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Dynamic optimization in natural resources management  
 

By 
 

George E. Halkos1 and George Papageorgiou 
Department of Economics, University of Thessaly 

 

Abstract 

Dynamic modeling is general and recently the most interesting perspective to solve a 
dynamic economic problem based on Pontryagin’s maximum principle. Moreover 
traditional economic theory, up to the middle of twentieth century, builds up the 
production functions regardless the inputs’ scarcity. Nowadays it is clear that both the 
inputs are depletable quantities and a lot of constraints are imposed in their usage in 
order to ensure economic sustainability. For example the input “oil” used in the 
production is a non renewable resource so it can be exhausted. In a same way every 
biomass resides in ecosystems is a resource that can be used in a generalized 
production function for capital accumulation purposes but the latter resource is a 
renewable one. The purpose of this paper is the presentation of some natural resources 
dynamic models in order to extract the optimal trajectories of the state and control 
variables for the optimal control economic problem. We show how methods of 
infinite horizon optimal control theory developed for natural resources models. 
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1. Introduction 

In economic literature one of the driving forces in a market economy is the 

growth of firms and industries. While traditionally economists have analysed firm and 

industry growth under the assumption of perfectly competitive product markets in a 

static framework (i.e. firms are assumed to be price takers in the output market) more 

recent research has focused on intertemporal dynamical theoretic models of growth 

and capital accumulation. Moreover traditional economic theory, up to the middle of 

twentieth century, builds up the production functions regardless the inputs’ scarcity.  

Nowadays it is clear that both the inputs are depletable quantities and a lot of 

constraints are imposed in their usage to ensure economic sustainability. For example 

the input “oil” used in the production is a non renewable resource so it can be 

exhausted. In a same way every biomass resides in ecosystems is a resource that can 

be used in a generalized production function for capital accumulation purposes but the 

latter resource is a renewable one. With the above simplified classification of the 

natural resources several constraints arises in their usage. One reasonable constraint 

for the exhaustible resource could be the fact that the rate of extraction reduces the 

remainder stock. In the field of renewable resources a serious constraint could be the 

fact that human harvesting effort can’t be greater than the growth of the resource.  

On the other hand dynamic modeling is general and recently the most 

interesting perspective to solve a dynamic economic problem based on Pontryagin’s 

maximum principle. The main variables involved in a dynamic model distinguished in 

two broad categories, the state and control variables. A state variable is defined as the 

variable that describes the state of an economic system that transferred from an initial 

time (time zero) to the terminal time with an optimal way. Control variables are those 

that help (under appropriate manipulations) the transfer from an initial to the terminal 

time in an optimal way of the system’s state. In our cases state variables could be the 

resource stock while control variables are the human rate of extraction. 

The purpose of this paper is the presentation of some natural resources 

dynamic models in order to extract the optimal trajectories of the state and control 

variables for the optimal control economic problem. We show how methods of 

infinite horizon optimal control theory developed for renewable resources models. 
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2. The first model 

We assume a representative competitive firm that extracts a renewable 

resource and the stock of the resource evolves according to the following differential 

equation 
( )

( ) ( )( ) ( )
dx t

x t f x t q t
dt

= = −  ( )1 . The left hand side of the above equation 

( )1  means the instantaneous change in the current resource stock while the right hand 

side consists of the two following functions. The implicit function ( )( )f x t  denotes 

the resource evolution (births and deaths) that is clearly a function of the existing 

resource stock ( )x t . With the second term of the right hand side of equation ( )1  ( )q t  

we denote the human harvesting effort (rate of extraction) of the resource at the same 

time instant t  which effort clearly reduces resource’s stock. So equation ( )1  

completely describes stock’s accumulation at time instant t . It is worth noting that 

implicit function ( )( )f x t  is left in a general form in order to generalize model’s 

analysis that follows.  

