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Abstract

It is well known that an upper semi-continuous compact- and convex-valued mapping

φ from a nonempty compact and convex set X to the Euclidean space of which X is a

subset has at least one stationary point, being a point in X at which the image φ(x) has

a nonempty intersection with the normal cone at x. In many circumstances there may be

more than one stationary point. In this paper we refine the concept of stationary point by

perturbing simultaneously both the set X and the solution concept. In case a stationary

point is the limit of a sequence of perturbed solutions on a sequence of sets converging

continuously to X we say that the stationary point is stable with respect to this sequence

of sets and the mapping which defines the perturbed solution. It is shown that stable

stationary points exist for a large class of perturbations. A specific refinement, called

robustness, is obtained if a stationary point is the limit of stationary points on a sequence

of sets converging to X. It is shown that a robust stationary point always exists for any

sequence of sets which starts from an interior point and converges to X in a continuous

way.

We also discuss several applications in noncooperative game theory. We first show that

two well known refinements of the Nash equilibrium, namely, perfect Nash equilibrium

and proper Nash equilibrium, are special cases of our robustness concept. Further, a third

special case of robustness refines the concept of properness and a robust Nash equilibrium is

shown to exist for every game. In symmetric bimatrix games, our results imply the existence

of a symmetric proper equilibrium. Applying our results to the field of evolutionary game

theory yields a refinement of the stationary points of the replicator dynamics. We show

that the refined solution always exists, contrary to many well known refinement concepts

in the field that may fail to exist under the same conditions.

Keywords: stationary point, stability, perfectness, perturbation, equilibrium, games



1 Introduction

Let X be a nonempty subset of the n-dimensional Euclidean space IRn and let f be a

function from X to IRn. Then a stationary point or solution to the variational inequality

problem with respect to f is a point x∗ in X satisfying

(x∗ − x)>f(x∗) ≥ 0, for all x ∈ X. (1.1)

In case of a point-to-set mapping φ from X to the collection of non-empty subsets of IRn,

a point x∗ in X is called a stationary point of φ if there exists an element y∗ ∈ φ(x∗)
satisfying

(x∗ − x)>y∗ ≥ 0, for all x ∈ X. (1.2)

The concept of stationary point has many important applications in various fields. For

instance, in noncooperative game theory, economic equilibrium theory, fixed point theory,

nonlinear optimization theory and engineering a stationary point gives a solution to the

problem under investigation. In many of these applications the multiplicity of stationary

points may ask for a more refined solution concept; see for example van Damme (1987),

Kehoe (1991), and Yamamoto (1993). Although the conditions to guarantee the existence

of a stationary point are quite weak, conditions to guarantee the existence of a unique sta-

tionary point are often very demanding and are usually not satisfied. For instance, in game

theoretical applications there can be any finite number of equilibria, being stationary points

of some specific function or mapping, and there may even exist higher-dimensional sets of

equilibria. Then a refinement may reduce the number of stationary points or equilibria

considerably by requiring additional properties to be satisfied. Within the field of non-

cooperative game theory two well-known refinements of Nash equilibria, being stationary

points of the marginal payoff funtion on the strategy space of the game, are the so-called

perfect equilibria introduced by Selten (1975) and the proper equilibria by Myerson (1978).

In these references it has been shown that the set of perfect equilibria is a non-empty subset

of the set of equilibria and that the set of proper equilibria is a non-empty subset of the set

of perfect equilibria. In van der Laan, Talman and Yang (1998) the concept of properness

has been generalized to the concept of a robust stationary point for arbitrary (continuous)

functions on polytopes. Proper and perfect equilibria in noncooperative are known to exist

under the same conditions guaranteeing the existence of a (Nash) equilibrium, in sharp

contrast to the solution concept of evolutionary stability in evolutionary game theory that

selects a possibly empty subset of the set of equilibria.

In this paper we provide a general refinement concept for point-to set mappings on

arbitrary convex compact subsets, by introducing the concept of stable stationary point.

A stable stationary point will be shown to exist under the same conditions under which a
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stationary point is known to exist. The concept of stable stationary points contains the

above mentioned concepts of perfect and proper equilibria in noncooperative game theory

and robust points for functions on polytopes as special cases.

The main idea of the refinement is to perturb simultaneously both the domain X and

the concept of stationary point. The set X will be perturbed by taking a sequence of

subsets of X converging to X, while the concept of stationary point is replaced by a more

general concept. The refinement depends both on the way the sequence of subsets of X

is chosen and the way in which the concept of stationary point on those subsets is gen-

eralized. For both choices there are many possibilities. The only restrictions will be that

a generalized stationary point exists on each subset of the sequence and that every con-

vergent subsequence of generalized stationary points converges to a stationary point on

X of the given mapping. Such a stationary point being the limit of a sequence of gen-

eralized stationary points on a sequence of subsets is then called stable with respect to

the underlying sequence of subsets and the chosen concept of generalized stationary point.

Given the way the sequence of subsets is chosen and the concept of generalized stationary

point, an induced stable stationary point has additional properties that other stationary

points may not have. Doing this gives one the possibility to select stationary points having

certain desirable additional properties, by choosing in an appropriate way the sequence of

subsets and the concept of generalized stationary point on the subsets. In case we only

perturb the set X and take the standard concept of stationary point on each subset of the

sequence, we call a stable stationary point a robust stationary point for the chosen sequence

of subsets converging to X. On the other hand, a stable stationary point is called perfect

with respect to the concept of generalized stationary point when the sequence of subsets

converging to X linearly expands toX from an arbitrarily chosen point in the interior of X.

As an application we consider the special case that the set X is a polytope. In that

case some of the refinements will have some specific appealing and intuitive properties,

due to the special structure of a polytope as the intersection of a finite number of half

spaces. In particular, we will give explicit conditions for stationary point to be robust,

respectively, perfect. When applied to noncooperative games perfectness coincides with

the usual concept of perfectness of Nash equilibria, as was introduced by Selten (1975).

We show that the concept of robustness, introduced earlier on polytopes in van der Laan,

Talman and Yang (1998), follows as a special case from the general concept given in this

paper. Furthermore, when applied to noncooperative games, the concept of robustness

yields two very interesting special cases. One special case gives the concept of a proper

Nash equilibrium, as introduced by Myerson (1978), another special case results in a new

solution concept to noncooperative games, which we call robust Nash equilibrium. Such a
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robust Nash equilibrium is also proper and every noncooperative game has a robust Nash

equilibrium. Hence, this concept of robustness yields a further refinement of properness.

We also show that every symmetric two-person game has a symmetric proper equilibrium.

