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Abstract

In the last years, counterparty default risk has experienced an increased interest both by
academics as well as practitioners. This was especially motivated by the market turbulences
and the financial crises over the past years which have highlighted the importance of coun-
terparty default risk for uncollateralized derivatives. The following paper focuses on the
pricing of derivatives subject to such counterparty risk. After a succinct introduction to the
topic, a brief review of state-of-the-art methods for the calculation of bilateral counterparty
value adjustments is presented. Due to some weaknesses of these models, a novel method
for the determination of model-free tight lower and upper bounds on these adjustments is
presented. It will be shown in detail how these bounds can be easily and efficiently calcu-
lated by the solution of a corresponding linear optimization problem. It will be illustrated
how usual discretization methods like Monte Carlo methods allow to reduce the calculation
of bounds to an ordinary finite dimensional transportation problem, whereas a continuous
time approach will lead to a general mass transportation problem. The paper is closed with
several applications of these model-free bounds, like stress-testing and estimation of model
reserves.

1 Introduction

Recent events such as Lehman’s default have drawn the attention to counterparty default risk.
At the very latest after this default, it has become obvious to all market participants that the
credit quality of both counterparties – usually a client and an investment bank – need to be
considered in the pricing of uncollateralized OTC derivatives. Before, either both the client
and the counterparty have been assumed to be risk-free, therefore completely neglecting default
risk. More sophisticated models already considered unilateral counterparty risk, i.e. it has been
assumed that the client is subject to default risk.

For the latter case, over the past years, several authors have been investigating most types of
derivatives together with a variety of suitable models. For instance, the earliest1 article referring
to unilateral counterparty value adjustments of interest rate swaps is probably due to Cooper
and Mello [12]. The bilateral case seemed to be first covered by Sorensen and Bollier [27] in
a very simple setting and Duffie and Huang [14] who already considered wrong-way risk in a
simplified fashion. More recently, state-of-the-art models have for example been applied by
Brigo and Masetti [7] or Brigo and Pallavicini [8]. Additionally, other types of derivatives have
been considered as well, cf. Brigo and Bakkar [4] who focused on counterparty risk for commodity
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derivatives. Further, counterparty risk for credit default swaps2 was tackled by several authors,
for example Brigo and Chourdakis [6], Leung and Kwok [21], Hull and White [19], Walker [30],
Crépey et al. [13], Blanchet-Scalliet and Patras [3] or Lipton and Sepp [22] just to name a
few. While the works of Brigo et al. ([4], [6] and [8]) concentrate on dynamic stochastic models
and Leung and Kwok [21] model the default intensities as deterministic constants, Lipton and
Sepp [22] introduce a structural model with jumps and Crépey et al. [13] use a Markov chain
copula model in order to derive counterparty value adjustments. Finally, Hull and White [19]
use barrier correlated models, whereas in Walter [30] contagion is considered by using transition
rates.

In contrast to unilateral adjustments, bilateral counterparty valuation adjustments have been
considered in more detail only recently by Brigo and Capponi [5] who use a stochastic intensity
model and a trivariate copula function for pricing credit default swaps subject to default risk of
both counterparties. For interest rate products Brigo et al. [9] generalized the works concerning
unilateral adjustments (cf. Sorensen and Bollier [27] or Brigo and Masetti [7]) to the bilateral
case where they also use dynamic stochastic models with correlation between the default times
and the underlying risk factors, see for example Section 3.4.

In the following exposition, a conceptually completely different approach is proposed. In
contrast to most existing work on bilateral counterparty value adjustments, the proposed model-
free approach does not rely on any specific model for the joint evolution of the underlying risk
factors. As only exception we note the paper by Cherubini [11] which provided the basis for
this model-free approach: Following and generalizing Cherubini [11], the counterparty valuation
adjustment will be decomposed into three main components: the first component is represented
by the loss process which is usually assumed to be a constant (unless random recoveries are
modelled); the second component consists of the default indicators of the two counterparties
and the third component is comprised of the exposure-at-default of the OTC derivative, i.e. the
risk-free present value of the outstanding amount in case of default. In such a manner, the
proposed approach is able to cover all kind of derivatives3 (interest rate, commodity, or credit
default swap) in a unified way.

It will be argued that especially the marginal models for the latter two components are
already (almost) fully specified by available market prices of associated financial instruments
and that only the interdependence of the three components needs to be specified for a particular
calculation of counterparty adjustments. It will be illustrated that the proposed model-free
approach contains the cases of independent components as well as any coupling derived from
dynamic stochastic models as special cases.

In addition to the existing literature on counterparty adjustments, this exposition makes
the following main contributions to the topic of bilateral counterparty value adjustments: first,
the three main building blocks of such an adjustment are clearly identified and separated, and
it is shown how any coupling of these blocks leads to a feasible adjustment, and second, that
tight bounds on the adjustments can be efficiently obtained by the solution of linear optimization
problems. Third, several applications of these tight bounds are presented. Especially, in contrast
to the approaches of Turnbull [29] or Cherubini [11], both the upper and lower bound derived here
are indeed tight bounds, i.e. there exists a model which is consistent with all market prices and
where these bounds are attained. Further, these bounds are not restricted to any specific financial
instrument, but are valid for a large variety of instruments. Additionally, unlike Cherubini [11],
where only a very specific setup4 was considered, the following setup is completely general and
covers all kind of derivatives, together with arbitrary multi-factor models. Further, in contrast
to Cherubini, the order of defaults is adequately considered to obtain the correct counterparty
value adjustment. Finally, by generalizing Cherubini’s approach, provable tight upper and lower

2Counterparty credit risk for CDS represents the most complicated case as joint defaults of both counterparties
and the reference entity have to be captured. Further, at least stochastic credit spreads need to be considered to
cover the fluctuation in the market value of CDS contracts.

3This approach covers all kind of financial derivatives where the payoff, and thus the present value of the
derivative, is not explicitly depending on the credit quality of any of the two counterparties.

4Cherubini [11] only considered the very specific case of an interest rate swap. Further, only one particular two-
dimensional copula was used to couple each individual forward swap par rate with the default time. Obviously,
a more general approach would couple all forward swap par rates with the default time. From there it is easy to
see that the most general approach links all potential risk factors with both default times – which is the basic
underlying idea of the presented model-free approach.
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bounds on counterparty value adjustments are obtained.
The rest of the paper is organized as follows. In the first part of Section 2 a succinct in-

troduction to the topic of bilateral counterparty risk is given, before the decomposition of the
adjustment into its building blocks is carried out. For practical implementations, discretization
methods are briefly mentioned. In Section 3 the two main approaches for the calculation of
counterparty valuation adjustments are briefly introduced and discussed, with a special focus
on the default modelling. Section 4 deals with the model-free approach: a general framework
similar to mass transportation problems is presented, before the problem of the calculation of the
adjustments is embedded into this framework. It is explained in detail, how the corresponding
transportation problem is obtained for discrete models. An in-depth example is given in Section
5 which especially highlights the large gaps between upper and lower bound on the adjustments
for the specific example of an ordinary interest rate swap, before Section 6 concludes the paper.

2 Counterparty default risk

As usual, to model financial transactions with default risk, let (Ω,G,Gt,Q) be a probability
space where Gt models the flow of information and Q denotes the risk-neutral measure, see
e.g. Bielecki and Rutkowski [2] for more details. Further, let the space be endowed with a right-
continuous and complete sub-filtration Ft modelling the flow of information except default, such
that Ft ⊆ Gt := Ft ∨ Ht with Ht being the right-continuous filtration generated by the default
events.

