure 1 for � < 1
f(3)+6(f(1)�1) , by Proposition 4.

In such a case, the optimal network structure implies to link only banks that are not investing in

the gambling asset. Also in this case, if E1 > E then the core of the networks has to be made of

two banks (or less).

Figure 2 represents core-periphery structures for four banks where the core is made of two

banks. In particular, the two banks represented at the top are the core ones, while the two banks

at the bottom are the periphery ones. The latter banks could be disconnected (as in structures 5
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until 11) or connected (as in structures 12 until 18). Moreover, the periphery banks could be not

connected to the core (as in structures 5 and 12) or connected to one or both the core banks.
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FIGURE 2

Note that structures number 2 is the same as structures 10, 14 and 16. Also structure

3 coincides with structure 17. Structure 4 is equal to structure 18. The di¤erence is in the

investment decision of the banks. In structures 2, 3 and 4 there are three banks choosing the

safe asset, while in the other structures there are only two banks doing so. That is, in the latter

structures the core is smaller.

Again, under the conditions �f(3) > f(2) and E < E4, the optimal network structure would

be 18 (for the same reason as before). This means that the planner would choose the fully

connected structure also in this case. However, structure 18 implies a �nancial fragility higher

than the one in structure 4 since in the former structure there are two banks gambling while in

the latter there was only one bank doing so. Again, the same (fully connected) structure can

imply di¤erent degree of �nancial fragility.

However, for di¤erent parameter values, other structures can arise as the optimal one. For

example, let us consider network structure 15, which is the incomplete structure analyzed in Allen

and Gale [2]. As already seen, assuming E < E1 and �f (3) < f (2), no structure with a core made
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of three banks can be an INE (there is not enough capital available.) Recall that the function f (k)

is quasiconcave. This means that the ratio f(k)
f(k+1) is increasing in k and f (k) >

f(k+1)+f(k�1)
2 .

Furthermore, assume that � satis�es the following condition

f(1)

f(2)
< � <

f (2)

f (3)
.

Note that the condition �f (2) > f (1), which implies �f (1) > 1, guarantees that whenever

there is a bank connected to at most one other bank, it is better to connect it to another bank

even if the new bank is gambling. This implies that structure 8 yields an higher amount of money

(whenever feasible) than structure 6. For the same reason, structure 6 is preferred to structure 5;

structure 15 is preferred to structures 8, 12 and 13; and structure 16 is preferred to structure 9.

Moreover, since f (1) > f(2)+f(0)
2 , structure 8 is preferred to structure 7, and, since f (2) >

f(1)+f(3)
2 , structure 15 is preferred to structure 14. It remains to compare then structures 10,

11, 15, 16, 17 and 18. Note that �f (3) < f (2) implies that I� (3; �; 2) > I� (2; �; 1), and that

f (1) < �f (2) implies that I� (1; �; 0) > I� (2; �; 1). Let

~E � minfI� (2; �; 1) + I� (3; �; 2) ; I� (2; �; 1) + I� (1; �; 0)g.

If the total endowment of bank capital E lies in the interval
h
2I� (2; �; 1) ; ~E

�
then structures 10,

11, 16, 17 and 18 are not feasible anymore. So the CFB allocation is given by structure 15 when

1. f(1)
f(2) < � <

f(2)
f(3) , and

2. 2I� (2; �; 1) � E < ~E and E < 3I�(3; �; 1).

Note that this is not the unique case in which structure 15 could be the CFB allocation.

Finally, observe that contingent on the failing of one bank, the incomplete structure 15 is more

resilient than the complete structure 18. Indeed, when one of the gambling bank fails, structure

15 implies that one safe bank will survive. Structure 18 instead implies that all the system will

collapse. In other words, the probability of failing of the entire system under structure 18 (i.e.,

�) is higher than the same probability under structure 15 (i.e., �2).

5 Financial Network Formation

In this section we analyze the decentralized �nancial network formation. To ful�ll such task,

we start with the concept of INE. Given an INE, we de�ne a Transfer Nash Equilibrium (TNE)

where the network structure is taken as given and agents know that, once transfers are realized,

banks play an INE in choosing the investment (i.e., in the last stage). Finally, using the notion of

pairwaise stability (Jackson and Wolinsky, [9]), the agents choose the network taking into account

the TNE and the INE. In other words, given the sequence of events described in Table 1, we solve

the model backwards.

Let the payo¤ function m(K;x; s) be as de�ned in (2). Recall that an allocation (K;x; s)

is an INE for a given economy if taking the �nancial network and capital as given there are no
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unilateral pro�table deviations in the investment choice. Recall also that an INE allocation has

to satisfy for all i 2 N that

si =

(
b; if xi � I�(ki; �; gi),
g; otherwise.

In order to analyze the decentralized network formation, we have to specify the transfers

that lead to a particular allocation of bank capital x. So far, we did not specify any rule about

transfers. We have just assumed that a bank i can only give a transfer to another bank j that is

connected to it in the �nancial network.

Our equilibrium concept will select the allocations where banks do not have any further

incentive to transfer money through the �nancial network.

De�nition 2 Given an INE (K;x; s) and a bank i, another allocation (K; ~xi; s(~xi)) is called a
short-sighted pro�table deviation for a bank i from (K;x) if there exists a transfer 0 < ti � xi

and a set of neighbors J � Gi such that:

1. ~xi(K;x) = xi � ti, ~xj(K;x) = xj + tij � I�(kj ; �; gj � jJ \Gj j), with
P
j2J tij = ti, for all

j 2 J , and ~xr(K;x) = xr for all r =2 J ;

2.

si(~xi) =

(
b; if xi � ti � I�(ki; �; gi � jJ j),
g; otherwise,

sj(~xi) = b for all j 2 J and sr(~xi) = sr for all r =2 J ;

3. mi(K; ~xi; s(~xi)) > mi(K;x; s) and mj(K; ~xi; s(~xi)) � mj(K;x; s) for all j 2 J .

Note that a pro�table deviation for a bank i occurs if it can make transfers to a set of neighbors

in the network to avoid those neighbors�moral hazard, expecting these neighbors to accept the

transfer. If the transfer does not avoid the moral hazard problem bank i cannot gain anything

from making such transfers. Therefore that case is not considered in a pro�table deviation.