Moreover we assume that the resource extractor sells the renewable resource 

at a price ( )p t  which is maybe a constant, while extraction cost is described again 

implicitly as a function of the current stock ( )x t , that is the generalized cost function 

of the form ( )( )c x t . Representative firm (or agent) faces now an infinite horizon 

intertemporal utility maximization problem as in the following 

                   ( ) ( )( ) ( )
0

max t

q
e p t c x t q t dtρ

∞
− ⎡ ⎤−⎢ ⎥⎣ ⎦∫                ( )2  

subject to the resource accumulation equation, that is equation ( )1 . State variable of 

the maximization problem is the renewable resource stock ( )x t , while control 

variable is the rate of extraction of the resource ( )q t .  

In order to solve the above optimal control problem we apply techniques analyzed by 

the optimal control theory and more specifically we form the Hamiltonian current 

value function as follows 

               ( ) ( )( ) ( ) ( ) ( )( ) ( )H p t c x t q t t f x t q tλ⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦       ( )3  
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With ( )tλ  to denote the costate variable which associates (shadow price) with the 

state ( )x t .  

Because the function of the resource population evolution ( )( )f x t  is left in 

undetermined form we assume moreover that the system evolves in the steady states. 

In what follows we take first order conditions and we’ll try to impose several real 

world conditions in order to find the stability of equilibrium.  

 

3. Qualitative equilibrium analysis 

The first order conditions for the above Hamiltonian function are 

                
( )

( ) ( )( ) ( )0H p t c x t t
q t

λ
∂

= ⇒ − =
∂

             ( )4  

        ( ) ( )
( )

( )( ) ( ) ( ) ( )( )Ht t c x t q t t f x t
x t

λ ρλ λ
∂ ′ ′− + = =− +
∂

   ( )5  

and the steady state conditions ( ) ( )0, 0x t tλ= = . 

Substituting ( )1  into ( )5  and making use of ( )4  we arrive into the following equation, 

under the assumption that the renewable resource selling price is constant: 

              ( )( ) ( )( ) ( )( ) ( )( )* *c x t f x t p c x f x ρ′ ′= − −        ( )6      

Equation ( )6  now expresses the model’s steady state of the system for the state and 

costate orbits. 

In order to ensure unique equilibrium we impose further restrictions on the 

involved variables. 

 

Condition 1. Extraction cost function is decreasing function with respect to the 

resource stock, that is ( ) 0c x′ <  

 

Condition 2. The population evolution function is positive, but is a decreasing 

function with respect to the resource stock, that is ( ) 0f x > , and ( ) 0f x′ < . 

 

Condition 3. We impose ( )*p c x>  which means that price is beneficial with respect 

to extraction cost. 
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The above imposed conditions seems to be in reality and if are they then the signs of 

both sides of equation ( )6  are negatives. 

Differentiation of the left hand side of equation ( )6  reveals the quantity 

          ( ) ( ) ( ) ( ) ( ) ( )* * * * * *
*

d c x f x f x c x c x f x
dx

⎡ ⎤′ ′′ ′ ′= +⎢ ⎥⎣ ⎦        ( )7  

which is clearly a positive quantity further imposing the next condition. 

 

Condition 4. Harvesting cost increases with respect to the population size with an 

increasing rate, that is ( ) 0c x′′ > . 

 

Quantity ( )7  ensures that the left hand side of equation ( )6  is an increasing 

function with respect to the equilibrium resource stock denoted by *x . Obviously if 

we assume the renewable resource grows up in an increasing rate, then the right hand 

side of equation ( )6  is a decreasing function of the equilibrium population variable 

*x . Consequently we have only one value of the variable *x  that satisfies equation 

( )6 . Since the left hand side of ( )6  is a strictly negative increasing quantity, if there 

exists a positive value of the variable x  such that the right hand side of the same 

equation vanishes, then we’ll have a unique steady state stock of the resource. The 

later requires harvesting cost to increase until the resource selling price p  for a small 

but positive value of the resource stock. In this way the last imposed condition must 

be the following. 