Subsequently, we consider a transaction with maturity T between a client A and a counter-
party B where both are subject to default. The respective random default times are denoted by
τA and τB . In order to take into account counterparty default risk we distinguish three cases,

Figure 1: Decomposition of potential default events.

illustrated in Figure 1:

• neither A nor B defaults before T : D0 := {τA > T} ∩ {τB > T} = {T < min(τA, τB)},

• A defaults before B and before T : DA := {τA ≤ T} ∩ {τA ≤ τB} = {τA ≤ min(T, τB)},

• B defaults before A and before T : DB := {τB ≤ T} ∩ {τB ≤ τA} = {τB ≤ min(T, τA)}.

In case that Q[τA = T ] = Q[τB = T ] = Q[τA = τB ] = 0, these sets yield a decomposition of one,
i.e. it holds

111D0 + 111DA
+ 111DB

= 1 Q -almost-surely.

Please note that Brigo et al. (in [5] and [9]) use different sets to order the default times, which
are in essence reducible to the above three sets.
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2.1 Valuation without counterparty default risk

Neglecting the possibility of default for the moment, i.e. assuming Q[D0] = 1, the value of the
transaction for client A is the difference of the discounted cash flows from the client A to the
counterparty B and vice versa:

VA(t, T ) = E

[
mB∑
i=1

P (t, Ti) · C(B,A, Ti)

∣∣∣∣∣Ft
]
− E

mA∑
j=1

P (t, Tj) · C(A,B, Tj)

∣∣∣∣∣∣Ft


= −VB(t, T )

In the above equation VA(t, T ) denotes the value of the transaction as seen by client A at time
t. The investment consists of cash flows C(B,A, Ti) paid by the counterparty B at times Ti,
i = 1 . . .mB , and cash flows C(A,B, Tj) paid by the client A at times Tj , j = 1 . . .mA, e.g. an
interest rate swap. The risk-free discount factor at time t for time s is denoted as P (t, s).

2.2 Valuation under bilateral counterparty risk

Let us point out that the above relationship is only true under the assumption Q[D0] = 1, which
for example holds if both client and counterparty are supposed to be (default) risk-free. By
allowing for default risk, we have to incorporate the remaining two cases into the valuation of
the transaction, where A defaults before the investment’s maturity, i.e. DA, and, respectively,
the case of the counterparty B’s default, i.e. DB . These cases then represent what is called
counterparty default risk or counterparty risk in short. If only one party A or B is assumed to
be default free then we talk about unilateral counterparty risk, if both parties are assumed to
be subject to default risk, we are concerned with bilateral counterparty risk. For more details
on counterparty risk in general and especially on the pros and cons of unilateral vs. bilateral
counterparty risk let us refer to the extensive books by Pykhtin [23] and Gregory [17], as well as
the two articles by Gregory [16] and [18].

Let us consider the case that counterparty B defaults and that she is not able to fulfill her
obligations. Therefore, if the value of the transaction at default time τB is in favour of the client
A, i.e. VA(τB , T ) > 0, client A will suffer a loss, as only a fraction of the outstanding value is
received, namely the recovery rate of the outstanding value. Otherwise, if the value at time
τB is negative for client A, i.e. VA(τB , T ) < 0, A has to pay the full outstanding value to the
defaulted counterparty B (in accordance to the full two-way payment rule under ISDA Master
contracts, see e.g. Bielecki and Rutkowski [2], Section 14.4.4). It is clear that only the first case
requires an adjustment to the valuation of the transaction, while the second case does not impact
valuation, as this can be considered as a buy-back at market price. Of course, this adjustment
is only necessary in case B defaults before A and before the transaction has matured, i.e. only if
111DB

= 1. Summarizing all these considerations, we obtain the following loss to the client A at
time τB ,

111DB
· LBτB

·max(0, VA(τB , T )),

which leads to the first term in Equation (2.1) below. If only default of one party (in the above
case party B) is considered, i.e. if only unilateral counterparty risk is taken into account, the
above loss is the only loss which can occur. However, if also the client A is subject to default
risk, i.e. if bilateral counterparty risk should be taken into account, then switching the roles of
A and B in the above argumentation yields the corresponding loss to party B at time τA,

111DA
· LAτA

·max(0, VB(τA, T )),

in case of default of the client A. Similarily to above, this loss is covered by the second term in
Equation (2.1) below.

In the above paragraph, we have assumed that at time of default τB only a fraction of the
outstanding market value max(0, VA(τB , T )) could be recovered, i.e. the loss to party A is given
as

LBτB
·max(0, VA(τB , T )),

where LBt ∈ [0, 1] represents the continuous random loss process at time t, which is usually
assumed to be a constant LBt = lB , but could also depend on time t as well as on the default
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time τB . The corresponding recovery process is then given by RBt = 1−LBt . Although alternative
models5 for recovery payments (like recovery of face value) might be even more popular, see for
example Duffie and Singleton [15] for a thorough review, or Bielecki and Rutkowsi [2], Sections
8.2.5 and 8.3.2, for derivative transactions subject to default risk, recovery of present value of a
default free but otherwise identical transaction is the most reasonable assumption (which is also
fixed in the ISDA master agreement for derivatives). Let us summarize the above considerations
in the following well-known theorem, which in essence goes back to Sorensen and Bollier [27]:

Theorem 2.1. Conditional on the event {t < min(τA, τB)}, i.e. no default has occurred until
time t, the value of the transaction under consideration of counterparty risk at time t is given by

V DA (t, T ) = VA(t, T )− CVAA(t, T )
= −

(
VB(t, T )− CVAB(t, T )

)
= −V DB (t, T )

where the bilateral counterparty value adjustment CVAA(t, T ) is defined as

CVAA(t, T ) := E
[
111DB

· P (t, τB) · LBτB
·max(0, VA(τB , T )) | Gt

]
(2.1)

− E
[
111DA

· P (t, τA) · LAτA
·max(0, VB(τA, T )) | Gt

]
= −CVAB(t, T ).

Proof. A proof of Theorem 2.1 can for example be found in Bielecki and Rutkowski [2], Formula
(14.25) or Brigo and Capponi [5], Proposition 2.1 and Appendix A, resp.

We note from the preceding theorem that the bilateral counterparty valuation adjustment is
indeed symmetric, i.e. it holds

CVAA(t, T ) = −CVAB(t, T )

as opposed to the unilateral counterparty value adjustment. We further note that the bilateral
counterparty valuation adjustment can actually become negative causing the overall value of
the defaultable transaction being greater than the corresponding risk-free value. As already
mentioned, a detailed discussion of the implications of considering bilateral counterparty risk
instead of unilateral one can for example be found in Gregory [16] and [18].

2.3 Decomposition of bilateral CVA

Based on Theorem 2.1, the general approach for the calculation of the counterparty risk adjusted
value V DA (t, T ) is to determine first the risk-free value VA(t, T ) of the transaction. This can
be done by any common valuation method for this kind of transaction. In a second step the
counterparty value adjustment CVAA(t, T ) needs to be determined. So far, two main approaches
have emerged in the academic literature, which will be reviewed in more detail in the following
section. Before we do so, let us consider Equation (2.1) in more detail, to obtain a more compact
and more handy version of formula (2.1).

To be able to separate the default dynamics from the market value dynamics, let us introduce
the auxiliary time s, s ∈ [t, T ] to rewrite Equation (2.1) as:

CVAA(t, T ) = E
[
LBs · 111DB

· 111s(τB) · P (t, s) ·max(0, VA(s, T )) | Gt
]

(2.2)

− E
[
LAs · 111DA

· 111s(τA) · P (t, s) ·max(0, VB(s, T )) | Gt
]
.

