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Abstract

We propose a novel methodology for forecasting chaotic systems which

is based on exploiting the information conveyed by the local Lyapunov ex-

ponent of a system. We show how our methodology can improve forecast-

ing within the attractor and illustrate our results on the Lorenz system.
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1 Introduction

It is well known that some deterministic chaotic systems can be di¢ cult to fore-

cast accurately. Indeed, their extreme sensitivity to initial conditions ampli�es

slight deviations from a trajectory in the state space into dramatic changes in

future behavior.

In this chapter, we propose a novel methodology for forecasting deterministic

series which corrects for the inevitable bias of most non-parametric predictors

(such as the ones based on kernels, radial functions, neural nets, wavelets, etc.;

see [1] and [2]) by incorporating additional information on the local chaoticity of

the system via the so-called local Lyapunov exponent (LLE). To the best of our

knowledge, while several works exist on the forecasting of chaotic systems (see,

e.g., [3] [4], [5] and [6]), none exploit the information conveyed by the LLE. The

general intuition of the methodology we propose in this chapter can be viewed as

a complement to existing forecasting methods, and can be extended to chaotic

time series. For illustrative purposes, we describe how our methodology can be

used to improve upon the well-known nearest-neighbor predictor on the Lorenz

system.

The nearest-neighbor predictor has proved to be a simple yet useful tool

for forecasting chaotic systems ([7] and [8]). In the case of a one-neighbor

predictor, it takes the observation in the past which most resembles today�s

state and returns that observation�s successor as a predictor of tomorrow�s state.

The rationale behind this nearest-neighbor predictor is quite simple: given that

the system is assumed to be deterministic and ergodic, one obtains a sensible

prediction of the variable�s future by looking back at its evolution from a similar,

past situation. For predictions more than one step ahead, the procedure is

iterated by successively merging the predicted values with the observed data.

We show that we can improve predictions in a chaotic system by incorporat-

ing information carried by the system�s LLE. The LLE (see [9], [10]) represents

the local dispersion rate of a system at a given point: a positive value meaning

that two nearby points in the state space tend to grow apart over time, while

a negative value indicates that nearby points will come closer together in the

near future (but may diverge later on). In other words, the LLE is a measure of

local chaoticity of a system, as sensitivity to initial conditions is characteristic

of chaotic systems.

By de�nition, the LLE tells us precisely by how much the distance between

the current state and its nearest neighbor will expand (or contract) over time, so
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that we can easily obtain the distance between the nearest-neighbor predictor

(i.e., the neighbor�s successor) and the future we are predicting (tomorrow�s

state). Thus, we know exactly by how much to correct the prediction of the

nearest-neighbor predictor. We use this fact to develop a new methodology.

The rest of the chapter is organized as follows. In Section 2, we develop

our methodology by �rst pointing out why the nearest-neighbor predictor is

biased and then suggesting how to correct this bias using information carried

by the system�s LLE. In Section 3, we present simulations carried out on the

well-known Lorenz system to illustrate the extent of the substantial potential

accuracy gains our methodology yields. In Section 4, we present how one can

achieve these potential gains almost perfectly thanks to a simple rule of thumb

to solve the selection problem arising from our methodology. Section 5 concludes

by pointing to directions in future work in order to re�ne our selection process

and our methodology in general.

2 Methodology

Consider a one-dimensional series of T observations from a chaotic system,

(x1; :::xT ), whose future values we are trying to forecast, d is the embedding

dimension used to detect the attractor. A possible embedding method, involv-

ing building a d-dimensional orbit, (Xt), with Xt = (xt; xt�1; :::; xt�(d�1)), is

described in [11].

By de�nition, the local Lyapunov exponent (or LLE) of a dynamic system

characterizes the rate of separation of in�nitesimally close points of an orbit.

Quantitatively, two neighboring points in phase space with initial separation

�X0 are separated, t periods later, by the distance:

j�Xj � j�X0je�0t;

where j � j represents the modulus of the considered vectors and �0 is the local
Lyapunov exponent of the system in the vicinity of the initial points. Typically,

this local rate of divergence (or convergence, if �0 < 0) depends on the orienta-

tion of the initial vector �X0. A dynamic system is considered to be (locally)

chaotic if �0 > 0, and (locally) stable if �0 < 0. (see, e.g., [12]).

