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bInstitut für Statistik und Ökonometrie, Humboldt-Universität zu Berlin,

Spandauer Str. 1, D-10178 Berlin, Germany

Abstract

Most dimension reduction methods based on nonparametric smoothing are highly

sensitive to outliers and to data coming from heavy-tailed distributions. We show

that the recently proposed methods by Xia et al. (2002) can be made robust in

such a way that preserves all advantages of the original approach. Their extension
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from heavy tailed distributions, it is relatively easy to implement, and surprisingly,

it performs as well as the original methods when applied to normally distributed
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1 Introduction

In regression, we aim to estimate the regression function, which describes the

relationship between a dependent variable y ∈ R and explanatory variables

X ∈ Rp. This relationship can be, without prior knowledge and with full gen-

erality, modelled nonparametrically, but an increasing number of explanatory

variables makes nonparametric estimation suffer from the curse of dimensional-

ity. There are two main approaches to deal with a large number of explanatory

variables: to assume a simpler form of the regression function (e.g., its addi-

tivity) or to reduce the dimension of the space of explanatory variables. The

latter, more general approach received a lot of attention recently; see Li (1991)

and Xia et al. (2002), for instance. Our first aim is to study the latter approach

and examine its sensitivity to heavy-tailed and contaminated data, which can

adversely influence both parametric and nonparametric estimation methods

(see Č́ıžek, 2004, and Sakata and White, 1998, for evidence in financial data).

Further, we propose robust and computationally feasible modifications of Xia

et al. (2002)’s methods and study their behavior by means of Monte Carlo

experiments.

A dimension-reduction (DR) regression model can be written as

y = g(B>
0 X) + ε, (1)

where g is an unknown smooth link function, B0 represents a p × D orthog-

onal matrix, D ≤ p, and E(ε|X) = 0 almost surely. Hence, to explain the

dependent variable y, the space of p explanatory variables X can be reduced

to a D-dimensional space given by B0 (for D = p, the standard nonparametric

regression model results). The vectors of B0 are called directions in this con-
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text. The dimension reduction methods aim to find the dimension D of the

DR space and the matrix B0 defining this space.

Recently, Xia et al. (2002) proposed the minimum average variance estimator

(MAVE), which improves in several aspects over other existing estimators,

such as sliced inverse regression (SIR) by Li (1991). First, MAVE does not

need undersmoothing when estimating the link function g to achieve a faster

rate of convergence. Second, MAVE can be applied to many models includ-

ing time series data and readily extended to other related problems such as

classification (Antoniadis et al., 2003) and functional data analysis (Amato

et al., 2005). Finally, the MAVE approach renders generalizations of some

other nonparametric methods; for example, Xia’s outer product of gradients

(OPG) estimator extends the average derivative estimator (ADE) of Härdle

and Stoker (1989) to multi-index models.

Despite many features, MAVE does not seem to be robust to outliers in the

dependent variable y since it is based on local least-squares estimation (for

evidence, see Rousseeuw and Leroy, 2003, in parametric and Č́ıžek, 2004, in

nonparametric regression). Similar sensitivity to outliers in the space of ex-

planatory variables X (so-called leverage points), was observed and remedied

in the case of the sliced inverse regression (SIR) by Gather et al. (2001).

At the same time, the robustness of DR methods is crucial since analyzed

data are typically highly dimensional, and as such, are difficult to check and

clean. Therefore, because of many advantages that MAVE possess, we address

its low robustness to outlying observations and propose ways to improve it

without affecting main strengths of MAVE. Additionally, we also employ and

generalize OPG because, despite being inferior to MAVE, it provides an easy-

to-implement and fast-to-compute method that could prove preferable in some
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applications (especially if dimension D is expected to be very small).

The rest of the paper is organised as follows. In Section 2, we describe both

the MAVE and OPG methods and discuss their sensitivity to outliers. Robust

enhancements of these methods are proposed in Section 3. Finally, we compare

all methods by means of simulations in Section 4.

