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“We’d get the people from research, sales and production together,
and everyone would say ‘Not this’ and ‘Not that.” We'd talk but there
would be no agreement. (...) Product planning has to be on a tight
schedule. But we’d have another discussion, and another study and
then more preparation. And finally, the decision would come months
later.” [Nobuhiko Kawamoto, President of Honda Motor Co. ( The Wall
Street Journal, 4/11/91, page Al.)]

“Despite what textbooks say, most important decisions in corporate
life are made by individuals, not by committees. (...) To sum up:
nothing stands still in this world. I like to go duck hunting, where
constant movement and change are facts of life. You can aim at a duck
and get it in your sights, but the duck is always moving. In order to
hit the duck, you have to move your gun. But a committee faced with
a major decision can’t always move as quickly as the events it’s trying
to respond to. By the time the committee is ready to shoot, the duck
has flown away.” [Lee lacocca, former head of Ford Motor Co. and of
Chrysler Motor Co. (Lee lacocca (1984): Iacocca: An Autobiography,
New York: Bantam; page 52.)]

1. Introduction

In a dynamic world, the profits a firm makes are positively related to how
well a firm predicts the future — i.e., other firms’ choices, macroeconomic
conditions, consumers’ attitudes. We envision the firm as functioning with
some default rules, strategies or policies until some changes are decided by
the management team. The management makes evaluations of the state of
nature, and takes decisions as to whether to alter its policy — i.c., the status
quo. We assume that changes in policy are given by some fixed reaction
function that maps the pair consisting of the current evaluation of the state
of nature and the present policy into some specific actions. Until another
change in policy occurs, then the firm is in “automatic-pilot mode.” A better
evaluation of the state of nature is assumed to be associated with higher

profits.

The state of nature, 6, is assumed to be constantly evolving as described

by the following first-order Markov process

0, =Gib—1 +we (1)

We thank Dallas Burtraw for useful comments.
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where G, is a known quantity and w; is the system equation error. Each
member, i, of the management team, or committee, can observe a signal y;,
(which may be a vector or a scalar) which is linearly related to the unobserv-

able vector @, that represents the true state of nature at time 7,
Yir = f:rer + vir (2)
where f;, is known, and v;, is manager i's observation error.

Equations (1) and (2) can be embedded into a Kalman filter model. The
Kalman filter model (Kalman (1960)) is a recursive procedure for making
inferences about a vector of parameters using the history of some observable
quantities which are linearly related to it. The density of the state parameters
(the state of nature, 8) is evaluated at the current time, future observations
are predicted, and, when they become available, the prediction error is used
to update our inference about the state parameter. Under normality assump-
tions, the Kalman filter features some optimal statistical properties, and its
simplicity and elegance makes it a very attractive algorithm. (See Meinhold
and Singpurwalla (1983) for an introductory exposition.)

In the Kalman filter literature, we normally have 7 = t, and equations
(1) and (2) are known as the system equation and the observation equation,
respectively. In the usual Kalman filter formulation, there is an observation
of yi; at each t and the posterior distribution of @ given the data is updated

whenever a new observation becomes available — i.e., at each 2.

Suppose that when a team consists of n people, decisions cannot be taken
at every t and the updating step is performed only every §(n) periods. This
means that equation (2) holds only for 7 = 6(n),26(n),... . On the other
hand, the precision of the posterior distribution of # increases with the team
size, n. There is a tradeoff then between getting more information less often
versus getting less information more often. We shall assume that 6(1) = 1
and 6(n), which we call delay function, incrcases with n. In addition, for

simplicity, we shall also assume that §(n) is an integer for all n.
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The motivation is that group decision-making is a long, expensive and
complicated process and, while the management team is engaged in this task,
the firm is in automatic-pilot mode. A single-manager team might generate

less precise estimates but might be able to produce them more often.

