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Abstract

We investigate how the intensity of competition among airports affects their technical

efficiency by computing airports’ markets on the basis of a potential demand approach.

We find that the intensity of competition has a negative impact on airports’ efficiency

in Italy during the 2005–2008 period. This implies that airports belonging to a local

air transportation system where competition is strong exploit their inputs less intensively

than do airports with local monopoly power. Furthermore, we find that public airports

are more efficient than private and mixed ones. Since public airports take into account

the positive externalities created by air transportation in the local economy, they are

more willing to subsidize airlines in developing the airports’ connections. Hence, policy

makers should provide incentives to implement airports’ specialization in local systems

where competition is strong. Moreover, when regulating airport charges, they should take

into account the impact of the above externalities.
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1 Introduction

An important effect of the liberalization process implemented in the EU

air transportation market has been the exponential growth in the European

network. Today every European airline can provide new European connections

(i.e., flights having origin and destination in airports belonging to the EU

25) without any further restrictions than that regarding slot availability.2 As

a consequence, if we consider all 460 airports of the 18 countries belonging

to the European Common Aviation Area (ECAA) in 1997 (i.e., the 15 EU

members plus Iceland, Norway, and Switzerland), the total number of airport

pairs connections has signed an impressive 35% increase, from 3,410 in 1997

to 4,612 in 2008, with a Compound Annual Growth Rate (CAGR) equal to

2.78%.3 Furthermore, the total number of connecting flights has increased

from 4,102,484 in 1997 to 5,228,688 in 2008, with a CAGR for the period

equal to 2.23%.

The network expansion has increased the intensity of competition between

airports, given that travelers may now choose the same origin–destination

route using alternative flights. The latter may be available at the same

airport (the competition is within the airport) or at different nearby ones

(the competition is between airports). Our aim is to investigate the impact of

competition on airports’ technical efficiency, which is an important factor in

air transportation: airport efficiency is linked both with airport charges and

with the services provided to airlines and passengers (e.g., shorter aircraft

2The EU liberalization process started in 1987 and, through the sequential implemen-

tation of several packages, has now formed a uniquely large internal market. The set

of measures adopted in December 1987 led to the approval of the “first package” of the

integrated European rules on air transportation. Two other packages (1990 and 1992) led

up to the creation of the European common market. However, the complete liberalization

entered into force in April 1997, 15 years after the start of the process.
3Data where extracted from the Official Airline Guide (OAG) database; information

regarding the total number of operating flights connecting airports belonging to the

European Common Aviation Area (ECAA) during a year. Operating flights means that

co–sharing connections are considered as a single flight, to avoid useless replications.
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turnaround times, quicker passenger transfer, faster baggage claim times,

etc.). Hence, we want to analyze whether airports with a higher intensity of

competition are more technically efficient.

A further interesting feature of airport competition in Europe is the

presence of different ownership types. The large majority of European airports

are controlled either by local governments (e.g., municipalities, regional

governments, etc.) or by private agents. Furthermore, some airports have a

mixed ownership (local governments and private agents).4 Hence, we want

also to test whether a specific ownership type leads to greater efficiency. This

paper deals with these issues by developing a potential demand approach to

compute an airport competition index and a multi–output stochastic frontier

econometric model to estimate technical efficiency. These techniques are

applied to a sample of 38 Italian airports for the period 2005–2008.

We find a statistically significant negative relation between airport com-

petition and technical efficiency. This implies that an airport that is closer

to the local monopoly model has an efficient utilization of its inputs and

assets. In contrast, an airport with strong competition has a lower technical

efficiency because it may lose passengers and flights (which move toward

nearby facilities), while keeping the same assets.5 This implies a reduction

in its technical efficiency. In order to recover it, this airport has either to

stimulate new demand (e.g., by attracting new Low Cost Carriers (LCCs) or

offering new point–to–point connections not provided at nearby airports) or

to divert the existing demand from other airports. However, these goals may

be difficult to achieve, because of both the presence of strong airline buying

power and some relevant switching costs.6

4Spain is a relevant exception since all Spanish airports are controlled by the same

central government authority, AENA.
5Many airports cannot be easily modified. For instance, the estimated utilization period

of a runway is about 50 years.
6In many small and medium Italian regional airports, the main LCCs have strong

buyer power, because they account for a large share of the airport’s traffic. Under these

circumstances, airports frequently subsidize LCCs for the flights provided (the so called

co–marketing strategy). The subsidy is usually equal to a fixed rebate per passenger.
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Second, we find that public airports are the most efficient ones, while

private facilities are even less efficient than mixed airports. A possible

explanation is that public airports take into account the positive externalities

produced by air transportation in the local economy. In contrast, private

airports only maximize their profit and have tighter budget constraints. Hence,

they may be more willing to subsidize airlines, sometimes incurring losses

that are then covered by local taxation.7 This implies that public airports

have more attractive power with regard to airlines.

The above results yield the following policy implications: first, airports’

specialization within the same local system (for instance, one airport may

focus on LCCs and another on cargo) may be a policy recommendation to

recover efficiency without requiring long–run investments in the accessibility

system. Another extreme possibility is closing down some airports with very

high inefficiency levels.8 Second, airport charges should be regulated taking

fully into consideration the positive externalities created in the surrounding

territory, even when applied to private airports. These settings should boost

private investments in airport infrastructure, including accessibility systems.

To the best of our knowledge, few previous contributions have attempted

to model airport competition. Malighetti et al. [2007] estimate an airport’s

potential demand by adopting a fixed radius technique, whereby an airport’s

competitors are all the other airports located within a fixed distance around

the airport. Oum et al. [2008] assume that airports are in competition if

they belong to the same metropolitan area. These arbitrary approaches may

Furthermore, switching costs may be caused by different accessibility systems among

airports and by the presence of relevant transaction costs when signing up a contract with

a new handler.
7This has created hot discussion within the sector since this practice may be considered

as state aid, which is forbidden in the EU (see the well known Charleroi–Ryanair case (EU

[2004])).
8For instance, we find that Parma airport, a small regional facility, is constantly at

about 60% distance from the estimated production frontier; furthermore, the 2008 annual

report of the company managing the airport presents a loss of 4.2 million Euros. The loss

was even larger in 2007.
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overstate the true size of some markets and understate others, especially in

Europe, where urbanization is different than in the U.S. (many towns and

airports are relatively close). Furthermore, they do not take into account

the determinants of the demand for airport services in a geographic area.