To the best of our knowledge, this result is unknown within the field of noncooperative

game theory.

We then apply the concept of stable stationary point to replicator dynamics in the field

of evolutionary game theory. It is well known that the set of stationary points of the repli-

cator dynamics contains the set of equilibria; see Weibull (1995). By taking an appropriate

generalized stationary point solution concept, we are able to refine the stationary points of

the replicator dynamics in such a way that every stable stationary point is an equilibrium.

Moreover, it is shown that such a stable stationary point always exists. This result is in

sharp contrast to many well known equilibrium refinement concepts in evolutionary game

theory that may fail to exist under the same conditions.

The paper is organized as follows. Section 2 introduces the concepts of stability, ro-

bustness and perfectness on an arbitrary nonempty compact and convex set. Section 3

discusses the refinements on polytopes. Finally, Section 4 discusses several applications

both in the field of noncooperative games and in the field of evolutionary games.

2 Stable stationary points

In this paper we assume that X is a nonempty compact and convex subset of IRn. It is

well-known that any continuous function f from X to IRn has at least one solution to

the variational inequality problem (1.1); see for instance Eaves (1971) and Hartman and

Stampacchia (1966). In case of a point-to-set mapping φ from X to the collection of non-

empty subsets of IRn a solution to the variational inequality problem (1.2) exists if φ is

upper semi-continuous and, for all x ∈ X, φ(x) is a convex and compact subset of IRn; see
for example Yang (1999).

Without loss of generality we assume that X is full-dimensional. For x ∈ X, let
N(X,x) = {y ∈ IRn|y>x ≥ y>x0, for all x0 ∈ X}

denote the normal cone of X at x. Due to the properties of X it holds that N(X, ·) is an
upper semi-continuous mapping on X, that for every x ∈ X the set N(X,x) is a nonempty,

closed and convex cone, and that N(X, x) = {0n} when x lies in the interior of X, where
0n denotes the n-vector of zeros. Clearly, x∗ ∈ X is a stationary point of a point-to-set

mapping φ on X if and only if φ(x∗)∩N(X, x∗) 6= ∅. For a function f the latter condition
reduces to f(x∗) ∈ N(X,x∗).
As has been discussed in the introduction there can be more than one or even an infinite

number of solutions to the variational inequality problem. In this section we introduce a
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general refinement concept, which may select a subset of the set of stationary points and

gives a certain stability property to the stationary points within this subset. The general

idea is to perturb both the set X and the concept of stationary point in such a way that

every convergent subsequence of generalized stationary points converges to a solution of the

variational inequality problem. A solution that is not the limit of any such subsequence

is not stable with respect to the chosen perturbations, selecting a subset of stationary

points. To guarantee the existence of a stable stationary point it is sufficient to assume

that a generalized stationary point exists on any perturbed subset and that there exists a

convergent subsequence of generalized stationary points converging to a stationary point.

To describe formally the idea of refinement we introduce two mappings. The first

mapping defines the perturbation of the set X and is given by a mapping X : [0, 1] → X

satisfying the following two conditions, where Int denotes the interior of a set.

(X1) X is continuous and for each ² ∈ [0, 1] the set X (²) is a non-empty, convex and
compact subset of X.

(X2) X (0) = X and X (²0) ⊂ Int X (²) for every 0 ≤ ² < ²0 ≤ 1.

For example, let X be described by the set {x ∈ IRn|h(x) ≤ 0} for some convex
function h from IRn to IR. Notice that such a function h always exists, since X is compact

and convex. Then we may take X (²) = {x ∈ IRn|h(x) ≤ −²}, where we assume that
X (1) 6= ∅. Another possibility is to take X (²) = ²{v} + (1 − ²)X for some point v in the

interior of X.

For a given mapping X satisfying conditions (X1) and (X2), the second mapping defines
the concept of generalized stationary point on each set X (²). This mapping is given by
a mapping G:X → IRn satisfying the following three conditions, where Bnd denotes the

boundary of a set.

(G1) G is upper semi-continuous on X and for each x ∈ X the set G(x) is a non-empty,

convex, closed cone in IRn.

(G2) For every x ∈ Bnd X (²) and y ∈ N(X (²), x) \ {0n}, 0 < ² < 1, there exists

w ∈ G(x) such that y>w > 0.

(G3) For every x ∈ Bnd X it holds that G(x) = N(X,x).

The first condition means that like in the normal cone the length of a vector in G(x)
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is not important, only the direction into which the vector points matters. The second

condition will guarantee the existence of generalized stationary points in X (²) for every
², 0 < ² < 1. The condition says that when x lies in the boundary of X (²) the set G(x)
must point in the same direction as the normal cone N(X (²), x) in the sense that for every
nonzero element of N(X (²), x) there is an element in G(x) making a positive angle with
it. Notice that due to both conditons (X1) and (X2) it holds that for every x ∈ X \ X (1)
there exists a unique ², 0 ≤ ² < 1, such that x ∈ Bnd X (²). The third condition says
that G maps a point x in the boundary of X to the normal cone N(X, x) of X at x and

guarantees that a convergent sequence of generalized stationary points in X(²) converges

to a stationary point when ² goes to zero. Notice that the conditions on G do not depend

on φ and that condition (G2) depends on the chosen mapping X .

Definition 2.1 A pair (X , G) of mappings is regular when it satisfies the conditions
(X1), (X2), (G1), (G2) and (G3).

Let φ be a point-to-set mapping from X to the collection of non-empty subsets of IRn.

For any pair (X , G) and ² ∈ [0, 1) a generalized stationary point of φ on X (²) is defined as
follows.

Definition 2.2 For a pair (X , G) and 0 ≤ ² < 1, a point x ∈ X (²) is a generalized
stationary point of φ on X (²) if 0n ∈ φ(x) when x ∈ Int X (²) and φ(x) ∩ G(x) 6= ∅ when
x ∈ Bnd X (²).

In case φ is a function f from X to IRn the vector f(x) should be an element of G(x).

Observe that a generalized stationary point of φ on X(²) is just a stationary point of φ on

X(²) when for all x ∈ Bnd X (²) it holds that

G(x) = N(X (²), x),

i.e. when for every x in the boundary of X (²) the set G(x) is equal to the normal cone
of X (²) at x. Under condition (G3) this necessarily holds when ² = 0, i.e. under (G3)

a generalized stationary point of φ on X (0) = X is a stationary point of φ on X. Next,

we define for ² ∈ (0, 1) the concept of ²-stable stationary point of φ on X with respect to

(X , G).

