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Introduction

INTRODUCTION

Cities are concentrations of people, and the essence of urban life is the presence,
for better and for worse, of many other people. It could be argued that the essence of
urban economics is therefore the analysis of externalities. Traffic congestion,
discrimination, pollution, and public services all involve externdlities, and al are
important matters of public policy. To design better policies, the implications of
externalities within a decentralized market system must be understood

The kind of interactions most often analyzed in economics are transactions of
ordinary private goods which are bought and sold by individuals at a market price.
This type of interaction aways involves flows in two directions. a payment is made
whenever agood istransferred. This book is concerned with interactions of a different
kind - with externalities and public goods, in particular.

Externalities arise when an agent does not compensate others for the effect of his
actions. Smokers who do not, for example, pay for cleaning windows, or for the
damage they may do to others' health, or for the discomfort they may cause, produce a
variety of externalities. Urban life, in fact, is filled with examples of externalities,
some of which we consider in this book: firms often prefer to locate in larger cities
because of the presence of other firms; individuals sometimes choose to avoid certain
nei ghbourhoods because of the presence of certain ethnic groups, commuters find their
travel costsincreased because others choose to travel at the same time.

Public goods are goods that are consumed jointly by many individuals. A
private good has the property that consumption is exclusive: if an individua eats an
apple, nobody else can eat the apple. In the case of a public good, such as national
defense, consumption of the good by one individual does not prevent others from
consuming the good at the same time. As it turns out, it is difficult to achieve an
efficient supply of a public good through the market, and most public goods are
provided by the government.

There are different degrees of publicness in different public goods. At one
extreme is the pure public good which is consumed by all individuals in the economy
simultaneously and which it is impossible to prevent anyone consuming once it is
supplied. The classic exampleis national defense. Most public goods are not purein
this sense, however. In this book we consider public goods which are jointly
consumed but only by those who live closer to the place of supply. Parks, street
lighting, or sidewalks are typical of such local public goods.

With the exception of Chapter VI, the book is concerned with the normative
aspect of externalities and public goods, or with what should be done if there are
externalities or public goods. There are two major issues in normative anaysis:
efficiency and equity. The aspect of efficiency is usualy represented by the concept of
Pareto optimality. An allocation is called Pareto optimal if nobody can be made better
off without making somebody else worse off. Pareto optimality ignores distributional
equity, however: the allocation with only one individual obtaining al the wealth and the
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rest of the population starving to death may well be Pareto optimal. Although the
problem of equity is extremely important, Chapter VI is the only chapter that deals with
the problem of income distribution, and our analysis there is descriptive rather than
normative.

For the sake of simplicity, we usually restrict our analysis to the case in which all
households obtain the same utility level, and then examine the optimum at which the
common utility level is maximized. Using this procedure, the income distribution is
necessarily the one that yields equal utilities. Since we are interested in the properties of
an efficient allocation in general, and not the properties of this particular income
distribution, it is fortunate that many of the results in the equal-utility case either apply
directly to more genera cases, or approximate the results in the general case at a Pareto
optimum.

The book therefore deals primarily with the efficiency aspect of externalities and
public goods. The best starting point for the analysis of efficiency is the Fundamental
Theorem of Welfare Economics. The Theorem examines the optimality of competitive
equilibrium, where competitive equilibrium is, roughly speaking, the alocation at
which supply equals demand for al goods, with all agents taking prices as given.
Assuming that all goods are private goods and that no externalities exist, it has been
shown that a competitive equilibrium is Pareto optimal under some mild regularity
conditions, and that under the additional assumption of convex preferences and a
convex production possibility set a Pareto optimal allocation can be achieved as a
competitive equilibrium. Thus in the sense of Pareto, competitive equilibrium is
optimal. Thisresult, however, breaks down if there are externalities or public goods.

In making decisions, individuals who generate externalities do not take into
account the external effect on others. Their decisions therefore must be corrected to
include the externa effects. Introducing a Pigouvian tax/subsidy is one way of
modifying individual decisions in order to achieve an efficient allocation. When, for
example, there is traffic congestion producing an externality among travelers, a
Pigouvian tax on congestion can be imposed. An efficient alocation results if the tax
each traveler pays is equal to the marginal cost she imposes on others by traveling.
The problem with the Pigouvian tax/subsidy is that it usualy requires very high
administrative costs. Chapter 11 considers the case of a special kind of Marshallian
externality, and explores the possibility of internalizing the externality through the
ownership of land.

Schemes for making agents pay all the costs they impose on others are sometimes
too costly. Policy makers may then want to achieve the best allocation possible when
relative prices are distorted by an unpriced externality. This is the second best
problem. The second best problem turns out to be much more complicated than the
first best. In Chapter V, we examine an example of a second best problem - deciding
how much road to build when congestion tolls cannot be levied.

A public good is supplied efficiently if the marginal cost is equal to the sum of the
marginal benefits received by al individuals who consume the good. It is, however,
extremely difficult for the supplier of the public good to know how much people
benefit. In Chapter 111, we examine whether it is possible to devise a competitive
system that achieves an efficient alocation of local public goods.

We analyze externalities and local public goods within extensions of a standard
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residential-land-use model. The basic features of our cities are as follows. A city is
built on a flat featureless plain.  All residents in the city work in the central business
district (CBD) at the center. People in our model travel only between their homes and
the CBD. Travel is equaly costly in al directions, so that the only spatia
characteristic of any location that matters is the distance from the city center. We can
therefore treat the city asif it were one-dimensional.

The city may be closed, in which case the population of the city is fixed; or open,
in which case migration into and out of the city is alowed. We often consider the
extreme case of an open city which is small compared with the rest of the world, so that
the utility level of the residents is fixed from outside. We also consider an economy
consisting of many cities.

We consistently assume that commuting costs are the only transportation costs
incurred in the economy. This assumption is a reasonable first approximation, since
transporting human beings is much more costly than transporting most commodities.
The way transportation costs are introduced marks the boundary between conventional
location theory and the approach based on residential land use which was called the new
urban economics by Mills and MacKinnon (1973). In location theory, there are no
commuting costs, nor even workers, but transporting goods is costly.

One of the advantages of our approach is that we can assume without being
logically inconsistent that producers are perfectly competitive, since if there are no
transportation costs for products, they compete each other directly in the world market.
In location theory a producer has monopoly power in the market area surrounding his
factory because more distant producers have higher transportation costs. Competition
occurs only at the boundary between different producers, and if a producer raises the
price of the product, his market area becomes smaller but, in contrast to what happens
in the case of perfect competition, demand for his product does not fall to zero. Since
we avoid the complications arising from the monopolistic element, we can introduce
other complications, such as externalities, without making the analysis intractable.

It is not our purpose to elaborate a comprehensive theory of urban externalities.
Rather, we isolate each particular kind of externality in a very ssmple model, and focus
on its specia properties. We often concentrate on polar cases to obtain clear-cut
results. In those cases the results should not be taken too literally: they simply
illustrate the directions of basic forces which operate in more general cases.

This strategy reflects our belief that the only way to understand a very complex
real world is to construct ssmple imaginary world, each of which includes one, or afew,
important aspects of the real world, and to study their workings. Once we understand
the simple models, they can be made more complicated by combining them or by
introducing more realistic elements, and eventually we may understand all the important
aspects of thereal world.  This view was eloquently expressed by R.M. Solow (1973) :
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Simplifying assumptions are not an excrescence on model-building; they
are its essence. Lewis Carroll once remarked that a map on the scale of
one-to-one would serve no purpose. And the philosopher of science
Russell Hanson noted that if you progressed from a five-inch balsa wood
model of a Spitfire airplane to a 15-inch model without moving parts, to a
half-scale model, to a full-size entirely accurate one, you would end up not
with a model of a Spitfire but with a Spitfire. He then remarked that if
you equipped the Spitfire with illuminated tubing in red, blue and green to
illustrate the fuel, ignition and hydraulic systems, it would again be a kind
of model but mainly by virtue of its differences from the real thing.

Our analysis is confined to the economic aspect of cities. Sociological and political
aspects enter our analysis only as an environment which is taken as given. Narrowing
our scope allows us to use some of the more powerful tools from the economist's tool
kit. We hope that the precision we gain justifies the generality we lose.

Asin standard economic theory, we assume that rational individuals act according
to consistent preferences which can be represented by a well-behaved utility function.
Although we do not believe that al people behave rationally al the time, it is clearly a
better assumption than that people are aways fools, for example, or that every decision
is made by flipping a coin. The limits of the assumption, however, must be borne in
mind.

The organization of this book is asfollows. In Chapter I, we formulate a simple
residential land use model which serves as the basis for later developments. The
model captures the trade-off between commuting costs and lot size in the simplest
possible form. In order to compensate for arise in commuting costs, the lot size must
increase with distance from the center, which is made possible by a fall in land rent.
We introduce the concepts of a closed city and a small open city, and analyze both
competitive equilibria and optimal allocations.

We develop a model of an economy consisting of many cities in Chapter I, and
analyze the optimum and market city sizes. Two cases are considered: one is the case
of scale economy internal to a firm and the other is the Marshallian externality case
with scale economy external to afirm but internal to acity.

Local public goods are introduced in Chapter 111.  We examine how the optimal
supply of local public goodsis achieved in a decentralized market system.

Traffic congestion and land use for transportation are introduced in Chapter 1V.
The optimal alocation requires that congestion tolls be levied and that roads are built to
equate the marginal saving in transportation costs from widening the road with the land
rent. Because of huge administrative costs, however, it is usually impossible to levy
the optimal congestion tolls. In the absence of congestion tolls, the investment
criterion of roads must also be modified. In Chapter 1V we compare the optimal
allocation with the market equilibrium where congestion tolls are not levied and roads
are built according to the usual benefit-cost criterion. Since the usual benefit-cost
criterion of comparing the saving in transportation costs with land rent is misleading
when congestion tolls are not levied, we, in Chapter V, explore the second best
alocation in which roads are built optimally under the constraint that congestion tolls
areimpossible.
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In Chapter VI externalities between different types of individuals are introduced.
Assuming that one type, called discriminators, suffers external diseconomy from the
presence of the other type, called nondiscriminators, in their neighbourhood. We
examine what kind of spatial pattern emerges given the externality. Using the model
we analyze the possibility of a so-called cumulative decay process of acity.

Capital accumulation isintroduced in Chapter V11 and optimal growth of a system
of identical citiesis analyzed. The maor question asked in the chapter is whether the
city size increases in the process of capital accumulation.

There are four appendices after the main text. Appendix | analyzes a problem
that arises in Chapter I. In Chapter I, it is found that households receive different
utility levels at the Benthamite optimum.  We will explore the reason why utility levels
are different even though the Benthamite social welfare function is egalitarian.
Appendix Il extends the analysis of local public goods in Chapter 111 to a more genera
model. Appendices Ill and IV develop two useful mathematical tools. In Appendix
[11, the Envelope Theoremis explained and properties of the indirect utility function and
the expenditure function are derived as applications of the Theorem. Appendix 1V
gives a brief review of optimal control theory, which is used extensively in this book.

It is probably useful to note here that equations from preceding chapters are
referred to by adding the chapter number: for example, Equation (2.1) in Chapter | is
called Equation (1.2.1) in other chapters.

REFERENCES
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CHAPTER |
THE BASIC MODEL

The simple residential land use model developed in this chapter will be used later
to analyze urban externdlities. It is helpful, however, to examine competitive
equilibrium and optimal allocation in the basic model first, aswe do in sections 1 and 2
respectively.

The size and form of a city are at least partially determined by the market
decisions of households which buy or rent housing. The decisions involve hundreds of
factors such as the size of a lot, the size of a house, distance to the workplace,
neighbourhood characteristics, the quality of the schools, the property tax rate and so
on. Although all of these factors are important, in this chapter we concentrate on one
of the most important: the trade-off between accessibility and lot size.  Our households
are constantly asking "shall we live in atown-house near work or on alarger lot in the
suburbs?'.

To avoid unnecessary complications, we make the following assumptions:

(@) In our city the central business district (CBD) is the only center. All city
residents work in the CBD and commute from the surrounding residential area.
This assumption does not, as it turns out, affect the residential pattern: the
qualitative results are essentially the same in a multi-centered model .1

(b) All households are identical. They have the same preferences and the same
number of workers. For simplicity, we assume that each household has one
worker. All the workers are assumed to have the same skill. These
assumptions are important in deriving some of the results. The assumption of
the same skill can be easily relaxed, but it is difficult to obtain clear-cut results
in amodel with different preferences unless the difference in preferences is of
aparticularly ssmple nature.

(c) The only transportation costs incurred are the costs of commuting to the CBD,
either to work or to shop. The value of commuting time is constant for any
amount of commuting time and the same for all households. Time costs are
included in the pecuniary costs of transportation. These assumptions are
easily relaxed.”

(d) An individual may reside at only one location. This assumption eliminates,
for example, households with an apartment in the city and a house in the
suburbs. The actual number of such households is so small that they can
safely be ignored. As will be seen in Appendix | on equality and the

1 However, it is not easy to determine the number, locations and sizes of centers. Once they are
determined, the residential patterns are obtained in essentially the same way as in a monocentric model.

2 Henderson (1977), for example, uses amodel with time costs.
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Benthamite function, this assumption introduces nonconvexity, and is a major
departure from the standard neoclassical theory.

(e) Housing capital can be instanteously adjusted.  Although housing isin reality

adurable good, we assume that all the characteristics of houses such asthe size
of a lot and the size of a house can be changed instantaneously. Ours is,
therefore, a city at the imaginary long-run stationary state, in which the
capital-land ratio is aways perfectly adjusted. Analysis is smplified by this
assumption, yet many of the results obtained in the simple polar case carry
over to more complex cases. Even if different results are obtained, it serves
as a useful reference point and illustrates the basic mechanism.  Furthermore,
the comparative static results of long-run equilibria suggest the direction of
change of an urban economy to policy changes.
If we further assume that the relative prices of housing capital (buildings) and
other consumer goods do not change, then by Hicks Aggregation Theorem
houses can be treated as part of the consumer good.3 The assumption allows
us to concentrate on the amount of land used for housing.

(f) Transportation requires no land input. We aso assume away traffic
congestion so that commuting costs are simply a function of the distance from
the CBD. Thisassumption will be relaxed in Chapters1V and V.

(g) There are no externalities and no public goods. This assumption will also be
relaxed in later chapters. Externalities among producers will be examined in
Chapter I1; local public goods in Chapter 111; traffic congestion in Chapters 1V
and V; and externalities between different types of individualsin Chapter V1.

1. Market Cities

In this section we analyze competitive equilibrium of a city. The equilibrium
spatial structure is examined in subsection 1.1. It is assumed that all residents receive
the same income. Because everyone is assumed to have the same utility function, the
utility level must be the same everywhere in the city. Land rent, thus, declines with
distance from the CBD to offset an increase in commuting costs. As the relative price
of land falls, consumption of land increases while consumption of the consumer good
decreases. It follows that population density declines with distance from the center, as
observed in most citiesin the world.  Furthermore, if the commuting cost is alinear or
concave function of distance, the rent function must be a convex function of distance.