To keep things tractable, we will assume that after making a transfer to a set of neighbors

J , bank i can anticipate changes to the investment decisions corresponding only to that set of

neighbors J receiving the transfer and itself. Hence, s(~xi) is restricted to sr(~xi) = sr for all r =2 J .
Note that a short-sighted pro�table deviation for a bank i given an INE is not necessarily an INE

itself, as some neighbors of banks in J could decide to move to the safe asset when the banks in

J do so.

An allocation (K;x; s) is a Transfer Nash Equilibrium (TNE) if it is an INE and for all i 2
N there is no short-sighted pro�table deviation from (K;x). Let the set T (K) denote the set of
all possible TNE capital reallocations and investment strategies, once the �nancial network has

been �xed to be equal to K. Formally,

T (K) = f(x; s) 2 X � S such that (K;x; s) is a TNEg :

Note that in the de�nition of the TNE there is no speci�cation about the order or dynamics

of transfers. If we allow banks to make transfers to one of their neighbors that are choosing the

gambling asset at any point, a TNE is a stable point in a short-sighted way. The reader should
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note that there are no guarantees that a free process of making transfers might end up in a cycle

of allocations instead of a single allocation. Nevertheless, we can �nd conditions under which the

transfers are never made. In other words, we can identify the conditions under which for every

K there exists a strategy s(K) 2 S such that the allocation (K; e; s(K)) is a TNE.
Let emax the biggest realization of ei, and let emax<1 the biggest realization of the ei�s that are

strictly smaller than 1, if any. We have the following

Proposition 5 Given the economy (N; e) and �, assume that one of the following conditions is
satis�ed:

1. ei � 1 for all i 2 N ,

2. emax + emax<1 < I� (n� 1; �; 0),

3. � > ~�(e), for a threshold ~�(e) 2 (0; 1),

then for any s 2 S such that (K; e; s) is an INE it is true that (K; e; s) is a TNE.

The intuition of the proposition is as follows. Condition 1 means that all the banks on every

possible network are su¢ ciently capitalized, and this implies that they will invest in the safe

asset. This implies that there is no need of any bank capital transfer.

Condition 2 implies that emax < 1, and given the de�nition of emax<1 , this implies that

emax = emax<1 <
1

2
I� (n� 1; �; 0) .

This means that everybody plays gamble in every possible �nancial network, and that two banks

never have enough bank capital to make at least one of them choosing the safe asset. Again,

there are no incentives any bank capital transfer.

Condition 3 states that � has to be su¢ ciently large, given the initial bank capital endowments,

when neither condition 1 nor condition 2 is satis�ed. Recall that � su¢ ciently large means that

the risk of bankruptcy of the gambling banks is low. The only reason it might be pro�table for

a bank to initiate transferring bank capital to its neighbors is to avoid their gambling behavior.

However, if the gambling behavior is not too risky, i.e. there is a low probability of bankruptcy,

banks will not �nd it worthwhile to give away capital in exchange of �nancial stability.

We de�ne an economy without transfers an economy (N; e), and the given �, in which
either condition 1, or condition 2, or condition 3 in Proposition 5 is satis�ed.

As already anticipated, our notion for network formation is an adapted version of pairwise

stability introduced by Jackson andWolinsky [9]. Before giving the de�nition we need to introduce

some notation. Given a network K, we can de�ne a new network K [ ij resulting from adding a

link joining banks i and j to the existing network K. Formally, K [ ij =
�
~K1; :::; ~Kn

�
such that

~Ki = Ki [ fjg, ~Kj = Kj [ fig and ~Kr = Kr for all r 6= i; j. On the contrary, for any two banks
i and j connected in K, let Knij denotes the resulting network from severing the link joining

banks i and j from K. Formally, Knij =
�
~K1; :::; ~Kn

�
such that ~Ki = Kinfjg, ~Kj = Kjnfig and

~Kr = Kr for all r 6= i; j.
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De�nition 3 An allocation (K; e; s) is pairwise stable without transfers (PSWT) if the following
holds:

1. For all i and j directly connected in K: mi(K; e; s) � mi(Knij; e; ~s) and mj(K; e; s) �
mj(Knij; e; ~s) for all allocations (Knij; e; ~s) that are INE.

2. For all i and j not directly connected in K: if there is an INE (K [ ij; e; ~s) such that
mi(K; e; s) < mi(K [ ij; e; ~s), then mj(K; e; s) � mj(K [ ij; e; ~s).

The de�nition of PSWT captures two ideas that directly derive from the notion of pairwise

stability (Jackson and Wolinsky, [9]). The �rst idea refers to the network internal stability: No

pair of banks directly connected in the current �nancial network individually gain from severing

their �nancial link. The idea implicitly states that any of the two banks could sever the link

unilaterally. The second idea establishes the network external stability: If one bank could gain

from creating a link with another bank, it has to be that the other bank cannot gain from that

link. This idea implicitly assumes that both banks have to agree in order to create a new link.

The willingness of one bank in creating a new link is not enough to change the network structure.

Note that we de�ne the equilibrium as pairwise stable without transfers since the banks are

assuming that no transfers are going to be made once the network is formed, and the resulting

outcome is going to be an INE �xing all bank capitals to be equal to the initial endowments.

From Proposition 5, pairwise stability without transfers makes sense in the context of an economy

without transfers. If none of the conditions that guarantee that no transfers are taking place,

some banks in the �nancial system could be willing to transfer bank capital to their neighbors. In

such a case, it is not guaranteed that the system will rest in a TNE once the dynamic of transfers

has started, or it will rest in a cycle of transferring behavior.5

De�nition 4 An allocation (K; e; s) is a decentralized equilibrium without transfers (DEWT) if

it is INE, TNE and PSWT.

We proceed to describe the set of decentralized equilibria for a given economy (N; e) by means

of the following proposition.

Proposition 6 Assume that � and (N; e) de�ne an economy without transfers. Then, a DEWT
is a core-periphery structure, i.e., if (Ke; e; se) is a DEWT, then, for every pair of banks i and j

such that sei = s
e
j = b, we have that i 2 Ke

j and j 2 Ke
i .

On the one hand, a bank agrees to be connected to any neighbor that is choosing the safe

asset since this decision entails no extra risk of bankruptcy. On the other hand, if a bank

plays safe any other bank would like to be connected to it for the same reason. Since links are

expected to be bene�cial for both participating banks, two banks choosing safe will normally

be connected. Therefore a core-periphery structures appears where all banks choosing the safe

asset are connected among themselves. The connectivity of banks choosing gambling (the low

capitalized banks) depends on how the parameters of the model relate.