With a further bit of notation, if we introduce the following processes in time s, s ∈ [t, T ],

δis := 111Di · 111s(τi),
Ṽ +
i (t, s, T ) := P (t, s) ·max(0, Vi(s, T )),

5Let us point out that the choice of the recovery assumptions needs to be carefully considered in the calibration
of default models to market data to avoid technical inconsistencies in the subsequent calculation. For instance,
default models are often calibrated to CDS prices (see for example Brigo and Capponi [5]), where a recovery of
face value is assumed – which may question the assumption that the very same recovery rate can be applied in
the CVA calculation. In more detail, Cooper and Mello [12] also considered different settlement rules and their
impact on CVA.
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where i ∈ {A,B}, then the bilateral counterparty value adjustment can be rewritten in a more
compact manner (skipping the integral over s for notational convenience) as

CVAA(t, T ) = E
[
LBs · δBs · Ṽ +

A (t, s, T ) | Gt
]
−E

[
LAs · δAs · Ṽ +

B (t, s, T ) | Gt
]
. (2.3)

From Equation (2.3) we immediately see that the bilateral counterparty value adjustment is
composed of six processes:

• two default indicator processes δAs and δBs ,

• two loss processes LAs and LBs , and

• two discounted exposure processes Ṽ +
A (t, s, T ) and Ṽ +

B (t, s, T ).

In this way, we are able to separate the default dynamics δ from the loss process L and the
exposure process Ṽ . We will see in the following that this separation is the key to the model-
free calculation of the bilateral counterparty value adjustment. From this decomposition, it also
becomes obvious that the bilateral counterparty value adjustment is completely determined by
the joint distribution of these six processes. Therefore, any model for the joint evolution of these
six processes fully determines the bilateral counterparty value adjustment.

2.4 Time and state space discretization

As we will see in Section 4, for computational purposes it is usually easier to work with discrete
processes in discrete time. If the model is not as such, i.e. if we are given a continuous time model
with continuous state space, both the time domain as well as the state space need to be properly
discretized to obtain a discrete process in discrete time as a reasonably good approximation of
the original process.

For the purpose of time discretization, we use the idea of default bucketing, which can for
example be found in Brigo and Chourdakis [6], and which is applied in several approaches for CVA
computation. In the default bucketing approach, the remaining time interval (t, T ] is decomposed
into K disjoint time intervals ∆k := (tk−1, tk], k = 1, . . . ,K, with t0 = t and tK = T . This leads
to the discrete time version of the above defined processes,

δik := δitk := 111Di · 111∆k
(τi),

Lik := Litk ,

Xi
k := Ṽ +

i (t, tk, T ),

for k = 1, . . . ,K and i ∈ {A,B}. It holds that the discrete time version is a sufficiently good
approximation of the continuous time setting for large enough K, i.e. it holds

CVAA(t, T ) = lim
K→∞

K∑
k=1

(
E
[
LBk · δBk ·XA

k | Gt
]
−E

[
LAk · δAk ·XB

k | Gt
])

(2.4)

if the time intervals ∆k become smaller and smaller, i.e. if diam(∆k)→ 0 for K →∞. Note that
for this result it is necessary that both the loss processes LAs and LBs as well as the discounted
exposure processes Ṽ +

A (t, s, T ) and Ṽ +
B (t, s, T ) need to have continuous paths, i.e. need to be

continuous in time s.
Let us note that after time discretization, the default indicator process can only take a finite

number of values. More exactly, it holds that the joint (i.e. two-dimensional) default indicator
process δ = (δk)k=1,...,K ∈ R2×K , defined by

δk :=
(
δA

k

δB
k

)
, k = 1, . . . ,K,

takes only values in the finite set

Y := {γ ∈ R2×K | γi,k ∈ {0, 1},
∑
i,k

γi,k ≤ 1}



7

which has exactly J := 2K + 1 elements, which will be denoted by Y = {yj , j = 1, . . . , J} in
the following. Therefore, the discrete time default indicator process is already a process with a
finite state space.

For the purpose of state space discretization of the remaining processes, let us introduce the
joint loss process and the joint exposure process in analogy to the above,

Lk :=
(
LA

k

LB
k

)
, k = 1, . . . ,K,

Xk :=
(
XB

k

−XA
k

)
, k = 1, . . . ,K,

however, for the process X we have switched the order of appearance of A and B as this order is
also reversed in the CVA formula and we have provided the second component with a minus sign
in accordance with Equation (2.4), see also Equation 4.3 for a further motivation. In general,
there exist (at least) two different approaches how a suitable discrete state space version of the
continuous processes L and X could be obtained:

• In the first approach – completely similar to the default bucketing approach – the state
spaces [0, 1]2×K for the joint loss process and the space R2×K for the joint exposure pro-
cess X is divided into M , resp. N , disjoint components. Then, X is replaced by some
representative value on this component (usually an average value or some mid or corner
point) on each of the components, and the probabilities of the discretized process are set
in accordance with the original probabilities of each component (cf. the default bucketing
approach).

• In the second approach, a Monte Carlo simulation, i.e. M , resp. N , different scenarios
(i.e. realizations) of the processes L and X are used instead of the original process. Each
realization is assumed to have probability 1

M , resp. 1
N .

For both approaches it is known that they converge to the original process (almost surely and
in distribution). Although the convergence properties of the first approach are more appealing
from a theoretical point of view, all we are interested in is the calculation of the bilateral CVA,
and for this reason we have opted for the second approach, which is more easily implemented in
practical settings.

For the above reasons, if not explicitly stated otherwise, we subsequently assume that we
are given a model in discrete time and discrete state space. In addition, in order to keep the
following exposition as simple as possible, let us fix the loss processes to constants, i.e. let us
set both losses to LAk = lA and LBk = lB and let us further assume lA = lB = 1 for notational
convenience, as then the loss process could be dropped from Equation (2.4):

CVAA(t, T ) = lim
K→∞

K∑
k=1

(
E
[
δBk ·XA

k | Gt
]
−E

[
δAk ·XB

k | Gt
])
. (2.5)

3 Models for Counterparty Risk

As we have seen in the last section, the CVA calculation is based on the knowledge of the joint
distribution of the processes δ, L and X. In the last years two main approaches have emerged
in the literature how to model the individual, resp. joint distribution of these quantities:

• The most popular approach is based on the rather strong assumption of independence
between all components appearing in Equation (2.3), see Section 3.1. Based on this inde-
pendence assumption, only individual models for δ, L and X (see Section 3.2 and 3.3) need
to be specified for the CVA calculation. This kind of independence assumption is quite
standard in the market, see for example Canabarro and Duffie[10] or the Bloomberg CVA
function (for more details on the Bloomberg model let us refer to Stein and Lee [28]).

• Alternatively and more recently, a more general approach is based on a joint model (also
called hybrid model) for the building blocks δ, L and X of the CVA calculation, see Sec-
tion 3.4. For example, Redon [26] was able to obtain an analytical expression for unilateral
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counterparty value adjustments in a very simple setting. The first hybrid model was prob-
ably considered by Duffie and Huang [14] where the credit quality of one counterparty was
assumed to be a simple function of the floating rate of the swap.