We consider different income classes in subsection 1.2 although we continue to
assume that households are identical in al other respects. all households have the same
preferences and transportation costs.  Under these assumptions, richer households live
farther from the center than poorer households if land is a normal good. This result
follows from the fact that richer households have a flatter rent curve at the boundary.
The rent must fall with distance from the center in order to offset an increase in
commuting costs, but the required fall is smaller for richer households since under the
normality assumption they consume more land, and therefore benefit more from the
same fall inrent.

3 See Hicks (1946, pp. 312-313).
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In subsections 1.1 and 1.2, the utility levels and the incomes of residents are left
undetermined. Two ways of determining these variables are introduced in subsections
1.3and 1.4. The more popular formulation is that of a closed city, which assumes that
the population of a city is given. This type of model may be interpreted as dealing
with a time period long enough to attain an equilibrium within a city, but too short to
allow migration between cities. Since it takes along time to change the housing stock,
this interpretation is somewhat schizophrenic.

It is more consistent to interpret the closed city model as the long-run stationary
equilibrium of a closed homogeneous economy with given population, a given number
of identical cities and an insignificant rural sector. The population of a single city is
then given by ssmple division.

As anatural extension of this interpretation, we can take the number of cities as a
variable. A non-urban sector such as an agricultural sector can also be introduced so
that migration between urban and nonurban sectors can be analyzed. These extensions
are considered in the next chapter on city sizes.

In subsection 1.4 we examine a small "open" city, where openness means that
migration of households and transportation of products between cities are costless and
otherwise unrestricted. In an open city, commodity prices and the utility level of
residents are equal to those in the rest of the economy. When an open city is small
compared with the entire economy, any change in allocation within the city will spread
over the whole economy and local prices and utility level will not be affected
significantly. Prices and the utility level may, therefore, be taken as given for the city.

This modél is appropriate when the long-run allocation of a city is the focus. A
city administrator, for example, may want to adopt this model to analyze the long-run
effects of hispolicies. The model may also be applied to cities in developing countries
with surplus labour, or to citiesin asmall country which allows free migration.

In both open and closed cities we have to distinguish between the
"absentee-landlord" case, in which land is owned by absentee landlords who spend
their incomes outside the city, and the case of "public ownership”. In our treatment of
public ownership a city government rents the land from agricultural landowners at the
agricultural rent and sublets it to households at the market rent, using the net revenue to
subsidize city residents equally.

1.1. The Spatial Structure of a Residential City

Consider a city in a featureless agricultural plain. To simplify exposition, we
assume that production does not require space, so that the CBD is just a point.# The
residential zone extends to distance X from the CBD. The analysis may be applied
to any shape, but it is often easiest to imagine dealing with a circular city. Inany ring
between radius x and x+dx, there are 6(x)dx units of land available, out of which
L, (x)dx unitsare used for housing. The structural component of housing is included

in the composite consumer good. At the edge of the residential zone the residential

41t is not difficult to introduce land use for urban production. See Appendix I for this extension in the
context of local public goods.
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rent must be equal to the rural rent.

One person from each household commutes to the CBD. The commuting costs,
t(x), for ahousehold at a radius x, are assumed to be an increasing function of distance

from the center:
t'(x) >0 . (1.2

Consumption of the composite consumer good, which includes buildings, and
consumption of land for housing are denoted by z(x) and h(x) respectively.

Transporting the consumer good is

Figurel. Theresidential zone

costless.  All households have the same quasi-concave utility function,
u=u(zh) . (1.2
We assume that the utility function is appropriately differentiable, although it is not
necessary for all the results that follow.
The budget constraint for a household at x is
1(X) =y -t(x) = z(x) + R(x)h(x), (1.3)
where 1(x),y, and R(Xx) are respectively the income net of the commuting costs, the

grossincome, and the residential land rent. The rent function, R(X), provides the rent

for a unit area of land at any given radius. The gross income is assumed to be the
same for every household. How the income level is determined will be specified later.
Note that the consumer good is taken as the numeraire.

A household maximizes the utility function, (1.2), subject to the budget constraint,
(1.3). Thefirst order condition for this maximization problemis

“h =R(X), 0 1.40

where subscripts h and z denote partial derivatives with respect toh and z. Thisisthe
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familiar condition that the price ratio and the margina rate of substitution are equal.
From this first order condition and the budget constraint, demands for the consumer
good and land can be written as functions of the net income, 1(x) =y-t(x), and land

rent, R(X):
z(x) = Z(1 (x), R(X)) , (1.5)
h(x) = h(l (x), R(X)) . (1.6)

Since these functions describe the levels of demand obtained at a fixed income
level, they are nothing but uncompensated (or Marshallian) demand functions. By
substituting (1.5) and (1.6) into the utility function, we obtain the indirect utility
function,

V(1 (3, R(x) = u[2(1 (), RO9), h(1 (9, RO, (1.7)
which describes the maximum utility level available to consumers, given the net
income, |(x), andlandrent, R(X).>

The demand functions satisfy the following useful relationships obtained by
differentiating the budget constraint (1.3):

h+Rh, +2,=0 , (1.8)
R, +2 =1 , (L9)

where subscripts R and | denote respectively partial derivatives with respect to R(X)
and 1(x). Using these equations, we can see that the indirect utility function satisfies
Roy's I dentity®:

Vg =-Vv,h . (1.10)

Since households are identical, in equilibrium the utility level must be the same
everywhere in the city. Otherwise, households at a place of lower utility level have an
incentive to relocate, and the allocation cannot be a market equilibrium.  Thus the land

S See Section 3 of Appendix 111 on the envelope property for discussions of the indirect utility function in
conjunction with the Envelope Theorem.

6 Roy's Identity is derived in the following way. From (1.7), partial derivativesof v(I,R) aregiven by

- Uy~
Vg = uz[zR +—th]
uZ

v, = uz(il +iﬁ, ] O
l"IZ
Inview of (1.8) and (1.9), substitution of (1.4) into these equations yields
Vg =-v,h .

See Section 3 of Appendix |11 for a more elegant way of deriving Roy’s Identity which makes use of the
Envelope Theorem.

10
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rent must satisfy

v(y —t(x),R(x)) =u =const. , (1.11)
which can be solved for R(x) toyield

R(x) = R(y —t(x),u) . (1.12)

This function is called the bid rent function. It describes the maximum rent
which a household can pay at a particular distance from the center if it is to receive the
given utility level. If the utility level and the income level are known, the bid rent
function givesthe equilibrium rent. Thisis merely aresult of the rational behaviour of
households. If, for example, the actual rent were lower than the bid rent, it would be
possible to achieve a higher utility level, and a rational household would not fail to do
so. The actual rent cannot be higher than the bid rent simply because it is impossible
to pay any higher rent and achieve the given utility level. The bid rent function is
extremely useful in a model with one type (or a few types) of households, since in each
type the income and the utility level must be the same at any distance from the center.
The bid rent function summarizes, in a single function, the rent profile that is
compatible with the given income and utility levels.

At the edge of the city, where x =X, theresidentia rent
must equal the rural rent Ry:

R(X)=R, . (1.13)

Given the levels of income and utility, (1.12) and (1.13) completely determine the
rent profile. Once the rent profile is determined, the alocation of a city is fully
characterized, since (1.5) and (1.6) give the consumption of the consumer good and of
land for housing at each location.

In this smple model, the transportation cost function and the utility function
completely determine the spatial structure of the city as Figure 2 illustrates. Consider
any two locations, x, and x,, where x iscloser to the center than x,. Inspection
of the budget constraint (1.3) shows that a budget line intersects the vertical axis at
y—t(x). Since the utility level is maximized under the budget constraint, the budget
line must be tangent to an indifference curve at the optimum. If the utility level is the
same everywhere in the city, households are on the same indifference curve, u, at any
location x. The budget line is thus fully determined and the consumption of the
consumer good and land can be read off.

11
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Iixl.z

HooMg *) o hf:lﬁ htxi} h

Figure2. Allocation in the basic model

The bid rent is given by the slope of the budget line. Convexity of indifference
curves implied by quasi-concavity of the utility function ensures that the bid rent is
lower at x, than at x,. That is, the bid rent curve, R(l(x),u), is a decreasing

function of distance x from the center. Furthermore, the lot size increases and the
consumption of the consumer good decreases with distance from the center, as
households substitute land for the consumer good.

More precise properties can be derived by using calculus. From (1.11) and Roy's
Identity (1.10), the rent profile satisfies the following simple relationships:

R =1/h(X) (1.14)
R, =-1/v,h(x) . (1.15)

Thus, demand for land is a reciprocal of the partial derivative of the bid rent function
with respect toincome. Differentiating (1.12) and substituting (1.14) yields

R'(x) =-t'(x)/h(x) <0, (1.16)
which shows that the land rent declines with distance from the center.

If demand functions are obtained for a given utility level instead of a given
income level, we have compensated (or Hicksian) demand functions:’

Z(x) = z(R(x),u) (2.17)
h(x) = h(R(x),u) (1.18)

7 See Section 3 of Appendix |11 for a derivation of the compensated demand function and its properties
from the expenditure function.
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The compensated demand functions are useful since the signs of partial derivatives are
unambiguous:

2,20 (1.19)
hg <O. (1.20)

The first inequality is a result of the fact that if there are only two goods, they are
always net substitutes. The second inequality represents the elementary property that
the (own) substitution effect is negative.

Theslopesof z(x) and h(x) areobtained from (1.16), (1.19) and (1.20):

Z(x) =zzR'(x) = —% z,<0 (1.21)
h'(x) = h;R'(x) = —% hg 20. (1.22)

The consumption of the consumer good is a nonincreasing function and the lot size a
nondecreasing function of distance. The latter property is used by urban economists to
explain the fact that the population density declines with distance from the center in
most cities.

Differentiating (1.16) again, we obtain
gy — LX) ()
R"(x) = h +(h(x))2t(x) (1.23)

From (1.22), a sufficient condition for R"(x) >0 isthat t'(x) is nonpositive. This

yields another well-known result: if the commuting cost is a linear or concave function
of distance fromthe CBD, the rent function is convex.

We were able to treat z(x) and h(x) as choice variables because we assumed

that housing capital is extremely cooperative. We have ignored a very important
aspect of the housing market: the durability of the housing stock. The model therefore
describes a long-run stationary state which may never come to exist. In order to
introduce durability we would have to develop a dynamic model, making analysis much
more complicated.

1.2. Several Income Classes

The above analysis can be easily extended to include different types of
households.8 In this section we consider the case where there are two income classes.
For simplicity, and in accordance with empirical observations, land is assumed to be a
normal good:

8 Although everybody is assumed to have the same skill, households can have different incomes since
they may own different shares of firms and land.
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h[1(X), R()] >0.

Assuming normality, we can show that there is segregation by income: the
residential zone is divided into two rings, each occupied by one income class.
Moreover, we can show that the richer group lives in a ring farther from the center,
which agrees with the actua residential pattern in most American cities. The
argument is quite direct.

Space is occupied by those who are willing to pay the highest rent for it. In
other words, the equilibrium rent at any point is simply the highest of the bid rents at
that point. Now, the bid rents are functions of income and utility levels, and the rich

have higher incomes than the poor: y" > y*.

At some radius x*, rich and poor living in the same city must live side by side.
This radius is the boundary between two rings of households with different incomes.
At this location the two income groups must pay the same rent. From (1.16), the bid
rent function is steeper for the lower income group since t' is the same for both groups,
and by the normality assumption the lower income group consumes a smaller amount of
land. It follows that the richer income group has the higher bid rent outside x* and
lives there. Thus the equilibrium residentia pattern is complete segregation with the
richer income class living in the outer ring.2

q

Riy =ti(x],u’")

i riyPetix), uf)

Wil I--

Figure3. Two income classes

The flatter bid rent curve of the rich can be understood as follows.  Suppose that
as a poor household moved outwards, the loss of utility due to increased commuting
costs was just offset by an increase in utility arising from increased land use. Clearly,
thisis possible only if the rent on aunit of land falls. But since richer households have
larger lot sizes, the same decline in rent alows them larger savings in the total

9 For arbitrary utility levels, it is possible that the bid rent of one income class is higher than that of the
other everywhere in the city. In such a case only one income class lives in the city. The utility levels
must be adjusted in order for both groupsto live in the city.
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expenditureson land. Richer households, therefore, benefit more from the same fall in
rent and would be willing to accept a smaller decline in rent as they move outward.
The bid rent curve of the rich thus falls less rapidly with distance from the center.

This result has been used to explain the residential pattern observed in the United
States. However, it crucially depends on the assumption that all income classes have
the same commuting costs. Since time costs constitute a large portion of commuting
costs, richer households may live closer to the center if their value of time is much
higher than poorer households. This may explain why the opposite spatial pattern is
observed in most cities in Europe, Latin America and Japan, as well as the existence of
high-rent luxury apartments near the center of most cities. According to an empirical
study (1977) by Wheaton, if time costs are taken into account, the tendency of wealthier
households to move to the periphery is weak even in American cities. This suggests
that the observed pattern is mainly caused by other factors, such as the concentration of
older housesin central cities.

1.3 A Closed City

In the previous subsection, important variables such as incomes and utility levels
were left undetermined. In this and the following subsections, different ways of
determining them are introduced. For simplicity, we consider cities with only one
income class.

The analysis in subsection 1.1 shows that the allocation of a city is completely
determined by utility maximization of households and spatial arbitrage, if the utility
level, the income level and the size of the city are specified. Since we already have
condition (1.13) as one of the three equations required to determine these variables,
only two more equations must be specified.

In this subsection, we consider a closed city; immigration into and out of the city
Is impossible and therefore the population is fixed. For convenience, the population is
identified with the number of households. Denoting the total population of the city by
P, the population constraint is

p= jox N(X)dx (1.24)

where N(x)dx isthe number of households living between x and x+dx. Recalling
that L, (x) and h(x) denote respectively the total land available for housing and the
lot size at radius x, we can write N(X) as

Ly (X)

N(x) = 1.25
(X) h(x) (1.25)

The aggregate production function is
Y=F(P), (1.26)

where all factors other than labor are assumed to be fixed and suppressed. If a city
resident is paid the value of the marginal product of labor, the wage rate is given by
w=F'(P). If city residents collectively own firms and factors other than labor, a city

resident will receive the average product, F(P)/P. In either case wages are a fixed
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amount w if the population is fixed.

Income may differ from wages depending on the treatment of land rent. We
consider only the two polar cases, the "absentee-landlord” case, and the
"public-ownership” case. Intermediate cases are left to the reader. In the
absentee-landlord case, land is owned by landlords who do not live in the city, and the
rent is spent outside the city. The income of aresident is simply the given wage rate:

y=w. (1.27)

(1.24) and (1.27) give our missing two equations and the alocation of the city is
completely determined.

The absentee-landlord case is used more often in descriptive analysis to avoid an
artificial ingtitutional arrangement.  If the optimality of an allocation is a major issue,
however, the absentee-landlord case is not convenient because the welfare of absentee
landlords has to be taken into account, forcing us to compare utilities of landlords and
tenants. We shall therefore adopt the public-ownership framework in normative
analysis.

For the public-ownership case we assume the following rather artificia
institutional arrangement.  The city residents form a government which rents the land
for the city from rural landlords. We assume that landlords cannot obtain any
monopolistic power, so that the city government needs only to pay the rura rent R..
The city government, in turn, subleases the land to city residents at the competitively
determined rent, R(X). The net revenue is divided equally among households.