5One could impose additional conditions on the problem, but they will make the paper technically less tractable

and the spirit of the paper would remain the same.
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Note that Proposition 6 does not imply that the network structure in a DEWT is the same as

in the optimal one. The core in the CFB might have a di¤erent size than the core in any DEWT.

6 Financial Network E¢ ciency

With the presence of moral hazard the (unconstrained) �rst-best cannot be reached when the

total capital available is not large enough. However, for vanishing probability of bankruptcy we

show that the structure of the decentralized network is equal to the e¢ cient one. Furthermore,

the total payo¤ delivered by the decentralized network is arbitrarily close to the e¢ cient one. We

have the following.

Proposition 7 If � and (N; e) de�ne an economy without transfers, and � � f (n� 2)
f (n� 1) then the

only network structure for any DEWT is the complete network structure.

This result states formally the idea that when the risk of �nancial contagion is su¢ ciently

low, it is always worthwhile to take the risk of being connected to a low capitalized bank in order

to obtain the advantages resulting from investment diversi�cation.

Note that Proposition 7, even if it establishes that the decentralized network is equal to the

optimal one, does not imply the investment decisions are the same in both networks. In the

DEWT the investment decisions might be suboptimal, as the example in Section 3 showed, since

some banks can gamble while in the e¢ cient network they would invest in the safe asset. However,

when � tends to 1, all investment pro�les yield the same total amount of money for each given

network structure. In other words, as the moral hazard problem vanishes, the only factor that

determines the payo¤ is the network structure.

Proposition 8 If � and (N; e) de�ne an economy without transfers, and � <
1

f (1)
the only

network structure for any DEWT is a core-periphery structure where the periphery has no links.

Proposition 8 states that when the risk of �nancial contagion is su¢ ciently high, the network

formed by agents has zero probability of contagion. Only agents that are choosing the safe

asset have connections in the network. Let us compare Proposition 8 with Proposition 4. The

former establishes that � <
1

f (1)
is su¢ cient to observe an empty periphery in the decentralized

network, while the latter states that the same condition is not su¢ cient for the empty periphery

to be optimal. Recall that � <
1

f (1)
guarantees that no safe bank wants to connect to a gambling

bank, but it could be that the gains for the gambling bank outweight the loss for the safe bank if

they get connected and the planner links them together. As a consequence, gambling banks are

(ine¢ ciently) under-connected in the decentralized network for � 2 [ 1
�+2(n�1)(��1) ;

1
f(1) ].

Finally, in order to establish fully the e¢ ciency of the network structures, we have to combine

the conditions in Propositions 7 and 8 with the conditions stated in Proposition 5.

Condition 1 in Proposition 5 implies that everybody plays safe in every possible network. This

means that the fully connected network will be formed and everybody chooses the safe asset. This

is indeed the (unconstrained) �rst-best outcome. This result is reached independently of the value

taken by �.
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Condition 2 in Proposition 5 implies that everybody plays gamble in every possible network.

On the one hand, if the condition in Proposition 7 holds, the complete network will be formed,

which is the same structure as in the CFB. Again, this does not mean that the optimal investment

pro�le is to choose the gambling asset for all banks, since the social planner could pool the bank

capitals inducing one (or some) bank to choose the safe investment. On the other hand, if the

condition in Proposition 8 holds, the resulting structure is the empty network since all banks are

periphery banks. This structure could not coincide with the CFB structure if by pooling all the

bank capital endowments the planner can get at least one bank choosing the safe asset.

Condition 3 in Proposition 5 implies that � has to be high enough given the bank capital

endowments. As before, under the condition in Proposition 7, the resulting structure is the

CFB, although the investment pro�les need not to be the optimal ones. Under the condition in

Proposition 8 it is not guaranteed that the decentralized network structure is equal to the CFB

one, as it depends on how the capital endowments are distributed.

Overall, when � is su¢ ciently high (according to the condition in Proposition 7), we have

established that the decentralized �nancial network is characterized with a structure that coincides

either with the (unconstrained) �rst-best structure or the CFB structure. On the contrary, when

� is su¢ ciently low, the structure of the decentralized network is not the same as the CFB

structure.

7 Discussion

7.1 Alternative Motivation for the Network Bene�ts

We motivated the bene�t of the �nancial network with the assumption that the return to in-

vestment increases with the number of banks connected. Alternatively, another rationale for the

bene�ts of establishing �nancial links among banks can be found also in the banking literature.

If banks face idiosyncratic liquidity shocks due to consumers�consumption preferences (Diamond

and Dybvig, [6]), and as long as there is no aggregate liquidity shortage, the uncertainty arising

from these shocks can be eliminated by establishing �nancial links (Allen and Gale, [2]). More-

over, banks in autarky would need to invest more resources in short term liquidity to prevent high

idiosyncratic liquidity shocks, and consequently less resources can be invested in more pro�table

long term projects. The same result holds when banks are a¤ected by moral hazard problem

(Brusco and Castiglionesi, [5]).

To capture this feature we can assume that the per unit cost of the investment (both safe

and gambling) is decreasing in the number of banks linked with the investing bank i 2 N , where
Ki � N is still the set of banks to whom bank i is directly linked. Then the number of banks

connected to bank i is k 2 f0; 1; :::; n� 1g. We indicate the cost of investment with the function
C(k) with C 0(k) < 0, and C 00(k) > 0 for all k 2 [0; n � 1]. We assume that C(0) = 1 and

C(n � 1) = c, with 0 < c < 1, that is C(k) 2 [c; 1]. Consequently a bank that makes the

investment in autarky (k = 0) faces the highest cost, while a bank that is connected with all

the other banks (k = n � 1) faces the lowest investment cost. With a little change in notation,
this assumption conserves the same mathematical structure of the one used in the text and
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consequently all our results go through.