Our model instead considers travelers’ costs as exogenous factors affecting

demand and builds an airport geographic market (i.e., its Catchment Area,

CA) based on this variable.

Many papers have instead investigated airports’ technical efficiency, but

they do not consider the impact of airport competition on it. The majority

has adopted a non parametric approach (i.e., Data Envelopment Analysis—

DEA).9 The latter presents some drawbacks. First, it does not take into

account the impact of random shocks on production (e.g., weather conditions,

epidemic diseases, volcanic eruptions, etc.). Second, as shown by Simar and

Wilson [2007], this approach leads to biased estimates of the effects of some

exogenous variables on the inefficiency scores.10

We compute airport efficiency using instead a parametric approach; in

doing so, we have links with a limited number of previous contributions.

Pels et al. [2001, 2003] adopt a stochastic frontier model without taking

into account the multi–output features of airports’ activities (i.e., aircraft,

passenger, and cargo movements); Barros [2008], Oum et al. [2008] and

Mart́ın et al. [2009] estimate a cost stochastic frontier using accounting data,

9See Gillen and Lall’s seminal contribution [1997], and the comprehensive survey

provided by Lozano and Gutiérrez [2009]. These studies usually deal with a single country

(e.g., the U.S., Brazil, Taiwan, Japan, Australia, Italy, and Spain), but there are also some

studies at a European level and a few that benchmark airports from different countries.
10This analysis is usually performed with a two–stage approach, DEA in the first stage

and a Tobit or truncated regression in the second stage. For instance, Gillen and Lall

[1997] first estimate an output oriented DEA model and then use the estimated inefficiency

scores as a dependent variable in a Tobit regression with yearly and territorial dummies

as explanatory variables. Simar and Wilson [2007] show that the inefficiency scores are

serially correlated since they depend on all input and output observations; consequently

the error terms in the Tobit regression are also serially correlated. Furthermore, the latter

correlation does not disappear quickly enough for standard inference approaches.
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a choice that involves some problems in computing input prices.11 Finally,

Chow and Fung [2009] and Tovar and Mart́ın-Cejas [2009], which adopt

a multi–output approach, did not investigate the determinants of airports’

estimated inefficiency scores.

The paper proceeds as follows. In Section 2, we present the multi–output

stochastic distance function adopted to estimate the airports’ technical effi-

ciency and the model of potential demand developed to compute the airport

competition index. The data set is described in Section 3, while empirical

results are reported in Section 4. Concluding comments are highlighted in

Section 5.

2 Methodology

This section is split into two parts: first we introduce the stochastic distance

function econometric model. Second we develop a model of an airport’s

potential demand. This is based on the identification of the population

belonging to the catchment area that has the possibility (measured in terms of

“reasonable” traveling times) to choose between alternative airports. Building

on the estimated potential demand and on the connections available in nearby

airports, we then compute an index of airport competition.

2.1 The stochastic distance function econometric model

In order to analyze the determinants of airports efficiency, a crucial step is

the estimation of a production frontier for an airport system.

We implement a Stochastic Frontier Analysis (SFA), by which it is possible

to disentangle random shocks from technical inefficiency, as shown by Aigner,

Lovell, and Schmidt [1977] and Meeusen and van den Broeck [1977] in their

11These contributions have no information on unit labor costs or unit capital costs; they

are obtained from balance sheet data. The latter may lead to biased estimates, since,

for instance, the assets values are not updated (e.g., the historical value of a runway is

registered in the balance sheet and not its substitution value).
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seminal contributions.12 Furthermore, SFA may involve “the incorporation

of exogenous variables, which are neither inputs to the production process

nor outputs of it, but which nonetheless exert an influence on producers’

performance” (Kumbhakar and Lovell [2000], p. 261).

Other important issues need to be addressed when an airport’s efficiency is

investigated. First, our aim is to measure technical efficiency—i.e., an airport

management’s ability to achieve efficient input utilization. This means that we

do not identify the input combination yielding the minimum cost.13 Second,

since airports are typically multi–product firms, an appropriate multi–output

framework for estimating technical efficiency is required. As shown by Coelli

and Perelman [1999, 2000] and Kumbhakar and Lovell [2000], this implies

the estimation of a stochastic distance function. Third, we need to choose

between input and output orientation. The former (the latter) identifies the

inputs’ reduction (the output improvements) required to reach the efficient

frontier. Given that in airport operation many inputs are indivisible (at least

in the short run), an output oriented stochastic distance function seems to be

more appropriate, especially in a context where airports are in competition.14

In this framework we define P (x) as the airports’ production possibility

set—i.e., the output vector y ∈ RM
+ that can be obtained using the input

vector x ∈ RK
+ . That is: P (x) = {y ∈ RM

+ : x can produce y}. By assuming

that P (x) satisfies the axioms listed in Fare et al. [1994], we introduce

Shepard’s [1970] output oriented distance function:

12They were the first to develop SFA, where the error term of the usual regression model

is equal to the sum of two components. The first one is typically assumed to be normally

distributed and represents the usual statistical noise (i.e., the random shocks). The second

component is non negative and represents technical inefficiency.
13This is due to the features of our data set that do not include monetary variables—e.g.,

input prices, airports’ different revenues, etc.—but only physical inputs and outputs.
14Our approach is different from Tovar and Mart́ın-Cejas [2009], who assume that

“demand is beyond the airports’ control and it has to be met”, p. 254. We believe instead

that airports’ managers have the capacity to improve traffic movements, for instance by

attracting new carriers.
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DO(x, y) = min{θ : (y/θ) ∈ P (x)}, (1)

where θ ≤ 1. Lovell et al. [1994] show that the distance function (1)

is nondecreasing, positively linearly homogeneous, and convex in y, and

decreasing in x. DO(x, y) = 1 means that y is located on the outer boundary

of the production possibility set—i.e., DO(x, y) = 1 if y ∈ IsoqP (x) = {y :

y ∈ P (x), ωy 6∈ P (x), ω > 1}. If instead DO(x, y) < 1, y is located below

the frontier; in this case, the distance represents the gap between the observed

output and the maximum feasible output. This gap may be due both to

random shocks and to inefficiency, as will be shown later.