2 Estimation of dimension reduction space

In this section, we first present MAVE and OPG (Sections 2.1 and 2.2) as

well as a procedure for determining the effective DR dimension by means of

cross validation (Section 2.3). At the end of the section, we will motivate our

concerns about robustness of these methods (Section 2.4).

2.1 The MAVE method

Let d represent the working dimension, 1 ≤ d ≤ p. For a given number d

of directions B in model (1), Xia et al. (2002) proposed to estimate B by

minimizing the unexplained variance E{y − E(y|X)}2 = E{y − g(B>X)}2,

where the unknown function g is locally approximated by a linear function;

that is, g(B>X0) ≈ a0 + b>0 B>(X−X0) around some X0. The novel feature of

MAVE is that one minimizes simultaneously with respect to directions B and

coefficients a0 and b0 of the local linear approximation. Hence, given a sample
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(Xi, yi)
n
i=1 from (X, y), MAVE estimates B by minimizing

min

B:B>B=Ip

aj ,bj ,j=1,...,n

n∑

i=1

n∑

j=1

[yi − {aj + b>j B>(Xi −Xj)}]2wij, (2)

where wij are weights describing the local character of linear approximation.

Initially, weights at any point X0 are given by a multidimensional kernel func-

tion Kh, where h refers to a bandwidth: wi0 = Kh(Xi − X0){∑n
i=1 Kh(Xi −

X0)}−1; i = 1, . . . , n. Additionally, once we have an estimate B̂ of the DR

space, it is possible to iterate using weights based on distances in the reduced

space: wi0 = Kh{B̂>(Xi − X0)}[∑n
i=1 Kh{B̂>(Xi − X0)}]−1. Iterating until

convergence results in a refined MAVE, which is the estimator we understand

in the rest of the paper under MAVE.

Xia et al. (2002) also proposed a non-trivial iterative estimation procedure

based on repeating two simpler optimizations of (2): one with respect to aj, bj

given an estimate B̂ and another with respect to B given estimates âj, b̂j. This

computational approach greatly simplifies and speeds up estimation.

2.2 The OPG method

Based on the MAVE approach, Xia et al. (2002) also generalised ADE of

Härdle and Stoker (1989) to multi-index models. Instead of using a mo-

ment condition for the gradient of the regression function g in model (1),

E{∇g(X)} = 0, the average outer product of gradients (OPG) is used: Σ =

E{∇g(X)∇>g(X)}. It can be shown that the DR matrix B consists of the d
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eigenvectors corresponding to the d largest eigenvalues of Σ. Thus, recalling

that local linear regression solves at point Xj

min
aj ,bj

n∑

i=1

[yi − {aj + b>j (Xi −Xj)}]2wij, (3)

we can estimate Σ by Σ̂ = 1
n

∑n
i=1 b̂>j b̂j, where b̂j are estimates of bj from (3).

Hence, OPG consists in estimating Σ̂ and determining its d eigenvectors with

largest eigenvalues. The choice of weights wij can be done in the same way as

for MAVE.

Although OPG does not exhibit the convergence rate of MAVE, it is easy

to implement, fast to compute, and can be flexibly combined with robust

estimation methods as shown in Section 3. Moreover, our simulations show

that it can perform as well as MAVE if just one or two directions, d ≤ 2, are

of interest.

2.3 Dimension of effective reduction space

The described methods can estimate the DR space for a pre-specified dimen-

sion d. To determine d, Xia et al. (2002) extend the cross-validation (CV)

approach of Yao and Tong (1994) and estimate d by d̂ = argmin0≤d≤pCV (d),

where

CV (d) =
n∑

j=1


yj −

n∑

i=1,i 6=j

yiKh{B̂>(Xi −Xj)}∑n
i=1,i 6=j Kh{B̂>(Xi −Xj)}




2

(4)

for d > 0 and CV (0) = 1
n

∑n
i=1(yi− ȳ)2 to incorporate the possibility of y and

X being independent. Note that this CV criterion can be also used to select

bandwidth h, which results in two-dimensional CV over d and h. Although we
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use this time-demanding strategy in our simulations, in practice it is possible

to consistently select bandwidth h∗ in the DR space for the largest dimension

d = p and employ this bandwidth for all other dimensions.