3.1 Independence of CVA components

Let us focus on the first term in Equation (2.4), and let us assume that the exposure process X
is independent of the other two, merely default related, processes. Then the expectation inside
the summation can be split into two parts:

K∑
k=1

E
[
LBk · δBk ·XA

k | Gt
]

=
K∑
k=1

E
[
LBk · δBk | Gt

]
·E
[
XA
k | Gt

]
. (3.1)

Interestingly, the expected value

E
[
XA
k | Gt

]
= E

[
Ṽ +
A (t, tk, T )

∣∣∣Gt] = E [P (t, tk) ·max(VA(t, tk, T ), 0)| Ft] (3.2)

matches exactly the price of a call option on the basis transaction at time t with strike 0 and
exercise time tk. This means that on top of the basis transaction, options have to be modeled
additionally to calculate the CVA for a transaction. For example, if the basis transaction is an
interest rate swap, a swaption model is needed in order to calculate the corresponding CVA. More
details on the necessary modelling efforts in such a setup are given subsequently in Section 3.3

Further, if also the loss process and the default indicator process are independent as well, it
holds that

E
[
LBk · δBk | Gt

]
= E

[
LBk | Gt

]
·E
[
δBk | Gt

]
= E

[
LBk | Gt

]
·Q [τB ∈ ∆k, τB ≤ τA| Gt]

as we have
E
[
δBk | Gt

]
= Q

[
δBk = 1

∣∣Gt] = Q [τB ∈ ∆k, τB ≤ τA| Gt] .

Under such an independence assumption, the loss process (LBk )k can hence be replaced by its
expected value, i.e. we can work with lBk := E

[
LBk
∣∣Gt] instead of the stochastic loss process. In

case independence cannot be reasonably assumed, the discrete nature of δ can still be exploited
to obtain a similar result. In the general setting, it still holds that

E
[
LBk · δBk | Gt

]
= E

[
LBk | Gt, δBk = 1

]
·Q
[
δBk = 1

∣∣Gt]
= E

[
LBk | Gt, δBk = 1

]
·Q [τB ∈ ∆k, τB ≤ τA| Gt]

and therefore, conditional expected values lBk := E
[
LBk
∣∣Gt, δBk = 1

]
could be employed instead

of ordinary expected values. Summarizing everything, we can rewrite the CVA Equation (2.4)
as

CVAA(t, T ) ≈
K∑
k=1

(
lBk ·E

[
δBk | Gt

]
·E
[
XA
k | Gt

]
− lAk ·E

[
δAk | Gt

]
·E
[
XB
k | Gt

])
(3.3)

and thus the CVA can be calculated without any further problems as the corresponding de-
fault probabilities E

[
δBk | Gt

]
= Q [τB ∈ ∆k, τB ≤ τA| Gt], see following Section 3.2, can be easily

computed.

3.2 Modelling of dependent default times

In order to calculate the probability Q [τB ∈ ∆k, τB ≤ τA| Gt], the default times τA and τB and
their dependence structure have to be modeled. One of the most popular models for default
times in general are intensity models, as for example described in Bielecki and Rutkowsi [2], Part
III. Let us point out that since we only consider the situation that no default has occurred yet,
all available information is already given by the filtration Ft.
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In the framework of intensity models, also called reduced form models, the time of default is
interpreted as the first jump of a Poisson process, whose parameter is associated with the default
intensity. This means that the survival probability at time t denoted by Gt := Q[τ > t|Ft], can
be expressed by means of a so-called intensity process Λ(t):

Gt = exp(−Λ(t)).

A very popular setup is the framework of Cox processes, which is a setup where the stochastic
default intensity processes have strictly positive stochastic intensities λi, i ∈ {A,B} such that

Λi(t) =
∫ t

0

λi(s)ds

is invertible. In such a setting the default times τi are usually defined via standard exponential
random variables ξi as

τi = Λ−1
i (ξi).

Within an intensity model dependence of default times τA and τB can now be achieved in two
different ways: Either by using dependent intensity processes λA and λB or by using a copula
approach. A detailed example for introducing dependence via intensity processes6 will be given
within the hybrid model framework in Section 3.4.

It is well-known, see for example Brigo and Capponi [5], that the linkage via copula functions
results in a much stronger dependence compared to a linking via correlated intensity processes.
For the linking by means of a copula function, one chooses a copula for modelling correlated
uniform distributed random variables associated to ξi. For this purpose consider the specification

Ui := 1− exp(−ξi), and Q[UA ≤ uA, UB ≤ uB ] = C(uA, uB),

for some copula function C. Afterwards, dependent default times are obtained by

τi = Λ−1
i (− ln(1− Ui)).

The most commonly used copula function is the Gaussian copula with correlation parameter ρ,
which will also be the copula of choice in our specific example later on. For our purposes, we
do not consider stochastic intensity processes, but work with deterministic Λi (i.e. deterministic
default intensities λi) which are obtained by the calibration of CDS model prices to market
prices. Please note that in this calibration process, only the marginal distributions of τi can
be calibrated to CDS prices, but no information about the dependence structure of the default
times is hidden in the CDS market (see for example Brigo and Masetti [7]). Further note that a
model with deterministic default intensities plus a suitable copula is sufficient for the arbitrary
specification of the joint distribution of default times and that stochastic intensities do not add
any value in this context. This is because we only focus on the default time distribution, but are
not interested in correlations to other risk factors, like interest rates, stock prices, etc.

In such a setup with deterministic default intensities and arbitrary copula, the distribution
of the default indicator process δ is completely specified. For the corresponding probabilities of
each of the J = 2K + 1 different realizations of the default indicator, denoted by

qδk := Q[δAk = 1 | Ft], k = 1, . . . ,K
qδK+k := Q[δBk = 1 | Ft], k = 1, . . . ,K

qδJ := 1−
2K∑
j=1

qδj ,

it holds that

Q[DA] =
K∑
k=1

Q[δAk = 1 | Ft] =
K∑
k=1

qδk,

Q[DB ] =
K∑
k=1

Q[δBk = 1 | Ft] =
2K∑

k=K+1

qδk, and

Q[D0] = qδJ .

6The approach of dependent intensities has been originally introduced as conditionally independent default
(CID) models, see for example Duffie and Singleton [15] or Lando [20].
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These probabilities can be either calculated by a straightforward Monte Carlo simulation (derived
from randomly sampled default times τA and τB) or by numerical integration: if we denote the
density of the joint distribution of (τA, τB) by q, i.e.

Q[τA ≤ tA, τB ≤ tB ] =
∫ tA

0

∫ tB

0

q(sA, sB)dsBdsA,

then it holds that

Q[δAk = 1] = Q[τA ≤ τB , tk−1 < τA ≤ tk]

=
∫ tk

tk−1

∫ ∞
sA

q(sA, sB)dsBdsA.