We adopt a translog distance function for its nice properties: (i) it is

flexible, (ii) it is easy to calculate, and (iii) it allows the imposition of

homogeneity.15

If we assume that there are M outputs and K inputs, the translog distance

function is defined as follows:

lnDOit = α0 +
M∑

m=1

αm ln ymit +
1

2

M∑
m=1

M∑
n=1

αmn ln ymit ln ynit

+
K∑

k=1

βk ln xkit +
1

2

K∑
k=1

K∑
l=1

βkl ln xkit ln xlit

+
1

2

K∑
k=1

M∑
m=1

ζkm ln xkit ln ymit

i = 1, 2, ..., N t = 1, 2, ..., T,

(2)

where N is the total number of airports in the sample and T represents the

total periods (years) of observation. Hence, lnDOit is the distance from the

frontier of airport i in year t. Notice that being on the frontier yields DOit = 1,

so that the left–hand side of Eq. (2) is equal to zero.

15Notice that a Cobb–Douglas distance function requires a constant elasticity of substi-

tution, which is unlikely to be fulfilled.
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As shown by Coelli and Perelman [2000], the restrictions required for

homogeneity of degree 1 in outputs are the following ones:

M∑
m=1

αm = 1;
M∑

n=1

αmn = 0, m = 1, 2, . . . ,M ;
M∑

m=1

ζkm = 0, k = 1, 2, . . . , K.

Furthermore, the restrictions required for symmetry of the interaction terms

are: αmn = αnm (m, n = 1, 2, ...,M), βkl = βlk (k, l = 1, 2, ..., K). The

homogeneity condition upon Eq. (2) implies that DO(x, ωy) = ωDO(x, y).

Hence, it is possible to choose arbitrarily one of the outputs (e.g., output M),

so that we define ω = 1/yM and obtain the following expression:

DO(x, y/yM) = DO(x, y)/yM . (3)

Given Eq. (3), the translog distance function becomes:

ln(DOit/yMit) = α0 +
M−1∑
m=1

αm ln y∗mit +
1

2

M−1∑
m=1

M−1∑
n=1

αmn ln y∗mit ln y∗nit

+
K∑

k=1

βk ln xkit +
1

2

K∑
k=1

K∑
l=1

βkl ln xkit ln xlit

+
1

2

K∑
k=1

M−1∑
m=1

ζkm ln xkit ln y∗mit,

(4)

where y∗mit = ymit/yMit. Equation (4) can be written as ln(DOit/yMit) =

TL(xit, yit/yMit, α, β, ζ), where TL stands for the translog function. Hence,

we can write:

−ln(yMit) = TL(xit, yit/yMit, α, β, ζ)− ln(DOit). (5)

In Eq. (5), the term −ln(DOit) is non–observable and can be interpreted

as an error term in the regression model. If we replace it with (vit − uit),

we get the typical SFA composed error term: vit are random variables that

are assumed to be iid as N(0, σ2
v) and independent of the uit; the latter are
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non–negative random variables distributed as N(mit, σ
2
u). vit represent the

random shocks, while the inefficiency scores are given by uit. Hence, we can

now write the translog output–oriented stochastic distance function that we

are going to regress later:

−ln(yMit) = α0 +
M−1∑
m=1

αm ln y∗mit +
1

2

M−1∑
m=1

M−1∑
n=1

αmn ln y∗mit ln y∗nit

+
K∑

k=1

βk ln xkit +
1

2

K∑
k=1

K∑
l=1

βkl ln xkit ln xlit

+
1

2

K∑
k=1

M−1∑
m=1

ζkm ln xkit ln y∗mit + vit − uit.

(6)

In order to investigate the determinants of inefficiency, we apply a single–

stage estimation procedure following Coelli [1996].16 The technical inefficiency

effect, uit in Eq. (6) can be specified as follows:

uit = δzit + wit, (7)

where the random variable wit is defined by the truncation of the normal

distribution with zero mean and variance, σ2, such that the point of truncation

is -δzit; i.e., wit ≥ −δzit. Furthermore, zit is a p × 1 vector of exogenous

variables that may influence the efficiency of a firm, and δ is a 1× p column

vector of parameters to be estimated. Battese and Coelli [1995] propose a

method of maximum likelihood that is equivalent to the Kumbhakar et al.

[1991] and Reifschneider and Stevenson [1991] specification, but applied to

panel data.17

16This issue was addressed by Kumbhakar et al. [1991] and Reifschneider and Stevenson

[1991] who propose stochastic frontier models in which the inefficiency effects are expressed

as an explicit function of a vector of firm–specific variables and a random error.
17The model proposed by Battese and Coelli [1995] differs from that of Kumbhakar et al.

[1991] and Reifschneider and Stevenson [1991] in that the wit random variables are not

identically distributed, nor are they required to be non–negative. Furthermore, the mean,

δzit, of the normal distribution, which is truncated at zero to obtain the distribution of uit,
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According to this time–varying specification of airports’ inefficiency, the

technical efficiency of airport i at period t is defined as follows:

TEit = e−uit . (8)

2.2 The airport Competition Index

The common approach to defining markets for airports assumes that an

airport’s relevant geographic market consists roughly of a circular area around

its geographic location. A fixed–radius technique is usually implemented

in order to define the airport’s competitors. The latter are all the other

airports located within a fixed distance around the airport. The fixed–radius

technique presents some drawbacks, however. First, it is arbitrary. Second, it

overstates the true size of some markets and understates others—especially, as

mentioned before, in Europe. Finally, it does not depend on the determinants

of the demand for airport services in a geographic area (Gosling [2003]).

In dealing with these issues, we have to take into account that any measure

based on the determinants of demand cannot be implemented using actual

realized airport choices taken by passengers (or by firms shipping freights).

Observed choices may be influenced by unobservable airport heterogeneity

regarding the quality and the cheapness of their available supply (Kessler

and McClellan [2000]). This, in turn, is likely to produce biased estimates of

demand determinants. For this reason, it is necessary to compute predicted

travelers choices based on exogenous factors. We consider traveling costs as

exogenous factors affecting demand and build an airport geographic market

(i.e., CA) based on this variable. The proxy we adopt is given by passenger

traveling time to reach airports. Hence, we assume that individuals are

potential passengers of any airport that they can reach in a reasonable time.