In statistical terms, the question becomes whether it is better to get a
bigger sample each time we sample (not at every t) and update less often, or
to sample less at each ¢t but update more frequently. Put differently; which

is the optimal group size, n*, that minimizes posterior uncertainty?

In this paper we shall characterize different aspects of the covariance matrix
of the signal errors that the committee members receive which are important

to the optimal size of the management team.

In the simple model that we develop in this paper, we don’t address any
problems related to the optimal decision rule by a committee under different
environments. This is an important issue and its study requires imposing
some structure on the type of problems that the committee is facing (see, e.g.,
Koh (1994), and Sah and Stiglitz (1988)).! We also ignore any communication
and information-pooling problems (see, e.g., Berger (1985), Section 4.11 on
‘Combining Evidence and Group Decisions’ and the references cited therein).
In the model developed in this paper, information from different sources is

pooled via the likelihood by the usual Bayesian updating mechanism.

2. The Management Model

For simplicity, we will assume that each manager gets a single signal — i.e.,
that y;, is a scalar and not a vector — but our results extend to the gen-

eral case where each manager observes a vector of signals. The system and

1 See also Huberman and Loch (1994) for a derivation of bounds on team size based on
the members’ incentives to share information; and Katzner (1995) for a model in which
the cost of making and implementing decisions depend on the fraction of employees who
participate in the process and in the similarity of their preferences.



observation equations are:

0g = GgOg_l + wy, i= 1,2,. ¥ (3)

yr = FL0; + v, T = 6(n), 26(n),... (4)

The number of managers, n, is reflected in the dimension of y, and in the
frequency of the observation equation (4) through the delay function, 8(n).
More expljdtly, we have F, = [flrs f2‘r: v yfnr]y and Yr = [yu—, Y2ry--- yyn*r]’-

The distributional assumptions are?

w, ~ N(0,W),
Vg ~ N(O, V)

The prior distribution on 6, corresponding to our knowledge at time 0, before

any observation is taken, is
0o ~ N (I“Oa CO)'

The information in the observations acquired through (4) and the dynamics of
6 inherent in (3) will jointly lead to the posterior, given a set of observations
Ye,

60:|Y: ~ N(pe,C). ()

Thus, at time ¢ all available information concerning the state of nature 6, is

summarized by its conditional mean and variance.

2 Actually, we don’t need to require normality. Girén and Rojano (1994) show that
ellipticity is enough for the Kalman filter to have the usual recursion equations. In that case,
a diagonal covariance matrix implies lack of correlation but not independence. Covariance
matrices that are not constant over time can be easily accommodated.



2.1. Single Manager

If n = 1 (which implies §(1) = 1 by assumption), then we use

eGE=Y— F{C"tllt—l

Rg = G¢C¢_1G: + W

Qg = F{R;Fg + |4
to update the posterior density of 6, given by (5),

e = Gepe—1 + RtFth_let
C;'=R;'+FVF,.

These are the usual Kalman recursion equations —see, e.g., Meinhold and

Singpurwalla (1983) or Girén and Rojano (1994).

2.2. Management Team

When 6(n) # 1, but some other integer value, we only observe the y’s at
T = §(n),26(n),...,l6(n). Then
er =yr — F1Grpra,
R, = G,C,1\G, + W,
Q- =F/R.F, +V.
Note that the updating of R, is performed through the system equation and
thus takes place every period. In order to change the values of e, and Q-
we require an observation which occurs every 8(n) periods. Before a new
observation is made, we still use (3) at each t, and after a new observation
we update the posterior density of ;. The posterior mean is given by
Gypry—1, fort#7
o {G-rllf—x + R F.Qi'e,, fort=m;
and the precision is updated by

R fort#7
ar =4 " i (6)
R;'+ F,V-IF!, fort=r.

Given §(n), now how to choose n such that the posterior precision, G s
maximum? In a classical context, this corresponds to the n which minimizes

MSE, if we use p; as a point estimate for 6;.
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3. Covariance Structures for the Managers’ Signals

If all managers have the same observation models, then

F, = [fl‘l')""filf] = [f‘ry"‘)ff]

= fT®L,n =f'r":1
3

(7
where ¢, is a column vector of n ones.