Definition 2.3 For given (X , G) and 0 < ² < 1, a point x ∈ X is an ²-stable stationary

point of φ with respect to (X , G) if x ∈ X (²) and x is a generalized stationary point of φ
on X (²).
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Together with Definition 2.2, the definition says that a point x in X is an ²-stable

stationary point of φ with respect to (X , G) if either x lies in the interior of X(²) and is a
zero point and therefore a stationary point of φ or x lies on the boundary of X (²) and its
image under φ has a nonempty intersection with G(x). When a stationary point x∗ of φ
is the limit of a sequence of ²-stable stationary points with respect to the pair (X , G) for
² going to zero, we call x∗ a stable stationary point of φ with respect to the pair (X , G).

Definition 2.4 A stationary point x∗ of φ is stable with respect to the pair (X , G),
shortly (X , G)-stable, if there exists a sequence of positive numbers (²k)k∈IN with limit 0
such that x∗ is the limit of a sequence of ²k-stable stationary points of φ with respect to
(X , G) for k going to infinity.

Stability of a stationary point x∗ with respect to (X , G) means that either x∗ lies in
the interior of X and is a zero point of φ or x∗ lies in the boundary of X and in every

small neighborhood of x∗ there exists a point x in the interior of X such that φ(x) has

a nonempty intersection with G(x). When (X , G) is regular and thus G is upper semi-

continuous and G(x∗) = N(X, x∗) if x∗ lies in the boundary of X, a stable stationary point
x∗ ∈ Bnd X satisfies the property that when X is slightly perturbed to X(²k), there exists

a point x in X(²k) that is close to x
∗ and that is approximately a stationary point of φ on

X (²k) in the sense that φ(x) ∩G(x) 6= ∅. This property gives a stationary point x∗ in the
boundary of X a certain stability because for any small perturbation of X according to X
an approximate solution exists arbitrarily close to x∗. Observe that a stationary point of
φ in the interior of X is always stable.

The next theorem states that every mapping φ satisfying the standard conditions has

an (X , G)-stable stationary point for any regular pair (X , G).

Theorem 2.5 Let φ be an upper semi-continuous mapping from a full-dimensional

convex, compact set X to IRn such that φ(x) is convex and compact for all x ∈ X and let

(X , G) be a regular pair of mappings. Then there exists a (X , G)-stable stationary point of
φ on X.

Proof. First we prove that for every ², 0 < ² < 1, an ²-stable stationary point of φ with

respect to (X , G) exists. For ², 0 < ² < 1, let the mapping G²:X (²)→ IRn be defined by

G²(x) = {0n}, x ∈ Int X (²),

G²(x) = G(x) ∩ {y ∈ IRn|max
j
|yj| ≤M}, x ∈ Bnd X (²),

for some M > 0. Due to condition (G1) it holds that for every ², 0 < ² < 1, and any

given M > 0, the mapping G² is upper semi-continuous and G²(x), x ∈ X (²), is nonempty,
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convex and compact. Since for all x ∈ X the set G(x) is a cone and due to condition (G2),

for every ², 0 < ² < 1, we can choose the number M > 0 such that for all x ∈ Bnd X (²)
and y ∈ N(X (²), x), there exists w ∈ G²(x) and f ∈ φ(x) satisfying y>w ≥ y>f . From
Fan’s coincidence theorem applied to the mappings φ and G² restricted to the non-empty,

convex and compact set X (²) it follows that for every ², 0 < ² < 1, there exists x² in X (²)
satisfying that φ(x²)∩G²(x²) 6= ∅. Hence, 0n ∈ φ(x²) if x² ∈ Int X (²) and φ(x²)∩G(x²) 6= ∅
if x² ∈ Bnd X (²), i.e. x² is an ²-stable stationary point of φ with respect to (X , G).
Now take any sequence of positive numbers ²k, k ∈ IN, converging to zero, and for

every k ∈ IN let xk be an ²k-stable stationary point of φ with respect to (X , G). Since X is

compact, without loss of generality we may assume that the sequence (xk)k∈IN is convergent
and converges to some x∗ in X. Hence, x∗ is the limit of a sequence of ²k-stable stationary
points of φ with respect to (X , G) for ²k converging to zero when k goes to infinity. We
still have to prove that x∗ is a stationary point of φ. If x∗ lies in the interior of X, then
because of the continuity of X and the properties of the mapping X given in (X2), the

point xk lies in the interior of X (²k) for k large enough, which implies that x∗ is a zero
point and therefore a stationary point of φ. If x∗ lies in the boundary of X we may assume

without loss of generality that for every k ∈ IN the point xk lies in the boundary of X (²k).
Since for every k ∈ IN the set φ(xk) ∩G(xk) 6= ∅, let fk be an element in this intersection.
Because all fk, k ∈ IN, lie in a compact set there exists a convergent subsequence to some
f ∗. Since φ both G are upper semi-continous on X and G(x∗) = N(X, x∗), we obtain that
f ∗ ∈ φ(x∗) ∩N(X, x∗), and hence x∗ is a stationary point of φ. 2

Notice that the conditions on (X , G) are completely independent of the mapping φ.
However, as can be seen from the end of the proof, it is enough to have the condition that

φ(x) ∩G(x) ⊂ φ(x) ∩N(X, x),

for all x ∈ Bnd X. Clearly, this condition is satisfied when condition (G3) holds.

The theorem implies that for every given regular (X , G) any mapping φ satisfying the
same conditions under which a stationary point is known to exist, has a stationary point

being stable with respect to (X , G). Of course the reverse does not hold. Not every

stationary point needs to be a stable stationary point with respect to a chosen pair (X , G).
Also, the stableness of a stationary point depends on the chosen pair. This means that a

stationary point may be stable for some pair, but not for another pair. It may also happen

that a stationary point is not stable for any pair. So, the set of stable points depends on

the pair (X , G) and is a (nonempty) subset of the set of stationary points. Notice that a
zero point can only be not stable if it lies on the boundary of X.

Let us consider two special cases, the first with respect to the mapping G, the second

with respect to the mapping X . Concerning the first case, let X be any given mapping
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satisfying the conditions (X1) and (X2). Recall that by condition (X2) it holds that for

any x ∈ X \ X (1), there is a unique ², 0 ≤ ² < 1, such that x lies in Bnd X (²). A natural
choice for the mapping G is to take the mapping C:X → IRn defined by C(x) = N(X (²), x)
when x lies in the boundary of X (²) for some ², 0 ≤ ² < 1, and C(x) = IRn when x ∈ X (1).
Then, for ², 0 ≤ ² < 1, a generalized stationary point of a mapping φ on X(²) is just

a stationary point of φ on X (²). For this particular choice of the mapping G, for any ²,
0 < ² < 1, an ²-stable stationary point on X of a mapping φ with respect to (X , C) is
said to be ²-robust with respect to X , and an (X , C)-stable stationary point on X of φ is

said to be robust with respect to X , or shortly X -robust. The next theorem states that

every mapping satisfying the standard conditions has an X -robust stationary point for any
mapping X satisfying (X1) and (X2).