Our technique is composed of several steps.18 First, we draw a boundary

is not required to be positive for each observation, as in Reifschneider and Stevenson [1991].

The likelihood function is expressed in terms of the variance parameters σ2 = σ2
v + σ2

u and

γ = σ2
u/(σ2

v + σ2
u).

18A similar technique has been implemented by Propper et al. [2004, 2008] for hospitals.
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around airport i that defines all the zip codes within T minutes drive from

that airport. We will consider the following specifications of the maximum

traveling time: T = {60, 75, 90, 105, 120}.19 We compute the traveling time

from zip code j to airport i driving a car on three different road types: urban

roads, extra–urban roads, and motorways.20 All the zip codes falling within

the T–minutes defined boundary are included in the catchment area of airport

i; i.e., CAi.

Second, we define ηi as the set of population living in airport i’s catchment

area. The latter is the population living in all zip code towns belonging to

CAi. Similarly, ηj is the set of population living in airport j’s catchment

area, CAj.
21

Third, since in air transportation each O–D route defines a separate

market, airport i is subject to competition coming from airport j only if the

same route is available at both airports. This means that airport i and airport

j must have either the same airport destination, or a destination in different

airports but located at a reasonable distance. We assume that different flights

have the same destination if the arrival airports are located at a maximum

distance equal to 100 kilometers.22 The application of different methodologies

to estimating the potential demand at the origin and destination airports

is due to the different exogenous factors affecting them. Traveling costs are

19The analyses performed by many airports and national aviation authorities (for instance

the British CAA) show that almost all passengers choosing a given airport leave in an area

where it is possible to reach the airport within 90 minutes.
20The driving times, influenced by the different road types, are computed using

GoogleMaps.
21Hence, we assume that the value of time is the same for the entire population living

a given area. Clearly, people traveling for business may have a different value of time in

comparison to leisure passengers. This means that the maximum traveling distance should

be lower for people with high value of time. We did not consider this issue for simplicity.

Hence the share of population that may choose among alternative airports is greater in our

approach, which means that we overestimate the degree of airport competition. However,

the share of business travelers is small, and so this effect is rather negligible.
22Fuellhart [2003] shows that airports are subject to strategic interaction if they are

located within a circle with 95 kilometer–150 kilometer rays.
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the main determinant of the origin airport’s potential demand, while the

region where the travel is directed is instead the main factor influencing the

destination airport’s potential demand. The intuition is the following: a

traveler, when choosing a flight, considers first the region that needs to be

reached (not necessarily the town but also the surrounding region), then she

or he verifies whether, at a reasonable traveling distance, this region can be

reached leaving from different origin airports.

Hence, if we consider all airports where route r is available, we define the

following expression:

ηij,r = {(ηi ∩ ηj) \ ηk, ∀k 6= i, j}
ηijk,r = {(ηi ∩ ηj ∩ ηk) \ ηh, ∀h 6= i, j, k}
. . . ,

where ηij,r is the subset of population leaving in CAi, which has only the

possibility to reach also airport j within T minutes traveling time for the

route r; ηijk,r is the subset of ηi, which has only the possibility to reach also

airport j and airport k within T minutes traveling time, always for the route

r. Fourth, if we denote η̂i,r as the potential demand of airport i on the route

r, this is given by:

η̂i,r = ηi −
∑

j

1

2
ηij,r −

∑
k

1

3
ηijk,r −

∑
h

1

4
ηijkh,r + . . . . (9)

Fifth, the Competition Index for airport i on route r (CIi,r) is:

CIi,r = 1− η̂i,r

ηi

, 0 ≤ CIi,r ≤ 1. (10)

We need an aggregate index of competition for airport i—i.e., a measure

that takes into account all of the routes available in that airport and also their

relative importance. The latter is given, for route r, by the ratio between

the number of Available Seats for route r in airport i (ASi,r) and the total

number of Available Seats (ASi) in the same airport.23

23ASi,r and ASi are taken from the OAG database. The available seats is the variable

adopted in air trasportation to measure the flight capacity.
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Hence, the aggregate index of competition for airport i is defined as

follows:

CIi =
R∑

r=1

ASi,r

ASi

× CIi,r, (11)

where 0 ≤ CIi ≤ 1 and R is the total number of routes available in airport i.

This implies that the higher is CIi, the more airport i is subject to competition.

Figure 1 provides an example of the methodology.

Suppose we want to compute CIA by applying Eq. (11). After having

fixed a given level of T , the procedure draws the boundary of its catchment

area, given by the grey area. Suppose that airport B is the unique nearby

airport, and that people living in the dashed area represent the population

that may, within T minutes, also reach airport B.

[FIGURE 1 ABOUT HERE]

The next step is to consider the available routes at the two airports.

Airport A has two routes: A–C and A–D. Airport B has only route B–E.

Routes A–D and B–E belong to the same market for the population ηAB

since airport D is located at less than 100 kilometers distance from airport E.

Clearly, on route A–C, airport A is not subject to any competition coming

from airport B. Hence, ηAB,A−C = 0, while ηAB,A−D = ηAB. Consequently,

from Eq. (9) we get that η̂A,A−C = ηA, while η̂A,A−D = ηA − 1
2
ηAB. Then,

from Eq. (10) we get: CIA,A−C = 0, while CIA,A−D = 1 − ηA− 1
2
ηAB

ηA
= ηAB

2ηA
.

Now, suppose that ASA,A−D = 50 (i.e., during a year the total number of

available seats for the route A–D is equal to 50) and that ASA = 100. Hence,

from Eq. (11) we obtain CIA = 0 + 50
100

× ηAB

ηA
= ηAB

4ηA
, which is airport A’s

competition index.

3 Data

The multi–output/multi–input production frontier for Italian airports is

estimated using annual data on 38 airports over the period 2005–2008. The
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data sources are Ente Nazionale Aviazione Civile (ENAC)24 for outputs (i.e.,

aircraft, passenger, and freight movements) and the technical information

provided by the airports’ official documents for inputs. The latter have been

integrated by a direct investigation with the managing boards of the airports.

Information regarding exogenous variables have been collected from the Italian

national institute for statistics (ISTAT) and from the airports’ balance sheets.