2.4 Robustness of dimension reduction

The complexity of highly dimensional data processed by means of dimen-

sion reduction methods requires estimation methodology robust to data con-

tamination, which can arise from miscoding or heterogeneity not captured or

presumed in a model. In nonparametric regression, even data coming from

a heavy-tailed distribution can exhibit effects similar to data contamination.

Since both MAVE, OPG, and CV are based on least-squares criteria, their

sensitivity to outlying observations can be rather high. Here we discuss pos-

sible effects of a single outlying observation on the estimation results, that is

on âj, b̂j, and B̂, and on the CV selection of bandwidth h and dimension d.

At the end of the section, we demonstrate the effects of an outlier on a simple

example.

Considering OPG and local parametric regression (3), the estimates âj and b̂j

are just a linear combination of values yi. Since the weights wij are independent

of yi for a given bandwidth h, even a single outlying value yi, |yi| → ∞,

can arbitrarily change the estimated coefficients âj and b̂j around Xj if h is

sufficiently large. This effect then influences matrix Σ̂ = 1
n

∑n
i=1 b̂>j b̂j. In the

case of MAVE defined by (2), the situation is more complicated since the

local linear approximation of the link function given by aj and bj can adjust

simultaneously with directions B. In general, it is not possible to explicitly

state, which parameters will be affected and how, but it is likely that the effect
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Table 1

Optimal CV bandwidth for dimension d and a data set with one additive outlier c.

Simulated data with an additive outlier

Dimension d 1 2 4 6 8 10

c = 0 0.61 1.28 1.65 1.28 1.28 1.65

c = 50 0.37 1.00 1.65 1.28 1.65 2.12

c = 250 0.47 1.28 2.12 2.12 0.47 0.61

c = 500 0.47 0.78 0.22 0.29 0.37 0.61

c = 1000 0.47 0.61 0.22 0.37 0.47 0.47

of an outlier will vary with working dimension d.

In addition, nonparametric estimation depends on an auxiliary parameter,

bandwidth h, and its choice – done here by cross validation – is crucial for the

performance of a method. As argued in Ronchetti et al. (1997), an outlier can

significantly bias results of the least-squares-based CV. For OPG (3), band-

width h is chosen generally too small: the CV criterion (4) is minimized when

the outlier affects as a small number of observations in its neighborhoud as

possible, that is, when the bandwidth h is small. For MAVE (2), the situation

is again complicated by the fact that the outlier can be “isolated” not only by

a small bandwidth, but possibly by a specific choice of directions B as well.

Furthermore, since CV is also used to determine the dimension of the DR

space, an outlier can adversely affect the estimation of dimension D as well.

To exemplify the influence of a single outlying observation on the bandwidth

and dimension selection, we generated a random sample of 100 observation
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Table 2

Optimal CV dimension d for a data set with one additive outlier c.

Simulated data with an additive outlier

Method c = 0 c = 25 c = 50 c = 75 c = 100 c = 125 c = 150

OPG 1 2 2 3 5 4 1

MAVE 2 2 2 1 3 2 2

from the following nonlinear model:

yi = (X>
i b1)

2 − (0.5 + X>
i b2)