Theorem 2.6 Let φ be an upper semi-continuous mapping from a full-dimensional

convex, compact set X to IRn such that φ(x) is convex and compact for all x ∈ X and let

X : [0, 1]→ X be a mapping satisfying (X1) and (X2). Then φ has an X -robust stationary
point on X.

Proof. For x ∈ X define G(x) = IRn when x ∈ X (1) and G(x) = N(X (²), x) otherwise,
where ², 0 ≤ ² < 1, is uniquely determined by x ∈ Bnd X (²). It is sufficient to show
that (X , G) is regular, i.e. G satisfies the conditions (G1)-(G3). Clearly, G satisfies (G2)
and (G3). Moreover, for each x ∈ X, G(x) is a non-empty, convex and closed cone in
IRn. So, to prove (G1), we only need to show that G is upper semi-continuous on X. By

definition, G is upper semi-continuous on X (1). Take any y ∈ X \ X (1). Let (yk)k∈IN
be a sequence of points in X converging to y and let (fk)k∈IN be a sequence satisfying
fk ∈ G(yk) for all k ∈ IN and converging to f . Since y /∈ X (1), we may assume without
loss of generality that for all k ∈ IN it holds that yk ∈ X \ X (1). Let ², 0 ≤ ² < 1, be such
that y ∈ Bnd X (²). Due to conditions (X1) and (X2) on X there exists a unique sequence

of nonnegative numbers (²k)k∈IN converging to ² and satisfying that yk ∈ Bnd X (²k) for all
k ∈ IN. To show that f ∈ G(y), take any x in X (²). Then, again according to conditions
(X1) and (X2) there exists a sequence (xk)k∈IN satisfying xk ∈ X (²k) for all k ∈ IN and

converging to x. Since xk ∈ X (²k) and fk ∈ G(yk) = N(X (²k), yk), we have for all k ∈ IN
that

xk>fk ≤ yk>fk.

Taking the limits on both sides for k going to infinity, x being the limit of xk, y being the

limit of yk, f being the limit of fk, we obtain that

x>f ≤ y>f.
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Since x is an arbitrary point in X (²), we obtain that f ∈ N(X (²), y) = G(y), showing

that G is upper semi-continuous on X and thus G satisfies (G1). Hence the pair (X , G) is
regular and Theorem 2.5 applies. 2

Theorem 2.6 implies that there always exists a stationary point which is the limit point

of a sequence of stationary points restricted to X (²k), k ∈ IN, with limk→∞ ²k = 0. Of

course, the same remarks made after the proof of Theorem 2.5 for the set of stable points

apply to the set of robust points.

Next, we consider the case that the mapping X is chosen to be in a more specific way.

Let v be an arbitrarily chosen point in the interior of X. Then we consider the mapping E
given by

E(²) = ²{v}+ (1− ²)X, 0 ≤ ² ≤ 1, (2.3)

i.e. E(²) expands linearly from the single point {v} to the full set X when ² goes from

one to zero. Clearly, this mapping satisfies (X1) and (X2). Taking X = E , for 0 < ² < 1
an ²-stable stationary point on X of a mapping φ with respect to (E , G) is called ²-perfect
with respect to G, and an (E , G)-stable stationary point on X of φ is called perfect with

respect to G, or shortly G-perfect. Moreover, an ²-perfect (perfect) stationary point with

respect to the mapping C is simply said to be ²-perfect (perfect). It follows from the results

above that every mapping φ satisfying the standard conditions has a G-perfect stationary

point for any mapping G satisfying (G1), (G2) and (G3) and therefore also always has a

perfect stationary point.

Theorem 2.7 Let φ be an upper semi-continuous mapping from a full-dimensional

convex, compact set X to IRn such that φ(x) is non-empty, convex and compact for all

x ∈ X. Then φ has a G-perfect stationary point on X for any mapping G satisfying (G1),

(G2) and (G3). In particular φ has a perfect stationary point on X.

Proof. That φ has a G-perfect stationary point on X for any mapping G satisfying (G1),

(G2) and (G3) follows from Theorem 2.5 and the fact that E satifies conditions (X1) and
(X2). The existence of a perfect stationary point follows from Theorem 2.6. 2

Notice that the concept of G-perfectness depends on the chosen point v in X. In appli-

cations there is often a natural choice for the point v, for example the origin, the barycenter

of a simplex or some other specific point.

Example 1 Let X be the two-dimensional unit ball B = {x ∈ IR2 | k x k2 ≤ 1} and
let the function f :B → IR2 be given by (f1(x), f2(x)) = (x1 + 1, x2). Clearly, x

∗ ∈ Bnd B
is a stationary point of f if and only if f(x∗) = λx∗ for some λ ≥ 0. The function F has
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two stationary points of f and both lie in the boundary of B, (−1, 0) with function value
f(−1, 0) = (0, 0) and (1, 0) with function value f(1, 0) = (2, 0). However, only (1, 0) is a
perfect stationary point of f , i.e. (1, 0) is the unique (B, G)-stable stationary point when
B is defined by

B(²) = {x ∈ IR2 | k x k2 ≤ 1− ²}, 0 ≤ ² ≤ 1,
i.e. B(²) expands from the zero point to B when ² goes from one to zero, and G(x) is taken
to be the normal cone to B(²) at x when x lies on the boundary of B(²).

3 Perfect and robust stationary points on polytopes

In this section we consider the special case that the set X is a (full-dimensional) poly-

tope P in IRn and φ is a function f from P to IRn. Since a polytope is compact and

convex, Theorems 2.5, 2.6 and 2.7 immediately apply to any function or mapping from P

to IRn. Due to the special structure of polytopes, ²-robust and ²-perfect stationary points

possess appealing and interesting properties. In the next section these properties will be

shown to have intuitive and natural interpretations in the context of both game theory and

equilibrium theory.