The Italian airport system is composed of 101 airports; among them only 45

are open to commercial aviation, while the others are small airports operating

only for general aviation (private aircraft and air taxi). Hence, our data set

covers 84% of Italian airports and 99.97% of passenger movements.25

For each airport we compute two output variables: the yearly number of

aircraft movements (ATM) and of Work Load Units movements (WLU)—i.e.,

a combination of passenger and freight movements.

In air transportation, by convention, passengers and freight are combined in

a single output measure, WLU , such that 100 kilograms of freight corresponds

to one passenger. Regarding inputs, we consider the runway capacity (CAP )

(measured as the maximum number of authorized flights per hour),26 the

total number of aircraft parking positions (PARK), the terminal surface

area (TERM), the number of check–in desks (CHECK), the number of

baggage claims (BAG), and the number of employees not involved in handling

activities, measured in terms of Full–Time Equivalent units (FTE). The

descriptive statistics regarding outputs and inputs are presented in Table 1.27

[TABLE 1 ABOUT HERE]

24ENAC is the Italian authority in charge of air transportation regulation.
25In year 2008, the total number of passengers in the 7 missing airports was equal to

about 41 thousand, while the total number of passengers in the whole Italian system was

equal to about 133 million.
26This variable takes into account both the runway length and the airport’s aviation

technology level—e.g., some aviation infrastructure such as ground–control radars and

runway lighting systems.
27Notice that we have not included in our inputs the total surface area because this may

lead to biased estimation, since in many Italian airports a relevant portion of the surface is

dedicated to military activities.
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The representative Italian airport has about 43 thousand aircraft move-

ments per year (the smallest airport has less than 2 thousand movements),

and about 3.6 million WLU (the smallest has less than 8 thousand WLU).

The average runway capacity is equal to 17 movements per hour, with 24

aircraft parking positions, a terminal area of about 33 thousand sqm, 37

check–in desks, 4 baggage claims, and 208 FTE workers.

It is possible to check the validity of the chosen inputs and outputs by

testing for their isotonicity—i.e., outputs should be significantly and positively

correlated with inputs (Charnes et al. [1985]). Pearson correlation coefficients

are shown in Table 2. The correlation between all the inputs and the two

outputs is significant (at a 1% level) and positive. Moreover, the input

correlation is positive, significant, and very high, as a confirmation that

in managing airports, inputs are jointly dimensioned to avoid bottlenecks

(Lozano and Gutiérrez [2009]).

[TABLE 2 ABOUT HERE]

We consider two types of exogenous variables. The first one influences

the production frontier, and the other type of exogenous variables has an

impact on the airports’ inefficiency scores. Seasonality (SEASON) is the

only variable influencing the frontier: airports more affected by tourist flows

may have a high traffic variation across the different months.28 In principle,

this has an impact on airports’ production levels and not on their efficiency.29

SEASON is a dummy variable equal to 1 if the airport belongs to a region

whose monthly tourist flows are strongly seasonal and correlated with airports’

monthly passenger flows.30

28For instance, in some Italian airports the traffic is very high during the summer, while

their volume is much lower during the winter.
29Airports subject to seasonality must have enough capacity to deal with the summer

peaks, even if this implies the existence of spare capacity during the winter. The latter

assets’ underutilization is not due to inefficiency but to a characteristic of the airports’

demand.
30We first compute the Gini index of monthly regional tourist flows (measured by
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Four variables are instead considered as determinants of airports’ ineffi-

ciency scores: the airport competition index (CIi), two dummies regarding

ownership (PRIV for private ownership and MIX for mixed public–private

ownership), and the degree of dominance of the main airline in a specific

airport (DOM), which is a proxy of airline competition.

The airport competition index (CIi) is computed from Eq. (11). Table

3 and Figure 2 show the distribution of the airport competition index as

function of T . For instance, the first row in Table 3 shows that if T = 60,

then 10 Italian airports have no competition at all. Furthermore, for the

same maximum traveling time, the degree of competition is rather small (i.e.,

CI ≤ 20%) in 16 airports, while only 4 airports have a competition index

between 40% and 60%. No airports have a degree of competition higher than

60%. If instead T = 90, row 3 in Table 3 shows that only 4 airports have no

competition, 8 airports have a rather high competition index (between 40%

and 60%), while competition is very high in 3 airports (60%≤ CIi ≤ 80%).

[TABLE 3 ABOUT HERE]

Figure 2 confirms the positive correlation between the competition index

and T , as well as the increase in its variance as the maximum traveling time

grows. The latter implies that an enlargement of the airport’s catchment area

does not have the same effect on all Italian airports. For some of them, this

implies an increase in the competition index, while this is rather small for

other airports.31

the recorded hotel bookings reported by ISTAT). Then, we classify a region as strongly

influenced by tourist flows if the Gini coefficient is greater than the national average.

Finally, we assume that the tourist flow is strongly correlated with passenger movements if

the Pearson Correlation index is greater than 0.9.
31We have compared our measure of airport competition index with the common ap-

proaches previously adopted in the literature and we have found that they underestimate

the degree of competition. For instance, the fixed–radius technique provides, on average, a

measure of airport competition which is 70% lower than our index. Hence these measures

reduce the impact of airport competition on technical efficiency.
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[FIGURE 2 ABOUT HERE]

Regarding airports’ ownership, only two Italian airports out of 38 are

managed directly by the government.32 The other 36 airports are controlled

by local governments, private agents, or a combination of these. As mentioned

before, we consider two ownership dummies: PRIV means that private agents

are the main shareholders of the company managing the airport. PRIV is

equal to 1 if the stake of private agents is higher than 50% of the capital stock.

MIX is instead a dummy variable characterizing those airports with mixed

public–private ownership. MIX is equal to 1 when the stake of private agents

is greater than 25% but lower than 50% of the capital stock. Hence, public

airports are those where private agents have less than 25% of the shares.

The distribution of airports’ ownership during the period 2005–2008 is

characterized by a majority of public airports: 28 out of 38 (74%) both in

2005 and in 2008. Private airports have slightly increased during the observed

period, from 5 in 2005 (13%) to 7 in 2008 (18%). Mixed–ownership airports

were 13% in 2005 and 8% in 2008.