8 Conclusion

We present a model where fragile �nancial networks can be optimal when aggregate bank capital

is not large enough to avoid any problem of moral hazard. From a decentralized point of view,

banks can rationally join a fragile �nancial network as far as the risky asset fails with a su¢ ciently

low probability. We characterize the set of optimal �nancial networks as core-periphery structures

that get more and more connected as the probability of failure becomes smaller. The �nancial

networks resulting from a decentralized process of network formation are also core-periphery

structures provided there are no bank capital transfers, although may not be exactly equal to

the optimal ones. Furthermore, the investment pro�les in the decentralized system are in general

di¤erent from the e¢ cient. However, our main conclusion is that the decentralized system works

close enough to the social planner�s solution when the probability that the network collapses is

negligible. On the contrary, when the same probability is su¢ ciently high, ine¢ cient structures

of the decentralized �nancial network arise.
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Appendix

Proof of Proposition 1. The �rst statement is proved by contradiction. Assume that

(K�; x�; s�) is a CFB for (N; e) such that there is a bank i such that s�i = g and x�i > 0, and

there is another bank j with k�j � k�i such that s
�
j = b and gj � gi (the proof of the case for

s�j = g and gj < gi is equivalent and therefore omitted). Take (x̂;K
�; s�) a new allocation for the

same economy (N; e), where the network and investment strategies are the same. The allocation

of capital di¤ers in bank j receiving all the capital endowment of bank i. Formally, x̂i = 0,

x̂j = x�j + x
�
i , and x̂r = x�r for all r 6= i; j. We show that (x̂;K�; s�) yields a higher expected

total money generated in the economy. Therefore, the initial allocation (K�; x�; s�) cannot be a

solution to the planners problem and statement 1 follows. Note that if (K�; x�; s�) is a CFB then

it has to be an INE. Therefore, as j is choosing the safe asset, we have that x�j � I�(k�j ; �; gj).

By de�nition of x̂, we have that x̂j > x�j � I�(k�j ; �; gj) and therefore the allocation (x̂;K�; s�) is

an INE. Furthermore,X
r2N

pr(K
�; s�)f(k�r)R (x̂r + 1)�

X
r2N

pr(K
�; s�)f(k�r)R (x

�
r + 1)

= Rx�i
�
�gjf(k�j )� �gi+1f(k�i )

�
� 0; (13)

as k�j � k�i , the function f(k) is increasing on k and gj � gi . By equation (13), the allocation

(x̂;K�; s�) yields a higher expected total money in the economy and therefore (K�; x�; s�) was

not a CFB.

Also the second statement is proved by contradiction. Assume that (K�; x�; s�) is a CFB for

(N; e) but there is a bank i such that s�i = b and x�i > I�(k�i ; �; gi), but there is another bank

j with k�j � k�i such that s
�
j = b and gj < gi (the proof of the case for s�j = g and gj < gi � 1

is equivalent and therefore omitted). Take (x̂;K�; s�) a new allocation for the same economy

(N; e), where the network and investment strategies are the same. The allocation of capital

di¤ers in bank j receiving all extra capital endowment of bank i. Formally, x̂i = I�(k�i ; �; gi),

x̂j = x
�
j+x

�
i�I�(k�i ; �; gi), and x̂r = x�r for all r 6= i; j. We show now that (x̂;K�; s�) yields a higher

expected total money generated in the economy. Therefore, the initial allocation (K�; x�; s�)

cannot be a solution to the planner�s problem and statement 2 follows.

As before, since (K�; x�; s�) is a CFB then it has to be an INE. This means that, as x̂j >

x�j � I�(k�j ; �; gj); the allocation (x̂;K�; s�) is also an INE. Furthermore,X
r2N

pr(K
�; s�)f(k�r)R (x̂r + 1)�

X
r2N

pr(K
�; s�)f(k�r)R (x

�
r + 1)

= R[x�i � I�(k�i ; �; gi)]
�
�gjf(k�j )� �gif(k�i )

�
� 0, (14)

given that k�j � k�i , and the function f(k) is increasing in k and gj � gi . By equation (14),

the allocation (x̂;K�; s�) yields a higher expected total money in the economy and therefore

(K�; x�; s�) was not a CFB.

Proof of Proposition 2. This proof is done by contradiction. Assume that (K�; x�; s�) is a CFB

for (N; e) but there are two unconnected banks i and j such that s�i = s
�
j = b: Take (x

�; K̂; s�) a
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new allocation for the same economy (N; e), where the allocation of capital and strategies are the

same but the network structure only adds the link of banks i and j. Formally, K̂i = K�
i [ fjg,

K̂i = K�
j [ fig, and K̂r = K�

r for all r 6= i; j. We show now that this allocation (x�; K̂; s�)

just de�ned derives a higher expected total money generated in the economy. Therefore, the

initial allocation (K�; x�; s�) cannot be a solution to the planners problem and the statement of

Proposition 2 follows.

Note �rst that, by de�nition of K̂, pr(K̂; s�) = pr(K�; s�), for all r 2 N , and

k̂r =

(
k�r + 1; if r = i or r = j

k�r ; otherwise.

On the other hand, if (K�; x�; s�) is a CFB then it has to be an INE. Therefore, as both i and j

are choosing the safe asset, we have that x�i � I�(k�i ; �; gi) and x�j � I�(k�j ; �; gj). By de�nition
of the function I�(:; �; :), it is true then that x�i � I�(k�i + 1; �; gi) and x

�
j � I�(k�j + 1; �; gj).

Therefore, the allocation (x�; K̂; s�) is an INE. Furthermore,X
r2N

pr(K̂; s
�)f(k̂r)R (x

�
r + 1)�

X
r2N

pr(K
�; s�)f(k�r)R (x

�
r + 1)

= �giR (x�i + 1) [f(k
�
i + 1)� f(k�i )] + �gjR

�
x�j + 1

�
[f(k�j + 1)� f(k�j )] � 0; (15)

as the function f(k) is increasing on k. By equation (15), the allocation (x�; K̂; s�) yields a higher

expected total money in the economy and therefore (K�; x�; s�) was not a CFB.

Proof of Proposition 3. We prove statement 1 by contradiction. Assume that (K�; x�; s�)

is an CFB allocation where there are at least two banks i and j not directly connected in K�.

Take (x�; K̂; s�) a new allocation for the same economy (N; e), where the allocation of capital and

strategies are the same but the network structure only adds the link of banks i and j. Formally,

K̂i = K
�
i [ fjg, K̂j = K�

j [ fig, and K̂r = K�
r for all r 6= i; j. We show that there is an INE that

yields at least the payment of this allocation (x�; K̂; s�), which is a higher expected total money

generated in the economy for � high enough. Therefore, the initial allocation (K�; x�; s�) cannot

be a solution to the planner�s problem and statement 1 follows.