We consider the case that the polytope P is simple and full-dimensional and is

described as a bounded polyhedron by

P = {x ∈ IRn | ai>x ≤ bi, for all i ∈ Im},
where Im = { 1, · · · ,m }, ai ∈ IRn \ {0n} and bi ∈ IR, for all i ∈ Im. We assume that none
of the constraints is redundant. For each subset I of Im, let

F (I) = {x ∈ P | ai>x = bi, for all i ∈ I}.
Note that F (∅) = P . Further, let I be the collection of subsets of I defined by

I = {I ⊆ Im | F (I) 6= ∅},
i.e. I ∈ I when F (I) is not empty. A non-empty F (I) is called a face of P . The polytope
P is said to be simple if the dimension of every face F (I) of P is equal to n − |I|, where
|I| denotes the cardinality of I. Finally, for I ∈ I, define

A(I) = {y ∈ IRn | y =X
i∈I
µia

i, µi ≥ 0, for all i ∈ I}.

Since P is simple and there are no redundant constraints, it holds that for any y ∈ IRn
there is a unique I ∈ I such that y = P

i∈I µiai with µi > 0, for all i ∈ I. Notice

that A(∅) = {0n}. Moreover, if x ∈ Int F (I), then A(I) = N(X,x). Hence, we have

the following straightforward but important observation; see also Talman and Yamamoto

(1989) and Burke and More (1994).
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Lemma 3.1 A point x∗ ∈ P is a stationary point of a function f from P to IRn if and

only if there exists I∗ ∈ I satisfying x∗ ∈ F (I∗) and f(x∗) ∈ A(I∗).

Proof. The result immediately follows from linear optimization. 2

Let P: [0, 1] → P be a mapping satisfying the conditions (X1) and (X2) and let

G = C, i.e. G(x) = IRn when x ∈ P(1) and G(x) = N(P(²), x) otherwise, where ²,
0 ≤ ² < 1, is uniquely determined by x ∈ Bnd P(²). Then, according to Theorem 2.6, any
continuous function f from P to IRn has a P-robust stationary point x∗ on P , i.e. f has
a stationary point x∗ satisfying that there exists a sequence of positive numbers (²k)k∈IN
with limit 0 such that x∗ is the limit of a sequence of ²k-robust stationary points of f with
respect to P .

A special mapping P has been considered in van der Laan, Talman and Yang (1998).
To define the sets P(²), define for x ∈ P , γ(x) = mini∈Im(bi− ai>x) and Γ = maxx∈P γ(x).
Further, take some ω ∈ (0,Γ] and define for I ∈ I and ² ∈ [0, 1],

aI =
X
h∈I
ah and bI(²) =

X
h∈I
bh − ω

nX
k=n+1−|I|

µ
²

2

¶k
.

Then the mapping P with P(²) ⊂ P and P(0) = P is defined by

P(²) = {x ∈ IRn | aI>x ≤ bI(²), I ∈ I}, ² ∈ [0, 1]. (3.1)

In van der Laan, Talman and Yang (1998) the next lemma is shown.

Lemma 3.2 Let x ∈ P be a ²-robust stationary point with respect to P of a function

f on P for some 0 < ² < 1 and let I ∈ I be such that f(x) = P
h∈Im µha

h with µh = 0 if

h 6∈ I and µh > 0 if h ∈ I. Then for any pair of indices l and k in Im it holds that

bl − al>x ≤ ²

2
(bk − ak>x) when µl > µk.

Recall that the set I and the µh’s are uniquely determined. The lemma states two

facts. First, when µh > 0, then 0 ≤ bh − ah>x ≤ ²
2
maxk∈Im(bk − ak>x), saying that x lies

arbitrarily close to the face F (I) for ² small enough. Second, for h ∈ I it holds that the
larger the coefficient µh is, the closer the point x lies to the facet F ({h}) of P . For this
choice of P , in van der Laan, Talman and Yang (1998), an ²-robust stationary point with
respect to P is called shortly ²-robust and a P-robust stationary point a robust stationary
point. Clearly, when f is a continuous function from P to IRn, an ²-robust stationary

point of f exists for every ² ∈ (0, 1) and therefore f has a robust stationary point on

P . The lemma can be easily generalized for the case of a point-to-mapping instead of a

function or when the polytope P is a lower-dimensional case. Applying the above lemma

to a noncooperative normal form game in the next section, we will show that a robust

11



stationary point of the marginal payoff function on the strategy space of the game yields

what we will call a robust Nash equilibrium.

We now turn to discuss the special case that P = E with

E(²) = ²{v}+ (1− ²)P, 0 ≤ ² ≤ 1, (3.2)

where v is some arbitrary point in the interior of P , i.e. ai>v < bi for all i ∈ Im. As defined
in the previous section, for this mapping of expanding sets an E-robust stationary point is
called a perfect stationary point, and an ²-robust stationary point with respect to E is said
to be ²-perfect. Define M = maxi∈Im(bi − ai>v) and notice that M > 0 since v ∈ Int P .

An ²-perfect point satisfies the next property.

Lemma 3.3 Let x ∈ P be an ²-perfect stationary point of f . Then there exists I ∈ I
such that f(x) ∈ A(I) and

ai>x ≥ bi −M² for all i ∈ I.

Proof. Let x be an ²-perfect stationary point of f . By definition, x is a stationary point

of f on E(²) = ²{v} + (1− ²)P with v some arbitrary point in the interior of P . Since P
is simple, the set E(²) is a simple polytope and can be written as

E(²) = {x ∈ IRn | ai>x ≤ bi(²), i ∈ Im},

where

bi(²) = ²a
i>v + (1− ²)bi, i ∈ Im.

From applying Lemma 3.1 to E(²) it follows that there exists a set of indices I ∈ I such
that F (x) ∈ A(I) and x ∈ F (I) = {x ∈ E(²) | ai>x = bi(²), for all i ∈ I}. Hence,
ai>x = ²ai>v + (1 − ²)bi = bi − ²(bi − ai>v) for all i ∈ I. Since M = maxi∈Im(bi − ai>v)
this proves the lemma. 2

The lemma says that if x is an ²-perfect stationary point of f then there exists

I ∈ I such that f(x) ∈ A(I) and 0 ≤ bi − ai>x ≤M² for every i ∈ I, i.e. x lies arbitrarily
close to the face F (I) for ² small enough. If f is a continuous function from P to IRn then

an ²-perfect stationary point of f exists for ever ² ∈ (0, 1) and therefore any continuous
f has a perfect stationary point on P . Notice that every robust stationary point is also

perfect, but that the reverse is not true. It is again easy to generalize the lemma in case of

a point-to-set mapping φ instead of a function or when P is a lower-dimensional polytope.