There is 6(x)dxof land between x and x+dx, out of which the city sublets
L, (x)dx to city residents and uses the rest for public purposes such as roads and parks.
The net revenue of the government is then given by

[ TROILY (9 - RA(]ax

The income of a household is the sum of wages and the "social dividend" it receives
from the city government:

1 ¢x
y=w+— jo [ROX)L; () = R,8(X)]dx (1.28)
We temporarily assume that the entire land is rented to city residents for residential use:
L, () =6(x) 0<x<X (2.29)

We shall relax this assumption in Chapter 1V when we introduce land for transportation
use.

(1.28) describes how factor incomes are allocated.  If we consider how the goods
are allocated, the following constraint is obtained:

Pw = [*{[209 + )N () + Re8(}ex (130

The city residents collectively command Pw units of the consumer good, which are
consumed or spent on commuting costs and the payment of the rura rent. This
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constraint is a resource constraint that the city faces and will be used in the
optimization framework. The equivalence of (1.28) and (1.30) can be readily derived
by using the budget constraint (1.3).

1.4 A Small and Open City

A perfectly closed city is one where migration in and out is impossible. It is
useful to consider the case in which migration is possible.  We assume that migration
of households and transportation of products between cities are completely costless.
We further assume that the city is so small that any change within the city does not
affect the outside world. Prices and the utility level within the city, therefore, equal
world levels and may be taken as given.

Since the population size is endogenous in an open city, wages cannot in general
be taken as exogenous.10  Therefore, the income of a household is

y =w(P)
in the absentee-landlord case, and

y=Mm+%ﬁhuan—@mMm

in the public-ownership case. Either of these equations, if coupled with (1.24),
determines the population size and the income level, and thereby completely specifies
the resource allocation in the city.

Although it is possible that the city government would be controlled by old
residents who treat newcomers differently, as in some of the club theory literature, for
example, McGuire (1974), we shal not pursue this line here. We assume that
newcomers receive al privileges of citizenship including a share of net city revenue.

If acity is not small but open, a case intermediate between a closed city and a
small city is obtained. Given the total population of the economy, the population of
the rest of the economy can be expressed in terms of the population, P, of the city.
When households leave the city, the margina product of labour rises in the city and
falls elsewhere, as aresult of diminishing returns.  Since migration is free, equilibrium
will be reached when the utility level outside the city, V(P):V'(P) >0, equals the

utility level in the city:
u=V(P).
This condition replaces the fixed-population constraint in a closed city and the

fixed-utility constraint in a small city. This more general formulation will be used in
Chapter VI. Note that the polar cases of V'(P)=0 and V'(P) = yield a small

city and a closed city respectively.

10 1, however, constant returns to scale are assumed and a resident receives the average product, w is
constant. This assumption is quite often made (at least implicitly) in the literature.
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2. Optimum Cities

To obtain an optimal allocation, an objective, or criterion, function must be
specified. Probably the most natural one is a Benthamite social welfare function
which isthe sum of the utilities of individual households,

Jju(z(x), h(X))N(x)dx. 2.1)

Note that the Benthamite social welfare function requires that utility be cardinal.1l In
addition it is commonly assumed that the margina utility of income decreases as
income increases. Thisis a cardinal property and it is represented by the assumption
that the utility function is concave.

We can imagine the Benthamite optimum being achieved as follows.12 Let an
individual choose the optimal resource allocation, including income distribution, based
on her own selfish preferences. Decisions must be made, however, "behind the veil of
ignorance”: she must not know which of the residents she will become. If she has an
equal chance of becoming any of the residents, her expected-utility maximization is
equivalent to maximizing the Benthamite social welfare function.

It turns out that at the Benthamite optimum the utility level varies with the
distance from the center. When land is a norma good, the utility level rises with
distance from the CBD. It aso turns out that for an appropriate unequal income
distribution the corresponding competitive equilibrium exactly replicates the optimum
solution.

Theorists have been intrigued to find that the optimal utility levels differ among
locations even though the social welfare function is egalitarian. This result is
surprisingly robust, at least among additive social welfare functions. It can be
explained as follows. Because of the difference in commuting costs, identical
households at different locations have different capability to generate utility from the
same amount of resource. The Benthamite optimum, therefore, is attained if more
resource is allocated to the more efficient households.

As Appendix | shows, the difference in the efficiency with which households
realize utility from their commodity bundles arises from the most fundamental
properties of our spatia alocation problem. We assumed that a household cannot live
at more than one location. Each household, therefore, must choose one location, and
every location has an associated commuting cost. Identical households with equal
incomes, once they choose different locations and hence different consumption bundles,
arein effect no longer identical. If households are able to divide their time among two
or more residences, however, every household faces the same opportunity set and the
inequality of utility levelswill disappear.

11 utility is merely ordinal, any monotonic transformations of a utility function are considered as
equivalent. A monotonic transformation can, however, yield a different Benthamite optimum. In order
to obtain the same Benthamite optimum, we must assume that utility functions are equivalent only up to
linear transformations, i.e., utility is cardinal.

12 see, for example, Arnott and Riley (1977).
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Even if the social welfare function is made more egalitarian by taking a concave
transformation of the utility function - that is, if anew socia welfare function,

on Au(z(3).h(NIN (x)ax,

Is adopted - the optimal allocation continues to have unequal utility levels. This
conclusion follows immediately from the observation that even if we redefine the utility
functionas U (D = ¢(u(0), our assumptions on the original utility function still hold for

the new one.

The only way of obtaining an equal utility level with an additive social welfare
function is to take a limit coinciding with the Rawlsian welfare function, which
maximizes the minimum utility level. For example, Dixit (1973) considered the
welfare function

Jj—u(z(x),h(x))_m N(X)dx

and obtained a uniform utility level by taking the limit as m - . Appendix |
contains a detailed discussion of why utility levels differ between different locations
except in the limit.

Some economists prefer the Benthamite welfare function on the grounds that the
Rawlsian welfare function has the undesirable property of ignoring the welfare of all
but the poorest individual. Although the Rawlsian function is the only additive social
welfare function that yields equal utility, there are other nonadditive functions that will
do. Asshown in Appendix I, equal utility requires social welfare indifference curves
to have sufficiently strong kinks on the line where utility levels are equal.

Except in this section we will consider only cases where utility levels are equal
for identical households. The reason is twofold. First, this case is mathematically
more tractable, and easier to compare with the market equilibrium. Second, readers
might object to giving different utility levels to households which differ only in the
location of their residences.

2.1 A Closed City

In this subsection, we consider optimal allocation of a closed city. Only the
public-ownership case is analyzed because in the absentee-landlord case the welfare of
absentee landlords must be taken into account, which destroys the simple structure of
our problem. The total amount, Y, of the consumer good produced in the city is used
for direct consumption, transportation, and the payment of therura rent. Theresource
constraint for the city isthen

¥ = [[(200 + LN () + R,8()]dx (22)

which corresponds to (1.30) in the previous section.  The city
also faces the population constraint, (1.24), and the land constraint,

6(x) = N(x)h(x), 0<sx<X (2.3)
Theland constraint is obtained by combining (1.25) and (1.29).
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The objective function is the Benthamite social welfare function (2.1). The
Lagrangian for this problem is

A= [U(z00, )N I+ Y - [ [0 +tING) + R O]
+ y{P - J‘OX N (x)dx} + J: ﬂ(x)[e(x) - N(x) h(x)]dx : (2.4)

where 0, y and u(x) are respectively Lagrange multipliers associated with (2.2),
(1.24) and (2.3). O can be interpreted as the shadow price of the consumer good,
the shadow 'price’ of a household (with the total production in the city fixed), and (X)
the shadow rent of land, al in utility terms. The shadow 'price’ of a household may
sound peculiar, but it naturaly appears in our problem because an increase in
population changes the maximum value of the Benthamite social welfare function.
The choice variablesare z(x), h(x), N(x),and X,where z(x), h(x),and N(x) are
chosen at each x between 0 and X.

As shown in section 4 of the appendix on optimal control theory, control theory

may be applied to this problem and the following first order conditions are immediately
obtained:

u, (z(x),h(x)) =o0 0<x<X, (2.5a)

u, (z(x),h(x)) = p(x) O 0<x<X, (2.5b)

u(x) = A[z(x) +t(x)] + L(Yh(x) +y, 0<X<X, (2.50)

[u(x) = 8((%) + (%)) = yIN(X) = RH(X) (2.50)
Using (2.5¢), (2.5d) can be written

H(X) = R, (2.5d)

(2.58) and (2.5b) require that the marginal utility of the consumer good equal its
shadow price, and that the marginal utility of land equal the shadow rent at each radius.
(2.5c) means that the utility level of a household equals the shadow vaue of its
consumption bundle plus the shadow 'price’ of a household. A household a x
contributes to the social welfare by u(x), but consumes resources whose value is
I[z(x) +t(x)] + u(x)h(x). The difference is the marginal social value of a household,
or the shadow ‘price’ of a household, y. According to (2.5d'), the shadow rent of the
city equalsthe rural rent times the shadow price of the consumer good at the optimum.

If the utility function is concave and land is a normal_good, we can aso show that
the utility level rises with distance from the center at the Benthamite optimum.
Differentiating (2.5¢) with respect to x and substituting (2.5a) and (2.5b) yields

H'(X) =-&'(X)/h(x) <0. (2.6)

Thus the shadow rent is a decreasing function of distance from the center. The desired
result followsif the optimal utility level is a decreasing function of the shadow rent.

Implicit differentiation of (1.3) and (1.4) yields the income derivative of the
uncompensated demand function for land:
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~ u
h (I,R) = Ez(uhzuz ~UyUz) 0 (2.7)

where
D =2u,,u,u, —u’u,, —uiu, O (2.8)

Since D is nonnegative when the utility function is quasi-concave, (strong) normality of

A

land, h, >0, impliesthat

u,u, —u.u,>0. (2.9)

From (2.5a) and (2.5b), z(x) and h(x) can be written as functions of x(x)
and J: Z(u(x),d)and ﬁ(,u(x),d),andtheoptimal utility level as

u* (%) = ulZ(x),8), h (u(x),8)| = G(u(x),8) 0

Differentiating (2.5a) and (2.5b), we obtain

0Z __  Us
ou u,uy, = (uhz)2
oh _ u,

ou B U, Uy, — (Up,)?

From these equations, we get
O oy, B2y, N2 Ul UMy 02,100
ou du du u Uy, = (uy)

This is negative since the denominator is nonnegative when the utility function is
concave and the numerator is negative from (2.6). Therefore, from (2.9) we obtain

N >0, 02110
dx du

Thus, the optimal utility level rises with distance from the center.

Next, we examine whether the optimal allocation is attained as a competitive
equilibrium.  An allocation is a competitive equilibrium in our model if the following
conditions are satisfied:

(i) Each household maximizes the utility level with respect to z and h subject to
the budget constrain and taking the land rent, R(X), asgiven.

(if) No household has an incentive to move to other locations.

(iii) Demand for land equals supply of land.

(iv) Demand for the consumer good equals the supply of the consumer good.
(v) Therent at the edge of the city equals the rural rent.
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Defining R(X) = u(x)/o and y(x) = (u(x)—y)/o0 (2.5a) through (2.5¢), (2.5d") and
(2.6) can be rewritten

u, (z(x), h(x)) = const., 0<x<X,, (2.12a)
u, /u, = R(X), O<sx<sxO (2.12b)
y(X) = z(x) + R(x)h(x) +t(x), 0<x<X, (2.12¢)
R(X) =R, 0O (2.12d)
R'(x) =-t'(x)/h(x) O 0<x<X (2.12¢)

Condition (i) is satisfied at the Benthamite optimum since (2.12b) is the first order
condition for the problem of maximizing the utility function, u(zh), subject to the

budget constraint, y(x) =z+ R(x)h+t(x), with respect to zand h.

Condition (ii) is satisfied if a household living at any radius x* achieves its
maximum utility at x*, that is, a household with income y=y(x) maximizes the
indirect utility function, v(y-—t(x),R(x)), with respect to x a x*. The first order

condition for the maximization is
% = —v, [R(9A(y ~t(x), RX) +t'(x)| =0, (2.13)

where we used Roy's Identity (1.10), and ﬁ(m is the uncompensated demand for land

(1.6). (2.12¢) ensuresthat (2.13) is satisfied at the Benthamite optimum.  The second
order condition is

3_2 =~ [I"00 + R'(0h(x) + R(Y(-Ait' () + AR (0] < 0. (214)
X

Since (2.13) issatisfied at each x if 'y = y(x), we have

R’(x)ﬁ(y(x) -t(x),R(x)) +t'(x) =0, 0<x<XO0. (2.15)
Differentiating this equation with respect to x yields

t"(X) +h(xX)R"(x) + R’(x)[ﬁI (Y(X)—t'(x) + ﬁR R'(x)]=0. (2.16)
Using this equation, the second order condition becomes

372‘2’ =v,h R(X)Y'(X) <0 0<X<X, (2.17)

which is satisfied at the Benthamite optimum since from (2.11) we have
y'(x)=u'(x)/o>0 (2.18)

if ﬁ, >0. Thisalso shows that the income level rises with distance from the center in

market equilibrium, and corresponds to the result in subsection 1.2 that if land is
normal, richer households live farther away from the center than poorer households.

Conditions (iii), (iv) and (v) are guaranteed by (2.3), (2.2) and (2.12d). Thusthe
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Benthamite optimum is attained as a competitive equilibrium for a suitable choice of
income distribution.

Now we add the constraint that the utility level be equal everywhere in the city,
and maximize thisequal utility level. Thus, our problem is one of maximizing
X
| o UN(dx (2.19)
subject to the resource constraint (2.2), the population constraint (1.24), the land
constraint (2.3), and the constraint that the utility level be equal everywhere in the city,
u =u(z(x),h(x)), 0<x<X. (2.20)

The Lagrangian for this problemis

A= uNegax+ [ [ h(x)) - uld
—Iou (x)dx J'Ov(x) u(z(x), h(x)) —ujdx
+ J{Pw— j z[(z(x) +t(X))N(X) + RaH(x)]dx}

¥ V{P - ;_( N (X)dx} +] zﬂ(x)[ﬁ(X) = NOOh(0)]ax (2.21)

The only new Lagrange multiplier is v(x) which can be interpreted as the weights that

have to be attached to the utilities of households at different locations if all households
are to obtain equal utility levels.

As shown in section 4 of the appendix on optimal control theory, the first order
conditions are

v(X)u, —N(x) =0 0sx<X (2.22a)
v(xXu, — L(X)N(x) =0 0sx<X (2.22b)
u=3[z(x) +t(¥)] - y = u(x)h(x) 0< X< X (2.22¢)
[u=3(2(%) +(X)) - yIN(%) = R H(X) (2.22d)
j EN(x)dx = j zv(x)dx (2.22¢)

The difference from the Benthamite case mainly lies in (2.22a). Here, the marginal
utility of the consumer good does not need to be equal at different locations, while the
utility level is equal. In the Benthamite case, the marginal utility is equal but the
utility level is not.

Defining R(X) = u(X)/0 and y=(u-y)/Jd, (2.22a) through (2.22€) can be
written

u,/u, = R(X),

IN
x
IN
X

(2.233)

o O
IN
X
IN
Xl

y = z(x) + R(x)h(x) +t(x) U (2.23b)
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R(X) =R, O (2.23c)
%{ [ EN(x)dx} = ZV'— Nx)dx . (2.23d)

Comparison of these equations with market equilibrium conditions in section 1 shows
that the optimal solution exactly coincides with the market allocation of a closed city.
(2.23d) shows that the reciprocal of the socia value of the numeraire is equal to the
average of reciprocals of marginal utilities of income.