In a sense, R; ! in (6) is the precision before incorporating the last infor-

mation available, and the value of the last observation is

S, =V 'F = (f @ L)VIfL ® tn)-

Let us now consider possible specifications for V, the covariance matrix of

the observation errors of the team.

It is worth noting that, by assumption, the delay function, 6(n), is a func-
tion of the size of the team only. It does not depend on the similarity of the
views of the committee members at all. In the sampling analogy, the cost
of sampling would not be affected by the correlation among samples. It is
conceivable that, in real life, meetings would be shorter, the greater the sim-
ilarity in the views of the members of the committee. However, §(n) is not
intended to represent only the length of the actual meetings that take place
but all the costs incidental to having large management teams.

3.1. Independent Errors

A simple hypothesis is that every manager commits errors independently
of those of the other members of the team. In addition, the quality of all
managers could be considered equal in that all errors have equal variances.
In this case,

V =o%I,

3 ‘I'he operator ‘®’ is the Kronecker product which involves multiplying each element of
the matrix of the left by the entire matrix of the right.
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where I, is an identity matrix of dimension n, and

S, = U_Z(f.,.f.,r ® L:,Lvl) = M_szf-:--

3.2. Equicorrelated Errors

If we maintain the assumption that all managers have equal observation vari-
ance, but allow for the same amount of correlation between all members of

the team, we get the second case of interest. If
V= (02 == 7)1n %+ 'Y"‘n“:n (8)
with 62 > 7 for 4 > 0 and 02 > —(n — 1)y for ¥ < 0, we obtain

V= (0? — ) - 7 !
= (02 =702 — 7 +ny) ™

and the value of the last observation becomes

Sr=(f UV ®tm) = = ~f. 1}

o2+ (n—-1)
<‘%f,f§ ify>0andn> 1.

Of course, this case specializes to independence for v = 0. Note that the
correlation coefficient between team members is given by p = v/0? and that
we need to restrict p to the interval (—(n—1)~!,1) in order to assure that V’
in (8) is positive definite.

4. Firm Policy

In this model, all teams —regardless of size— optimally process the infor-
mation available to them; viewed from a classical perspective, the models
produce unbiased forecasts for 6. Therefore, a better evaluation of the state
of nature is synonymous with a higher precision, C-!. Then, when com-

paring the performance of a single manager against a management team we



Table 1. Comparison of precision matrices at each ¢: one manager vs n-sized team.

R, ¢
t n=1 n>1
1 G1CoG,+W | R{'+ fflo~2 R;:
2 GgC,G’2+W R;l+ff’0_2 Ra;l
6(n) | GsC5_1G5+W | R;' + ff'o~? R;'+nff'(0?+(n—1)y)!

Table 2. Comparison of precision matrices at each t: n vs n + 1.

—1
R, L
t n n+1
1 G1CoGy + W R;! rt
2 G2C1GY + W R* "t
6(n) Gg(,.)Cg(,.)_lG"ﬁ(n) + W R;(:‘) +nff'(e?+(n—1)y)! R;(l,.)
6("+ l) Gﬂ(u+l)Co(u+I)-lGI“"+|l+w R;(‘,.+|) R;(:.+|) +("+ l)f”(”""’"”)—‘

only need to compare the precision of their posterior densities of the state of
nature @ at every t. This is what we call overall firm policy. We might also
want to consider the case where decisions are only taken every &(n) periods,
even if the management consists of a single manager who updates her view

of the world with a higher frequency. We call this case special decisions.

In tables 1 and 2, the case of independence corresponds to v = 0. Note
that the series of C; ! matrices generated by the last two columns differ in
that the C;! used in the formula for C; either incorporates the information

gain of an observation (n = 1) or not (n > 1 and t < é(n)).