In the next section it will be shown that a perfect stationary point of the marginal payoff

function on the strategy space of a noncooperative game yields a perfect Nash equilibrium.
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4 Applications

4.1 Noncooperative games in normal form

Two special cases of a polytope are the (n − 1)-dimensional unit simplex Sn = {x ∈
IRn |xj ≥ 0, j ∈ IN , Pn

j=1 xj = 1} and the simplotope, being the cartesian product of a
finite number of unit simplices. It should be noticed that for the special case of the unit

simplex the notion of a robust stationary point was introduced in Yang (1996,1999).

The first application we consider concerns noncooperative games in normal form.

Let there be N players. Player j, j ∈ IN , can choose out of nj different actions in the set
Aj . If player j, j ∈ IN , chooses action aj , then the payoff to player i, i ∈ IN , is equal to
some number ui(a), where a = (a1, · · · , aN) is an element of the action space A = Πj∈INAj .
Each player j, j ∈ IN , can randomize the choice of his actions by taking a strategy

xj = (xj1, · · · , xjnj ) in the (nj − 1)-dimensional unit simplex Snj , where xjk, k ∈ Inj , denotes
the probability with which player j chooses his kth action. The cartesian product of the

strategy set Snj , j ∈ IN , is the strategy set of the game and is denoted by the simplotope
S with typical element x = (x1, · · · , xN). Clearly, S is a simple polytope with dimension
equal to n−N where n is the total number of actions in the game, i.e. n =

PN
j=1 nj.

For x ∈ S, vj(x) denotes the expected payoff for player j, j ∈ IN , when strategy x
is being played, i.e.

vj(x) =
X
a∈A

Πi∈INx
i
ai
uj(a),

and f jk(x) denotes the marginal payoff for player j, j ∈ IN , when player j chooses action
k, k ∈ Aj, and the other players play according to strategy x, i.e.

f jk(x) =
X

{a∈A|aj=k}
Πi6=jxiaiuj(a).

We now have the following definitions, where (xj , x∗−j) denotes the strategy vector x∗ with
x∗j replaced by xj .

Definition 4.1 1. (Nash, 1950) A strategy x∗ ∈ S is a Nash equilibrium if for every

j ∈ IN it holds that vj(x∗) ≥ vj(xj , x∗−j) for all xj ∈ Snj .

2. (Selten, 1975) A strategy x∗ ∈ S is a perfect Nash equilibrium if it is the limit of

a sequence of ²k-perfect equilibria for a sequence of positive numbers ²k, k ∈ IN,

converging to zero, where a strategy x is called an ²-perfect equilibrium if x ∈ Int S

and xjk ≤ ² whenever f jk(x) < maxh f jh(x).

3. (Myerson, 1978) A strategy x∗ ∈ S is a proper Nash equilibrium is the limit of

a sequence of ²k-proper equilibria for a sequence of positive numbers ²k, k ∈ IN,
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converging to zero, where a strategy x is called an ²-proper equilibrium if x ∈ Int S

and xjk < ²x
j
h whenever f

j
k(x) < f

j
h(x).

Clearly, x∗ ∈ S is a Nash equilibrium if and only if f jk(x∗) = maxh f jh(x∗) whenever x∗jk > 0,
i.e. x∗ is a stationary point of the marginal payoff function f on S. A Nash equilibrium is
perfect when it is the limit of a sequence of ²-perfect equilibria, where a strategy x is called

²-perfect if each player j plays each non-optimal action k with probability at most equal to

². A proper equilibrium is the limit of a sequence of ²-proper equilibria where a strategy x

is called an ²-proper equilibrium if ‘the lower the marginal payoff of an action of a player is,

the smaller the probability should be with which this player chooses that action’. Clearly,

every proper equilibrium is perfect and any perfect equilibrium is a Nash equilibrium. The

existence of a perfect and proper Nash equilibrium follows from our results in Sections 2

and 3. First we consider the existence of a perfect Nash equilibrium.

Proposition 4.2 Any noncooperative game in normal form has a perfect Nash equilib-

rium.

Proof. Take S as the polytope P , the mapping P = E given by

E(²) = ²{v}+ (1− ²)S, 0 ≤ ² ≤ 1,

for some v in the (relative) interior of S, and the mapping G = C given by C(v) = IRn

and C(x) = N(E(²), x) when x ∈ Bnd E(²) for ², 0 ≤ ² < 1. In polyhedral form S can be

written as

S = {x ∈ IRn | − xjk ≤ 0, for all j and k,
njX
k=1

xjk = 1, for all j}. (4.3)

Clearly, there are no redundant constraints. From Theorem 2.7 it follows that the marginal

payoff function f has a perfect stationary point x∗ on S. Hence, x∗ is the limit of a sequence
of ²-perfect stationary points of f on S. Applying Lemma 3.3 and taking into account the

above formulation of S, so thatM ≤ 1, learns that x is an ²-perfect Nash equilibrium if x is
an ²-perfect stationary point of f . Hence, the limit point x∗ is a perfect Nash equilibrium.

2

Next we consider the exisitence of a proper Nash equilibrium.

Proposition 4.3 Any noncooperative game in normal form has a proper Nash equilib-

rium.

Proof. Again take S as the polytope P . The mapping P = R is given by

R(²) = ΠNj=1Pj(²), 0 ≤ ² ≤ 1,
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where for j ∈ IN the set Pj(²) is defined as in (3.1) for the nj−1-dimensional unit simplex
Snj written in polyhedral form as

Snj = {x ∈ IRnj | − xjk ≤ 0, for all k,
njX
k=1

xjk = 1}.

The mapping G = C is given by C(v) = IRn and C(x) = N(R(²), x) when x ∈ Bnd R(²)
for ², 0 ≤ ² < 1. From Theorem 2.6 it follows that the marginal payoff function f has

a R-robust stationary point x∗ on S. Hence, x∗ is the limit of a sequence of ²-perfect
stationary points of f on S with respect to R. Applying Lemma 3.2 for R and taking into

account the formulation (4.3) of S, learns that x is an ²-proper Nash equilibrium if x is an

²-proper stationary point of f . Hence, the limit point x∗ is a proper Nash equilibrium. 2

In the literature, properness is known to be the most refined concept of a Nash

equilibrium that still exists for every noncooperative game in normal form. The concept

of robustness as introduced on a polytope in the previous section, suggests that we may

refine properness to robustness.

Definition 4.4 A strategy x∗ ∈ S is a robust Nash equilibrium if it is the limit of a

sequence of ²k-robust equilibria for a sequence of positive numbers ²k, k ∈ IN, converging
to zero, where a strategy x is called an ²-robust equilibrium if x ∈ Int S and xjk < ²xil
whenever maxh f

j
h(x)− f jk(x) > maxh f ih(x)− f il (x).