2.2 A Small and Open City

In a small, open city it is meaningless to maximize the utility level of city
residents because the level is determined independently of the allocation within the city.
Under some circumstances, however, maximizing the net product of the city may be of
interest: a mining company, for example, building a townsite on its own land would
maximize the total product of the city minus the cost of maintaining the utility level
required to attract awork force. The profit for such a producer would be

F jo N (x)dx - j;[(z(x) FH())N(X) + RE()]dx 0 2.240

Labour costs do not include the land rent that workers pay since it is paid to the
company.

The net product (2.24) is maximized under the land constraint (2.3) and the utility
constraint,

u(z(x),h(x)) =t 0<x< X (2.25)

where U isthe exogenously given utility level. Note that since the population of the
city isachoice variable in an open city, the population constraint can be ignored.

The Lagrangian for this problemis

A= FI[ T NOIG - [ [0 + NG + ROReK
+ I zv(x)[u(z(x), h(x) —u]N(x)dx (2.26)

+ ZR(X)[G(X) ~ N(x)h(x)]dx.

Thefirst order conditions become, after simple manipulations,
u,/u, = R(X), 0<x<X, (2.279)
F'=2z(x) + R(X)h(x) +t(x) , 0<x<X. (2.27b)

Considering R(x) as land rent, we can observe that these optimality conditions

coincide exactly with the market equilibrium conditions of the absentee-landlord case of
the open city if workers earn wages equal to the value of marginal productivity of labor.
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Thus the market equilibrium is the optimal solution in this case as well.

Notes

The theory of residential land use which is described in this chapter was first
established by Alonso (1964) following the pioneering work of Wingo (1961). Many
urban economists have extended Alonso's framework. Extensive empirical research
has also been carried out. These efforts have culminated in Muth (1969) and Mills
(1972a,b).

The indirect utility function approach adopted in this chapter was introduced into
an urban residential land use model by Solow (1973). This approach has proved to be
very useful in deriving qualitative results.

The single-center assumption was relaxed by Romanes (1976) and White (1976).
In atwo dimensional case, introduction of subcenters gives rise to complicated partial
differential equations which are very difficult to analyze.

More than one income class was introduced by Beckman (1969) and Solow
(1973) among others. Beckman considered the case of Pareto income distribution.
Beckman's solution was not correct since, as pointed out by Montesano (1972), he
ignored boundary conditions (among other things). Our treatment of different income
classes is based on Solow's. Miyao (1975) analyzed the dynamic stability of
boundaries between different income classes. Empirical research on spatial residential
patterns with several income classes was carried out by Wheaton (1977).

Time costs of commuting were included in Alonso's original formulation, though
later studies tend to ignore time costs by considering the pecuniary cost as a surrogate.
As discussed in subsection 1.2, the inclusion of time costs tends to weaken the tendency
of the richer households to live farther from the center since the rich's value of time is
higher than the poor's, making commuting costs for the rich greater than for the poor.

Models with durable housing stock were analyzed by Fujita (1976a,b), and Anas
(1976). Since dynamic aspects must be taken into account in this case, the anaysis
becomes much more complicated.

Definitions of closed and open cities were introduced by Wheaton (1974) in his
comparative static anaysis.

The Benthamite optimal city was first analyzed by Mirrlees (1972). He
discovered that utility levels are not equal at the Benthamite optimum. Riley (1973),
(1974) further analyzed this property using different social welfare functions. The
product of individual utilities was used in Riley (1973) as the socia welfare function,
and a general class of concave and additive social welfare functions in Riley (1974).
He derived a result parallel to ours: when land is a normal good and when there is no
preference for location per se, individuals further out will receive greater utility levels at
the optimum.  Our illustration in Appendix | of the reason why unequal utility levels
are obtained at the optimum is largely based on Arnott and Riley (1977) and Levhari,
Oron and Pines (1978).

The Rawlsian case was considered by Dixit (1973). The method of maximizing
the utility level under the constraint that the utility level be equal everywhere in the city
was adopted by Oron, Pines and Sheshinski (1973).
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CHAPTER 11
CITY FORMATION AND CITY SIZES

Complexity generally increases more rapidly than realism in model building.
Although we understand many of the principles governing city formation, we do not yet
have a model which includes any large part of our knowledge of real cities and remains
simple enough to work with.  We can, however, extend the basic model of Chapter | in
several ways, and obtain interesting results.

In a sense, the open and closed cities of Chapter | hang in mid-air. We assumed
either a given population or a given level of utility, without considering how that level
came about. If we are interested in how these variables are determined, we need a
general equilibrium model of an economy containing cities, not just a model of a single
city. In this chapter we explicitly introduce a rural sector spread over on a featureless
plain.  The rura sector produces an agricultura good which is consumed by
households in both the rural and urban sectors. Circular cities producing an urban
good are sprinkled about on the plain.

In Chapter | we assumed that commuting is costly. The commuting costs and, in
fact, transportation costs in general work against city formation. Concentration of
production, for example, requires the transportation of products, workers, and material
inputs.  To obtain cities in our model, therefore, we must assume that the concentration
of economic activities results in a technological advantage which at least exceeds the
trangportation costs incurred.  Otherwise, production will take place where there are
consumers, and the consumers, who find no advantage in working together, will spread
out evenly to take advantage of al the available land.

Cities will arisein our model if we assume any or al of the following:

1. concentration of immobile factors
2. increasing returns to scale or indivisibility
3. externalities or public goods.

Cities arisng from concentrations of immobile factors are relatively easly
modeled, although we only mention them here. Given an immobile and concentrated
factor, like a coa bed, industries which use the factor, such as mining, locate at that
point. Industries such as steel, which use the primary product intensively, tend to
locate nearby to save transportation costs. Others which are related and a retail sector
follow for the same reason. The neoclassical model can describe such a city: there is
convexity in production technology, and there are no externadlities, and therefore the
market mechanism can achieve an optimal allocation.l A concentration of immobile

1 As discussed in Chapter | and Appendix |, there is a concealed nonconvexity in residential land use
models, since a household can choose only one location. The nonconvexity, however, does not affect
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factors, however, can produce only arelatively small city, and does not seem to be an
important cause of modern cities.

We will first examine cities that arise from economies of scale. Economies of
scale are prevaent in modern technology and result from such things as the division of
labor and the indivisibility of such factor inputs as machinery and buildings. If the
reduction in production costs due to scale economy is greater than the increase in
commuting costs, a city will emerge. Such a city is basicaly a factory surrounded by
the residential zone of its workers and may well be called a ‘factory town'.

Modern cities are, however, too complex to have resulted from simple economies
of scae. Why should industries gather in a large city, where the commuting costs for
each are greater than they would be in a single industry town? The answer is that
industries find it profitable to gather together for a variety of reasons: communication
costs and transportation costs of intermediate inputs can be saved; there is a larger pool
of skilled labour to draw on, for example, and a more sophisticated infrastructure
including transportation facilities. In order to capture these elements in a simple
model, we assume a variant of Marshallian externality. We assume externalities
among firms in a city, rather than among firms in an industry: al firmsin a city are
assumed to benefit from an increase in the population of the city. This assumption
introduces the possibility of a city consisting of many firms by allowing increasing
returns to scale which are internal to a city but external to the separate firmsin a city.

We assume identical cities in both the increasingreturns-to-scale and the
Marshallian-externality cases. This assumption allows us to obtain clear-cut results,
but obvioudly fails to capture the complexity of the system of cities in the real world.
In the last part of this chapter we discuss some possible extensions of the model, and the
associated difficulties.

One of the major theoretical issues we try to analyze in this chapter is whether the
decentralized market system can achieve the optimal allocation of cities, especially the
optimal city size. If it cannot, we want to know how to correct the misallocation It
is well known in Welfare Economics that competitive equilibrium is not usualy Pareto
optimal in the presence of increasing returns to scale or externalities. there is amost
aways room to make somebody better off without making any others worse off.
Although the result holds in our model, it is possible to describe an institutional
arrangement that leads to optimal allocation.

The major difficulty in achieving an efficient alocation of an increasing-
returns-to-scale industry is that the average cost aways exceeds the marginal cost.
Since an efficient allocation requires that the price be set equal to the marginal cost, the
total revenue does not cover the total cost and the profit of a firm is negative. It is
difficult to give such afirm a subsidy to cover the loss without destroying the incentive
to minimize costs.

It turns out, however, that the loss of an urban producer equals the aggregate

the optimality of competitive equilibrium.
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differential rent (the competitive urban rent minus the rural rent) of a city when the
number of cities is optimal. This suggests that the optimal allocation could be
achieved by a system of land developers. In each city an urban producer would lease
al the land necessary for a city, including the residential area, from the rural landlords
at the rura rent; siblease it to households at the competitive urban rent; and maximize
differential rent plus profit. We will show that this arrangement does achieve the
optimum alocation.

The optimal alocation of an economy with externalities requires Pigouvian
tax-subsidies: agents that induce external costs or benefits for other agents must pay
taxes or be given subsidies. In our mode the population of a city gives external
benefits to urban producers, so urban residents must be given subsidies. A relationship
smilar to that between the profit and the differential rent in the increasing returns to
scale case holds with respect to the Pigouvian subsidy and the differential rent: at the
optimum number of cities the aggregate Pigouvian subsidy equals the aggregate
differential rent. This might seem to suggest that the optimal solution can be attained
through the market if city governments return the differential rent to city residents as an
equal social dividend. Unfortunately, this is not true. Though the optimal solution is
Indeed a market equilibrium under this institutional arrangement, city sizes greater than
the optimum can also be equilibria

1. TheMode€

The basic model of Chapter | becomes a simple genera equilibrium framework
when the rural sector is explicitly introduced. Consider a flat and fertile plain over
which the rural sector is spread out. Circular cities are sprinkled about on the plain as
iInFigurel. The plainisso large that the cities do not overlap.

1 2
CBD
dx
4
4=n
A{xldx
= 2mx dx "jﬂrﬂgjzi a
n
= I 8 {x)dx
‘o

S

Figurel. The Spatial Configuration of the Economy

boundary of the availakle
land area H

We will imagine that each city consists of a business and production core
surrounded by a residential zone. For the sake of simplicity, we will assume that
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urban production takes no space and no materials, so that only labor enters the
production function. As before, households are identical, and each household has a
single worker who commutesto a job at the center.  We use the words 'households and
‘workers inter-changeably, and the number of households is treated as the population.
Commuting involves transportation costs but we assume that both urban and rura goods
can be moved costlesdly.

The production function of an urban firmis

f(,R) (1.1)

where ¢ and P, are respectively labour input to a firm and the population of the city.

We assume that al firms are identical. If the number of firms is m, the total
production of acity is

Y =mf(¢,P.) 1.2
where
—_ PC
m = e (1.3

Until section5 we will assumethat f (/,P.) =0 so that firms gain no advantage

from increased population. Since grouping firms will result in higher commuting
costs, there will be only one firm in a city. In this case the aggregate urban production
function, F(P.) and an individua firm's production function will be identical:

F(R)° f(R.R). (14)

The production function is differentiable, with a positive marginal product. In order to
allow for the possibility of increasing returns to scale, we do not impose the condition
that the production function be concave.

We assume that the rural sector produces some complete and useful product, say
soy beans, and that it has constant returns to scale. The aggregate production function
of the rura sector is

G(R,,HL)), (15)

where P, and H, are respectively the aggregate labour and land inputs. We

assume that the production function is concave, homogeneous of degree one,
differentiable, and that it has positive margina products.

Goods produced by rural and urban sectors are called the rural and the urban
goods respectively. Both goods are consumed by households. All households have
the same differentiable, quasi-concave utility function,
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u(a,zh), (1.6)

where a, z, and h are respectively the rural good, the urban good, and land for housing
and where al goods are assumed to have positive marginal utilities.

The number of cities is denoted by n. For simplicity, we assume that al cities
are identical, and we use the same notation for all cities. Since al cities have the same
technology, and all households are the same, the assumption can usually be justified
when the number of citiesis large enough.

All cities are circular, and the amount of land available for housing between x
and x+dx from the center is q(x)dx =2pxdx. As the production does not require

land, the residential zone stretches from O to X. The consumption of land for
housing is constrained by

h(X)N(x) =q(x), O£ X£X, a.7)

where N(x)dx is the number of households which live between x and x+dx, and
h(x) isthelot size of ahouseat X.

The total available land for the economy, H , is divided between cities and rural
areas. The rura sector uses land both for production and for housing the rural
workers. The land constraint for the entire economy is

H= n(‘gq (X)dx+ P,h+H,, (1.8)

where h denotes the consumption of housing by rural residents. Note that, if h appears
without the argument X, it denotes consumption by arural resident. This distinction
in notation will be used consistently. Implicit in constraint (1.8) is the assumption that
the total available land is large enough to preclude overlapping of city aress.

Transportation requires many different inputs, but for the sake of smplicity, we
assume that only the rura good is consumed in commuting. We continue to assume
that goods, urban and rural, can be transported costlessly. The market clearing
conditions for rural and urban goods are respectively

OGP, H.) = gy 200 +HOINGI A+ Pea, (L9)
nF(P,) = nd;(z(x)N(x)dx+ Pz, (.10

where z(x) and h(x) are the urban consumptions of urban and rural goods, and z
and a are the rural consumptions. Commuting costs, t(x), for a city resident a X
satisfy
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t(0) = 0. (2.12)
The labour force in a city is assumed to equal the number of households living in
the city:

P, = qi) N (x)dx. (1.12)

The population, P, of the whole economy, which is assumed to be given, is divided into
urban and rural sectors:

P=nP,+P,. (1.13)
2 A Fixed Number of Cities

We first derive the optimal solution under the assumption that the number of cities
Is exogenoudy given. As mentioned above, in this and the next two sections we
assume that the marginal effect on production of increasing the population of a city is
zero: f,(¢,P,)=0. Firms gain no advantage having other firms in the city, therefore,
and each city has only one firm. The cities which we consider are based on economies
of scale which are internal to the firm: f, > f//. Since P,=/¢ for a single firm

city, our notation can be ssimplified by using the aggregate production function, F(P.),
and assuming

F(P)>F(P)/P. (2.1)

The utility level is maximized subject to the constraints (1.7)-(1.10), (1.12),
(1.13), and the equal-utility constraints,

u(a(x), z(x),h(x)) =u, O£ xX£X, (2.2
u(@,z,h) =u, (2.3
which require that al households receive the same utility level.

The Lagrangian for this problem is
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L :u+n(‘a)_(n(x)[u(a(x),z(x),h(x))- ulN(x)dx+n,[u(a, z h) - u]R,
+dc[nF(Q7N(x)dx)- n(‘é_( 20N (X)dx- P,Z]

*a} G(Pa, Ha)- g [a00 +tIIN k- Pray
. (2.4)
+ny MO () - hEON (x)]ebx

+1{H - na(x)dx- Pyh- H]

é X u
+g€P- nQ N(x)dx- Paél

where control variables are a(x), z(x),h(x), and N(X); control parameters are a, z h,
u P, H,, and X; and n(x), n,, d_, d,, m(x), m, and g are respectively
Lagrange multipliers for (2.2), (2.3), (1.10), (1.9), (1.7), (1.8), and (1.13). Note that
P. is eliminated by substituting (1.12) into (1.10) and (1.13). The Lagrange
multipliers have basically the same interpretation as in Chapter 1: n(x) and n, are
weights attached to the utilities of different households to obtain equal utility levels;, d,
and d, are respectively shadow prices of the urban and rural goods, n(x) is the
shadow rent of land at distance x from the center of a city and n the shadow rent of

therural land; and g is the shadow 'price’ of a household.