In case G,C,_1G} + W would stay roughly the same for both choices of n,
however, we can make some simple comparisons. This applies, in particular, if
ff'o~2, the added precision of one single manager observation, is small com-
pared to (G¢Ci-1G} + W)~! which represents the accumulated information
of the firm at time ¢ without this last observation. Of course, this situation

would occur if R remained constant, but it is only required that R evolves
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similarly under both single managers and team decisions. We are then able

to use tables 1 and 2 for deriving some “rules of thumb.”

4.1. Overall Firm Policy

Here we compare the sum of the precision increases over all periods until a
certain horizon 7 = 8(n) (or a multiple of 6(n)). Of course, different values
of n will also lead to different updates of R at time t. The value of R can go
up, or down with updating; if R would not be affected greatly by the value
of n,4 then we could compare directly the cases with n = 1 and n > 1 over,

e.g., the period from t =1 to t = é(n).

In that case, then the n-manager team would be preferable to a single

manager whenever
§(n)(8(n) +1) - n
202 o2+ (n—-1)y
where 4 = 0 reflects independence; or, rearranging, if
&(n)(6(n) +1) n _ n _
2 <1+$"_;,1.).‘1—1+(n—1)p_a(")' ®)

where p = y/0? measures the correlation between the managers’ signals. Note

that a(n) always increases with n, since we must have —(n — 1 Zp<l.

We can use table 2 to compare an n-sized team with an (n + 1)-sized team.
For fair comparison, consider the horizon §(n) x 6(n + 1), so that a size n
team has made 8(n + 1) decisions, and the team of size n + 1 has had 6(n)
updates. Again, if R evolves similarly, we would prefer to augment the size

of the team from n to n + 1 whenever
a(n) o a(n+1)
5(n)(6(n)+1) ~ (n+1)(6(n+1) + 1)
An analogous formula applies for comparing sizes n and m, and for m =1

this will reduce to (9), since a(1) = §(1) = 1.

4 ForRtor in constant, consider the case where both G and C remain constant (from
the second column of table 1). For n > 1 that implies that R = GC(n)G' + W. Forn =1
we must have C(1)~! = (GC(1)G' + W)~ + ff'o—2. We write C(n) to stress that the
precision matrices at each t will differ in the n = 1 and n > 1 cases.
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4.2. Special Decisions
In the case of crucial decisions that need to be taken at a particular point
in time 7, we can compare the information accumulated at 7 by updating
every period with that obtained by a team making only one decision, namely

at time 7. As the team is specifically put together for this decision, we take
7 = §(n). In the equicorrelated case, when n = 1 after §(n) updates,

C'=6(n)o % ff + R7!

and when n > 1, after one update

~¥ _ n ' -1
Co —02+(n—1)'y'”r B
so that n > 1 is preferable ton =1 if
6(n) < a(n). (10)

If we now compare teams of sizes n and n+1, we should consider the precision
at some time point corresponding to a crucial decision, say, 7 = §(n) x8(n+1).
Then, we would favor size n + 1 over size n if

a(n) - a(n+1)
&(n) " (n+1)’

and, generally, we prefer size n over size m if

a(m) _ a(n)
&(m) " 8(n)’

Choosing m = 1, we recuperate (10).

If C;_; for n = 1 becomes larger than C,_; with a team (i.e., in case of
updating every period, the precision decreases) then we will choose larger n
than suggested by (9) or (10). In opposite cases we shall choose a smaller
team.
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4.3. Behavior of a(n)

We have seen that a(n) as defined in (9) can, in some cases, be compared
with 8(n) or §(n)(6(n) + 1)/2 directly. Let us now examine the properties of

a(n) as n varies.