The definition implies that the worser an action in the game is, the smaller the

probability should be with which that action is chosen. So, robustness refines properness

in the sense that the condition saying that the probability of an action decreases by at least

a factor ² if the marginal payoff becomes worser, is taken over all players simultaneously

instead of per player seperately.

Proposition 4.5 Any noncooperative game in normal form has a robust Nash equilibrium

and the set of robust Nash equilibria is a subset of proper Nash equilibria.

Proof. Take P = S, the mapping P as defined in (3.1), and G = C. Then Theorem 2.6

says that the marginal payoff function f has a P-robust stationary point x∗. Hence, x∗ is
the limit of a sequence of ²-robust stationary points of f with respect to P for ² going to
zero. Applying Lemma 3.2 and taking into account formulation (4.3) of S, learns that if x

is an ²-robust stationary point of f then x is an ²-robust Nash equilibrium. Therefore, the

point x∗ is a robust Nash equilibrium. 2

Notice that a robust Nash equilibrium is always proper and therefore also perfect.
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4.2 Symmetric bimatrix games

In this subsection we consider two-player games in normal form. Such a two-player game

can be summarized by the n1×n2 payoff matrices A = (ahk) and B = (bhk), h = 1, . . . , n1,
k = 1, . . . , n2, where nj is the number of pure actions for player j, j = 1, 2. Given a mixed

strategy pair (x1, x2) ∈ S, the payoff of the players is then given by v1(x1, x2) = x1>Ax2
for player 1 and v2(x

1, x2) = x1>Bx2 for player 2.
The class of symmetric bimatrix games is given by the class of bimatrix games

(A,B) such that B = A>. As a consequence we have that n1 = n2 = n. Such games have
appeared to be very important in evolutionary game theoretic models, in which individuals

are repeatedly drawn from a large monomorphic population to play a symmetric two-person

game. If (x, x) ∈ Sn × Sn is a Nash equilibrium of the symmetric bimatrix game (A,A>),
then strategy x is called an equilibrium strategy of the game. As introduced by Maynard

Smith (1982), see also Maynard Smith and Price (1973), an equilibrium strategy x ∈ Sn
is said to be an evolutionary stable strategy, shortly ESS, if for any mixed strategy y 6= x
in Sn there exists some ²y ∈ (0, 1) such that for all ² ∈ (0, ²y) it holds that

x>Aw > y>Aw where w = ²y + (1− ²)x.

We now have the following results.

Lemma 4.6 (see e.g. Nash (1951), Van Damme (1987) or Weibull (1995))

Every symmetric bimatrix game has an equilibrium strategy x ∈ Sn, i.e. a symmetric Nash
equilibrium (x, x) ∈ Sn × Sn.

Lemma 4.7 (see e.g. Van Damme (1987) or Weibull (1995))

Let x ∈ Sn be an ESS, then (x, x) ∈ Sn × Sn is a symmetric proper Nash equilibrium.

However, the existence of an ESS is not guaranteed. Indeed there exist many symmetric

bimatrix games games not having an ESS. So, although we know from Myerson (1978)

that every symmetric bimatrix game has at least one proper Nash equilibrium and Lemma

4.6 states that any such game has at least one symmetric Nash equilibrium, these results

do not guarantee the existence of a symmetric proper Nash equilibrium. As we will show

now, the existence of a symmetric proper Nash equilibrium in a symmetric bimatrix game

follows immediately from the existence of a robust stationary point of a continuous function

on the unit simplex.

For a symmetric bimatrix game (A,A>) with A an n × n matrix we define the
function f : Sn → IRn by

f(x) = Ax.
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So, given strategy x ∈ Sn of player i, fk(x) is the expected marginal payoff of player j 6= i
when the latter player chooses his kth action with probability 1, k = 1, . . . , n. Then we

have the following results.

Lemma 4.8

For ² ∈ (0, 1), let x ∈ Sn be a completely mixed strategy such that

xk ≤ ²xl if fk(x) < fl(x) for all k, l ∈ {1, . . . , n}.

Then the pair (x, x) ∈ Sn × Sn is a symmetric ²-proper Nash equilibrium.

Proof. Clearly (x, x) satisfies the conditions of an ²-proper equilibrium given in Definition

4.1 with f 1 = f2 = f . 2

Proposition 4.9 Any symmetrix bimatrix game has a symmetric proper Nash equilib-

rium.

Proof. Take P = Sn and the mapping P as defined in formula (3.1), where the set Sn is
written in polyhedral form as

Sn = {x ∈ IRn | − xk ≤ 0 for all k,
nX
k=1

xk = 1}.

Then Theorem 2.6 says that the marginal payoff function f has a robust stationary point

x∗. Hence, x∗ is the limit of a sequence of ²-robust stationary points of f on Sn. Applying
Lemma 3.2 and taking into account the formulation of Sn as a polytope, it follows from

Lemma 4.8 that if x is an ²-robust stationary point of f on Sn then (x, x) is a symmetric

²-proper Nash equilibrium. Therefore, the limit point x∗ is a symmetric proper Nash
equilibrium. 2

The proposition shows that the existence of a symmetric proper equilibrium follows

as a corollary from the existence of a robust stationary point on the polytope. To the

best of our knowledge, this existence result is unknown within the field of noncooperative

game theory. It might be worthwile to mention that by using the algorithm given in Yang

(1996) to approximate a robust stationary point on the unit simplex, we can also compute

a symmetric proper Nash equilibrium.

4.3 Replicator and price dynamics

In this subsection we consider a function z:Sn → IRn satisfying x>z(x) = 0 for all x ∈ Sn.
The function z could be the excess demand function of a pure exchange economy with
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n commodities. Then Sn is the set of nonnegative prices normalized to sum up to one

and zj(x) is the excess demand of commodity j at price vector x. In an evolutionary

game theory, zj(x) could be the excess fitness of or action j in a symmetric bimatrix game

(A,A>) at mixed strategy x, i.e. for j = 1, . . . , n,

zj(x) = Ajx− x>Ax,

is the marginal payoff of action j minus the average payoff over all actions at strategy x,

where Aj denotes the jth column of the matrix A. A stationary point x∗ of z gives a
vector at which z(x∗) ≤ 0n and zj(x∗) < 0 implies that x∗j = 0. In case of a pure exchange
economy, a stationary point of z gives a Walrasian or general equilibrium price system, at

which the excess demand of every commodity is nonpositive and can be only negative if

its price is equal to zero. A stationary point of an excess fitness function gives a solution

satisfying that the fitness of every action is maximal unless it is played with probability

zero, i.e. a stationary point is an equilibrium strategy.