Finally, the variable DOM is given by the percentage of AS offered by

the main airline in a specific airport (i.e., its market share). The higher

is this percentage, the lower is the competition among airlines in airport i.

In terms of airports’ efficiency, this variable may also show the impact of

incumbent carriers’ strategy to block entrance, which may limit the possibility

to attract new airlines. This, in turn, may reduce the airport’s efficiency of

asset utilization.

4 Econometric results

The multi–output stochastic distance function regressed is the following:

32Lampedusa and Pantelleria are airports located on two different Mediterranean islands

south of Sicily that are directly controlled by the Italian government through ENAC.
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−ln(WLUit) = TL(ATMit/WLUit, TERMit, CHECKit, BAGit, FTEit,

PARKit, CAPit, α, β, ζ) + λSEASON + vit − uit,

(12)

where WLUit is the normalizing output—i.e., ATMit is expressed in WLUit

terms, α is the coefficient for the ATMit/WLUit, β is a vector of coefficients

regarding inputs, and ζ is a vector of coefficients related to output–input

interactions. The equation describing the impact of the exogenous variables

on the inefficiency scores uit is the following:

mit = δ0 + δCCit + δPrivPrivit + δMixMixit + δDomDomit, (13)

where mit represents the mean of uit.
33 Table 4 presents the econometric

results.34

First–order coefficients are, in general, statistically significant. The first–

order effect of terminal area (TERM) and of the number of parking positions

(PARK) is instead not statistically significant. Concerning second–order

coefficients, they are all significant with the exception of the employment

level (FTE) and the number of parking positions (PARK).

Furthermore, many interaction effects are statistically significant as a

confirmation of the multi–output features of airport activity.

[TABLE 4 ABOUT HERE]

As expected, seasonality has a negative impact on airports’ production.

Given the importance of tourism in Italy, this result confirms the difficulties

encountered by airports located in tourist regions in maintaining an efficient

input utilization during the entire year.

33Notice that not including an intercept parameter, δ0, in Eq. (13) may imply the fact

that the δ–parameters associated with the z variables are biased and that the shape of the

inefficiency effects’ distributions are unnecessarily restricted (Battese and Coelli [1995]).
34The estimation has been performed using the package FRONTIER 4.1 (Coelli [1996]).
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The likelihood function is expressed in terms of the variance parameters,

σ2 = σ2
v + σ2

u and γ = σ2
u/(σ2

v + σ2
u). Table 4 shows that they are statistically

significant at the 1% level, with the estimated γ equal to 0.72. Hence, the

high value γ shows that the distance between the observed output levels and

the maximum feasible ones is mostly due to technical inefficiency, and not to

random shocks.35

We can now look at the determinants of efficiency. Concerning the impact

of airport competition on technical efficiency, since CIi is a function of T ,

Table 5 shows the estimated coefficients for different specifications of the

maximum traveling time. They are always positive and statistically significant.

Moreover, their magnitude is the largest among the determinants. This implies

that airports with higher competitive pressure are less efficient. In contrast,

in the Italian system, an airport that is closer to the local monopoly model

(i.e., those airports with a competition index lower than 20%—see Table 5)

has an efficient utilization of its inputs.

[TABLE 5 ABOUT HERE]

We provide the following explanation for this result: airports with higher

levels of competition have low technical efficiency levels because they suffer

from overcapacity. In order to attract more passengers, and thus to recover

efficiency, they should increase the number of routes available at their airports

either by stimulating new demand (e.g., by attracting a new LCC or by offering

a new point–to–point connection not provided by nearby airports) or by

diverting the existing demand from other airports.36 However, in a competitive

35The significance of γ is also confirmed by the generalized likelihood–ratio (LR) test.

In our case, the LR statistic is greater than 60, and this confirms that most of the variance

of the estimated residual is then attributed to variations in the degree of efficiency, rather

than to a stochastic disturbance.
36Notice that in the Italian system there are no barriers to entry due to slot capacity.

Milan Linate airport is the only exception because it suffers from a strong limitation in the

available flights, due to the central government’s plan for developing the Milan Malpensa

airport.
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environment, this does not seem to be an easy task for the following reasons.

First, active carriers incur relevant switching costs when changing airports

(e.g., different accessibility systems among airports, transaction costs when

signing a new contract with different handlers, etc.). Second, the current

general crisis facing airlines worldwide limits the frequency of entry (when it

does not also reduce the number of existing carriers).37

The coefficients of PRIV and MIX are both statistically significant and

positive, and among them the coefficient of PRIV is the highest. This implies

that public airports are more efficient than those with mixed ownership,

whereas private airports have the lowest efficiency. This evidence confirms

Curi et al.’s [2009] contribution for Italian airports, while it is different from

the results obtained by Oum et al. [2008], who investigated the efficiency of

the largest airports in the world.38

We provide the following explanation for this result. First, when planning

the development of regional airports, airports controlled by local governments

take into account more the positive externalities produced by air transporta-

tion on the local economy. These benefits may be tourist flows, lower firm

and people transportation costs, higher standards in the quality of life, and

contributions to trade and commerce with other regions and countries. For

this reason, public airports are willing (i) to subsidize airlines when opening

new routes and flights, and (ii) to cover the possible losses due to this practice

with local taxation.39 In contrast, private airports aim to maximize their

37Note that, between 2008 and 2009, the Italian authority suspended the license to

fly to several airlines: Air V allee, Airbee, Alpi Eagles, Clubair, Italian Tour Airlines,

Myair.com and Ocean Airlines.
38We have also considered the possibility that the decision to privatize an airport may

depend on its efficiency, so that an endogeneity problem in the estimation arises. However,

privatization took place much earlier than the observed period (i.e. during the 90s); hence,

the possible correlation between the dummy PRIV and the inefficiency component of the

error term should have vanished.
39Subsidization in air transportation is defined as “co–marketing”. It is applied especially

to low–cost carriers. The recent case of Ryanair and Alghero (a regional airport in Sardinia)

is a clear example. In 2009, Ryanair received subsidies of 6.4 million Euro, while the

20



profit and have to meet tighter budget constraints. As a result, public airports

have a higher attractive power, and so they obtain higher utilization rates

of their assets. For the same reason, mixed airports are more efficient than

private ones.

Second, private agents managing airports may pay more attention to the

more profitable non–aviation activities (e.g., revenues coming from commercial

activities, parking, etc.) rather than to the aviation activities which are the

ones considered in this contribution.