Our goal is to exploit the local information carried by the LLE to improve

upon existing methods of reconstruction and prediction. We propose a method-

ology which builds upon the classical nearest-neighbor predictor, which we now
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recall.

Consider an orbit (X1; :::; XT ) whose one-step-ahead future, XT+1, we are

trying to predict. The nearest-neighbor predictor returns X̂T+1 = Xi+1, where

Xi is the element of the orbit with minimal distance toXT . Because the dynamic

system at hand is aperiodic (or else, forecasting would not be an issue), the

nearest-neighbor predictor is inevitably biased. Indeed, because jXT �Xij > 0,
it must also be the case that:

jX̂T+1 �Xi+1j � jXT �Xije�i > 0; (1)

where �i can be approximated in practice by the following expression:

�̂i = ln
jXi+1 �Xj+1j
jXi �Xj j

with Xj = arg min
t6=i;T

jXt �Xij (2)

It follows from Expression (1) that knowing the distance between the pre-

dictee and the nearest neighbor as well as the LLE at the nearest neighbor allows

us to predict the distance of the predictee�s image to the neighbor�s image. Note

that this is true regardless of the sign of �i; i.e., regardless of whether the sys-

tem is locally chaotic or locally stable. Moreover, because the orbit considered

results from the embedding of a one-dimensional series, we also know all but

the �rst coordinate of XT+1 = (xT+1; xT ; :::; xT�d+2). Hence, XT+1 lies at the

intersection of the sphere of radius jXT � Xije�̂i centered on XT and the line
de�ned by f(z; xT ; :::; xT�d+2)jz 2 Rg which, in the Euclidean space, amounts
to solving the following polynomial for z 2 R:p
(z � xi+1)2 + (xT � xi)2 + :::+ (xT�d+2 � xi�d+2)2 � jXT �Xije�̂i = 0 (3)

Typically, two candidates emerge, x̂�T+1 and x̂
+
T+1, respectively underestimating

and overestimating the true value of observation xT+1(see Figure 1)1 .

[FIGURE 1]

One di¢ culty lies in determining when the nearest-neighbor predictor overes-

timates or underestimates the true value to be predicted. Being able to discrim-

inate accurately between x̂�T+1 and x̂
+
T+1 may signi�cantly improve the accuracy

1The situation whereby Expression (3) has no real solution would only arise if �i had been
greatly underestimated, which never occurred to us in practice using Expression (2).
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of the nearest-neighbor predictor, as we next illustrate. We discuss this point

in Section 4.

3 Simulations

We illustrate our point by simulating a well-known chaotic system: the Lorenz

system (see [13]), which is characterized by the following system of di¤erential

equations: 8><>:
dx
dt = �(y � x)

dy
dt = x(R� z)� y
dz
dt = xy � bz:

We simulated this system with values � = 16, R = 45:92 and b = 4, initial

values x0 = �10, y0 = �10 and z0 = 30, and a step size of 0.01. Taking

5,000 observations, deleting the �rst 1,000 ensure that we are working within

the attractor and considering the values on the x-coordinate as its own series,

we successively predicted the last 1,000 in-sample observations. Each prediction

was carried out with the full� and true� information set leading up to it, each

time using the best of the two candidates, x̂�T+1 and x̂
+
T+1(measured in distance

to the� known� successor). We obtain results which are always better than

with the nearest-neighbor predictor and a mean-squared error which is roughly

two-thirds that of the nearest-neighbor predictor: 0.1552 for the raw nearest-

neighbor predictor, versus 0.1056 after LLE-correction.

This example shows the interest of the method and the great potential in

improving upon the accuracy of the nearest-neighbor predictor by incorporat-

ing the information contained in local Lyapunov exponents as in Expression (1).

Another example based on the logistic map is available in [14].

4 Solving the selection problem

Several aspects of the implementation are still to be re�ned. Consistently dis-

criminating between the two candidates, x̂�T+1 and x̂
+
T+1, can prove to be a

di¢ cult task due to the inherent chaotic nature of the systems at hand. As

a �rst guess, one can select the candidate which maximizes the colinearity be-

tween the Xi+1�XT vector and the vector X̂T+1�XT (with X̂T+1 standing for
X̂�
T+1 or X̂

+
T+1). With the simulation of the Lorenz system described above, we
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achieve 94.3% accuracy over 1000 predictions, suggesting that this method of

discrimination might be reasonable. Results are summarized in Table 1 below.