First note that if (K�; x�; s�) is a CFB then it has to be an INE. If at least one of them, for

example i, is choosing safe (the equivalent applies for j), it means that x�i � I�(k�i ; �; gi) and the
other one is playing gamble (by Proposition 2 we know that they cannot be both investing safe,

otherwise (K�; x�; s�) would not be a CFB allocation). Note that I�(k�i ; �; gi) � I�(k�i +1; �; gi+1)

if and only if �f(k�i +1) � f(k�i ), which is true for � �
f (n� 2)
f (n� 1) . Recall that by quasiconcavity of

f (ki) the ratio
f (ki)

f (ki + 1)
is increasing on ki, so

f (n� 2)
f (n� 1) �

f (ki)

f (ki + 1)
for ki � n� 2: Therefore,

the allocation (x�; K̂; s�) could be an INE, in which case,X
r2N

pr(K̂; s
�)f(k̂r)R (x

�
r + 1)�

X
r2N

pr(K
�; s�)f(k�r)R (x

�
r + 1)

= �giR (x�i + 1) [�f(k
�
i + 1)� f(k�i )] + �gj+1R

�
x�j + 1

�
[f(k�j + 1)� f(k�j )]; (16)
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if i chooses the safe asset, orX
r2N

pr(K̂; s
�)f(k̂r)R (x

�
r + 1)�

X
r2N

pr(K
�; s�)f(k�r)R (x

�
r + 1)

= �gi+1R (x�i + 1) [�f(k
�
i + 1)� f(k�i )] + �gj+1R

�
x�j + 1

�
[�f(k�j + 1)� f(k�j )]; (17)

if i chooses the gambling project. Note that both (16) and (17) are greater than zero since

� � f (n� 2)
f (n� 1) �

f (ki)

f (ki + 1)
by assumption and the function f(k) is increasing in k. Therefore,

the allocation (x�; K̂; s�) yields a higher expected total money in the economy and therefore

(K�; x�; s�) was not a CFB. If
�
x�; K̂; s�

�
is not an INE is because j would choose the safe asset

as well, once K̂ is given, or, in the case when both i and j choose the gambling asset in (K�; x�; s�)

an INE would select at least one of them choosing the safe asset. In all these cases, the new INE

will yield a higher total amount of expected money higher than the one in
�
x�; K̂; s�

�
. This

proves statement 1.

Once established that the only optimal �nancial network for � big enough is the complete

network structure, it is easy to see that c� as de�ned in statement 2 is the highest number of

banks that can choose safe given the �nancial network being equal to the complete network

structure. Any allocation with a lower number of banks choosing the safe project yields a lower

total expected money in the economy.

Proof of Proposition 4. We prove statement 1 by contradiction. Assume that (K�; x�; s�)

is a CFB allocation where there is at least one bank j with s�j = g and g�i 6= 0. Let i 2 K�
j

with s�i = g. Take (x
�; K̂; s�) a new allocation for the same economy (N; e), where the allocation

of capital and strategies are the same but the network structure only severs the link of banks i

and j. Formally, K̂i = K�
i nfjg, K̂j = K�

j nfig, and K̂r = K�
r for all r 6= i; j. Again, we show

that this allocation (x�; K̂; s�) yields a higher expected total money generated in the economy

for � low enough. As before, it is easily seen that if (x�; K̂; s�) is not an INE, i or j or both

prefer choosing the safe asset in
�
x�; K̂

�
. Such a case yields a higher expected total amount of

money than (x�; K̂; s�). Therefore, the initial allocation (K�; x�; s�) cannot be a solution to the

planner�s problem and statement 1 follows.

By de�nition,X
r2N

pr(K̂; s
�)f(k̂r)R (x

�
r + 1)�

X
r2N

pr(K
�; s�)f(k�r)R (x

�
r + 1)

= �giR (x�i + 1) [f(k
�
i � 1)� �f(k�i )] + �gjR

�
x�j + 1

�
[f(k�j � 1)� �f(k�j )]; (18)

which is greater than zero for 0 < � <
1

f (1)
by quasiconcavity of f (k). This means that, if

(K�; x�; s�) is a CFB allocation, two banks choosing the gambling asset cannot be connected.

Therefore, for any allocation (K�; x�; s�) to be CFB: x�j = g implies gj = 0 for 0 < � <
1

f (1)
.

This proves statement 1.

We prove now that no bank choosing the safe asset can be connected to a gambling bank

in an optimal allocation, for 0 < � <
1

�+ 2 (n� 1) [�� 1] <
1

�
<

1

f (1)
. Assume that a bank

i is choosing the safe project in the CFB allocation (K�; x�; s�), with g�i > 0. As we have just
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shown, gj = 0 for any j 2 Gi if � <
1

�+ 2 (n� 1) [�� 1] since
1

�+ 2 (n� 1) [�� 1] <
1

f (1)
.

Take (x�; K̂; s�) a new allocation for the same economy (N; e), where the allocation of capital

and strategies are the same but the network structure only severs all the risky links of bank i.

Formally, K̂i = K�
i nfGig, K̂j = K�

j nfig, for all j 2 Gi and K̂r = K�
r for all r =2 Gi. Again, we

show that this allocation (x�; K̂; s�) is an INE and yields a higher expected total money generated

in the economy for � low enough. Therefore, the initial allocation (K�; x�; s�) cannot be a solution

to the planner�s problem and statement 2 follows.

First note that if (K�; x�; s�) is a CFB then it has to be an INE. If i and j are choosing the

gambling project, the new allocation is also INE as x�i and x
�
j are greater or equal to zero. If i is

choosing the safe asset, x�i � I�(k�i ; �; gi). Note that I�(k�i �; gi) � I�(k�i � gi; �; 0) if and only if

f(k�i � gi) � �f(k�i ), which is true for � <
1

�
since, by increasiness of f (ki),

1

�
� f (ki � gi)

f (ki)
for

ki � gi. On the other hand, x�j < I�
�
k�j ; �; gj

�
< I�

�
k�j � 1; �; gj

�
for any j 2 Gi. Hence, the

allocation (x�; K̂; s�) is an INE. Then,X
r2N

pr(K̂; s
�)f(k̂r)R (x

�
r + 1)�

X
r2N

pr(K
�; s�)f(k�r)R (x

�
r + 1)

= R (x�i + 1) [f(k
�
i � gi)� �gif(k�i )] + �

X
j2Gi

R
�
x�j + 1

�
[f(k�j � 1)� f(k�j )] � (19)

� R[1� ��+ �2 (n� 1) (1� �)]:

Recall that x�i � 0. The inequality is true, since, as 1 � gi � k�i � n � 1, and by increasingness
of f , f(k�i � gi)� �gif(k�i ) � 1� ��, 0 � f(k�j � 1)� f(k�j ) � 1� �, and x�j � 1; for each j. Note
that, since � < 1

�+2(n�1)(��1) , 1� ��+ �2 (n� 1) (1� �) � 0. Therefore, if (K
�; x�; s�) is a CFB

allocation, it has to be that peripheral agents have no links.