Taking into account that Q[τA ≤ tA, τB ≤ tB ] can be expressed by means of the copula as

Q[τA ≤ tA, τB ≤ tB ] =

= Q[UA ≤ 1− e−ΛA(tA), UB ≤ 1− e−ΛB(tB)] = C(1− e−ΛA(tA), 1− e−ΛB(tB))

the above integral over the density q can be reformulated with the help of the copula density c
as ∫ tk

tk−1

∫ ∞
sA

q(sA, sB)dsBdsA =
∫ tk

tk−1

∫ ∞
sA

c(1− e−ΛA(sA), 1− e−ΛB(sB))dsBdsA,

which can be evaluated by standard techniques from numerical integration.
The following Table 1 and Figure 2 illustrate the probabilities resulting from a Gaussian

copula model with correlation parameter ρ varying in (−1, 1). Two different intensity setups
are shown in the figure: on the left identical default intensities λA = λB = 150bps, whereas
the right graph illustrates the case of counterparties of different qualities, i.e. counterparty B
having a higher default intensity and such a higher probability of defaulting before A, namely
λA = 150bps and λB = 300bps. In such a simple setting with constant default intensities the

Figure 2: Probabilities of DA and DB for varying ρ.

default probabilities Q[τi ∈ ∆k|Ft] can be determined analytically:

Q[τi ∈ ∆k|Ft] = Q[τi > tk−1|Ft]−Q[τi > tk|Ft] = Gtk−1 −Gtk
= exp(−Λ(tk−1))− exp(−Λ(tk))
= exp(−λ · tk−1)− exp(−λ · tk).
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In Table 1 the default indicator probabilities are listed in detail which result from a simulation
over a time horizon of T = 4 years divided into K = 8 disjoint time intervals ∆k each covering
half a year in case of different counterparties and a copula correlation of ρ = 0.9. For comparison
the analytical probabilities Q[δik = 1|Ft] are shown as well. It can be clearly observed that due
to the influence of the copula parameter ρ, defaults of party B are more than four times more
likely than defaults for party A, although default probabilities are only twice as high.

k 1 2 3 4 5 6 7 8 Σ
Q[δAk = 1 | Ft] in % 0.39 0.35 0.31 0.29 0.27 0.25 0.24 0.23 2.33
Q[τA ∈ ∆k | Ft] in % 0.75 0.74 0.74 0.73 0.73 0.72 0.71 0.71 5.83
Q[δBk = 1 | Ft] in % 1.31 1.27 1.26 1.22 1.22 1.20 1.18 1.16 9.81
Q[τB ∈ ∆k | Ft] in % 1.49 1.47 1.44 1.42 1.40 1.38 1.36 1.34 11.30

Table 1: Q[δik = 1 | Ft] for ρ = 0.9 and λA = 150bps, λB = 300bps.

3.3 Modelling options on the basis transaction

Since it could be observed in Equation (3.2) that options on the basis transaction need to be
priced, a suitable model for this option pricing task needs to be available. Depending on the type
of derivative, any model which can be reasonably well calibrated to the market data is sufficient.
For instance, for interest rate derivatives, any model ranging from a simple Vasicek or CIR model
to sophisticated Libor market models or two-factor Hull-White models could be applied. In case
of a credit default swap, any model which allows to price CDS options, i.e. any model with
stochastic credit spread would be feasible. However, for CVA calculations, usually a trade-off
between accuracy of the model and efficiency of calculations needs to be made. For this reason,
usually more simple models are applied for CVA calculations than for other pricing applications.
It needs to be noted that since the financial market usually provides sufficiently many prices of
liquid derivatives, any reasonable model can be calibrated to these market prices, and therefore,
we can assume in the following that the market implied distribution of the discounted exposure
process is fully known and available.

3.4 Hybrid models – an example

Another way to calculate the CVA is to use a so-called hybrid approach which models all the
involved underlying risk factors which influence the value of the transaction at the same time.
Instances of such models, which are based on state-of-the-art models can for example be found
in Brigo and Capponi [5] for the case of a credit default swap, or Brigo, Pallavicini and Pa-
patheodorou [9] for interest rate derivatives. In Brigo, Pallavicini and Papatheodorou [9], an
integrated framework is introduced, where a two-factor Gaussian interest-rate model is set up
for a variety of interest rate derivatives7 in order to deal with the option inherent in the CVA.
Further, to model the possible default of the client and its counterparty their stochastic default
intensities are given as CIR processes with exponentially distributed positive jumps. The Brow-
nian motions driving those risk factors are assumed to be correlated. Additionally, the defaults
of the client and the counterparty are linked by a Gaussian copula. In this approach the short
rate is given in detail by the two-factor model

r(t) = x(t) + z(t) + φ(t;α) r(0) = r0

dx(t) = −ax(t)dt+ σdZ1(t) x(0) = 0
dz(t) = −bz(t)dt+ µdZ2(t) z(0) = 0

with correlated Brownian motions Z1 and Z2 with d 〈Z1, Z2〉t = ρ12dt, and further positive
constants r0, a, b, σ, µ and ρ12 ∈ [−1, 1]. The deterministic function φ depends on all these

7Although this modelling approach is a rather general one, it has to be noted that it links the dependence on
tenors of swaption volatilities to the form of the initial yield curve. Therefore, the limits of such an approach
became apparent as the yield curve steepened in conjunction with a movement of the volatility surface in the
aftermath of the beginning financial crisis in 2008, when these effects could not be reproduced by such a model.
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parameters which are expressed by α, in that α = (r0, a, b, σ, µ, ρ12) and it can be always chosen
in such a way that the model is automatically calibrated to the initial zero rate curve observed
in the market.

The stochastic default intensities of the client A and the counterparty B in the CIR approach
are modelled as shifted square root diffusions processes with positive jumps

λit = yit + ψi(t;βi)
ψ(0;β) = λ0 − y0

dyit = κi(µi − yit)dt+ dJ it (ξ
i
1, ξ

i
2) + νi

√
y − tidZi3(t)

J it (ξ
i
1, ξ

i
2) :=

Mi
t (ξi

1)∑
k=1

Xi
k(ξi2)

with i ∈ {A,B}. As before the positive deterministic constants κi, µi, νi, yi0, ξ
i
1, ξ

i
2 are summarized

in a vector, i.e. βi =
(
κi, µi, νi, yi0, ξ

i
1, ξ

i
2

)
. The Brownian motions Zi3 are assumed to be correlated

with the former ones, i.e. d
〈
Zj , Z

i
3

〉
t

= ρj,idt, j ∈ {1, 2}, i ∈ {A,B}, but not correlated to each
other (d

〈
ZA3 , Z

B
3

〉
t

= 0). Thus, the following correlation matrix for the model driving Brownian
motions results: 

1 ρ12 ρ1A ρ1B

ρ12 1 ρ2A ρ2B

ρ1A ρ2A 1 0
ρ1B ρ2B 0 1


Brigo, Pallavicini and Papatheodorou [9] even assume yi, for i ∈ {A,B}, to be independent (and
thus also Zi3) to ease the calibration of the model and to focus on default correlation rather than
spread correlation.

Further, the amount of wrong-way risk which can be modelled within such a framework
depends strongly on the model choice, e.g. if solely correlations between default intensities
(i.e. credit spreads) and interest rates are taken into account, only a rather weak relation will
emerge between default and the exposure of interest rate derivatives, cf. Brigo, Pallavicini and
Papatheodorou [9].

4 Model-free approach

In the last section, it became obvious that each of the two approaches presented so far has a
major drawback:

• The independence assumption is a rather strong assumption and usually not fulfilled in
practical settings. In such an approach wrong-way risk, i.e. a potential positive correlation
between default (more exactly the default indicator process) and the exposure process is
completely neglected.

• Although hybrid models overcome this drawback, it is not clear how hybrid models could
be reasonably parametrized, as usually no appropriate market information is available,
i.e. there are no markets for financial instruments depending on the correlation between
default and exposure. In the specific example in Section 3.4 there are four parameters
correlating the short rate process with the stochastic default intensities. With these four
parameters, it is unfortunately not obvious how big or small the bilateral CVA could
get for reasonable choices of the correlations, especially as these four parameters all have a
nonlinear impact on the resulting CVA, see for example Section 5 in Brigo and Capponi [5].