2 + 15 cos(X>
i b3) + 0.5εi,

where random vector Xi has the standard normal distribution in R10 (see

Section 4 for detailed model description and Monte Carlo simulations). Addi-

tionally, we included one observation that has value yi increased by c ranging

from 0 to 1000. We first applied OPG since it allows to determine the local

linear approximation (3) and the corresponding bandwidth h separately from

directions B. For various values of outlier c and dimension d, the optimal

bandwidth hopt was chosen by CV, see Table 1 (line c = 0 corresponds to data

without the outlier). Although it does not change monotonically with c, there

is a general trend of hopt being smaller with increasing outlier value c. Further,

we also estimated dimension d as a function of outlier value c. The results of

CV based on MAVE and OPG estimates are summarized in Table 2. OPG

seems rather sensitive to this outliers because the estimated dimension varies

between 1 and 5 for c = 0, . . . , 150. MAVE results in more stable estimates,

which are however still influenced by the outlier position.
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3 Robust dimension reduction

Both MAVE and OPG seem to be sensitive to data contamination. Our aim

is thus to propose robust enhancements of MAVE and OPG that should pre-

serve their present qualities, increase their robustness, and be computationally

feasible. We discuss first general ways of making MAVE and OPG more ro-

bust (Section 3.1). Next, we address computational issues and propose robust

MAVE and OPG that are computationally feasible (Section 3.2). Finally, we

adapt the CV procedure mentioned in Section 2.3 for robust estimation (Sec-

tion 3.3).

3.1 Robust MAVE and OPG

There are many robust alternatives to least squares in linear regression. Using

them methods in nonparametric regression adds a requirement on easy and fast

implementation, which excludes many so-called high-breakdown point meth-

ods (Rousseeuw and Leroy, 2003), and on the other hand, eliminates need for

robustness against leverage points to some extent. During last decades, local

L- and M-estimators have become particularly popular and well studied, see

Boente and Fraiman (1994), Č́ıžek (2004), and Fan and Jiang (1997), Härdle

and Tsybakov (1988), respectively.

The application of local L- or M-estimation to MAVE and OPG theoretically

reduces to replacing the squared residuals in (2) and (3) by a general convex

function ρσ of residuals, where σ represents the variance of residuals. Whereas

L-estimators do not require the knowledge of σ, in the case of M-estimators,

robust choices of ρσ depend on an estimate σ̂ of residual variance. In para-
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metric estimation (Hampel et al., 1986), σ is typically treated as a nuisance

parameter or is set proportional to the median absolute deviation (MAD). To

reflect local character of estimation given by wij in (2) and (3) and to mini-

mize computational cost, we propose to estimate the variance of residuals by

weighted MAD with weights wij. Specifically, we define

σ̂(X0) = 1.4826 · min
k=1,...,n

{
r(k)

∣∣∣∣∣
n∑

i=1

Kh(Xi −X0)∑n
i=1 Kh(Xi −X0)

· I
(
ri ≤ r(k)

)
≥ 0.5

}
,

where r(k) is the kth order statistics of ri = |yi − µ̃y(X0)|.

In the case of OPG, this means that one applies a local polynomial L- or

M-estimator with a given function ρσ and a variance estimate σ̂,

min
aj ,bj

n∑

i=1

ρσ̂[yi − {aj + b>j (Xi −Xj)}]2wij, (5)

and then obtains the DR space B as d eigenvectors of Σ̂ = 1
n

∑n
i=1 b̂>j b̂j with

largest eigenvalues.

In the case of MAVE, having a general objective function ρσ̂ leads to

min

B:B>B=Ip

aj ,bj ,j=1,...,n

n∑

i=1

n∑

j=1

ρσ̂

[
yi − {aj + b>j B>(Xi −Xj)}

]
wij. (6)

Although (6) cannot be minimized using the algorithm proposed by Xia et

al. (2002), the optimization can be still carried out by repeated estimation of

(6) with respect to aj, bj given an estimate B̂ and with respect to B having

estimates âj, b̂j. The first step is just the already mentioned local L- or M-

estimation analogous to (5). To facilite the second step – estimation of B, let

us observe that (6) can be reformulated as follows. For B = (β1, . . . , βd) and
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given (aj, bj) = (aj, bj1, . . . , bjd), (6) is equivalent to

min
B:B>B=Ip

n∑

i=1

n∑

j=1

ρσ̂

[
yi −

{
aj +

d∑

k=1

β>k bjk(Xi −Xj)