The Lagrange multipliers express shadow prices in utility terms. It is convenient
to transform shadow prices into pecuniary terms. Taking the rural good as a
numeraire, we define p=d_/d,, R(X)=m(x)/d,, R,=m/d, and s=-g/d,. p
is the shadow price of the urban good, R(X) the shadow rent a x, R, the shadow rent

of the rural land, and a the marginal social cost—the negative of the shadow price—of a
household.

First order conditions are immediately obtained by applying the result in the
appendix on optimum control theory. They become, after smple rearrangements,

u,(a(x),z(x),h(x)) _u,(a,zh) _ 0

u,@(),z(x),h(x) u,@zh O£ x£X, (259)
Uy (209, 200, h(X)) _ R(X) 0£ X£X (2.5b)
u, (a(x), z(x), h(x)) ! : .
u,(a,z,h) _

w@zh (2.50)
G =R (2.5d)
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G, +s=a+pz+Rh, (2.5€)
pF (+ s = a(x) + pz(x) + R(x)h(x) +t(X), O£ XEX, (2.5f)
R(X)=R,.

(2.59)-(2.5¢c) are the usua conditions equating margina rates of substitution to
(shadow) prices. Note that (2.5a) implies that al households have the same marginal
rates of subgtitution between the urban good and the rural good. This is an immediate
consequence of our assumption that it costs nothing to transport either good.

(2.5d) states that the value of marginal productivity of land is equal to the shadow
rent of land. From (2.5c), (2.5d) and (2.5g), rural households, rural producers and
urban residents at the edge of a city all face the same shadow rent. This condition
implies that shadow rent varies continuously over space.

The socia cost, s, of a household must be the value of resources it consumes
minus the value of its marginal product:

s=a+pz+Rh-G,
s=a(x) + pz(x) + R(xX)h(x) +t(x) - pFC.
These yield respectively (2.5€) and (2.5f).

If workers are paid the value of their marginal products, and if al prices equal
shadow prices, a household must be given a subsidy which is equal to s in order to
satisfy the budget constraint. Because of the resource constraints, (1.9) and (1.10),
however, the sum of the subsidies must equal the total surplus in the economy, which is
the sum of the total rent and the total profit:

=51 ROa00dcr R[Pah+ Hal +rolF + RFY. 9)
|

If this optimal solution is decentralized using the usual price mechanism, an urban
producer might incur a loss at the optimum, since we alowed increasing returns to
scale. In such a case the government must give the producer a subsidy equal to the
loss. If the subsidy does not weaken a firm's incentive to minimize costs, the price
mechanism attains the optimal allocation. Unfortunately, administering such a subsidy
requires a prohibitive amount of information.

These problems may not arise if the producer can act as land devel oper, collecting
the residential land rent. We consider this institutional framework in section4.

Of coursg, if the urban sector has decreasing or constant returns to scale, the urban
sector earns a positive or zero profit, and hence a subsidy is not necessary. Insuch
cases, however, there is no reason to have cities, since by reducing city size
transportation costs can always be reduced without raising production costs. As will
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be shown in the next section, the optimal solution with nonincreasing returns to scale
requires that the urban sector spread uniformly over space.

3. A Variable Number of Cities

When we treat the number of cities as an endogenous variable, it is convenient to
assume that the number is so large that it can be safely approximated by a continuous
variable. Taking a derivative of the Lagrangian(2.4) with respect to n and substituting
other first order conditions, we obtain

PF (R) - [PRFR) - (3 R0 (9 - Ra(pa (k=0 (3.1)

The number of cities should be increased up to the point where an additional city
has zero social net value. The net value of an additiona city is the value of the gross
product of the city minus the costs of producing it. The value of the gross product is
pF . The cost of producing it is the cost of supporting workers Workers consume
the rural good, the urban good, and land: and they pay commuting costs. The total
socia vaue of their consumption is

QU200 + P20 +HXIN O+ Ra 8y 0 (9

where land must be evaluated at the opportunity cost, R,, instead of the urban rent.
This is not yet the socia cost of supporting workers of an additiona city. Since the
society incurs the social cost of a household, s, regardless of whether a household lives
in the city or not, sR.must be subtracted from the costs. The net value of an

additional city isthen
PF (R)- [0 + P20+ (JIN (k- Raya(9ck+5R, = 0.

Substitution of (2.5f) into this equation yields (3.1).

If the number of cities is optimal, the population of a city is such that it minimizes
the value of per capita consumption of resources, or the average cost of maintaining the
utility level. Otherwise, there is some other population level which achieves the same
utility level with a lower per capita consumption of resources, and the value of
resources used by the entire urban sector can be reduced by changing the population
size of al cities while changing the number of cities accordingly to keep the population
of the entire urban sector unchanged. The resources saved could be used to raise the
utility level, which proves that the alocation cannot be optimal. Note that
consumption of resources in this argument does not need to be modified by subtracting
the social cost of a household.

This observation facilitates another interesting interpretation of the optimality
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condition.2 The net cost of maintaining the utility level is equa to the total city
consumption, plus the opportunity cost of land, minus total production. Expressed in
terms of city population, the net cost is simply atotal cost function,

TC(R) = Q1200+ P09 +t(IN(Rdx+ Ragy a (k- DF (R)

The per capita, or average, cost is

AC(R;) =TC( Pc)/R: .

Cost of maintaining
the utility lewvel
TC

P AC(PE)

AL =M

A T T

H
1
:
RC(E2) :
el b Fopulation of
. a city
g P i p* P;

c
AC(PL) = AC(PY)

b

Figure 2. Optimum City Size

As illustrated in Figure 2, the average cost is minimized when it equals the
margina cost. The margina cost is the cost of adding a household to the city. Since
at the optimum the cost of adding a household must equal everywhere in the city, we
may consider the addition at any radius. Addition at the edge of the city is easiest
because there is no ambiguity about whether the rural rent or the urban rent expresses
the value of land. The cost of adding a household at X is the value of consumption
minus the marginal product:

MC(R) =a(X) + pz(X) +t(X) + Rsh(X) - pF(FR) ,

which, from (2.5f), equals the social cost of a household, s, and aso equals the value of

2 This interpretation was suggested by Arnott. Similar interpretation is published in Arnott (1979).
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consumption minus the margina product at any other radius when consumption of land
is evaluated at the urban shadow rent:

MC(F.) =a(x) + pz(X) +t(x) + R(X)h(x) - pF(F.) , O£ XEX

Multiplying thisequation by N(x) and integrating it fromOto X yields

RMC(R) = (3 [0 + p2(x) + {RIN(9 X+ & RO (9ck- PRFER)

At the optimum the average cost equals the margina cost, which implies equation (3.1)
above.

We can rewrite (3.1) as

- PLF(R) - RFGR)] = L [ROX)- Rala (9K (3.1)

If factor prices are equal to the values of margina productivities, the left can be
interpreted as the operating loss of an urban firm. Then (3.1') states that, in a single
firm city the firm's operating loss is equal to the aggregate differential rent (the urban
rent minus the rural rent) if the number of cities is optimal. Using this equation, we
can rewrite (2.6) as

s=HR,/P, (3.2
which says that the social cost of a household equals the per capitarural rent.

With constant or decreasing returns to scale, firms earn nonnegative profits. By
(3.1) the aggregate differential rent would be nonpositive at the optimum, implying that
cities have smply vanished. This is quite reasonable since smaller cities have the
advantage of lower transportation costs with no disadvantage on the production side.

If the urban sector has increasing returns to scale, bigger cities have the advantage
of lower average production costs. The optimum city size or the optimum number of
cities is determined so as to balance the transportation costs and the benefit from
increasing returns to scale. (3.1) shows that this balance is attained when the loss of
the urban sector equals the aggregate differential rent.

By solving the problem of Section 2, the utility level can be obtained as a
function, u(n), of the number of cities. The second order condition requires that

d?u(n)

o £0.
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By the Envelope Theorem,3 du(n)/dn is equa to the partiad derivative of the
Lagrangian(2.4) with respect to n.
du(n) _ ML _

o = = = 0al pIF - RF 4+ @ [RO)- Rald (0 (33)

Hence, using the fact that the term with dd,/dn vanishes by (3.1), the second
derivative is

d?u(n)
dn?

=d, %{ pLF - PcF(ﬂJf(‘)z[R(X)- Rala (x)dx (34)

which must be nonpositive at a maximum.

The net benefit from an additiona city is the sum of differential rent and profit.
The optimum is attained at the point where the net benefit is zero. In order to have
maximum rather than minimum, however, the net benefit must be decreasing at the
optimum, and the sum of the aggregate differential rent and the profit of an urban
producer must be a decreasing function of the number of cities.

The second order condition is usually satisfied if the degree of increasing
returns to scale declines as a city becomes larger, because the aggregate differential
rent is usualy larger in alarger city.

An important implication of this second order condition is that, if the aggregate
differential rent exceeds the loss of the urban sector, there are too few cities. Since
cities tend to be larger when there are fewer cities, city sizeis likely to be too big in this
case. Notice, however, that this result is obtained under the condition that all variables
other than the number of cities are optimally chosen. If there is some distortion like
monopsony pricing in the labour market, this condition is not satisfied, and the
difference between the differential rent and a firm's loss does not serve as a signal of
whether or not the city size is too big. In the next section a paradoxical kind of
monopsony pricing will be shown to exist at the market equilibrium of our model.

4. Market City Sizes

As noted in section 2, a firm must be given an appropriate subsidy to achieve the
optimal solution in a decentralized market system. The result in section3 shows that if
the number of cities is optimal, the subsidy equals the total differential rent of a city.
Thus the optimal solution can be decentralized by giving a firm a subsidy equal to the
differential rent and distributing among all rural and urban households the rest of the
rent (which equals the rural rent for the entire land, R, H ) as an equal lump-sum social

dividend.

3see Appendix 111 for the explanation of the Envelope Theorem.
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There is, however, a way to achieve the optimal solution that does not require as
much knowledge and action on the part of the government. It turns out that the
optimal solution can be achieved by allowing firms to lease the urban land including
the residential area. The entire available land is owned collectively by all households
in the economy. Rural producers and rura households rent the land and pay the rural
rent. An urban firm, acting as a developer of a whole city, also rents urban land at the
rural rent, but subleases it to city residents at the competitive market rent. Then the
firm maximizes the sum of profit from production, which is usualy negative, and the
net rent. Firms, like land, are owned collectively by all households, and profits are
distributed equally among al households. We show that such a system of
urban-producers/ city-developers attains the optimal allocation, providing, of course,
that the firms are perfectly competitive.

The number of cities (and hence the number of firms) is assumed to be so large
that a firm acts as a price and utility taker: since there are no transportation costs for the
urban good, firms directly compete with each other in the product market, and a single
firm cannot significantly affect the price of the urban good. Under the assumption of
perfect mobility, households move to the city where they can obtain the highest level of
utility. Faced with freely mobile households, a firm must make sure that its employees
obtain at least the same utility level as they would in any other city. This leads to
utility taking behaviour as the number of firms becomeslarge. Notice, however, that a
firm does not take the wage rate as given. Households decide to migrate on the basis
of the utility level and not the wage rate. As long as the utility level is not lower than
a any other place, the wage rate can be freely chosen.

A firm maximizes the profit on the entire development which is the revenue from
the sales of its product, plus the land rent, minus the total wage bill, minus the total
payment of the rural rent:

PF (R,) + § ROYA (X)X~ WP, - Ry ya ()i, (.1)

where w is the wage rate.

Four variables,w, P., X,and R(x), areinvolved in this maximization problem,
but the firm faces the constraints imposed by competition with other firms. The
maximum rent that households can pay, if they are to achieve the given utility level, isa
function of their wage. We can, therefore, reduce the problem to that of maximizing
(4.1) with respect to the wage. First, using the indirect utility function of households,
weexpress R(x) as afunction of the wage.

Since al firms and the entire land are collectively owned by all households in the
economy, households obtain equal shares of profits of firms and the revenue from the
rural rent paid by both the rural and urban sectors. Then the budget constraint is

w+s=a(x)+ pz(x) + R(X)h(x) +t(x) , O£ XEX, (4.2

where s is the share of the rent and profit, and satisfies (2.6). The following indirect
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utility function is obtained as a result of utility maximization under the budget
constraint:

v(1(x), p.R(x)), (4.3
where 1(x) isthe net income:
[(X)° w+s- t(X). (4.9
Since the utility level, u, is taken as given, a firm maximizes profit under the constraint:
v(l(X), p,R(X)) =u. (4.5
This constraint enables us to express R(X) as the bid rent function,
R(X) = R(1(x), p,u). (4.6)
Asin (1.1.14), we have
R (1(¥), p:u) =1/h(x), (4.7)

where R is the partia derivative of the bid rent function with respect to the net
income | (X).

Substituting (4.7) and (4.4) into (4.1), we see that the firm's problem is to
maximize

pF (P,) - WP, - R, 9 (x)dk-+ R+~ 1(x), p,u) (x)ix (48

subject to the constraints

P = 5R| (w+s- t(x), p,u)g (x)dx, (4.9
R(w+s- t(X),p,u)=R,, (4.10)

where p, u, and s are taken as given since the firm is small.

Now the population of the city can also be written as a function of the wage.
Although the price of the product and the utility level are taken as fixed, the wage rate
affects the supply of labour, because households will move to achieve the given utility
level. From (4.10), X can be expressed as a function of w, and (4.9) becomes the
following labour supply function,

&

W =Q R (w+s- (), p.u) (e, (4.11)

where sisgiven by (2.6).
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Using this labour supply function we can demonstrate that firms have a kind of
monopsony power despite the fact that they are competitive in the usua sense. The
dope of the

supply curveis
PIW) = GRA()dx+ R, (1 (%), p,u)a (%) XEw)

- SRI,q ()dx+ N(X) /t4X) (4.12)
where the second equality is obtained from (4.7) and
x(W) = 1/1(X) . (4.13)
Since R satisfies
R (103, p,u) =1/h[R(I (%), p,u) p,u], (4.14)

where h[ ] isacompensated demand function for land, we have

R, (1(X), p,u) =-h,R /h* =-h,/h®>0. (4.15)
Hence, (4.12) becomes
P&w) = (‘5 (hg/ h2)N (x)dx + N(X) /t€X) >0. (4.16)

Thus the supply curve of labour is upward sloping, and firms have apparent monopsony
power in the labour market.

Using the labour supply function (4.11), we can aso reduce the problem (4.8)-(4.10) to
maximization of

pF (R(W) - WR,(W) - Ray a1 (¥)cc+ 3" Rw+s- 1(x), pLulg(x)dx  (4.17)
with respect tow. The first order condition is
(PF& W)RW) - P(w)+ GRa (ax+[Rw+s- (%), pu) - RJa(R)%aw) =0

(4.18)
From (4.10) and (4.11), this becomes

pF(P.) = w. (4.19)
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Thus, even though a firm faces an upward-doping supply curve in the labour market, it
behaves like a price taker and sets the wage rate at the level where the value of marginal
product equals the wage.