If the optimal �nancial network for 0 < � < 1
�+2(n�1)(��1) is the complete network structure

linking only banks that choose the safe project, it is easy to see that c� as de�ned in statement 2 is

the highest number of banks that can choose safe under such a network structure. Any allocation

with a lower number of banks choosing the safe project yields a lower total expected money in

the economy.

Proof of Proposition 5. Given an economy (N; e) �x any network K. We prove that for

any (K; e; s) that is an INE there are no short-sighted pro�table deviations for any bank i as

far as either condition 1, or 2 or 3 is satis�ed. Fix a bank i such that Ki contains at least one

neighbor j choosing the gambling asset. If we cannot �nd such an i it means that no bank can

have a short-sighted pro�table deviation. This case is true whenever condition 1 is satis�ed. Now

assume that condition 1 is not satis�ed and such a bank i has at least one neighbor j choosing

the gambling asset in the INE (K; e; s). De�ne emax as the biggest realization of ei, and let emax<1

the biggest realization of the ei�s that are strictly smaller than 1, if any. Let e� (e) be de�ned as
the minimal � for which all this conditions are satis�ed:

1. �n�1R� 1 > 0

2.
�
1� �n�1

�
�R� 1 < 0
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3. [1 + (1� �n) �R] emax<1 < 1

4.
1�[1+(1��n�1)�R]emax<1

�R �
�
1� �n�1

�
emax

5.
1�[1+(1��n�1)�R]emax<1

�R � 1�I�(n�1;�;0)[1�(1��n�1)�R]
�n�1R�1

6.
1�[1+(1��n�1)�R]emax<1

�R � �R(1��n�1)emax<1

�n�1R�1

It is easy to see that if a given �1 satis�es the six previously stated conditions, any � > �1

would satisfy all of them as well.

If there were a short-sighted pro�table deviation for bank i there has to be a transfer 0 < ti � ei
that is bounded depending on the choices of bank i before and after ti. Notice that the bank

transfer is directed in principle towards all the neighbor gambling banks j 2 J , however feasibility
implies that ti =

P
j2J tij . We consider 4 di¤erent cases:

1. Bank i chooses the safe asset before and after the transfer, that is ei � I�(ki; �; gi), ei� ti �
I�(ki; �; gi� jJ j) and ej + tij � I�(kj ; �; gj � jJ \Gj j), where ej < I�(kj ; �; gj) for all j 2 J .
Therefore

ei +
X
j2J

ej � I�(ki; �; gi � jJ j) +
X
j2J

I�(kj ; �; gj � jJ \Gj j),

since (K; e; s) is an INE and ti generates a short-sighted pro�table deviation. When condi-

tion 2 holds, this implies that

jJ jI�(n� 1; �; 0) � emax + jJ jemax<1 ,

then the condition

ei +
X
j2J

ej � I�(ki; �; gi � jJ j) +
X
j2J

I�(kj ; �; gj � jJ \Gj j)

cannot be satis�ed since

ei +
X
j2J

ej � emax + jJ jemax<1 � jJ jI�(n� 1; �; 0)

�
X
j2J

I�(kj ; �; gj � jJ \Gj j) < I�(ki; �; gi � jJ j) +
X
j2J

I�(kj ; �; gj � jJ \Gj j).

Assume that Condition 2 does not hold. Bank i expects to gain from that transfer if and

only if

�gif(ki)Rei < �
gi�jJ jf(ki)R[ei � ti], (20)

since it invests safe before and after the transfer, which implies

ti < (1� �jJ j)ei.

Note that, since jJ j < n�1, and ei � emax, ti < (1��jJ j)ei implies that ti < (1��n�1)emax.
Bank j 2 J accepts the transfer if and only if

�gj+1f(kj)Rej + 1� ej � �gj�jJ\Gj jf(kj)R[ej + tij ] (21)
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since it switches from investing gamble to investing safe, which implies

tij �
1� ej [1 +

�
1� �jJ\Gj j+1

�
�gj�jJ\Gj jf (kj)R]

�gjf(kj)R
;

for any j 2 J . Equation (21) implies that tij �
1�emax<1 (1+�R(1��n�1))

�R , given that jJ \
Gj j + 1 � n � 1, ej � emax<1 and �gjf(kj)R < �R. By de�nition of ~� (e), if � � ~� (e) then
1�emax<1 (1+�R(1��n�1))

�R � (1 � �n�1)emax. This would imply that tij > ti for any j 2 J , a
contradiction given that

P
j2J tij = ti. Hence, under Condition 3 there is no short-sighted

pro�table deviation for this case.

2. Bank i chooses the safe asset before the transfer, but chooses the gambling asset after the

transfer. This means that ei � I�(ki; �; gi), ei � ti < I�(ki; �; gi � jJ j) and ej + tij �
I�(kj ; �; gj + 1 � jJ \ Gj j), where ej < I�(kj ; �; gj) for any j 2 J since (K; e; s) is an INE
and ti generates a short-sighted pro�table deviation. Again, if Condition 2 is satis�ed, the

inequality

ej + tij � I�(kj ; �; gj + 1� jJ \Gj j)

cannot hold since it implies thatX
j2J

ej + ei �
X
j2J

I�(kj ; �; gj + 1� jJ \Gj j),

a contradiction with the fact that

ei +
X
j2J

ej � emax + jJ jemax<1 < jJ jI�(n� 1; �; 0) <
X
j2J

I�(kj ; �; gj + 1� jJ \Gj j).

Assume that Condition 2 is not satis�ed. Bank i expects to gain from that transfer if and

only if

�gif(ki)Rei < �
gi�jJ j+1f(ki)R[ei � ti] + 1� (ei � ti), (22)

as it invests safe before and gambling after the transfer, which implies

ti[1� �gi�jJ j+1f(ki)R] >
�
1� �gi�jJ j+1

�
1� �jJ j�1

�
f (ki)R

�
ei � 1.