}]
wij. (7)

This represents a standard regression problem with n2 observations and pd

variables, which can be estimated by usual parametric estimator. Although

simulations show that estimating MAVE this way leads to slightly better esti-

mates than the original algorithm, the size of regression (7) will be enormous

as the sample size increases, which will hinder computation. For example,

there are very fast algorithms available for computing least squares and L1

regression in large data sets, see Koenker and Portnoy (1997), and even in

these two special cases computation becomes 10 to 20 times slower than the

original algorithm for samples of just 100 observations! This disqualifies such

an algorithm from practical use.

3.2 One-step estimation

To be able to employ the fast original MAVE algorithm, robustness has to be

achieved only by modifying weights wij in (2). To achieve this, we propose to

use one-step M-estimators as discussed in Fan and Jiang (1999) and Welsh and

Ronchetti (2002): the (iteratively) reweighted least squares approach. First

using an initial highly robust estimate β̂0 = {B̂0, â0j, b̂0j}, we construct weights

w∗
ij such that the objective function (2) is equivalent to (6) at β̂0: w∗

ij =

wijρσ̂(r0i)/r
2
0i where r0i = yi − {â0j + b̂>0jB̂

>
0 (Xi − Xj)}. Next, we perform

the original least-squares-based algorithm using the constructed weights w∗
ij.

Contrary to Fan and Jiang (1999), we use L1 regression as the initial robust

estimator, which guarantees robustness against outliers and fast computation
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(one does not have to protect against leverage points since estimation is done

in a local window given by the bandwidth and kernel function).

3.3 Robust cross-validation

The robust estimation of the DR matrix B0 is not sufficient if dimension d is

not known. As indicated by Ronchetti et al. (1997) and the example in Sec-

tion 2.4, using the CV criterion (4) can lead to a bias in dimension estimation

(and bandwidth selection) even if a robust estimator of B0 is used. Now, due

to the local nature of nonparametric regression, we have to “protect” CV pri-

marily against outliers in the y-direction. In this context, the L1 estimator is

highly robust and the same should apply to CV based on L1 rather than L2

norm. Thus, we propose to use instead of (4) the L1 cross validation of Wang

and Scott (1994),

CV (d) =
n∑

j=1

∣∣∣∣∣∣
yj −

n∑

i=1,i 6=j

yiKh{B̂>(Xi −Xj)}∑n
i=1,i 6=j Kh{B̂>(Xi −Xj)}

∣∣∣∣∣∣
, (8)

to determine both the optimal bandwidth and dimension D. This procedure is

further referred to as CVA instead of CV, which is used only for the L2 cross

validation.

4 Simulations

To study finite sample performance of MAVE, OPG and their modifications

proposed in Section 3, we perform a set of Monte Carlo simulations under

various distributional assumption. In this section, the used data-generating

model is introduced first (Section 4.1). Next, we compare the performance
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of all methods in estimating the directions of the DR space (Section 4.2).

Finally, we examine the performance of the CV and CVA dimension estimation

(Section 4.3).

4.1 Simulation models

Throughout this section, we consider the data-generating model

yi = (X>
i β1)

2 − (0.5 + X>
i β2)

2 + 15 cos(X>
i β3) + 0.5εi, (9)

where the vector Xi of explanatory variables has the standard normal distribu-

tion in R10 and β1 = (1, 2, 3, 0, 0, 0, 0, 0, 0, 0)/
√

14, β2 = (−2, 1, 0, 1, 0, 0, 0, 0, 0,

0)/
√

6, and β3 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1)/
√

3. The effective DR space given by

B0 = (β1, β2, β3) has thus dimension D = 3. To compare the robust properties

of all estimators, we use three error distributions.