 

Condition 5. ( )
0

lim
x

c x p
→

>  

We record previous discussion into the next proposition. 

 

Proposition 1. The renewable resource harvesting model achieves a unique steady 

state equilibrium under the imposed conditions 1 – 5. 
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4. The second model 

Now we consider the problem of optimal harvesting policy of a renewable 

resource. Therefore we assume a representative agent that enjoys utility from 

harvesting of the renewable resource and utility is a function of the extraction rate 

( )q t  so it can be expressed implicitly as ( )( )u q t . As in the usual practice in order to 

form the standard optimal control maximization problem we must specify the 

equation for the resource accumulation. We construct renewable resource’s stock 

accumulation function as a function of the population evolution and the human 

harvesting. Therefore we accept from biology’s literature the following growth 

functional form[2]: 

 

                ( ) ( ) ( )g t t c tν ν⎡ ⎤= −⎣ ⎦  

 

Where ( )tν  is the resource stock and c  is a nature’s constant above the value of 

which population decays (i.e. diseases diffusion).  

With the previous population growth function acceptance the instantaneous change in 

the resource stock can be expressed as  

 

               ( ) ( ) ( ) ( )t t c t q tν ν ν⎡ ⎤= − −⎣ ⎦            ( )8        

 

where the harvesting effort ( )q t  reduces the renewable resource stock accumulation. 

The problem of the representative agent is now set as the utility maximization 

problem subject to resource accumulation constraint that is the problem  

             ( )
( )

( ) ( ) ( ) ( )

.
0

max

. .

t

q
e u q t dt

s t t t c t q t

ρ

ν ν ν

∞
− ⎡ ⎤⎣ ⎦

⎡ ⎤= − −⎣ ⎦

∫          ( )9  

which is an optimal control problem with the state and control variables ( )tν  and 

( )q t  respectively. 

                                                 
[2] The renewable resource’s population growth function is one of the acceptable functions from 
biology’s literature. A second well defined function could be the so called Gompertz growth function 
defined as ( ) [ ]1 lng x x x= −  with x  to denotes the renewable resource’s stock. 
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5. Equilibrium analysis 

We proceed with the equilibrium analysis for the described model. 

Proposition 2. Optimal trajectories of the state and control variables ( )* .ν  and ( )* .q  

satisfies the following differential equations 

                

( ) ( ) ( ) ( ) ( )

( )
( )( )
( )( )

( ) ( )2

2

10

2 11
du
dq

d u
dq

t t c t q t

q t
q t t c

q t

ν ν ν

ρ ν

⎡ ⎤= − −⎣ ⎦

⎡ ⎤= + −⎣ ⎦
 

Proof 

We form the Hamiltonian of problem ( )9  e.g. the function 

             ( ) ( ) ( ), , , tH t q e u q c qρν λ λ ν ν− ⎡ ⎤= + − −⎣ ⎦  

Conditions for the Pontryagin’s maximum principle are met consequently the time 

paths of the state and control variables satisfies the following system of equations: 

            ( ) ( ) ( )* *t t c qν ν ν ν⎡ ⎤= − −⎣ ⎦                    ( )12        

           ( ) ( )( )* * 2t t cλ λ ν= −                       ( )13  

         ( ) ( ) ( )* * * * *arg max t

q
q t e u q c qρ λ ν ν− ⎡ ⎤= + − −⎢ ⎥⎣ ⎦        ( )14   

where ( )tλ   denotes the shadow price of state variable ( )tν . 

Differentiation of the right hand side of ( )14  with respect to the control variable q  

reveals that the maximum determined from the following equation. 