Notice that the LLE ranges from -1.4353 to 1.4580 on the portion studied. In

other words, the attractor contains stable and chaotic regions. Our predictions

are more accurate on 1000 predictions than on 100, which is likely due to the

fact that the corresponding latter portion of the attractor is more chaotic, which

is con�rmed by the fact that the LLE is larger on average in that region (0.2756

versus 0.1940).

Table 1: Lorenz system

Number of predictions 100 1000

Success rate 87% 94.30%

Average error 0.0738 0.0390

NNP average error 0.1075 0.0548

Best candidate average error 0.0689 0.0372

otherSE 0.2041 0.1036

mean LLE (min;max) 0.2756(-0.9861;1.3639) 0.1940 (-1.4353;1.4580)

mean LLE on mistakes (min;max) 0.4685(-0.4020;1.3639) 0.4354 (-0.5142;1.3639)

Table 2 provides the size of errors on small ranges of LLE on 1000 predictions.
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Table 2: Average errors and success rates

Average errors Success rates

LLE success failure raw 1-NN success failure success rate

-1.5,1.3 0.0077 - 0.0077 1 0 100%

-1.3,-1.1 - - - - - -

-1.1,-0.9 0.0335 - 0.0335 3 0 100%

-0.9,-0.7 0.0286 - 0.0286 3 0 100%

-0.7,-0.5 0.0451 0.0169 0.0479 67 1 98.51%

-0.5,-0.3 0.0541 0.005 0.0594 92 1 98.91%

-0.3,-0.1 0.0505 0.0899 0.0626 98 2 97.96%

-0.1,0 0.0477 0.0347 0.0580 47 4 91.49%

0,0.1 0.0249 0.027391 0.0365 61 4 93.44%

0.1,0.3 0.0342 0.0876 0.0539 109 7 93.58%

0.3,0.5 0.0290 0.0594 0.0626 195 8 95.90%

0.5,0.7 0.0325 0.0847 0.0560 223 22 90.13%

0.7,0.9 0.0236 0.0562 0.0267 18 2 88.89%

0.9,1.1 0.0152 0.396 0.0273 13 3 76.92%

1.1,1.3 0.0433 0.0632 0.0333 9 2 77.88%

1.3,1.5 0.1594 0.0432 0.0339 4 1 75%

Overall 0.0373 0.0667 0.0548 943 57 94.3%

We observe that errors can be small even when we make mistakes, but can

also be relatively large with accurate selection. However, the size of errors is

relatively stable over the range of LLEs when selection is successful. This seems

to indicate that our method accurately corrects for the dispersion of neighboring

trajectories as measured by the value of the LLE. If this were not the case, one

would expect the size of errors to be larger for larger values of LLEs. In fact,

errors become large only for values of the LLE near the upper end of their range.

A possible reason for this sudden increase may be that our estimator for the

value of the LLE is not su¢ ciently robust in regions of high chaoticity. We

expect that a more sophisticated estimation method for the LLE may solve this

issue.

Our method selects perfectly for very low values of the LLE. Selection mis-

takes start to appear past a value of LLE of -0.5, but the success rate does not

seem to fall signi�cantly until the value of the LLE increases up to 0.7. The
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success rate falls as the LLE grows very large, however, which is in line with

the common intuition that the system is then (locally) more chaotic and, thus,

more di¢ cult to predict.

5 Concluding comments

We �nd that our methodology may lead to substantial improvements to existing

non-parametric predictors. Despite the candidate selection problem it poses,

we were able to reap most of the potential bene�ts thanks to a simple rule of

thumb. However, more sophisticated selection procedure should be considered.

For instance, it may be sensible to condition the selection process on the size of

the LLE, acting on the intuition that trajectories are likely to be more stable

when the LLE is small, and more erratic when it is large. More speci�cally, the

bottom row of Table 1 suggests that the current rule of thumb makes mistakes

where the value of the LLE is large. We plan on investigating this line of

reasoning in future work.

Such increased precision in short-run predictions may translate into accuracy

gains for medium-run predictions, which is currently unsatisfactory with exist-

ing techniques. In addition, the general intuition behind the proposed method

readily applies to other non-parametric predictors. Next steps include enhancing

predictions via better estimations of the LLE, either by using more neighbors,

or neural network methods ([15]). Naturally, our ultimate goal is to evaluate

how our method holds up when confronted to real data, and particularly to

intra-day �nancial and economic time series.
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