The reason is that when the utility level is fixed, the decrease in income of
workers is fully reflected in a decrease in expenditures on land. Thus the increase in
profit caused by lowering the wage is completely offset by the decrease in land rent, and
the firm behaves as if there were no monopsony gain.

It now follows that all the first order conditions for the optimum are satisfied in
market equilibrium: (2.5f) is obtained from (4.2) and (4.19); (2.59) is equivalent to
(4.10); (2.58)-(2.5c) are the results of utility maximization of households; (2.5d) and
(2.5€) result from profit maximizationin the rural sector; and free entry insures equation
(3.1), which states that the maximized profit (including differential rent) is zero in
equilibrium. Therefore, if the first order conditions are sufficient to characterize the
optimal solution, the market equilibriumis optimal under the institutional framework in
which a firm can act as the developer of an entire city.

When firms cannot act as developers, however, a market equilibrium differs
from the optimal alocation. A firm maximizes

pF (R.)- WR, (4.20)

taking the price of the product and the utility level of the workers as given.
Households receive equal shares of profits of firms and the total land rent including the
urban rent, and s is given by (2.6). In this case, too, a firm has monopsony power in
the labour market in the sense that it faces an upward sloping supply curve. The
labour supply function is given by (4.11). A firm takes s as given in this case, as in the
last.

The first order condition for profit maximization is
pF(P.)=w+P,/P{(w). (4.21)
Free entry insures that the maximized profit is zero:

pF (P.)- wP, =0. (4.22)

Multiplying (4.21) by P, and subtracting it from (4.22), we obtain
p[F(P)- PF&P)]=-P?/Pgw) <0, (4.23)
which implies that market equilibrium occurs when the firm operates in the region of
increasing returns to scale. The profit is, however, zero, since by (4.21) a firm
exploits monopsony power, and pays a wage rate lower than the value of the margina

product of labour.

From (3.1), the optimal city size aso occurs in the region of increasing returns to
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scale. Since market equilibrium and optimal city sizes are in the same range of the
production function, observation about returns to scale cannot be used to determine
which is larger in genera. It depends on the amount of monopsony power and the size
of the aggregate differential rent. In principle there is no reason why the equilibrium
city size should coincide with optimum city size, and a city in which firms maximize
profits but do not act as land developers has zero probability of achieving an exactly
optimum city size.

5. TheMarshallian Externality Case

In the previous section scale economies were interna to the firm. We now
assume scale economy internal to a city but external to a firm. Cities form because
firms are more productive if they can draw on a larger population. To capture this
effect, we repeat the analysis of the previous sections with one change. The
production function of afirm is still

f(/,P) (1.2)

but now we allow an increase in population to increase the firm's productivity:
fp>0. (5.2)
This version of the Marshallian externality can result in multi-firm cities, since

the presence of additional firms is now an advantage. If m is the number of firms, the
total product of acity is

Y =mf(/,P.) (1.2
where
—_ PC
m= e (1.3

We assume increasing average returns to labour when the firm is small, with a
gradual shift to decreasing returnsas ¢ increases.

Asin the previous case, we first consider the case of a L, fixed number of cities.
The optimization problem can be solved in the same way as before, if (1.2) and (1.3) are
substituted into the proper places. The first order condition (2.5f) is replaced by two
conditions:

f =/f,, (5.2)
pf, +s, +s=a(x) + pz(x) + ROOh(X) +t(x), O£ XEX, (5.3)

where
& = pmfp (5.4)
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(5.2) shows that the marginal product of labour equals the average product, and
implies that firms operate under constant returns to scale at the optimum. The
optimum is attained in long-run equilibrium at which all firms operate at the bottom of
the average cost curve since constant returns to scale hold when the average cost curve
is flat.

From (5.3), the total value of household consumption equals the sum of the three
terms on the left: the value of marginal productivity of labour; the value of the marginal
external economy, s., which an urban resident gives to the urban production sector;

and the socia dividend, s, equal for all households in both cities and the rural area.
Therefore, a household must be given the Pigouvian subsidy, s., in addition to wages

and the socia dividend, s. A city resident gives external benefits to urban producers,
and should be given a subsidy equal to the value of his marginal contribution to urban
production.

Taking the number of cities as a variable now, the optimality condition becomes,
after simple rearrangements,

SR = QIR0 - Rahi(x)dx. (55)

Thus, at the optimum the total Pigouvian subsidy equals the total differential rent in a
city. Asbefore, the equal lump-sum socia dividend sis given by (3.2).4

The optimal allocation is a market equilibrium in the following institutional
setting. All land is equally and collectively owned by all households in the economy.
Residents in a city form a cooperative, or a city government, which rents al the land for
the city at the rura rent. Each household, in turn, rents land for housing from the city
government, and pays the market-determined rent. Since the urban residential rent is
higher than the rural rent, the city government has a surplus revenue. The surplus is
returned to city residents as an equal subsidy. It will be shown later that the optimal

41tis easy to show that (5.5) isequivalent to (3.1). From (5.2), we can express labour input to afirm as
afunction, ¢(R.), of the population of acity. The aggregate production function can then be written as

R

FR) =75

f(U(R). R)

Differentiation of the aggregate production function yields
P 1 ér, R u
FER) === fp(h )+ f(LR)+a = f/(LR)- —5 f (4, Pe) gl &R.)
4 4 gl ‘ U
Pe 1
=—=fpt+=f»
¢ Py

where the second equality is obtained from(5.2). Noting
(1.3)and (5.4), wefinally obtain
SR =- plF(R)- RF&R)]

which showsthat (5.5) is equivalent to (3.1).
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solution is a market equilibrium under this ingtitutional arrangement. Unfortunately,
however, the optimal allocation is not a unique market equilibrium. A wide range of
city sizes greater than the optimum can aso be equilibria, and there is no reason to
believe that the optimum is likely to be attained.

This point can be illustrated in the following way. If we specify the number of
cities, a market equilibrium is obtained by substituting

%= QIR0 - Rahi oo

and (3.2) into the first order conditions (2.5a)-(2.5€), (2.5g), (5.2) and (5.3). Since the
resulting population size is normally the same for all cities, we can consider the

equilibrium utility level as a function, u* (F.), of the population of a city. For
simplicity, the function is assumed to be single-peaked asin Figure 3.

Clearly, city sizes less than P, where the equilibrium utility level attains its

maximum, cannot be equilibria. If a household moves to another city, the utility level
will rise in the receiving city, and fall in the city which has lost population. Therefore,
a household has an incentive to move to another city. The recelving city would

continue to grow at least until P, was reached. The losing city would eventually
disappear.
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Figure 3. Market City Sizes

City sizes greater than P, , however, can be an equilibrium. Households do not

have an incentive to move to another city at a city size greater than P, since an

increase in the population of the receiving city would lower the utility there. For the
same reason they do not have an incentive to move to the rural area, either. The only
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way, therefore, to reduce the city size is to create a new city. If we do not allow for
coalition or entrepreneurship to form alarge new city, al new cities must start from one
firm. In this case, a new city will not be formed unless the size of existing cities

exceeds P. by so much that the general utility level falls to that of a one-firm city.
Therefore, the city sizesbetween P, and P, tend to remain the same.

It is easy to see that the city size, P, , which maximizes the utility level among

market equilibria coincides with that of the direct optimum. Though the direct
optimum does not have, among its congtraints, the conditions for a market equilibrium,
the first order conditions for the direct optimum include all the conditions required for a
market equilibrium.  The two problems, therefore, must have the same optimum.

Thus the minimum market city size coincides with the optimal city size when there
Is a Marshallian externality, and there is a strong tendency for market city sizes to
become too large. This result suggests that government intervention is necessary to
achieve the optimum city size

Whether intervention is required to not, the actual situation may be less serious
than the model suggests. Historical development has provided us with a hierarchy of
cities rather than a single type. Cities produce different sets of @mmodities, and
bigger cities produce more commodities than smaller ones. A new city at a certain
level of the hierarchy can be created by adding firms producing new commodities to an
existing city at a lower level of the hierarchy. This does not require a very large
population shift.

The above specid ingtitutional arrangement which allows cities to collect land
rent and distribute the revenue among city residents is not usually possible in a private
ownership economy. In a private ownership economy, migrational decisions are not
affected by the land rent households can earn, though they are certainly affected by the
level of the rent they must pay. One reason is that households may be able to invest in
houses in cities where they do not live. Another is that even if all houses are
owner-occupied, households must pay the discounted value of future rent when they
move to a city. The benefit of future high rent, which might attract households to a
city, is thereby neutralized by the purchase cost of the house. Thus the usua private
ownership economy is closer to the case of s =0 and the city size which maximizes

the utility level among market equilibriais different from the direct optimum.

It is not clear in a general case whether this city size is bigger or smaller than the
optimum city size. If there is no rural sector, it is obvious that this city size coincides
with the optimum. Divergence from the optimum is caused by the fact that the
absence of the Pigouvian subsidy distorts the alocation of households between the
urban and the rural sectors. In the real world it seems likely that the populationin the
urban sector is too small, because the incentive to live in cities is weaker due to the lack
of the Pigouviansubsidy. However, the problem is more subtle than it appears, since
it involves determining the number of cities. It is not quite clear how the number of
citiesis affected by the distortion
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We have assumed that it is the population of a city that generates an external
economy. Obvioudy, this is not the only formulation. For example, we can assume
that the total product of a city induces the externality, as in Henderson (1974). In that
case, the Pigouvian subsidy should be given to firms as excise subsidy on their
products. With this change, the above analysis can be applied and the same
conclusions are obtained.

6. Differencesin City Sizes

So far we have considered only cities which have the same allocation, both at the
optimum and in market equilibrium. This is clearly unredistic. Relaxing the
simplifying assumptions of previous sections, we can obtain differences among cities.

First, production functions may differ among cities because of differences in
climate, factor endowment, and so on, or simply because technology does not diffuse
instantaneously. Since cities with technological advantage tend to attract more
households than others, city sizesvary.

This extension turns out to be fairly simple. In the case of increasing returns to
scale, internal to afirm, the only change is that we must distinguish cities notationally
since they in general have different alocations. The first order conditions (2.539),
(2.5b), (2.5f) and (2.5g) hold in &l cities. In particular, (2.5f) and (2.5g) for the ith
city must read

PFe(RL He) +s=a () + pz (%) + R (h' () + () (6)
R(X)=R,. (6.2
Combining these equations, we have

pF. +s- t(X') =a' (X') + pz'(X') + R,h' (X'). (6.3)
Since all households must receive the same utility, the right side is equal for al cities.
Hence, the value of the marginal product of labour minus the commuting costs at the

edge of acity isthe same for al cities:
pF, - t(X') = pFJ - t(X)) for anyi,j. (6.4)
When the number of firms is optimized, the marginal firm will obtain zero profit

(including te aggregate differential rent) and other firms will earn positive profits.®
In exactly the same way as in the case of identical cities, it can be shown that, if firms

S Here, it is implicitly assumed that there is no competitive bidding for the right to build a plant in a
specific city. This is the reason why a firm located in an advantageous city earns excess profit. The
profit is caused by the Presence of some unpriced factors such as good climate, clean water, etc. If these
factors are competitively priced, al firms earn zero profit. Even if there is no market for these factors,
competitive bidding for the site of a plant drives down the profit to zero and the rent is captured by the
owner of the site.
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act as land developers, the market equilibrium attains the optimal allocation.

We can analyze the Marshadllian externality case in a smilar way. It is easy to
see that the value of the marginal product of labour, plus the Pigouvian tax, minus the
commuting costs at the edge of acity isequa for al cities;

pf, +s. - t(X') = pf +s! - t(X') foranyi,j .

The condition for the optimum number of cities is that the aggregate Pigouvian
subsidy equals the aggregate differential rent in the marginal city. However, the
equality does not hold in inframarginal cities. This causes a difference from the case
of identical cities. If all cities are identical, the aggregate Pigouvian subsidy must
equal the aggregate differentia rent in al cities. This is the reason why we obtained
the result that, if the differential rent is returned to city residents as an equal subsidy, the
optimal alocation is one of market equilibria. If cities are not identical, the result does
not hold, since the optimum Pigouvian subsidy is not equal to the average differential
rent in inframarginal cities. Therefore, even the best allocation among market
equilibria does not coincide with the optimal allocation.

A second class of differences which can give rise to differing cities includes all
the ways that household tastes and skills may vary. An extended anayss,
unfortunately, is so messy that we have reluctantly decided to spare our readers.

Although it is certainly more realistic to include these factors, they alone cannot
explain the differences we observe in modern economies. The fact that cities produce
differing bundles of commodities probably explains more of the variation in their sizes
than, for example, consumer tastes.

Consider the effect of introducing more than one urban good into the model with
increasing returns to scale. If the goods have different production functions, the cities
will have different sizes.

If we ask whether a city can produce more than one good in our model, we
discover an important implication of the assumption that transporting goods costs
nothing. Commuting costs can be saved by separating firms producing different
goods, without incurring any additional costs, so two-product cities will not occur.

If transporting urban goods is costly, however, cities producing more than one
good might well arise. The saving on transporting wet concrete or bottled coke to
demanders, for example, might justify the extra commuter costs that result from having
a concrete plant and a bottling plant in each city.

The cost of goods transport has a strong influence on city form as well as size,
although the subject is outside the range of this chapter. Even if two or more
commodities are produced in a city, the firms will not necessarily al locate at the
center. Retail stores, for example, disperse throughout a city to reduce the
transportation costs of shopping for consumers. Moreover, there is no a priori reason
to expect that a concrete plant and a bottling plant locate at the center. They might
locate at the edge of a city to take advantage of lower land costs, and form a
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multi-centered city.

There is another problem in multi-product cities caused specifically by the cost of
goods transport. There can be only one firm with the greatest returns to scale in a city.
If there were two, and if we could ignore the fact that the numbers of firms in other
industries must be integers,® then we could split the city into two. Production costs
would not increase in any industry and commuting costs would decrease, and society be
better off with two cities instead of one.

Therefore, we have to introduce externalities in order to attain a more realistic
system of cities. The simplest way is to add another urban good to the framework in
section5. If there are two urban goods, we obtain three types of cities:

two producing only one good, and one producing both. It is easy to see that the
same results as those in section’5 can be obtained for each type of city.

However, there is no guarantee that cities producing both goods are bigger than
cities producing only one good. For example, if externality works only through the
total population of a city, cities producing two goods have no more benefit from
becoming bigger than cities producing one good. Therefore, we might want to assume
that there is a specia benefit which arises from having two industries together.

Although introducing cross product externalities is attractive, and would give rise
to more realistic system of cities in our model, the analysis is simply too difficult for the
present work. We do not, therefore attempt to build a model of a system of cities of
this type here.