(1) The standard normal errors, εi ∼ N(0, 1), generate Gaussian data with-

out any outlying observations.

(2) The Student distributed errors, εi ∼ t1, with one degree of freedom sim-

ulate data from a heavy-tailed distribution.

(3) The contaminated errors, εi ∼ 0.95N(0, 1)+0.05U(−600, 600), represent

(normal) data containing 5% of outlying observations.

For the sake of brevity, we refer to these three cases as NORMAL, STUDENT,

and OUTLIERS, respectively. For all simulations from (9), we use sample

size n = 100 and 100 repetitions (we observed that the results for larger

samples sizes, such as n = 200, are qualitatively the same as for n = 100).

Nonparametric smoothing employs the Gaussian kernel in all cases. Bandwidth
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Table 3

Average computational times for each method at sample size n = 100 and dimension

d = 3 relative to standard OPG.

Computation times

LS L1 HUBER HAMPEL

OPG 1.0 4.6 10.4 12.3

MAVE 7.5 298.7 13.8 14.5

is cross-validated using CVA for the proposed robust methods and using both

CV and CVA for the original methods.

Let us note that we compare the methods using the same distance measure of

the estimated space B̂ and the true space B0 = (β1, β2, β3) as Xia et al. (2002):

m(B̂, B0) = ‖(I − B0B
T
0 )B̂‖ for d ≤ D = 3 and m(B̂, B0) = ‖(I − B̂B̂T )B0‖

for d ≥ D = 3 and (D = 3 is the true dimension of the reduced space used in

our simulations, whereas d denotes the dimension used for estimation).

4.2 Estimation of dimension reduction space

MAVE, OPG, and their modifications are now compared by means of simu-

lations. The estimators include MAVE defined in (6) and OPG defined in (5)

using the following functions ρσ̂:

(1) ρσ̂(x) = x2 (least squares)

(2) ρσ̂(x) = |x| (least absolute deviation),

(3) ρσ̂(x) =
∫

sgn(x) min(|x|, σ̂)dx (M-estimate with the Huber function)

(4) ρσ̂(x) =
∫

sgn(x) max{0, min(|x|, σ̂) − max(0, |x| − 2σ̂)}dx (M-estimate
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with the Hampel function)

We refer to these functions as LS, L1, HUBER, and HAMPEL. The first

choice corresponds to standard MAVE and OPG. The second one relies on

the local L-estimation that, in the case of MAVE, has to be performed by

slow algorithm based on alternating formulations (6) and (7), see Section 3.1.

The last two choices represent MAVE and OPG relying on the local one-step

M-estimation as described in Section 3.2.

Before discussing the estimation results, let us recall our concerns about com-

putational speed of each method that motivated use of sub-optimal, but fast

OPG and precludes practical use of MAVE based on the L1 estimator. Given

model (9), Table 3 summarized computational times for all methods relative

to OPG–LS. The results are to some extent implementation-specific, which

does not allow to directly compare optimized least-square methods and unop-

timized robust variants. Nevertheless, it is clear that OPG can be computed

much faster than MAVE (if the algorithm is properly optimized) and that

the general algorithm from Section 3.1 used for MAVE–L1 is too slow for real

applications.

Let us first deal with the results concerning OPG and its modifications pre-

sented in Table 4. For data NORMAL, all modifications outperform the origi-

nal method (OPG–LS–CV). It is interesting to note that, in the case of OPG–

LS, the CVA criterion performed better than CV. This might be due to a rela-

tively small number of observations relative to the dimension of the data, but

our feeling is that this is typical rather than exceptional for many dimension-

reduction applications. Nevertheless, even the comparison of OPG–LS–CVA,

OPG–HUBER, and OPG–HAMPEL does not reveal significant differences in
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Table 4

Median errors of OPG estimates for dimension d = 3.