Clearly a(1) = 1 and for all possible values of p we have that a(n) is strictly

increasing in n. For positive p (i.e.,, 0 < p < 1) we obtain
73
lim a(n) = —
n—oo '7

whereas for other values of p (i.e., —(n —1)"! < p <0),
lim a(n) =o00.
n—1+1/|p|

In this latter case, the requirement of a positive definite observation error
matrix V induces an asymptote at n = 1+ |p|~!. This can be interpreted as
follows. Given a negative error correlation p we cannot let the team grow too
large, as then this fixed negative correlation would confuse matters such that

an observation would have a negative value. If we want n to grow, we need

to decrease |p|.

As managers tend to observing without error, p will tend to one, and a(n)
will tend to one for any value n is allowed to take. In that case, we will, of

course, opt for a single manager (since §(n) > 1 if n > 1).

4.4. Simple Rules of Thumb

On the basis of (9) and (10), some rules of thumb can now be deduced, which
are valid if the values of R, for teams and single managers arc the same (and
approximately valid if they are close). Without making any assumptions on
5(n), except that §(1) = 1 and §(n) increases with n and is bounded for all

finite n, we can now state:
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Rule 1. With positive p (0 < p < 1) one should never choose n
such that §(n) > p~! for a special decision or §(n)(6(n) +1)/2 >
p~! for overall policy.

Rule 2. With negative p (—(n — 1)"! < p < 0) one should
always choose n slightly smaller than 1 + |p|™!, provided such a
value is feasible.

The first rule tells us that, since the value of a(n) can never attain its limit,
p~1, you should never choose a team so large that it takes p~! or more time
periods to reach a conclusion for a special decision. For overall firm policy
you even choose a much smaller team in general. The more people’s views

overlap (the higher p) the smaller the optimal team will be.

The second rule of thumb derives from the fact that a(n) increases without
bounds as n — 1 4+ |p|~! and thus can be made greater than the bounded
8(n) or 8(n)(6(n) +1)/2 by as much as we want. As v becomes more and
more negative, managers’ views diverge too much and we need to reduce the
team size. However, a slight negative correlation can lead to the existence
and optimality of relatively large teams. An effect of “complementarity” of
managers can greatly increase the value of the team. Note that this second
rule is not affected by the type of decisions that have to be taken. It always
seems to pay to put together a team of managers that view issues from some-
what different angles. Remark that 1 + |p|~! can be quite large for small
negative correlations and teams of such size could be infeasible in practice.
In cases where Rule 2 indicates an unreasonably large value for n, we can

resort to the formulas in Subsections 4.1 and 4.2 for further guidance.

5. Illustrative Example

In this section we do some simulations using the model in section 6.2 of

Meinhold and Singpurwalla (1983). In particular, we use:

0, = %(—U‘ot—l + wy, w, ~ N(0,1).
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you even choose a much smaller team in general. The more people’s views

overlap (the higher p) the smaller the optimal team will be.

The second rule of thumb derives from the fact that a(n) increases without
bounds as n — 1 + |p|~! and thus can be made greater than the bounded
5(n) or 8(n)(8(n) +1)/2 by as much as we want. As 7y becomes more and
more negative, managers’ views diverge too much and we need to reduce the
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rule is not affected by the type of decisions that have to be taken. It always
seems to pay to put together a team of managers that view issues from some-
what different angles. Remark that 1 + |p|~! can be quite large for small
negative correlations and teams of such size could be infeasible in practice.
In cases where Rule 2 indicates an unreasonably large value for n, we can

resort to the formulas in Subsections 4.1 and 4.2 for further guidance.

5. Illustrative Example

In this section we do some simulations using the model in section 6.2 of

Meinhold and Singpurwalla (1983). In particular, we use:

B %(—1)‘0‘_1 +w,  we~NQO1).
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We set fr =1 in equation (7), and ¢ = 2 in equation (8) where we allow for
different values of 7. We show simulations for v = —0.1, —0.025, 0, and 3.2
which imply values for p of —0.025, —0.00625, 0 and 0.8.> We also use various
specifications for §(n). We choose g = 6p = 1, and Cp = I. To make the
problem manageable,® we set the maximum possible team size, i, equal to
15. The simulations illustrate a wide variety of cases. While our approximate
formulas and rules of thumb work well in most cases, we also show situations

were some of the rules could possibly mislead us.