                 
( )* t du q

e
dq

ρλ −=−                         ( )15  

Further differentiation of ( )15  w.r.t. time now yields 

         ( )
( ) ( )( )

( )
2

*
2

t t d u q tdu q
t e e q t

dq dq
ρ ρλ ρ − −= −             ( )16  

Substituting into ( )16  the ( )13  we now have 

      ( ) ( ) ( )* *t t c qν ν ν ν⎡ ⎤= − −⎣ ⎦ , ( )*
00ν ν=  

      
( ) ( )( )

( )
( )

( )
2

2 2t t td u q tdu q du q
e e q t e c

dq dq dq
ρ ρ ρρ ν− − −− =− −  

Solving last equation we derive the desired maximized solutions 

           ( ) ( ) ( )* *t t c qν ν ν ν⎡ ⎤= − −⎣ ⎦                      ( )17  
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           ( )
( )( )

( )( ) ( )2

2

2
du q t

dq

d u q t

dq

q t t cρ ν⎡ ⎤= + −⎣ ⎦                     ( )18  

as proposition 2 claims. 

 

We assume moreover for the constant c , that expresses the critical value 

above this the renewable resource stock decreases, satisfies the inequality  c ρ>  (the 

critical value is greater than the discount factor), then we record the next proposition. 

 

Proposition 3. There exists a unique saddle point equilibrium of the above model 

under the assumption c ρ>  that is given from the solutions of equations ( )17  and 

( )18 . 

 

Proof 

The system of ( )17  and ( )18  admits an equilibrium point in the positive quadrant. 

Clearly because 0du
dq

>  equilibrium determined as the intersection point of the 

parabola ( )q cν ν= −  and the straight line 
2

c ρ
ν

−
= . Now is easy verified that 

equilibrium point is the point ( )
2 2

, ,
2 4

c cq ρ ρ
ν

⎛ ⎞− − ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜⎝ ⎠
. 

In order to determine the solution behavior in a vicinity of equilibrium points we 

consider the Jacobian matrix of ( )17  and ( )18  at the point ( ),qν . Simple calculations 

shows that the Jacobian matrix of derivatives is given from the matrix ( )

( )2

2

2 1

2 0
du q

dq

d u q
dq

c ν⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

The characteristic polynomial of the above matrix is 2 a bλ λ− +  and 
( )

( )2

2

2
du q

dq

d u q
dq

b =  is 

the determinant of the matrix. With the assumptions that utility is increasing with 

respect to harvesting effort but with decreasing rate, that is 
( ) ( )2

20, 0
du p d u p

dp dp
> <  

obviously 0b< . The latter implies that characteristic polynomial has one negative 
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and one positive real root. Consequently solution ( ),qν  is a saddle point equilibrium. 

The isoclines are ( )q cν ν= −  for 0ν =  and 2
c ρν −=  for 0q = . The behavior inside 

the sectors is given from the following Figure 2. 

   

      

           p     

 

            2        

 

   

            4 

                              

                                      

                                                                        ν  

                                   2                      4 

Figure 2.α Phase diagram for the system  ( )17  and ( )18  
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Figure 2.β. Solutions of the system ( )17  and ( )18  
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7. Concluding remarks 

In this paper we show how methods of infinite horizon dynamic optimal control 

theory developed in the field of natural resource economics. We begin first with 

methodology analysis and second we propose two dynamical models of renewable 

resources.  

As methodology suggests main variables involved in an optimal control problem 

distinguished in the states and controls. A state variable is the variable that only 

monitors the state of the economic system that transferred form an initial point time to 

the terminal time. Control variables are the chosen policy instruments that aid the 

motion of the state to made in an optimal way. One other variable involved at the 

solution process is the so called costate or auxiliary variable that is the shadow price 

of the state. The vehicle through the latter variable enters into the maximization 

process is the well known Hamiltonian function. 

To that end we propose two dynamical models managing renewable resource 

extraction. Accepting optimal control theory we define as state variable the resource 

stock and as control variable the human harvesting effort. In the first model we 

assume a generalized population growth function in order to build the constraints 

under which representative firm’s utility maximization problem set and impose some 

reality conditions in order to conclude the unique equilibrium of the system. In the 

second proposed model we borrow from biology’s literature an admissible population 

growth function and found the conditions under which the unique saddle point 

equilibrium exists. 
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