Bank j accepts the transfer if and only if

�gj+1f(kj)Rej + 1� ej � �gj+1�jJ\Gj jf(kj)R[ej + tij ] (23)

since it switches from investing gamble to investing safe, which implies

tij �
1� ej

�
1 + �gj+1�jJ\Gj j

�
1� �jJ\Gj j

�
f (kj)R

�
�gj+1�jJ\Gj jf(kj)R

�
1� emax<1

�
1 + �R

�
1� �n�1

��
�R

,

given that �gj+1�jJ\Gj jf(kj)R � �R, ej � emax<1 and �gj+1�jJ\Gj j
�
1� �jJ\Gj j

�
� 1 � �n�1.

Note that 1��gi�jJ j+1f(ki)R is negative when Condition 3 is satis�ed. Indeed, the condition
� >

1
n�1pR

implies that

1 < �n�1R < �n�1f(ki)R � �gi�jJ j+1f(ki)R,
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given that gi � n� 1 and jJ j � 1. This means that

ti <
1� ei

�
1� �gi�jJ j+1

�
1� �jJ j�1

�
f (ki)R

�
�gi�jJ j+1f(ki)R� 1

<
1 + ei ((1� �gi)�R� 1)

�n�1R� 1 <
1 + ei

�
(1� �n�1)�R� 1

�
�n�1R� 1

since

�gi�jJ j+1f(ki)R� 1 > �n�1R� 1.

Note that given Condition 3, we have (1��n�1)�R�1 < 0. Recall that ei � I� (n� 1; �; 0).
Therefore, equation (22) together with Condition 3 imply that

ti <
1� I� (n� 1; �; 0) [1� (1� �n�1)�R]

�n�1R� 1 <
1� emax<1

�
1 + �R

�
1� �n�1

��
�R

that implies tij > ti, which is again a contradiction.

3. Bank i chooses the gambling asset before the transfer, but chooses the safe asset after the

transfer. This means that ei < I�(ki; �; gi), ei � ti � I�(ki; �; gi � jJ j) and ej + tij �
I�(kj ; �; gj � 1� jJ \Gj j), where ej < I�(kj ; �; gj) since (K; e; s) is an INE and ti generates
a short-sighted pro�table deviation. Again, if Condition 2 is satis�ed, the inequalities

ei � ti � I�(ki; �; gi � jJ j) and ej + tij � I�(kj ; �; gj � jJ \ Gj j) for all j 2 J cannot

simultaneously hold since they imply that

ei +
X
j2J

ej � I�(ki; �; gi � jJ j) +
X
j2J

I�(kj ; �; gj � 1� jJ \Gj j),

a contradiction with the fact that

ei+
X
j2J

ej � emax+jJ jemax<1 � jJ jI�(n�1; �; 0) < I�(ki; �; gi�jJ j)+
X
j2J

I�(kj ; �; gj�1�jJ\Gj j).

Assume that Condition 2 does not hold. Bank i expects to gain from that transfer if and

only if

�gi+1f(ki)Rei + 1� ei < �gi�jJ jf(ki)R[ei � ti], (24)

since it invests safe before and gambling after the transfer, which implies

ti < ei �
�gi+1f (ki)Rei + 1� ei

�gi�jJ jf(ki)R
<
(1 + (1� �n) �R) emax<1 � 1

�gi�jJ jf(ki)R
;

given that gi � n � 1. Note that, given Condition 3, it is (1 + (1� �n) �R) emax<1 � 1 < 0.

This implies that ti has to be a negative number, a contradiction.

4. Finally, assume that bank i chooses the gambling asset before and after the transfer. This

implies that ei < I�(ki; �; gi), ei� ti < I�(ki; �; gi�jJ j) and ej+ tij � I�(kj ; �; gj�jJ \Gj j),
where ej < I�(kj ; �; gj) since (K; e; s) is an INE and ti generates a short-sighted pro�table

deviation. Again, if Condition 2 is satis�ed, the inequality ej + tij � I�(kj ; �; gj � jJ \Gj j)
cannot be satis�ed since it implies that

ei +
X
j2J

ej �
X
j2J

I�(kj ; �; gj � jJ \Gj j),
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a contradiction with the fact that

ei +
X
j2J

ej � emax + jJ jemax<1 � jJ jI�(n� 1; �; 0) <
X
j2J

I�(kj ; �; gj � jJ \Gj j).

Assume that Condition 2 does not hold. Bank i expects to gain from that transfer if and

only if

�gi+1f(ki)Rei + 1� ei < �gi+1�jJ jf(ki)R[ei � ti] + 1� ei + ti, (25)

since it invests gambling before and after the transfer, which implies

ti[�
gi+1�jJ jf(ki)R� 1] < (1� �jJ j)�gi+1�jJ jf(ki)Rei.

By Condition 3, it is �n�1R� 1 > 0. Recall that ei � emax<1 and jJ j � Gi � n� 1. Then,

ti <

�
1� �n�1

�
�Remax<1

�n�1R� 1 :

Bank j accepts the transfer if and only if

�gj+1f(kj)Rej + 1� ej � �gj�jJ\Gj jf(kj)R[ej + tij ] (26)

since it switches from investing gamble to investing safe, which implies

tij �
1� ej

�
1 +

�
1� �jJ\Gj j+1

�
�gj�jJ\Gj jf (kj)R

�
�gj+1f(kj)R

>
1� emax<1 [1 +

�
1� �n�1

�
�R]

�R
,

given that ej � emax<1 and jJ \Gj j � n� 2. Given Condition 3, we have

1� emax<1 [1 +
�
1� �n�1

�
�R]

�R
�
�
1� �n�1

�
�Remax<1

�n�1R� 1

and therefore tij > ti, again a contradiction.

Hence, there is no short-sighted pro�table deviation for any possible case.

Proof of Proposition 6. The assumption on (N; e) and � guarantees that an INE without

transfers is also a TNE. Assume by contradiction that (Ke; e; se) is a DEWT, but there exist

two banks i and j such that sei = sej = b but i =2 Ke
j , and therefore j =2 Ke

i . We prove that

(Ke [ ij; e; se) is an INE and then that both mi(K
e [ ij; e; se) > mi(K

e; e; se) and mj(K
e [

ij; e; se) > mj(K
e; e; se), contradicting the fact that (Ke; e; se) is a PSWT, and therefore it

cannot be a DEWT.