As for any team size, the procedure makes optimal use of the information
on the state of the world, 6, we shall focus here on the precision of the team’s
forecast. In particular, since we are going to focus on firm policy,” we average
the posterior precision of a size-n team forecasts from 36(n) + 1 to 46(n) (to
get away from the filter initialization). The results are shown in tables 3 and
4.8 Table 3 shows the optimal team size for different values of §(n) and p for
the overall firm policy.

Let us now compare these actual values of n* resulting from running the
Kalman filter with the values suggested by the approximate formulas in Sub-
sections 4.1 and 4.2. Comparing teams of size n with those of n+ 1 members,
the approximate rule in Subsection 4.1 successfully locates all the local optima
for p = —0.00625, 0, and 0.8. Using the same rule to contrast size-n with size-
m teams, we differ from the globally optimal n* in table 3 for §(n) = [%n_l +1

5 We remind the reader that, with i = 15, p must be between —14-! = —0.071 and 1.

L Note, for example, that with n managers we must generate a Normal vector of dimension
n with covariance V. In addition, the possible range of negative values for v decreases as
n increases.

7 For special decisions, in this example, it is always optimal to have a team of the maxi-
mum size which allows to update the filter prior to the time when the special decision has
to be taken.

8 Here |z) denotes the largest integer no greater than z.
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with p = —0.00625 and p = 0. Thus, the approximation underlying this rule
seems reasonably accurate in this simulation. However, for p = —0.025 the

approximate rule would lead us astray.

Table 3. Optimal team size for overall firm policy.

5(n) £
—0.025 | —0.00625 0 0.8
n n=a| n*= n*=1|n*"=1
[3n]+1|n*=a| n*=13 |n*=5|n"=1
lVa] |n*=a| n*=0a [n*=0a|n"=3

If we consider the evidence in table 3 in the light of the even simpler
rules of thumb in Subsection 4.4, we note that for p = 0.8 Rule 1 excludes
n > 1 for 8(n) = n and 8(n) = [§n] + 1, so that we would take exactly the
optimal n* = 1. For §(n) = |y/n] we find n < 3 according to Rule 1, which
again corresponds to the actual n*. For p = —0.00625, Rule 2 would suggest
n = 160, but this is not a feasible team size (the maximum size is 15). Thus,
Rule 2 can not really guide us here. However, for the case with p = —0.025
Rule 2 indicates n = 40 and here n* is equal to the maximum size of 15. The

rule would thus, at least, point us in the right direction in this case.

6. Conclusion

Group decision making is common in many corporate organizations. Since
there might be decreasing marginal productivity in gathering and digesting
information by single individuals, ‘parallel processing’ by committees is of-
ten used. However, as noted, among others, by Koh (1994), information
exchange in this context is also costly even ignoring strategic issues within a

management team.

In this paper we present a simple model where we make this tradeoff ex-
plicit and characterize situations where larger or smaller management teams

might be desirable depending on characteristics of the covariance between
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Table 4. Average Forecast Precision for different values of p and é(n).