Notes

Until Alonso's work (1971), the analysis of city sizes had been limited to the cost
side, and the city size which gave the minimum cost had been considered optimal.
Alonso introduced the output side, regarding a city as an aggregate production unit.
There are two types of optimum city size in this model. For the residents the optimum
size is that which maximizes the difference between the average product (AP) and the
average cost (AC). For a national government interested in maximizing total product
under conditions of labour surplus, the optimum size is where the marginal product
(MP) is equa to the marginal cost (MC). If the supply of labour is limited, this
condition should be modified. MP may not equal MC although the difference between
MP and MC must be the same for al cities. Alonso pointed out that if individuals
maximize the difference between AP and AC, per capita tax of MP-AP-(MC-AC) can
result in the optimum city size.

Although Alonso's work was a big step forward in constructing the economic
theory of city sizes, his approach has the following shortcomings. First, the analysisis
partial in nature, since only one city is considered: if the city is placed in a general

6 For example, if there are two firms of the greatest degree of increasing returns and three firms of the
second greatest degree of increasing returns, splitting this city into two may involve an extra social cost
since acity cannot have one and a half firms.
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equilibrium framework, we may face different problems. Second, the welfare aspect
of the analysis is not very clear, since utility functions for households are not
introduced.  Third, the cause of increasing average product is not explicitly
formulated. It is not clear, therefore, how individua firms and households behave in a
market economy: increasing returns to scale for a firm, and external economies among
firms have very different implications on individual behaviour. Fourth, the spatial
aspect of citiesisignored.

There have been several dtempts to overcome these shortcomings. Borukhov
(1975) built a very simple model of an economy consisting of many cities. He
showed that Alonso's second condition for the optimum city size is correct if the
number of citiesis given: at the optimum the difference between MP and MC is equa
for all cities, but MP exceeds MC by an amount which has been interpreted as the
opportunity costs of siting the population in alternative cities. If the number of cities
Is a variable, however, this condition is not sufficient to characterize the optimal
solution. Since Borukhov was worried about integerness of the number of cities, he
could not obtain a transparent condition for the optimum number of cities.
However, if one is willing to approximate the number of cities by a continuous
variable, and to assume that all cities are the same (as done in this chapter), it is easy
to see that at the optimum the difference between MP and MC is egua to the
difference between AP and AC. This means that the difference between AP and AC
IS maximized at the optimum number of cities. Therefore, the optimum for the
residents coincides with that for a national government.

If the difference between MP (MC) and AP (AC) is caused by externdlities, the
Pigouvian tax/subsidy discussed by Alonso is necessary. However, our result suggests
that the net Pigouvian tax/subsidy is zero a the optimum number of cities.
Unfortunately, this does not imply that the optimal allocation is automatically attained
by market mechanism. As seen in ction5, city sizes tend to be too big because of
the difficulty in forming a coalition to create a new sufficiently large city.

Henderson (1974) formulated a more sophisticated model with three industries.
The first is the export industry, which faces a fixed export price. The export industry
Is assumed to have increasing returns to scale. The second is the housing industry,
which is assumed to have constant returns to scale. Finally, the third industry
produces an intermediate good which is used as an input (called sites) to the above two
industries.  This industry represents the spatial aspect of cities (for example,
commuting costs) which works to discourage formation of big cities. Instead of
explicitly introducing spatial dimension, Henderson assumed that sites are produced
with labour under decreasing returns to scale. The optimum city size balances
increasing returns to scale in the export industry, and decreasing returns to scale in the
ste industry.

One of the most important findings by Henderson is that a market economy tends
to overshoot the optimum city size because of difficulty of forming a coalition to create
a big city. Our argument in section5 is based on his observation.

Henderson (1977) extended this analysis to a spatial model ard obtained
(independently of our work) results similar to ours in the Marshallian externality case.

51



City Sizes

One of the mgor differences is that he worked with specia functional forms of
production functions and utility functions, whereas we assume general functional forms.

Henderson (1974) and Tolley (1974) analyzed the size of a city, considering the
rest of the economy as given. Both focused on the effect of pollution taxation on the
city size. Henderson showed that, since pollution taxation increases the welfare of city
residents, the city size rises with immigration from the rest of the economy. In
Tolley's model pollution taxation increases the city size if the externalities originate in
production of nontraded goods, but might reduce the city size if the externalities
originate in export production.

Serck-Hanssen, in a pioneering but little known work (1969), first obtained the
condition for the optima number of cities discussed in section 3. Adopting a
framework due to Losch, he considered firms supplying their products in a space over
which consumers are homogeneously distributed. Instead of assuming commuting
costs, he assumed positive transportation costs for products. His optimality condition
Is essentialy the same as ours, although in his model there is a complication arising
from the fact that the optimal market areas are not circular but hexagona in a
two-dimensional space.

Mirrlees (1974), Dixit (1973), and Starret (1974) derived conditions for optimal
city size in models of closed economies similar to ours. All of them assumed
increasing returns to scale in the urban industry, and obtained results equivalent to that
in section 3: the excess of marginal over average productivity equals the average
differential rent (minus a correction if environmental externalities are present as in
Mirrlees model). Concentrating on optimal allocations, they did not analyze how the
market city size is determined.

Vickrey (1977), in a very ssimple model, derived the result that the aggregate land
rent equals the loss of a firm at the optimum, and argued that competition among cities
leads to an efficient allocation. Although his analysis is not rigorous, it has the same
spirit as our analysis of a system of cities formed by land-developer firms.

Arnott and Stiglitz (1975) introduced a public good which is local to a city while
assuming constant returns in the production sector. In this case the optimum city size
is characterized by the condition, a la Henry George, that the cost of the public good is
equal tothe total differential rent of acity. They also derived the following interesting
formula: if the commuting costs are given by a linear function of distance (in our
notation t(x) =tx), the aggregate differential rent equals the aggregate transportation

costs in a linear city (q (X) = q), or one half of the aggregate transportation costs in a
circular city (q(x) =20x). Arnott (1979) generalized these results to include

congestion in transportation, economies of scale in production, and other matters.

The central place theory originating from the seminal work of Christaller (1966)
and Ldsch (1954) has a close relationship with our discussion of a system of cities in
section 6. Assuming that demand is uniformly distributed over space, the theory
considers the spatial pattern of suppliers of goods. A hierarchical structure of central
places is derived by superimposing the geographical networks of market areas for goods
with different market sizes. As pointed out by Eaton and Lipsey (1979) among others,
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the economic foundations of the theory are incomplete in an important respect. The
crucia assumption to obtain a hierarchical structure is that the location of a firm
producing a good with a large market area attracts producers of other goods with
smaller market areas. Under this assumption, there is a hierarchy of central places. the
biggest having producers of al goods, the second biggest having producers of goods
with smaller market areas, and so on. However, there is no explicit analysis of the
force that causes producers to group together in this way. Eaton and Lipsey built a
model in which multipurpose shopping offers an incentive for the formation of central
places. Our discussion in section 6 attempts to indicate how a theory of central places
might be based on the economic forces causing the agglomeration of different
industries.
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Local Public Goods

CHAPTER I11
LOCAL PUBLIC GOODS

The spatial equilibrium model in Chapter | can be used to analyze problems associated
with optimal provision of local public services. In the case of pure public goods it is
extremely difficult to achieve the optimal allocation by a decentralized mechanism. Loca
public goods which, while still public, are not perfectly public, however, alow the
introduction of competition among suppliers and it is possible to devise a competitive
mechanism which achieves the optimal allocation.

A pure public good is consumed collectively: its consumption by any individua does
not reduce the amount available for others. The classic example of a virtually pure public
good is national defense. It is clamed that the amount of "security" one person
"consumes' from her nation's "defense expenditure”" has no effect on the amount available
for others: the entire population is able to consume a pure public good.

Conventional public good theory assumes that the number of consumersis fixed since
the size of the community - usually a nation - is known. For local public services the
assumption breaks down because the population of loca communities is endogenous,
determined in the system's search for equilibrium.1 It is possible to take advantage of this
problem, however.

We know from the Fundamental Theorem of Welfare Economics that, if there are only
pure private goods, a competitive equilibrium is Pareto optimal, that is, no one can be made
better off without making somebody else worse off. When there are public goods,
however, a competitive equilibrium fails to attain Pareto optimality, and furthermore it is
difficult to devise any other workable decentralized mechanism. The problem arises
because households have an incentive to "misrevea” their preferences. By understating the
margina benefit it gains from the public good, a household can avoid being assessed its full
share of the cost of providing the good, without suffering a reduction in supply. Supply is
unaffected , because the contribution of a single household is negligible. This difficulty is
often called the "free rider" problem.

Since a pure public good is consumed by all households concurrently, a margina
increase in supply benefits all households simultaneously. The marginal socia benefit is
therefore the sum of the benefits received by each household, which may be expressed as the
sum of marginal rates of substitution between the public good and the numeraire.

If al households were to pay the full value of the benefit they received, profit
maximization would yield an efficient allocation. Because of the free rider problem,
however, it is extremely difficult to devise a pricing scheme in which every household has
an incentive to revea its marginal evaluation of the public good.2

1 Stiglitz (1977) emphasized this aspect of local public goods.

2 Although dark (1971), Groves (1973) and Groves and Ledyard (1977) invented a mechanism in which a
household has an incentive to reveal its preferences correctly, this mechanism is rather artificial. Green and
Laffont (1977) proved that this mechanism is the only one that does not have the preference revelation
problem.
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In the case of local public goods, competition between different communities can
work in a manner similar to competition between suppliers of private goods. The
preference revelation problem still remains within a community since a local public good
has the same characteristics as a pure public good within a community. It is, however,
possible to exploit the specia property of loca public goods, the fact that the population of
beneficiaries is endogenous to the system. If a community increases the supply of local
public goods, the community becomes more attractive, which induces immigration of
households. This increases demand for housing, causing land rent to rise. The margina
social benefits of the public goods are therefore reflected, at least partialy, in the marginal
increase in land rent. If the community is infinitely small relative to the rest of the world,
the marginal benefits equal the increase in the total land rent in the community. Then the
behaviour which is characteristic of aland developer, maximizing land rent net of the cost of
providing the public goods, leads to the efficient supply of the public goods.

In order to illustrate the basic principle, we start in section 1 with a smple case.
Public goods are assumed to be extremely loca in the sense that they are jointly consumed
only by residents at a location. To simplify the analysis we assume that public goods
supplied at a certain distance from the city center can be consumed only by residents living
at that distance from the center. In effect we pretend that neighbourhoods form a series of
concentric rings, each of unit width, around the city center. It may seem a bit peculiar, but
the assumption is nothing more than a mathematical convenience which yields perfectly
sensible and general results. This type of public good represents, in an extreme form,
goods consumed only by households living very close to the location of supply; street
lighting, for example, or neighbourhood beautification, or snow removal. The extremely
local public goods are embedded in the closed city of Chapter I.

Not surprisingly, the optimum solution must meet the Samuel sonian condition that the
sum of margina rates of substitution be equal to the margina cost of the public good.
Another interesting property of the optimal solution is that the differential rent (the
difference between the urban rent and the rural rent) at the edge of the city equals the cost of
the public good there.

The optimal solution can be achieved either by centralized control, which requires
impractical amounts of information, or through a decentralized mechanism such as a system
of neighbourhood development corporations which rent land at the rural rent and maximize
their profits. In the second half of section 1 a system of competitive land developers with a
developer in each neighbourhood is described and its optimality demonstrated.

In section 2 we examine a crowding phenomenon by assuming that the cost of
producing the same amount of the public good rises as the number of residents increases.
The maor difference in this case is that the optimal solution requires a congestion tax on
households. The congestion tax at any location equals the marginal increase in the cost of
the public good caused by adding a household there. The system of competitive land
developers achieves the optimal allocation if a land developer charges the congestion tax
and maximizes rent plus tax minus the costs of providing the public good.

In section3 we consider alocal public good whichis jointly consumed by all residents
in an entire city, rather than by residents at a certain radius. Museums, theaters, sewage
systems, and large parks may fit this category. Competition between cities is introduced by
assuming that there are many identical cities. The results are paralel to those in the
increasing-returns-to-scale case of the previous chapter, as well as those in the extremely
local public good case of the present chapter. If a competitive land developer develops an
entire city, the local public good is optimally supplied when the number of cities is very
large. Moreover, the zero profit condition from free entry insures the optimum number of
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cities.
Crucial in deriving our results is that, in the eyes of a developer, the utility level of the
residents is fixed. This suggests that we can extend the result to more genera models as

long as this condition is guaranteed. In Appendix Il we consider one example of such an
extension, in which two inputs, land and labour, are used in production.

It is worth emphasizing that our results depend on the assumption that all households
in the economy are identical in terms of both skills and preferences. Although we may
relax this assumption to include different types of households, we must assume that there are
many households in each type in the whole economy and that one region contains a very
small fraction of the households in each type. Since identical households receive the same
utility level in equilibrium, regardiess of where they live, a change in the supply of local
public goods in one small region has a negligible effect on the general utility level. If al
households are different, however, the utility levels of residents cannot be taken as constant
even in the case where the population of the region is very small compared with the rest of
the world. Therefore, at best we can only say that the system of competitive land
developers approximates the optimal allocation of local public goods. How good an
approximation it achieves is an empirical question. Considering the fact that there is no
perfect mechanism to supply public goods, however, our scheme of letting competitive land
developers supply local public goods is worth a serious consideration. Our result would
suggest, for example, that when a land developer develops a new community, the devel oper
rather than alocal government should pay for the public good supplied in the community.

1. AnExtremely Local Public Good

Consider an extremely local public good in the public-ownership, closed-city case of

Chapter 1. The amount of public good supplied between x and Xx+dx is denoted by
X(xX)dx. Though we consider only one public good for notational simplicity, the

conclusions obtained in this section are valid for any number. The public good is
extremely local in the sense that the public good supplied at X is jointly consumed only by

residents of a ring of unit width between x- % and x+%. If we assume that public

goods supplied at different radii are perfect substitutes, then a household at x had available.

C;_Jr% X (x®dx¢.

2
or approximately X (x) , of the public good and its utility function can be written

u(z(x), h(x), X(x)) . (11

It is assumed that the consumer good is the only input in the production of the public
good. The public good is assumed to be produced separately at each location at a cost
C(X(xX)). Then the resource constraint (1.1.30) is rewritten as follows.

S0 + LI +e(X () + R}k = F (P) (12)

The land constraint is the same as (1.2.2), and the population constraint as (1.1.24):
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a(x) = h(x)N(x) (1.3)
p= (5 N (X)dx . (14)

The sum of the equal utilities,
Q N(x)dx, (15)

is maximized under the congtraints (1.2), (1.3), (1.4) and the equal utility constraint,
u(z(x), h(x), X(x)) = u. (1.6)
The first order conditions for this problem become, after simple rearrangements:

R, (173)

l"IZ
‘:—X N(X) = cEX (%), (1.7b)
yZ: 2(X) +t(Xx) + R(x)h(x), (1.7¢)
RR)- R, =2X%) (L7

q(X)

(1.79) and (1.7c) are the same as in Chapter |. (1.78) equates the marginal rate of
substitution between housing and the consumer good to the shadow rent.  (1.7¢) states that
the household expenditure on private goods, evaluated at the shadow prices, must be the
same everywhere in the city.