Simulated data NORMAL, STUDENT, and OUTLIERS

Data Method m0(β̂1) m0(β̂2) m0(β̂3) m0(B̂)

NORMAL OPG LS CV 0.005 0.147 0.264 0.352

OPG LS CVA 0.004 0.132 0.208 0.301

OPG L1 0.004 0.117 0.215 0.279

OPG HUBER 0.004 0.127 0.227 0.310

OPG HAMPEL 0.005 0.125 0.201 0.307

STUDENT OPG LS CV 0.103 0.521 0.663 0.953

OPG LS CVA 0.096 0.545 0.599 0.953

OPG L1 0.021 0.454 0.523 0.883

OPG HUBER 0.016 0.386 0.530 0.821

OPG HAMPEL 0.013 0.287 0.467 0.743

OUTLIERS OPG LS CV 0.641 0.607 0.549 0.969

OPG LS CVA 0.648 0.616 0.587 0.973

OPG L1 0.012 0.267 0.473 0.722

OPG HUBER 0.008 0.192 0.369 0.467

OPG HAMPEL 0.007 0.167 0.324 0.368
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Table 5

Median errors of MAVE estimates for dimension d = 3.

Simulated data NORMAL, STUDENT, and OUTLIERS

Data Method m0(β̂1) m0(β̂2) m0(β̂3) m0(B̂)

NORMAL MAVE LS CV 0.007 0.092 0.095 0.181

MAVE LS CVA 0.004 0.089 0.094 0.147

MAVE L1 0.005 0.060 0.090 0.148

MAVE HUBER 0.005 0.100 0.094 0.164

MAVE HAMPEL 0.006 0.116 0.153 0.250

STUDENT MAVE LS 0.316 0.385 0.572 0.910

MAVE LS CVA 0.252 0.397 0.510 0.910

MAVE L1 0.020 0.335 0.388 0.683

MAVE HUBER 0.035 0.284 0.451 0.685

MAVE HAMPEL 0.039 0.289 0.428 0.633

OUTLIERS MAVE LS 0.747 0.732 0.664 0.976

MAVE LS 0.752 0.682 0.680 0.976

MAVE L1 0.029 0.165 0.221 0.470

MAVE HUBER 0.014 0.228 0.202 0.416

MAVE HAMPEL 0.010 0.151 0.176 0.312
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the performance of these methods. For data STUDENT, all robust versions

of OPG provide similar results, whereas the estimates by original OPG–LS

exhibit rather large errors, especially in the first direction β1. For data OUT-

LIERS, there is a large difference between non-robust OPG–LS and the ro-

bust modifications of OPG, which documents sensitivity of the original OPG

estimator to outliers. Although the performance of all robust estimators is

relatively similar, OPG–HAMPEL is best due to its full-rejection feature (ob-

servations with too large residuals get zero weight).

The simulation results for MAVE are summarized in Table 5. For data NOR-

MAL, we again observe the positive influence of CVA on the original MAVE.

All estimates except for MAVE–HAMPEL perform almost equally well. MAVE–

HAMPEL provides worst estimates since it fully rejects some data points,

which surprisingly did not matter in the case of OPG. For data STUDENT

and OUTLIERS, all robust versions of MAVE by far outperform the original

MAVE, which exhibit rather large errors in all direction. Similarly to OPG,

MAVE–HAMPEL is best due to the full rejection of extreme observations;

this is effect is rather pronounced in data OUTLIERS.

All presented results clearly document the need for and advantages of the

proposed robust modifications of MAVE and OPG. Comparing the results for

both methods, they have rather similar structure, but MAVE always outper-

forms OPG when considering the estimation of the whole DR space. On the

other hand, OPG seems to be very good in identifying the first and to some

extent also the second direction. Let us note that results can be further im-

proved by adjusting function ρσ̂, the choice of which was typical rather than

optimal.
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4.3 Cross-validation simulations

The estimation of the DR space considered in the previous section is now

complemented by a study on the estimation of the effective dimension D.