p = —0.025 p=0

5(n)=n 5(n)=|3n]+1| &(n)=|Vn] §(n)=n 5(n)=13n]+1| 6(n)=|Vn]
n | 8(n) G2 6(n) &=t 5(n) =1 5(n) c! &(n) -1 8(n) L
1 1 1.0590 1 1.0590 1 1.0590 1 |x.asy_6] 1 1.0590 1 1.0590
2| 2 1.0599 2 1.0599 1 1.3572 2 1.0526 2 1.0526 1 1.3430
3] 3 1.0604 3 1.0604 1 1.6585 3 1.0460 3 1.0460 1 1.6160
4| 4 1.0621 4 1.0621 2 1.3708 4 1.0403 4 1.0403 2 1.3274
5 5 1.0652 4 1.1439 2 1.5338 5 1.0358 4 | (11078 2 1.4606
6| 6 1.0695 5 1.1334 2 1.7038 6 1.0322 5 1.0886 2 1.5921
7l 7 1.0750 6 1.1291 2 1.8821 7 1.0292 6 1.0757 2 1.7224
8| 8 1.0814 7 1.1287 2 2.0699 8 1.0267 T 1.0663 2 1.8518
9| 9 1.0887 7 1.1855 3 1.7651 9 1.0246 7 1.1031 3 1.5730
10| 10 | 1.0970 8 1.1837 <3 19055 | 10 | 1.0229 8 1.0911 3 1.6586
1| 11 | 11061 9 1.1853 3 20547 | 11 | 10213 9 1.0816 3 1.7439
12| 12 | 11162 | 10 1.1895 3 22138 | 12 | 1.0200 | 10 1.0740 3 1.8289
13| 13 | 11273 | 10 1.2405 3 23838 | 13 | 10188 | 10 1.0994 3 1.9137
14| 14 | 11394 | 11 1.2456 3 25662 | 14 | 10177 | 11 1.0907 3 1.9984
15| 15 | [1:7527 | 12 | [1.2534 3 |[27623) | 15 | 1.0168 | 12 | 1.0835 3 | [2-0829]

p = —0.00625 p=08

S(n)=mn 6(n)=|4n]+1| &(n)=|vn| S(n)=n §(n)=|3n]+1| &n)=|vn]
n | §(n) ks é(n) (i é(n) i 8(n) et 8(n) c-? &(n) a1
1 1 | [1o590] [ 1 1.0590 1 1.0590 1 1.05' 1 1.05 1 1.0590
2| 2 1.0533 2 1.0544 1 1.3465 g 0.9237 2 0.9237 1 1.0914
3| 3 1.0473 3 1.0494 1 1.6262 3 0.8705 3 0.8705 1
4| 4 1.0424 4 1.0455 2 1.3377 4 0.8422 4 0.8422 2 0.9334
5| 5 1.0385 4 1.1157 2 1.4775 5 0.8246 4 0.8432 2 0.9355
6| 6 1.0355 5 1.0988 2 1.6174 G 0.8126 5 0.8252 2 0.9369
A I ¢ 1.0332 6 1.0876 2 1.7577 7 0.8040 6 0.8130 2 0.9379
8| 8 1.0313 4 1.0798 2 1.8990 8 0.7974 7 0.8042 2 0.9387
9| o 1.0299 7 1.1205 3 1.6136 9 0.7923 4 0.8044 3 0.8767
10| 10 | 1.028 8 1.1102 3 17095 | 10 | 0.7882 8 0.7977 3 0.8770
11| 11 | 10279 9 1.1024 3 1.8062 | 11 | 0.7848 9 0.7925 3 0.8773
12| 12 | 10272 | 10 1.0965 3 19040 | 12 | 07819 | 10 | 0.7883 3 0.8775
13| 13 | 10266 | 10 3 20020 | 13 | 07795 | 10 | 0.7884 3 0.8777
14| 14 | 10263 | 11 1.1193 3 21030 | 14 | 07774 | 11 0.7849 3 0.8779
15 15 | 10260 | 12 1.1138 3 [[22042) | 15 | 07756 | 12 | 0.7820 3 0.8780

the signals that the managers observe. In particular, we find that (1) with

positive correlation between the managers’ signals, the larger the correlation,

the smaller the optimal size will be; and (2) with negative correlation, a slight

negative correlation might lead to the existence of large management teams
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due to a complementarity effect.

An example illustrates the relative accuracy of simple approximate formu-
las for choosing team size, and also shows that even simpler rules of thumb
may work well in some cases. Both our approximate formulas and the rules
of thumb seem most reliable for cases with positive correlation between man-
agers’ observation errors. We conjecture that this would be the prevalent

situation in practice.
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