Note �rst that, since (Ke; e; se) is a DEWT, it has to be an INE. This means that both

ei � I�(ki; �; gi) and ej � I�(kj ; �; gj). Furthermore, it has to be I�(ki; �; gi) � I�(ki + 1; �; gi)

and I�(kj ; �; gj) � I�(kj + 1; �; gj) given that f(k) is increasing in k. This implies that ei �
I�(ki + 1; �; gi) and ej � I�(kj + 1; �; gj). Therefore, (Ke [ ij; e; se) is also an INE. Finally, note
that

mi(K
e [ ij; e; se) = �gif(ki + 1)Rei > �gif(ki)Rei = mi(K

e; e; se);

and

mj(K
e [ ij; e; se) = �gjf(kj + 1)Rej > �gjf(kj)Rej = mj(K

e; e; se);
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since the function f(k) is increasing in k. Therefore, (Ke; e; se) as de�ned above cannot be a

DEWT.

Proof of Proposition 7. Again, the assumption on (N; e) and � guarantees that an INE without
transfers is also a TNE. Assume by contradiction that (Ke; e; se) is a DEWT, but there exist two

banks i and j such that i =2 Ke
j , and therefore j =2 Ke

i . We prove that there exists an (K
e[ ij; e; ~s)

that is an INE such that mi(K
e [ ij; e; ~s) > mi(K

e; e; se) and mj(K
e [ ij; e; ~s) > mj(K

e; e; se),

contradicting the fact that (Ke; e; se) is a PSWT, and therefore it cannot be a DEWT. We

distinguish two cases: In the �rst one, a bank chooses the safe asset while the other chooses

the gambling asset. In the second, both banks choose the gambling asset. Note that since we

know that a DEWT is a core-periphery structure we do not need to check the case of both banks

choosing the safe asset.

Consider the �rst case, where sei = b and s
e
i = g. Note �rst that, since (K

e; e; se) is a DEWT,

it has to be an INE. This means that ei � I�(ki; �; gi) and ej < I�(kj ; �; gj). Given that f(k) is
increasing in k, ei � I�(ki+1; �; gi). Nevertheless, ej � I�(kj +1; �; gj) could also be true or not.
Therefore, (Ke [ ij; e; se) could also be an INE, in which case

mi(K
e [ ij; e; se) = �gi+1f(ki + 1)Rei > �gif(ki)Rei = mi(K

e; e; se);

for � � f (n� 2)
f (n� 1) �

f (ki)

f (ki + 1)
, and

mj(K
e [ ij; e; se) = �gj+1f(kj + 1)Rej + 1� ej > �gj+1f(kj)Rej + 1� ej = mj(K

e; e; se);

since the function f(k) is increasing in k. In the case when ej � I�(kj + 1; �; gj) there is an INE
where at least j switches from choosing the gambling asset in se to choosing the safe asset in

s = ~s. This case is even more pro�table for banks i and j than in (Ke [ ij; e; se), so we have
mi(K

e [ ij; e; ~s) � mi(K
e [ ij; e; se) and mj(K

e [ ij; e; ~s) � mj(K
e [ ij; e; se).

Consider now the second case, when both sei = sei = g. The least pro�table case would be

when (Ke [ ij; e; se) is also an INE. Otherwise we can �nd an INE where at least one of them
switches from investing in the gambling asset to investing in the safe asset. Note that

mi(K
e [ ij; e; se) = �gi+2f(ki + 1)Rei + 1� ei > �gi+1f(ki)Rei + 1� ei = mi(K

e; e; se);

and

mj(K
e [ ij; e; se) = �gj+2f(kj + 1)Rej + 1� ej > �gj+1f(kj)Rej + 1� ej = mj(K

e; xe; se);

again for � � f (n� 2)
f (n� 1) and given that f(k) is increasing and quasiconcave in k.

Proof of Proposition 8. Again, the assumption on (N; e) and � guarantees that an INE

without transfers is also a TNE. Assume by contradiction that (Ke; e; se) is a DEWT, but there

exist two banks i and j such that i 2 Ke
j , and therefore j 2 Ke

i and such that at least one of them

is choosing the gambling asset. We prove that there exists an (Ken ij; e; ~s) that is INE and one
mi(K

en ij; e; ~s) > mi(K
e; e; se) or mj(K

en ij; e; ~s) > mj(K
e; e; se), contradicting the fact that

(Ke; e; se) is a PSWT, and therefore it cannot be a DEWT. We distinguish two cases: In the
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�rst one, a bank chooses the safe asset while the other chooses the gambling asset. In the second,

both banks choose the gambling asset. As before, we know that a DEWT is a core-periphery

structure and therefore we do not need to check the case of both banks choosing the safe asset.

Consider the �rst case, where sei = b and s
e
i = g. Note �rst that, since (K

e; e; se) is a DEWT,

it has to be an INE. This means that ei � I�(ki; �; gi) and ej < I�(kj ; �; gj). On the one hand,

note that I�(ki; �; gi) � I�(ki; �; gi) if and only if � �
f (ki � 1)
f (ki)

. By assumption � <
1

f (1)
�

f (ki � 1)
f (ki)

for ki � 1 and therefore ei � I� (ki � 1; �; gi � 1). On the other hand, given that f(k)

is increasing in k, we have I�(kj ; �; gj) � I�(kj � 1; �; gj) and therefore ej < I�(kj � 1; �; gj).
Therefore, (Kenij; e; se) is also an INE. Furthermore,

mi(K
enij; e; se) = �gi�1f(ki � 1)Rei > �gif(ki)Rei = mi(K

e; e; se);

for � <
1

f (1)
� f (ki � 1)

f (ki)
.

Consider now the second case, when both sei = sei = g. Since (Ke; e; se) is an INE we

know that both ei < I�(ki; �; gi) and ej < I�(kj ; �; gj). Like before, the assumption � <
1

f (1)
,

which by quasiconcavity of f (k) implies both � � f (ki � 1)
f (ki)

and � � f (kj � 1)
f (kj)

, means that

I�(kj ; �; gi) � I�(kj � 1; �; gi � 1) and I�(kj ; �; gj) � I�(kj � 1; �; gj). Therefore, (Kenij; e; se)
could also be an INE, in which case

mi(K
enij; e; se) = �gif(ki � 1)Rei + 1� ei > �gi+1f(ki)Rei + 1� ei = mi(K

e; e; se);

and

mj(K
enij; e; se) = �gjf(kj � 1)Rej + 1� ej > �gj+1f(kj)Rej + 1� ej = mj(K

e; e; se);

again given that � <
1

f (1)
and f (k) is quasiconcave in k. Otherwise we can �nd an INE where

at least one of them switches from investing in the gambling asset to investing in the safe asset,

earning more than mi(K
enij; e; se) and mj(K

enij; e; se) respectively, and therefore earning more
than in the proposed DEWT (Ke; xe; se).
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