The coefficient of the variable DOM is statistically significant and positive.

This means that airport efficiency is positively related to airline competition:

when the latter is strong, the airport has a high efficiency. This negative

dominance effect may be explained in terms of entry deterrence adopted by

incumbent airlines. As a consequence, the airport’s capacity to attract new

routes is limited, and, in turn, its utilization of assets.40

To sum up, in the Italian airport system technical efficiency is higher in

airports with low airport competition, public ownership, and high airline

competition.

Concerning the dynamics of efficiency our aim is to identify which airports

exhibit substantial (positive or negative) variation in their efficiency rather

than small changes, exploiting the time–variant stochastic frontier model that

we have implemented. Table 6 shows the airports’ annual efficiency scores.

The annual mean of the Italian system was equal to 87% in 2005 (see the

last row of Table 6) and to 90.3% (+1.4%) in 2008. Hence, the whole Italian

system has raised its technical efficiency during the period 2005–2008.

[TABLE 6 ABOUT HERE]

public company managing the airport incurred about 12 million Euro of losses. The local

government of the Sardinian region, which is on the board of the company managing the

airport, has covered this loss.
40This factor is particularly important when the main carrier is Alitalia, which has

frequently implemented actions to prevent new carriers’ entry (Boitani and Cambini

[2007]).
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The last column of Table 6 shows that the CAGR of technical efficiency

is positive for 22 airports (58%). A large improvement has taken place in 4

airports (CAGR greater than +10%; i.e., a 2,5% annual productivity increase),

while 3 airports exhibit a substantial efficiency growth (CAGR between +5%

and +10%).

Milan Linate is the only airport with a large negative variation in technical

efficiency (CAGR equal to -6%),41 while 4 airports exhibit a substantial

decrease in their efficiency (CAGR between -5% and -1%).

Hence, strong improvements have been identified for 10 airports (26%)

while only 5 airports (13%) exhibit of a substantial shortfall in technical

efficiency.

5 Conclusion

This paper has investigated the impact of airport competition on the efficiency

of 38 Italian airports by applying a stochastic distance function model with

time–dependent inefficiency components to a panel data set regarding the

period 2005–2008. The sample covers 84% of the commercial Italian airports

and 99.97% of total passenger movements. Airport competition has been

computed using a potential demand model, taking into account passengers’

traveling times to reach an airport as an exogenous factor affecting demand.

We find that airports with higher intensity of competition are less efficient

than those which benefit from local monopoly power. Furthermore, we show

that public airports are more efficient, while private airports are even less

efficient than those with mixed ownership.

These results yield the following policy recommendations. First, the

European liberalization of air transportation has improved airport competition,

and this, in turn, has stressed the importance of the management’s ability

concerning technical efficiency. Skillful managers have increased the utilization

41This is partially explained by the strong limitations in the maximum flights per hour

imposed on Milan Linate by the Italian government in order to transfer flights to Milan

Malpensa.
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rates of their assets. In contrast, airports with a sufficiently high degree of

competitive pressure that did not exploit the opportunities coming from

liberalization have still a lot of spare capacity. This is true for many small

and medium–sized Italian airports not enjoying local monopoly power. In our

view, there are two ways to deal with this spare capacity: one possibility is

to induce airport specialization within the same territorial system (e.g., one

airport may focus on LCCs and another on cargo). The other, more extreme

possibility is closing down some airports that are highly inefficient.

Second, since the positive externalities created by air transportation in

the local economy may justify airline subsidization, they should be considered

by regulators when designing airport charges. In this way private airports

may be induced to internalize these social benefits.

Our analysis has not considered airport cost efficiency, which may lead to

different ownership rankings. Furthermore, we did not take into account some

negative effects in airport activities, such as noise and pollution produced in

the surrounding area, which may overturn our results. These issues are left

for future research.
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Table 1: Descriptive Statistics of Input (I) and Output (O) Variables
Average Median Std. Dev. Max Min

ATM (O) (number) 43,024 18,919 63,881 346,650 1,748

WLU (O) (number) 3,600,544 1,343,857 6,618,747 36,758,411 7,709

CHECK (I) (number) 37 17 62 358 3

FTE (I) (number) 208 74 387 2,186 1

BAG (I) (number) 4 3 3 15 1

PARK (I) (number) 24 16 25 142 2

CAP (I) (flights per hour) 17 12 17 90 2

TERM (I) (sqm) 33,326 11,600 69,630 350,000 256

Table 2: Pearson Correlations of Input (I) and Output (O) Variables
CHECK (I) FTE (I) BAG (I) PARK (I) CAP (I) TERM (I)

ATM (O) 0.969 0.958 0.878 0.890 0.944 0.936

WLU (O) 0.976 0.948 0.860 0.889 0.946 0.952

CHECK (I) 1 0.928 0.903 0.923 0.943 0.979

FTE (I) 0.928 1 0.836 0.859 0.932 0.895

BAG (I) 0.903 0.836 1 0.858 0.875 0.875

PARK (I) 0.923 0.859 0.858 1 0.904 0.927

CAP (I) 0.943 0.932 0.875 0.904 1 0.920

TERM (I) 0.979 0.895 0.875 0.927 0.920 1

Table 3: Distribution of Airport Competition Index as Function of T
0 (0, 20] % (20, 40] % (40, 60] % (60, 80] % (80, 100] %

CI(T=60) 10 16 8 4 0 0

CI(T=75) 5 13 11 8 1 0

CI(T=90) 4 7 16 8 3 0

CI(T=105) 4 5 8 14 7 0

CI(T=120) 3 3 6 13 11 2
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Table 4: Estimation Results
Parameter Estimate Std. Error