In evolutionary game theory the probability xj is considered to be the fraction of

players using action j within a monomorphic population of a large number of players. So,

the fitness can be seen as the difference of the (expected) payoff of a player of population

j and the expected payoff in the population as a whole. It is further assumed that players

with a higher fitness get more offspring, resulting in the so-called replicator dynamics given

by

dx(t)/dt = f(x(t)), t ≥ 0,

with f :Sn → IRn given by

fj(x) = xjzj(x), j = 1, . . . , n.

In game theoretic models the replicator dynamics models the population dynamics, in

economic exchange models terms the function f is called the excess value function and

the dynamics corresponds to some price adjustment. The function f has the property

that
Pn
j=1 fj(x) = 0 for any x ∈ Sn, so that the solution path of the replicator dynamics

dx(t)/dt = f(x(t)) stays in Sn; see for example, Weibull (1995).

Clearly, each stationary point of z (and thus each equilibrium strategy of a sym-

metric bimatrix game and each equilibrium price system of a pure exchange economy) is a

stationary point of the corresponding function f and is even a zero point of f . The reverse

is not true. Not every stationary point of f is a stationary point of z. For example, all

vertices of Sn are stationary points of f , but not all of them need to be equilibrium points.

However, we will show that a so-called “sign-stable” stationary point of the function f is

a stationary point of z and therefore an equilibrium and we will also prove that such a
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point always exists. A point x ∈ Sn is called a sign-stable stationary point of f if it is the
limit of a convergent subsequence of ²k-sign-stable stationary points of f for a sequence of

positive real numbers (²k)k∈IN with limk ²k = 0. For 0 < ² < n
−1, a point x ∈ Int Sn is an

²-sign-stable stationary point of f if xj ≤ ²
n
when fj(x) < 0 and xj ≥ n−1 when fj(x) > 0.

In the following, e(i) denotes the i-th unit vector in IRn and e the n-vector of ones.

Theorem 4.10 Let z : Sn → IRn be a continuous function satisfying x>z(x) = 0 for
all x ∈ Sn and let f : Sn → IRn be defined by fj(x) = xjzj(x) for all j ∈ In and x ∈ Sn.
Then a sign-stable stationary point of f exists and every sign-stable stationary point of f

is a stationary point of z.

Proof. For ², 0 ≤ ² ≤ 1, let

P(²) = {x ∈ Sn | min
j
xj ≥ ²

n
}.

Clearly, P(·) is a continuous mapping, P(0) = Sn, for every ², 0 ≤ ² ≤ 1, the set P (²)

is a nonempty, compact and convex set, P(1) = { e
n
}, and P(²0) ⊂ Int P(²) for every

0 ≤ ² < ²0 ≤ 1. For ², 0 < ² ≤ 1, and I being a proper subset of the set In = {1, · · · , n},
the face F ²(I) of P (²) is given by F ²(I) = {x ∈ P(²)|xi = ²

n
, i ∈ I} and the normal cone

N(P(²), x) at a point x ∈ Int F ²(I) is given by the set

A(I) = {y ∈ IRn|y = µ0e−
X
i∈I
µie(i), µ0 ∈ IR, µi ≥ 0, i ∈ I}.

For x ∈ Sn, define G(x) = IRn if x = 1
n
e and otherwise

G(x) = {w ∈ IRn | wi ≤ 0 if xi = minh xh,
wi ≥ 0 if xi = maxh xh,
wi = 0 otherwise}.

Clearly, G(·) satisfies condition (G1). To show that G(·) satisfies condition (G2), take any
x ∈ F ²(I) and y ∈ A(I) \ {0n}, for ², 0 < ² < 1, and I being a proper subset of In,

so y = µ0e − P
i∈I µie(i) for some µ0 ∈ IR and µi ≥ 0, i ∈ I, not all equal to zero. If

µ0 > 0 take w = e(j) for some j with xj = maxh xh, then w ∈ G(x) and w>y = µ0 > 0.
If µ0 = 0 take w = −e(j) for some j with xj = minh xh and µj > 0, then w ∈ G(x)
and w>y = µj > 0. And if µ0 < 0 take w = −e(j) for some j with xj = maxh xh, then

w ∈ G(x) and w>y = µj − µ0 > 0. Hence, G(·) satisfies condition (G2). With respect
to (G3), it should be noticed that G(·) satisfies the weaker, but sufficient condition that
φ(x) ∩G(x) ⊂ φ(x) ∩N(X,x) for all x ∈ Bnd X. Modifying the proof of Theorem 2.5 to

the lower-dimensional set Sn it follows that there exists an (P, G)-stable stationary point
of f on Sn. Hence, for every ², 0 < ² < 1, there exists x² ∈ P (²) satisfying f(x²) = µ0e for
some µ0 ∈ IR if x² ∈ Int P(²) and f(x²) ∈ G(x²) if x² ∈ Bnd P(²). Since Pn

i=1 fi(x
²) = 0

19



we obtain that µ0 = 0 and so f(x
²) = 0n if x² ∈ Int P (²). If x² ∈ Bnd P(²) then there

exists δ(²) ≥ n−1 such that x²j = ²
n
if fj(x

²) < 0, x²j = δ(²) if fj(x
²) > 0, ² ≤ x²j ≤ δ(²) if

fj(x
²) = 0, i.e. x² is an ²-sign-stable stationary point of f . Take any convergent subsequence

(x²k)k∈IN of such points with limk ²k = 0 and let x
∗ be the limit of this subsequence. Suppose

zj(x
∗) < 0 for some component j, then for large enough k it holds that fj(x

²k) < 0 and

therefore x²k = ²k
n
for k large enough. Hence, after taking limits we obtain that zj(x

∗) < 0
implies x∗j = 0. Since n−1 ≤ δ(²k) ≤ 1 for all k ∈ IN, we may assume without loss of
generality that the sequence (δ(²k))k∈IN converges to some δ∗ > 0. This implies that x∗j > 0
if zj(x

∗) > 0. Since
Pn
j=1 fj(x

∗) = 0 we get that fj(x∗) = 0 for all j ∈ In, and therefore
zj(x

∗) = 0 if x∗j > 0. Hence, x
∗ is a stationary point of z. 2

The theorem says that the replicator dynamics function f has always a sign-stable

stationary point and that every sign-stable stationary point of f induces an equilibrium

for the underlying function z. It remains an open question to consider the conditions on z

under which the replicator dynamics will converge to a sign-stable solution.
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