For the above reasons, we propose a completely different approach to calculate the counterparty
value adjustment. This new approach can be seen as a model-free approach, as it does not
rely on any specific model for the dependence of the default times and the exposure process.
Instead, our model-free approach directly links all components which appear in the general
CVA formula (2.4): the joint loss process L, the joint default indicator process δ and the joint
discounted exposure processes X. Although the loss process L was dropped for convenience,
please note that – in contrast to the previous approaches in Section 3 – the following framework
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is completely flexible and would allow for a very easy consideration of general loss processes as
well. As already mentioned in Section 3.3, we can reasonably assume that the distribution of the
exposure process X is already completely determined by the available market information. In a
similar manner, we have argued in Section 3.2 that also the distribution of the default indicator
process δ can be assumed to be given by the market (together with some expert opinion on the
default correlation). Nevertheless, let us point out that the following ideas and concepts could
indeed be generalized to the case that only the marginal distributions of the default times are
known. For these reasons, we can reasonably argue that the following approach is indeed model-
free in the sense that no model needs to be specified which links the default indicator process
with the discounted exposure processes – in clear contrast to the hybrid model – and we will
see that also no independence assumption between these components needs to be imposed. Of
course, as outlined in Sections 3.3 and 3.2, for each individual component, some pricing model
consistent to the market data needs to be available.

In the following paragraphs we are going to introduce a general framework for discrete pro-
cesses, before we embed the CVA calculations into this framework, which will lead to model-free
lower and upper bounds on the bilateral CVA. We close this section with a few applications of
these model-free bounds.

4.1 A general framework

In the following, let us assume that two discrete time processes Y = (Yk)k=1,...,K and Z =
(Zk)k=1,...,K are given. Further assume that both processes live in a finite state space, i.e. process
Y takes values in Y := {y(j) ∈ RnY ×K , j = 1, . . . , J} and process Z takes values Z := {z(i) ∈
RnZ×K , i = 1, . . . , N}. Finally, we assume that the (marginal) distributions of the processes Y
and Z are known, i.e. we are given

qYj := Q[Y = y(j)] = Q[Y1 = y
(j)
1 , . . . , YK = y

(j)
K ], j = 1, . . . , J,

qZi := Q[Z = z(i)] = Q[Z1 = z
(i)
1 , . . . , ZK = z

(i)
K ], i = 1, . . . , N,

with
∑
i

qZi =
∑
j

qZj = 1.

In this framework, the distribution of the process (YZ), i.e. the joint distribution of the processes Y
and Z, is not known in advance. Since both processes have finite state space, the joint distribution
of Y and Z can be fully characterized by a matrix Q ∈ RJ×N where Qi,j := Q[Z = z(i), Y = y(j)].
Therefore, any such Q has the following properties:

• the matrix Q is proper, which means that it represents a proper probability distribution,
i.e. it holds

Qi,j ≥ 0, and
∑
i,j

Qi,j = 1,

• the matrix Q is consistent with the given marginal distributions, i.e. it holds

qYj =
∑
i

Qi,j =
∑
i

Q[Z = z(i), Y = y(j)] = Q[Y = y(j)], ∀j = 1, . . . J,

qZi =
∑
j

Qi,j =
∑
j

Q[Z = z(i), Y = y(j)] = Q[Z = z(i)], ∀i = 1, . . . N.

Let Q denote the set of all feasible and consistent matrices Q which represent possible joint
distributions for the processes Y and Z, i.e. let

Q := {Q ∈ RJ×N+ |
∑
i

Qi,j = qYj ,
∑
j

Qi,j = qZi ∀i, ∀j }.

Since Q is a convex and compact polyhedron in RJ×N , this means that the set of all proper
and consistent joint probability distributions of Y and Z can be represented by a compact set
due to the discrete nature of the processes Y and Z. Let us note that such a (much more
technical) construction could have also been carried out for continuous time and continuous
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state spaces. Since these constructions resemble the setup of so-called (Monge-Kantorovich)
mass transportation problems let us refer to Rachev and Rüschendorf [24, 25] for more details
on the general concept of these mass transportation problems.

For any arbitrary function w : Y×Z → R we can then define a new random variable W based
on the two processes Y and Z by W := w(X,Z). Obviously W takes only finitely many values
Wi,j := w(y(j), z(i)) with probability Q[W = Wi,j ] = Q[Z = z(i), Y = y(j)] = Qi,j , i.e. each
mapping w can be equivalently represented by a corresponding value matrix W ∈ RJ×N . Now,
for given mapping w, let us consider the following linear optimization problem,

min
Q∈Q

EQ[w(Y,Z)] = min
Q∈Q

EQ[W ] := min
Q∈Q

∑
i,j

Qi,j ·Wi,j , (4.1)

where the expected value of W is minimized over all proper and consistent distributions Q.
Problem (4.1) is indeed a linear optimization problem in the variable Q ∈ RJ×N – for any
arbitrary function w – as both the objective function and the constraints defining Q are obviously
linear in Q. Further, due to compactness of Q, the minimum exists. Obviously, for any Q ∈ Q,

min
P∈Q

EP [w(Y,Z)] ≤ EQ[w(Y,Z)] ≤ max
P∈Q

EP [w(Y,Z)].

As a specific example for the mapping w let nY = nZ = n and let us consider the usual scalar
product ◦ for matrices y, z ∈ Rn×K ,

w(y, z) := y ◦ z :=
n∑
l=1

K∑
k=1

yl,k · zl,k.

Then the value matrix W ∈ RJ×N can be computed from the given data y(j) and z(i) by

Wi,j = y(j) ◦ z(i) =
n∑
l=1

K∑
k=1

y
(j)
l,k · z

(i)
l,k

and it holds that

EQ[w(Y,Z)] = EQ[Y ◦ Z] = EQ

[
n∑
l=1

K∑
k=1

Yl,k · Zl,k

]

=
∑
i,j

Qi,j ·

(
n∑
l=1

K∑
k=1

y
(j)
l,k · z

(i)
l,k

)
=
∑
i,j

Qi,jWi,j . (4.2)

A few interesting things about Problem (4.1) can be noted.

• First of all, the structure of the LP (4.1) coincides with the structure of so-called balanced
linear transportation problems. Transportation problems constitute a very important sub-
class of linear programming problems, see for example Bazaraa, Jarvis and Sherali [1],
Chapter 10, for more details. Further, there exist several very efficient algorithms for the
numerical solution of such transportation problems, see also Bazaraa, Jarvis and Sherali [1],
Chapter 10 to 12.

• Second, it is known that each LP attains its optimal solution also in a corner of the feasible
polyhedron. As the polyhedron of feasible probability distributions is embedded in the
RJ×N , J ·N of the J ·N + N + J linear constraints have to be active to define a corner.
This means that at most N + J entries of the optimal solution Q∗ to Problem (4.1) are
strictly larger than zero, the rest has to be equal to zero. Thus, for finer discretizations,
i.e. increasing N and J , the matrix Q becomes (relatively) sparse.

• Finally, if the value matrix W satisfies certain conditions, the solution to Problem (4.1)
could be determined without the numerical solution of the transportation problem. For
example, if W satisfies the so-called Monge condition, see Rachev and Rüschendorf [24]
(1.2.2),

Wi,j +Wi+1,j+1 ≤Wi+1,j +Wi,j+1
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then the well-known greedy north-west-corner-rule for the feasible initialization of the LP
already gives the optimal solution, known to be the Hoeffding H distribution. However,
in the given framework, the Monge condition is only very rarely satisfied, for example, if
K = n = 1 and y and z are ordered increasingly.