Constant -9.881754 (***) 2.483051

ATM∗ -2.286812 (***) 0.613381

TERM -0.899752 0.737798

CHECK -3.801795 (***) 1.006785

FTE -4.251388 (***) 0.617905

PARK -0.780825 0.693384

CAP 9.171560 (***) 0.923990

BAG 6.500563 (***) 0.990672

ATM∗2 0.340078 (***) 0.074918

ATM∗ × TER 0.402892 (***) 0.105747

ATM∗ × CHECK -0.168535 0.145686

ATM∗ × FTE -0.062048 0.053111

ATM∗ × PARK 0.210768 0.130186

ATM∗ × CAP 0.444732 (***) 0.126395

ATM∗ ×BAG 0.013127 0.149691

TERM2 0.218052 (*) 0.111932

TERM × CHECK 0.532163 (***) 0.153986

TERM × FTE 0.599155 (***) 0.088966

TERM × PARK 0.079273 0.137026

TERM × CAP -1.066190 (***) 0.127544

TERM ×BAG -1.122393 (***) 0.135864

CHECK2 -2.194695 (***) 0.363926

CHECK × FTE -0.510896 (***) 0.097889

CHECK × PARK 0.393199 (*) 0.206071

CHECK × CAP 1.236659 (***) 0.197873

CHECK ×BAG 1.758001 (***) 0.256612

FTE2 0.049934 0.060052

FTE × PARK 0.201071 (*) 0.105133

FTE × CAP -0.380414 (***) 0.103624

FTE ×BAG -0.149992 0.120087

PARK2 0.130238 0.199227

PARK × CAP 0.310167 (*) 0.159670

PARK ×BAG -0.588757 (***) 0.170502

CAP 2 0.551847 (**) 0.255853

CAP ×BAG 0.97988 0.212633

BAG2 0.609049 (*) 0.338145

SEASON 0.177293 (***) 0.047231

ConstantZ -2.160487 (***) 0.499319

CI(T = 90) 3.086832 (***) 0.587989

PRIV 0.836423 (***) 0.192170

MIX 0.608078 (***) 0.193079

DOM 0.846379 (***) 0.258419

σ2 0.048289 (***) 0.016498

γ 0.722389 (***) 0.127600

LR 60.417

log likelihood value 80.5802

Note that *,**,*** denote significance at 10%, 5% and 1% respectively.
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Table 5: Airport Competition Index Sensitivity
Parameter Estimate Std. Error

CI(T = 60) 3.118810 (***) 0.984361

CI(T = 75) 3.265859 (***) 0.741844

CI(T = 90) 3.086832 (***) 0.587989

CI(T = 105) 3.155377 (***) 0.748179

CI(T = 120) 2.7760532 (**) 1.3604814

Table 6: Airports’ Technical Efficiency Scores
Airport IATA 2005 2006 2007 2008 CAGR

1 Alghero AHO 0.9836415 0.9842496 0.9770360 0.9707992 -0.44%

2 Ancona AOI 0.9425376 0.9616924 0.9735283 0.9577992 0.54%

3 Bari BRI 0.9860810 0.9819029 0.9763722 0.9740863 -0.41%

4 Bergamo BGY 0.9352280 0.9244395 0.8870738 0.8454589 -3.31%

5 Bologna BLQ 0.9708243 0.9604578 0.9482653 0.9059992 -2.28%

6 Bolzano BZO 0.9824226 0.9189067 0.8990231 0.9403304 -1.45%

7 Brescia VBS 0.3907214 0.5011971 0.5707491 0.5858690 14.46%

8 Brindisi BDS 0.9701730 0.9692220 0.9766164 0.9740494 0.13%

9 Cagliari CAG 0.9772717 0.9825461 0.9758782 0.9741006 -0.11%

10 Catania CAT 0.9792962 0.9810636 0.9789461 0.9807305 0.05%

11 Crotone CRV 0.8851390 0.7458056 0.9296510 0.9623955 2.83%

12 Cuneo CUF 0.9653214 0.9801301 0.9480145 0.9453068 -0.70%

13 Florence FLR 0.5272279 0.7742315 0.6868216 0.7354824 11.74%

14 Foggia FOG 0.9844493 0.9824432 0.9835212 0.9810433 -0.12%

15 Forl̀ı FRL 0.8204561 0.8110829 0.6466028 0.9625694 5.47%

16 Genoa GOA 0.9710718 0.9685230 0.9602479 0.9694018 -0.06%

17 Lamezia SUF 0.9699381 0.9779079 0.9781033 0.9795399 0.33%

18 Lampedusa LMP 0.9808781 0.9802290 0.9802518 0.9761944 -0.16%

19 Milan Linate LIN 0.8162571 0.7920055 0.8050826 0.6876792 -5.55%

20 Milan Malpensa MXP 0.9648632 0.9592233 0.9429037 0.9599671 -0.17%

21 Naples NAP 0.9678935 0.9515858 0.9575563 0.9773567 0.32%

22 Olbia OLB 0.9648301 0.9639634 0.8302374 0.9672304 0.08%

23 Palermo PMO 0.9793438 0.9780920 0.9689187 0.9762111 -0.11%

24 Pantelleria PNL 0.9760933 0.9845797 0.9744702 0.9744702 -0.06%

25 Parma PMF 0.2628253 0.3655662 0.4034930 0.3225401 7.06%

26 Perugia PEG 0.9662135 0.9726140 0.9602774 0.9647310 -0.05%

27 Pescara PSR 0.9761582 0.9708395 0.9729135 0.9770956 0.03%

28 Pisa PSA 0.9266374 0.8993993 0.7868844 0.8546060 -2.66%

29 Reggio Calabria REG 0.9704143 0.9579598 0.9679713 0.9748475 0.15%

30 Rimini RMI 0.9717582 0.9741712 0.9633711 0.9743450 0.09%

31 Rome Ciampino CIA 0.4495883 0.4415360 0.6621204 0.6358238 12.25%

32 Rome Fiumicino FCO 0.9402595 0.9455571 0.9244329 0.9506459 0.37%

33 Turin TRN 0.8956007 0.9491515 0.9588245 0.9673853 2.60%

34 Trapani TPS 0.9149201 0.9243414 0.8575312 0.9234287 0.31%

35 Treviso TSF 0.6152299 0.8227256 0.7336250 0.7523407 6.94%

36 Trieste TRS 0.8929918 0.9055847 0.9507476 0.9432263 1.84%

37 Venice VCE 0.9132553 0.9276772 0.8728349 0.9305756 0.63%

38 Verona VRN 0.6092241 0.9080349 0.9560596 0.9602381 16.38%

Mean 0.8736062 0.8942273 0.8875515 0.9025237 1.09%
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Figure 1: An example of competition between airports.

Figure 2: The dispersion of airport competition as function of T .

31