Simulating again from model (9), we estimated the DR dimension d̂ (D = 3)

using MAVE and OPG with ρσ̂-functions LS and HAMPEL and the CV and

CVA criteria (4) and (8), respectively. Note that the design of model (9) makes

the identification of the third direction β3 difficult given rather small sample

size n = 100. Therefore, we accept estimates d̂ = 2 and d̂ = 3 as appropriate.

Results for all models are summarized in Tables 6 and 7 for MAVE and OPG,

respectively. Judging all methods by the number of simulated data sets for

which estimated dimension equals two or three, MAVE can be always pre-

ferred to OPG. For the original methods, the CVA criterion is preferable to

CV as in Section 4.2. A more interesting results is that MAVE–HAMPEL and

OPG–HAMPEL outperformed the original MAVE and OPG not only in data

OUTLIERS and STUDENT, but also in the case of data NORMAL. The only

case where MAVE–LS is preferable is the number of data set for which the

estimated dimension d̂ equals 3 in data NORMAL. This could be partially ac-

counted to the relatively small sample size. Finally, notice that the robust DR

method such as MAVE–HAMPEL does not suffice to identify the dimension

of the DR space: a robust CV criterion such as CVA has to be used as well.

5 Conclusion

We proposed robust enhacements of MAVE and OPG that can perform equally

well as the original methods under ‘normal’ data, are robust to outliers and

20



Table 6

Estimates of the DR dimension by MAVE variants using L2 (CV) and L1 (CVA)

cross validation. Entries represent the numbers of samples out of 100 with estimated

dimension d.

Simulated data NORMAL, STUDENT, and OUTLIER

Data Estimation CV D = 1 D = 2 D = 3 D = 4 D ≥ 5

NORMAL MAVE LS CV 11 38 51 0 0

NORMAL MAVE LS CVA 4 43 53 0 0

NORMAL MAVE HAMPEL CV 7 52 41 0 0

NORMAL MAVE HAMPEL CVA 6 54 40 0 0

STUDENT MAVE LS CV 26 33 35 5 1

STUDENT MAVE LS CVA 15 29 44 12 1

STUDENT MAVE HAMPEL CV 18 42 27 7 5

STUDENT MAVE HAMPEL CVA 15 62 21 2 0

OUTLIERS MAVE LS CV 0 1 14 20 65

OUTLIERS MAVE LS CVA 5 6 20 10 59

OUTLIERS MAVE HAMPEL CV 1 2 6 10 81

OUTLIERS MAVE HAMPEL CVA 8 47 29 4 12
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Table 7

Estimates of the DR dimension by OPG variants using L2 (CV) and L1 (CVA)

cross validation. Entries represent the numbers of samples out of 100 with estimated

dimension d.

Simulated data NORMAL, STUDENT, and OUTLIER

Data Estimation CV D = 1 D = 2 D = 3 D = 4 D ≥ 5

NORMAL OPG LS CV 8 48 38 5 1

NORMAL OPG LS CVA 8 59 31 1 1

NORMAL OPG HAMPEL CV 8 51 40 1 0

NORMAL OPG HAMPEL CVA 8 47 43 2 0

STUDENT OPG LS CV 21 29 27 18 5

STUDENT OPG LS CVA 11 25 41 18 5

STUDENT OPG HAMPEL CV 10 31 33 14 12

STUDENT OPG HAMPEL CVA 23 41 31 5 0

OUTLIERS OPG LS CV 2 1 10 12 75

OUTLIERS OPG LS CVA 14 5 8 8 65

OUTLIERS OPG HAMPEL CV 0 0 2 13 85

OUTLIERS OPG HAMPEL CVA 12 40 23 10 15
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heavy-tailed distributions, and are easy to implement. Should we pick up one

method for a general use, MAVE–HUBER seems to be the most suitable

candidate as (i) MAVE–LS is not robust, (ii) MAVE–L1 is slow to compute,

see Section 3.1, and (iii) MAVE–HAMPEL does not perform so well for normal

data.
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