4.2 Embedding the CVA calculation into the general framework

For the calculation of model-free bilateral counterparty value adjustments let us embed the
previous setup from Equation (2.5) into the framework from the last section. For this purpose,
let

Y := δ

Z := X

and let w(Y, Z) = Y ◦ Z. Let us further recall that the the marginal probabilities are predeter-
mined by the individual models for the default times and the exposure process. For example,
the probabilities of the default process can be derived as in Table 1, and, assuming the scenario
(i.e. Monte Carlo) approach is used for the discretization of X, see Section 2.4, each probability
qXi equals 1

N by construction. With this notation, we can embedd Equation (2.5) into the general
setup:

CVAA(t, T ) ≈ EQ
[
δBk ·XA

k | Gt
]
−EQ

[
δAk ·XB

k | Gt
]

= EQ [ δ ◦X | Gt]
= EQ [Y ◦ Z | Gt] , (4.3)

where we have now highlighted the dependence of the CVA figure on the joint distribution Q. In
case of the independence assumption, Q is given by the product distribution of δ and Z, whereas
in hybrid models the joint distribution Q is determined by the specification and parametrization
of the hybrid model. In contrast to these specific approaches, we are now in a situation where
we can define lower and upper bounds on the CVA by varying the joint distribution over the set
Q of all possible joint distributions which are consistent with the marginal distributions:

CVAl
A(t, T ) := min

Q∈Q
EQ[δ ◦X] ≤ CVAA(t, T ) ≤ max

Q∈Q
EQ[δ ◦X] =: CVAu

A(t, T ). (4.4)

These bounds represent the lowest and the highest CVA which can be obtained by any (hybrid)
model which is consistent with the market data. Further, there exists at least one model which
reaches these bounds, i.e. the bounds are sharp. This is in contrast to Turnbull [29], where only
weak upper and lower bounds were derived. Of course, bounds always represent a best-case and
a worst-case estimate only, which may strongly under- and overestimate the true CVA. However,
as we will see in Section 4.3, there are several applications for these estimates.

As a final remark on this embedding, let us mention that in this context the computation
of the value matrix W has a nice interpretation: W contains the contributions to the bilateral
CVA of all possible combinations of default scenarios applied to all different exposure scenarios,
see also Figure 4 for a similar illustration.

4.3 Application to CVA calculation

The lower and upper bound for the bilateral counterparty value adjustment, CVAl
A(t, T ) and

CVAu
A(t, T ), bracket CVAi

A(t, T ), the bilateral counterparty value adjustment in case of inde-
pendence, i.e. it holds

CVAl
A(t, T ) ≤ CVAi

A(t, T ) ≤ CVAu
A(t, T ).

For the specific example introduced in Section 3, this is illustrated in Figure 3, where the bounds
are given together with the result of the independent case. As Figure 3 shows, we can introduce
a piecewise linear and monotone function

CVA :

{
[−1; 1]→ [CVAl

A(t, T ),CVAu
A(t, T )]

κ 7→ CVA(κ)
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Figure 3: Minimal, maximal and independent bilateral CVA for symmetric and asymmetric
counterparties.

with CVA(−1) = CVAl
A(t, T ), CVA(0) = CVAi

A(t, T ) and CVA(1) = CVAu
A(t, T ). This allows

to view the parameter κ as the total default correlation. Instead of basing CVA calculations on
several nonlinear correlation parameters (as in the hybrid model), it is now possible to summarize
the CVA behaviour in one easy-to-interpret variable. Such a setup can be used for several
practical applications:

• Setting κ = 1, the upper bound for the CVA can be used in stress tests on counterparty
default risk.

• Setting κ to a realistic, but still rather high level, could be used for profitability and
economic capital calculations.

• Comparisons to the implied κ from hybrid models allows to judge how strong the collection
of correlation parameter actually influences the bilateral CVA.

• Translating correlation parameters from hybrid models into one implied κ allows for the
consideration of model risk in a simplified manner.

4.4 An alternative formulation as assignment problem

For the above setup we have assumed that the probabilities qδ for all possible realizations of
the default indicator process could be precomputed from a suitable default model. If for some
default model this should not be the case, but only scenarios (with repeated outcomes for the
default indicator) could be obtained by a simulation, an alternative LP formulation could be
formulated. In such a scenario setting, it is advisable that for both Monte Carlo simulations,
the same number N of scenarios is chosen. Then for both given marginal distributions we have
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qδj = qXi = 1
N . If we apply the same arguments as in Section 4.1 we obtain the problem

min
Q∈RN×N

+

1
N

∑
i,j

Qi,jWi,j (4.5)

subject to
∑
j

Qi,j = 1, i = 1, ..., N

∑
i

Qi,j = 1, j = 1, ..., N,

where we have multiplied the probability distribution Q by N . Problem (4.5) again represents
a balanced transportation problem, but now with a even more specific structure. If we have
a closer look at Problem (4.5), we see that the optimization actually runs over all N × N
permutation matrices – since each default scenario is mapped onto exactly one exposure scenario,
see Figure 4 for illustration. This means that Problem (4.5) eventually belongs to the class

Figure 4: Matching the realisations of the default indicators to the corresponding present values
of the transaction’s outstanding amounts in case of default.

of assignment problems, for which very efficient algorithms are available, cf. Bazaraa, Jarvis
and Sherali [1]. From the classification of Problem (4.5) as an assignment problem, we also
obtain the interesting fact that the optimal solution is represented by a permutation matrix.
Unfortunately, although this fact is exploited in the efficient numerical solution, this information
cannot be transferred back to the original problem, as no structure is available in the Monte
Carlo simulations. Please note that although assignment problems can be solved more efficiently
than transportation problems, it is still advisable to solve the transportation problem due to its
lower dimensionality, as usually J = 2K+1 < N (i.e. time discretization is usually much coarser
than exposure discretization).

5 Example

5.1 Setup

To illustrate the model-free approach we will give a detailed example in this section. For this
purpose let us consider a standard payer swap with a remaining lifetime of T = 4 years analyzed
within a Cox-Ingersoll-Ross (CIR) model at time t = 0. In accordance to the example in
Section 3.2 the time interval (0, 4] is split up into K = 8 disjoint time intervals each covering
half a year. Thus we have tk ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4} for ∆k = (tk−1, tk], k = 1 . . . 8. We
have already observed that this means that the individual default indicator processes δis only
take values in {0, 1}K with

∑K
k=1 δ

i
k ≤ 1. For simplicity, the loss process is again assumed to be

1.
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5.1.1 Counterparty’s default modelling

To model the defaults we have chosen the copula approach described in Section 3.2 using the
Gaussian copula. In Section 3.2 we also already illustrated the default probabilities for a varying
copula correlation parameter ρ which models the dependence of the counterparties. For further
analyses in this example we will focus on the case of uncorrelated counterparties (ρ = 0) and
highly correlated counterparties (ρ = 0.9) . Furthermore, the counterparty’s default intensities
are assumed to be deterministic and we will distinguish between symmetric counterparties with
identical default intensities and asymmetric counterparties. Thus, four different settings result:
Figure 5 shows the probabilities Q[ δik = 1] = E[ δik] in each of the four cases (compare also

Case 1: symmetric, uncorrelated λA = 150bps λB = 150bps ρ = 0
Case 2: symmetric, correlated λA = 150bps λB = 150bps ρ = 0.9
Case 3: asymmetric, uncorrelated λA = 150bps λB = 300bps ρ = 0
Case 4: asymmetric, correlated λA = 150bps λB = 300bps ρ = 0.9

to Table 1 in Section 3.2, where values for Case 4 with higher accuracy are stated). To be in
line with following figures, the probabilities for a default of counterparty B in ∆k, i.e. E[ δBk ],
correspond to the positive bars and defaults of counterparty A to the negative bars. The left plots

Figure 5: Probabilities E[ δik] in % for cases 1 to 4.

show identical counterparties (cases 1 and 2) and the right ones the cases, where counterparty
B has a higher default intensity (cases 3 and 4). Furthermore, the upper plots correspond to
uncorrelated defaults and for the ones below we have ρ = 0.9.

5.1.2 Counterparty exposure modelling

As already mentioned, a simple CIR model is applied for the valuation of the payer swap. As
our focus is on the coupling of the default and the exposure model, we have opted for such a
simple model for ease of presentation, although any more sophisticated model could have been
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applied as well. In the CIR model, the short rate rt follows the stochastic differential equation

drt = κ(θ − rt)dt+ σ
√
rtdZt,

where the parameters have been calibrated to market data (yield curve plus selected swaption
prices) yielding

κ = 0.0156 θ = 0.0311 σ = 0.0313 r0 = 0.030.

Figure 6 shows exemplarily some of the generated short rate scenarios on the left and the corre-
sponding resulting discounted swap values P (0, s) · VA(s, T ) on the right. Considering now the

k 1 2 3 4 5 6 7 8
E[XA

k ] in bp 49.2 59.2 60.1 55.2 45.9 33.4 17.9 0
E[XB

k ] in bp 48.9 58.5 59.1 54.2 45.1 32.6 17.5 0

Table 2: E
[
XA
k

]
and E

[
XB
k

]
in basis points.

Figure 6: Simulated short rate scenarios and corresponding swap values P (0, s) · VA(s, T ).

exposure of each counterparty, i.e. P (0, s) ·max(0, Vi(s, T )) = Ṽ +
i (0, s, T ) or within the discrete

time framework of our example P (0, tk) ·max(0, Vi(tk, T )) = Xi
k, we can easily compute E

[
Xi
k

]
as the average of all generated scenarios from a Monte Carlo simulation. Figure 7 illustrates the
results of a simulation, which are also given in Table 2. Positive bars correspond to E

[
XA
k

]
,

negative bars to E
[
XB
k

]
and the small bars correspond to E[P (0, tk) ·VA(tk, T )]. Since payer and

receiver swap are not completely symmetric instruments, there remains a residual expectation,
as can be observed from Figure 7.

5.2 Results

In case of independence between default and exposure the bilateral CVA is easily obtained by
multiplying the default probabilities (as shown in Figure 5) with the corresponding exposures (as
shown in Figure 7) and summation. Besides the independent CVAi the minimal and maximal
CVAl and CVAu have been calculated as well by solving the transportation problem 4.4.

The results of these calculations are illustrated in Figure 8 and Table 3 for each time interval
∆k. Analogously to Figure 5 we have for each of the four cases a separate subplot and the left
plots belong again to cases 1 and 2. The positive bars now correspond to E

[
δBk ·XA

k

]
and the

negative ones to E
[
δAk ·XB

k

]
. In the case of the minimal CVA E

[
δBk ·XA

k

]
vanishes, meaning

that for counterparty A in case of a default of counterparty B the exposure is zero, as the present
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Figure 7: Expected exposures E
[
XA
k

]
, E
[
XB
k

]
and E[P (0, tk) · VA(tk, T )].

Figure 8: Minimal, maximal CVAA, E
[
δBk ·XA

k | Gt
]

and −E
[
δAk ·XB

k | Gt
]
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k 1 2 3 4 5 6 7 8
∑

Case 1 min −2.41 −2.78 −2.67 −2.16 −1.61 −1.08 −0.55 0.00 −13.26
E
[
δBk ·XA

k | Gt
]

0.37 0.41 0.41 0.40 0.32 0.22 0.12 0.00 2.24
E
[
δAk ·XB

k | Gt
]
−0.37 −0.45 −0.40 −0.39 −0.32 −0.21 −0.12 0.00 −2.27

max 2.28 2.85 3.16 2.80 2.21 1.48 0.73 0.00 15.51
Case 2 min −1.82 −2.03 −1.90 −1.60 −1.19 −0.85 −0.42 0.00 −9.80

E
[
δBk ·XA

k | Gt
]

0.23 0.30 0.30 0.24 0.22 0.18 0.09 0.00 1.56
E
[
δAk ·XB

k | Gt
]
−0.24 −0.31 −0.34 −0.25 −0.20 −0.15 −0.09 0.00 −1.57

max 1.66 2.21 2.26 2.01 1.54 1.10 0.56 0.00 11.34
Case 3 min −2.45 −2.68 −2.60 −2.21 −1.58 −1.13 −0.54 0.00 −13.19

E
[
δBk ·XA

k | Gt
]

0.68 0.86 0.86 0.74 0.61 0.39 0.23 0.00 4.38
E
[
δAk ·XB

k | Gt
]
−0.35 −0.43 −0.42 −0.37 −0.30 −0.22 −0.11 0.00 −2.21

max 4.18 5.36 5.42 4.72 3.60 2.41 1.18 0.00 26.88
Case 4 min −1.44 −1.53 −1.19 −1 −0.67 −0.49 −0.21 0.00 −6.53

E
[
δBk ·XA

k | Gt
]

0.63 0.76 0.76 0.69 0.60 0.43 0.20 0.00 4.08
E
[
δAk ·XB

k | Gt
]
−0.18 −0.23 −0.19 −0.16 −0.12 −0.08 −0.03 0.00 −1.00

max 3.83 4.88 4.89 4.46 3.40 2.29 1.11 0.00 24.87

Table 3: Minimal, maximal CVA, E
[
δBk ·XA

k | Gt
]

and −E
[
δAk ·XB

k | Gt
]

in bps

value of the swap at that time is negative from counterparty A’s point of view. Contrarily, for
the maximal CVA E

[
δAk ·XB

k

]
is zero.

As main observation we note that there are large gaps between the lower and the independent
CVA, as well as between the independent CVA and the upper bound. This means that wrong
way exposure can have a significant impact on the bilateral CVA. Interestingly, this observation
holds true for all four cases, of course, with different significance depending on the specific
setup. Although it is clear that our analysis naturally shows more extreme gaps than any hybrid
model, it has to be mentioned that these bounds are indeed tight. As observed in the last
section, there exist some joint distributions – hence some corresponding model with appropriate
parameterizations – which attain both bounds. Therefore, the impact of wrong-way risk may
be much larger in the extreme case than expected. For example, Duffie and Huang [14] obtain
factors around two for the increase in CVA by wrong-way risk, whereas the factors which could
be observed here are more in line with the extreme examples of Cherubini [11]. We further note
that the bilateral CVA does not even vanish for symmetric counterparties. The reason for this
is that the exposure of a swap is not completely symmetric, as receiver is not equal to payer
exposure, as observable from the exposures in Figure 7. Nevertheless, in case of independence
of defaults and exposure, the CVA is usually rather small for interest rate swaps, even for
asymmetric counterparties. However, it can be observed that asymmetry of the counterparties
has a significant impact on the difference of the absolute values of the lower and the upper bound,
as expected.

6 Conclusion and outlook

In this paper we have proposed a new model-free approach for the calculation of unilateral and
bilateral counterparty valuation adjustment. This approach has the advantage that simulations
of the uncertain default times on one hand and of the uncertain value of a transaction during
her remaining life on the other hand can be completely separated, before they are linked via the
easy solution of a standard linear program. Although this exposition is restricted to the case of
two counterparties and does not include a random recovery, the model can easily be extended to
more general cases. Further, as exposure is simulated separately from default, all risk mitigating
components like CSAs or netting agreements can be easily included in a such a framework.
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