Conditions (1.7b) and (1.7d) are new. (1.7b) is the Samuelsonian condition for
efficient supply of the public good described in the introduction: the margina cost of the
public good at x must equal the sum over all residents at x of the residents' marginal rates of
substitution between the public good and the consumer good. A unit increase in the supply
of the public good between x and x+dx raises the utility level of a household there by
u,. Since N(x)dx households receive the benefits of the public good, the marginal
social benefit in utility termsis u, N(X)dx, and in pecuniary terms(u, /u, )N(x)dx. The
social optimum is achieved when the marginal benefit equals the social margina cost,
c'(X(x))dx.3

(1.7d) shows that the shadow rent at the boundary of the city is not equal to the rural

1
31f we go back to the original formulation, a household at x has available @X £ X(x9dx¢ of the public good.
X- —

Consider the costs and benefits of a unit increase of X (x) between x and x+dx. The costs are c¢'(X)dx.
On the other hand, the utility level of a household between x-1/2 and x+1/2 rises by uydx, and the
marginal benefit a household receivesis (uy /u,)dx in pecuniary terms. The social benefit is obtained by
summing this over all households between x-1/2 and x+1/2 so that the optimality condition is

> (D
I~

\X+

0
X N(xgdxaldx = cE X (x))dx.
uZ

)
fa?
Nl Py

X:

D

Equation (1.7b) is obtained if we can approximate (uy/u,)N(x9 for all x' between x-1/2 and x+1/2 by
(uy /u,)N(x) .
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rent as in Chapter |, but rather greater than the rura rent by the cost-per-unit-area of
producing the public good there.

This optima solution can be achieved in the following ways. First, loca
governments might supply the local public good so as to equate the sum of marginal rates of
substitution to marginal cost of the public good at each location. The city would lease the
land to those who pay the highest rent, which would be R(x)=u,/u, in market

equilibrium. Part of the revenue would then be used to produce the public good and the
rest returned to residents as an equal subsidy. The public good would be supplied out to
the radius where the market rent minus the rura rent equals the cost of the public good per
unit acre. Under this arrangement utility maximization by households ensures conditions
(1.6) and (1.7a) and the market equilibrium attains the optimal allocation.4 Unfortunately,
this method is not practical since local governments must know the margina rates of
substitution, and these are very hard to discover.

The second way to implement the optimal solution can be seen as a system of land
developers. Imagine a large number of developers in a city, each developing an extremely
small area, and each supplying the local public good in their area. The developers rent land
from the rura landlords and sublet it to city residents at the market rent. In our circular
city, it is convenient to allow each developer to develop a band around the city center at a
given radius. The developer's profit, which is the differential rent minus the cost of
providing the public good, becomes

[RO) - RO - (X ().
In order to ensure that all households obtain the same utility level, we assume that the profit
isdistributed equally among all city residents.

Since each developer is very small, its action does not significantly affect the utility or
the income levels. Therefore, when he changes the supply of the public good, land rent
moves in such a way that utility and income both remain unchanged. The change in land
rent can be obtained as follows. A household maximizes the utility function (1.1) under
the budget constraint (1.7c), which can be summarized as the indirect utility function,

v(y - t(x), R(x), X(x)) (1.8)
asin(l.1.7). Equating the indirect utility function to the fixed utility level, u, we obtain the

4 The reader may wonder whether a household would not prefer to rent land directly from the rural owners or
the central government and live outside the boundary of the city, where the public good is not supplied. If the
optimal solution requires a positive supply of the public good at the boundary of the city, then households do
not have an incentive to live in the places where the public good is not supplied. It suffices to show that
households obtain higher utility at the boundary if the public good is supplied than not, since locations farther
than the boundary are even less desirable.

From (1.7c¢) and (1.7d), the following resource constraint is satisfied at X .

=13 + R_h(z) + SX ) \
y=2(X) +1(X) + Rh(X) NG *)

A household which lives on the other side of X has the budget constraint;
y=z+t(X)+Rph . (**)

Since the same amount of resource is used up in both cases, under (*) be higher than or equal to the maximum
attainable utility level under the budget constraint (**). Otherwise, the utility level of X can be increased by
making the supply of the public good zero without lowering the utility level of other locations.
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bid rent function,

R(y - t(x),u, X(x)) (19)
asin(l1.1.12).
A profit maximizing developer at X maximizes

[Ry - t09,u, X (x)) - R (9~ c(X(x) (1.10)

with respect to  X(X) , which yields

Rxa(X) = c(X). (1.12)

Thisimplies that the optimality condition (1.7b) is satisfied. By Roy's Identity (1.1.10) the
bid rent function satisfies

v
R, =——=>.
T hy,
Noting that v, =u,and v, =u, by the Envelope TheoremP, we can rewrite this equation
as

lu
R, = ——2X%, 1.12
R (L12)

Equation (1.5b) follows, since from the land constraint (1.3), q(x)/h(x) = N(X).

The land developer operates only when profit can be made:

[RX)- RJa00) - e(x ()2 0. (113)
This condition insures that (1.7d) is satisfied at the edge of the city.

Thus the system of land developers achieves the optimality conditions (1.7b) and
(2.7d). Since other conditions are also satisfied in market equilibrium, the optimal
alocation can be reproduced if the local public good is supplied by extremely small land
developers.

Note that developers need to know only the land rent, and not the utility function.
Therefore, the informational requirement is the same as the usual price mechanism. There
still remains, however, a difference from the market system for private goods. Since firms
and households maximize their objective functions taking prices as given, maximization
processes are not affected by situations outside them, whereas the maximization problem for
land developers involves an important endogenous price, namely, land rent, which is
determined through reactions of households to the supply of the public good. Therefore,
the profit-maximizing kbvel of the , local public good can only be found after observing

S See Appendix I11 on the envelope property.
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levels of land rent corresponding to many different supply levels.

The system of land developers may be interpreted as the mechanism proposed by
Negishi (1972) and combining Margolis principle of fiscal profitability with Tiebout's
voting with one's feet. According to the principle of fiscal profitability, alocal government
pays for the local public good from a tax on land, and determines the supply of the public
good which maximizes the rent net of the tax. This behaviour is identica to the
profit-maximizing behaviour of a developer. Voting with one's feet allows households to
choose the local government that offers the preferred bundle of local public goods. In our
model the free choice of location represents voting with one's feet. This, coupled with the
assumption of extremely small local governments, will insure that local governments take as
given the utility level of residents.

The above result relies on the fact that the marginal benefits of the public good are
capitalized in land rent.  Multiplying (1.12) byq(x) , we obtain

q()R, :L:—XN(X) : (1.14)

z

the marginal increase in land rent at x, caused by a unit increase of the public good, equals
the sum of the marginal rates of substitution between the public good and the consumer
good, which in turn equas the margina benefits of the public good. This result is
characteristic of a small economy in which the utility level can be taken as given, and is
independent of the public good being optimally supplied. The benefit of the public good
must accrue to somebody or become a deadweight loss. Since there is no deadweight loss
in the first best world, al the benefits must be received by somebody. In our model, the
only place the benefits can go is land rent.

hléﬂ "
=—|::..1+H2.'.‘.h1

y- ()
hlaR |
=-[az+Ryah 7 [~

Euxfuzjﬁx

iz, h,X,} =0
i

ule,h,Xy0 = 1

Figure 1. Capitalization of the Benefiks of
a Public Good

Figure 1 illustrates the capitalization of the benefits of public goods. Consider an
increase in the supply of the public good fromx tox . Then a smaler bundle of (zh)

is necessary to achieve the same utility level, u, and the indifference curve shifts toward the
origin. The equilibrium consumption moves from Q toQ¢. The benefits of the increase

in the supply of the public good can be represented by the amount of resources freed by this
move. Since both z and h change, we must evaluate the change by using some relative
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price. There are at least two possibilities. If we use the before-the-change rent, R , the
benefits of this change are AC in Figure 1, or - [Dz+RDh]; and if we use the
after-the-change rent, R , the benefitsare AD, or - [Dz+R,Dh] .

From Figure 1 (or from simple algebraic manipulations) it is clear that AC, which is
AG- CG, dso eguals the change inrent, DR=R, - R,, multiplied by the after-the-change
consumption level of housing, h , i.e, h,DR; and that AD equals the change in rent
multiplied by the before-the-change consumption, hDR.

Although it is not clear in this partia analysis which measure of benefit is a better
approximatior®, if the change in X is infinitesimal, the two measures coincide, and the
problem disappears. For a marginal change in X, therefore, the benefits a household

receives equal hg—i, which is equivalent to (1.10). The socia benefit is the sum of the

benefits of al households who consume the public good and is given by q(x):—s in our

model. Thus the rise in land rent completely capitalizes the marginal benefits of the public
good.

The diagram also shows that the marginal rate of substitution between the public
good and the consumer good is the correct measure of the marginal benefit of the public
good which a household receives. When the consumption of land is held constant, a
reduction in the consumption of the consumer good made possible by the increase in the
public good equals QE. If the change in the supply of the public good is small, QE is
approximately Dz = (u, /u,)DX , since by total differentiation

u,dz+u,dx=du =0,

whereDX © X, - X,. Moreover, as DX approaches zero, QF approaches (u, /u,)DX .
QF equals AD, and hence gives the benefit of the margina increase evaluated at the
after-the-change price. Thus u, /u, is the correct measure of the marginal benefit of the
public good.

2. An Extremely L ocal Congestible Public Good

In the previous section we assumed that the local public good was a pure public good
at each radius. In particular, we assumed that the costs of providing the same level of the
public good did not depend on the number of consumers. This assumption does not hold
for most public services. For example, the same park gives different levels of services
depending on the number of people using it. The cost of providing the same level of park
services usualy increases as the number of users increases.

In this section we assume that the cost of producing the same level of the public good
increases as population density increases. The cost function for the local public good is
modified as

6 Following the approach due to Negishi (1972), Harris (1978) showed, in the context of public inputs rather
than public consumption goods, that the value of the change evaluated at the after-the-change pricesis the
lower bound of the benefits and that the value at the before-the-change prices is the upper bound. Since in
our case the value of the change evaluated at the after-the-change price is greater (in the absolute value) than
the value at the before-the-change prices, Harris' result must clearly be modified. It is still an open question
whether a similar relationship can be established in our model.
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c(X(x),N(x)), (2.1
where
C,>0

As in the previous section, the optima solution can be easily obtained. The first
order conditions are (1.7a) and

‘:—X N(X) =C, (2.29)
y =2z(x) +t(x) + R(x)h(x) +C, (2.2b)
c(X(X),N(X)) =[R(X) - R,]Ja(X) + N(X)cy. (2.2c)

(2.2) is the same as before: the margina cost of the public good must equal the sum of
marginal rates of substitution between the public good and the consumer good for al

households at each radius. Terms in (2.2b) and (2.2c) containing C, are new. In order

to achieve this solution in a market system, a household must pay a congestion tax equal to
the marginal cost of adding a household, c,., and varying with distance from the center.

Then (2.2¢) states that the government budget is balanced at the edge of the city. The sum

of the revenues from the congestion tax and the land rent is exactly equa to the sum of the
rural rent and the cost of the public good at X .

Consider again a system of competitive neighbourhood developers supplying the
public good. As before we asume that no developer is large enough to affect the utility
and income levels. We now assume that each developer charges a congestion tax (or the
membership fee to join the location) and maximizes profit including the tax. If the
congestion tax at x isdenoted by s(X) , the developer at x maximizes

R(X)g (X) + S(X)N(X) - c(X(x), N(x)) . (2.3
The policy variables for the developer are s(x) and X(x). R(x) and N(X) are
determined through the market's adjustment.
As in the previous section (c.f., Equation(1.9)), we can derive the bid rent function;
R(y - t(x)- s(x),u, X(X)). (2.9)
Asin (1.1.14), the function satisfies

1

R (1(x),u, X(x)) = !

(25)

wherel (X) © y- t(X)- <(X). The number of households at X, therefore, satisfies
N(X) =a(X)R (y- t(x) - s(x),u, X(x)). (2.6)
Thus a developer maximizes
R(y - t(x) - s(x), u, X (X))o (X)
+5(X)a ()R, (y - t(X) - S(X), u, X (X)) (2.7)
- AX(X) AR (y- t(x) - s(xX),u, X(X))]
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with respect to s(x) and X(X). It is easy to see that optimization with respect to <(x)
yields

(x)=cy. (2.8)

As in the previous section, optimization with respect to X(x) yields (2.2a), and the

nonnegative-profit condition guarantees (2.2c). Thus the optimal supply of the public good
and the optimal level of the congestion tax are obtained.

In the previous section we showed that the marginal benefit of the public good is fully
reflected in the increase in land rent. It may seem plausible that, when there is a
congestion tax, some of the benefit of an increase in the supply of the public good will show
up as an increase in tax revenue, so that the marginal benefit would equal the change in the
sum of land rent and the congestion tax. Differentiating the sum, however, yields

%[q (N R(Y - t(X) - s(x),u, X (x)) + N(X)s(x)]
— ds ds dN
=q([-R &*‘ Ry 1+ N(X)&+S(X)&

=q(R, + s(x)j—)'j

Uy

NG9+

z

(2.9)

where the second and the last steps use (2.5) and (2.8) respectively. The change in the
sum, therefore, exceeds the margina benefit, and the difference is the increase in tax
revenue caused by an induced change in population, S(X)(dN/dX). The increase in

population raises the tax revenue, but at the same time increases the cost of producing the
public good. From (2.8), the two increases are equa at the optimum, and the in-crease in
tax revenue, being completely absorbed by the increased costs, does not constitute net social
gan.

(2.9) aso shows that, if the congestion tax, s(X), is held constant, the earlier result
follows:

%[q(x)R(y- t(x) - s(x),u, X ()]

=Ux if  (x) = congtant
uZ
Thus, if, for example, the marginal cost of a population increase, ¢, , is constant, the
marginal benefit of the public good exactly equals the increase in land rent.

3. A Public Good Local toaCity

In this section a local public good is assumed to be jointly consumed by al residents
of a city. Consider n identica cities which produce the consumer good under constant
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returns to scale. A city's production function is wP., where P, is the population of the

city and the margina product of labour, w, is constant. Note that the existence of a public
good provides a reason for having a city: an increase in population lowers the per capita
cost of supplying the same amount of the public good. Cities, therefore, may exist even if
production technology has constant returns to scale.

The utility function of a household is

u(z(x), h(x), X), (3.2)

where X is the consumption of the local public good and is equal for all residents in a city.
The cost in terms of the consumer good of the public good is

C(X), (32

where there is no congestion effect.” We do not explicitly introduce a rural sector but the
rural rent, R, isassumed to be paid by cities. Then the resource constraint is

(;‘3)7{[200+t(><)]N(><)+ R.d(X)}dx+C(X) = WP, . (3.3)

The total population, P, of city residents is assumed to be given. The population
constraints are

P=nP (3.4)
ad

P. = SN(x)dx. (35)

Our optimization problem is one of maximizing the sum of equal utilities,

n@j N()dx, (36)

under the above congtraints (3.3)-(3.5) and the constraint that al households have the same
utility level,

u(z(x),h(x), X) =u. (3.7)

If the number of citiesis fixed, we obtain the first order conditions (1.5a), (1.5b), and

(5E—XN(x)dx=C<(x), (3.89)
Z

7 This formulation implicitly assumes no transportation costs for the local public good. In this sense the
public good is like atelephone system, a cable television network or a sewage system but not like atheater or a
central park. Transportation costs of a local public good can, however, be easily introduced and do not
change our results. If the public good is supplied at the center of the city, we may even interpret t(x) as
including transportation costs of the public good.
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(3.8a) is the Samuelsonian condition that the sum of margina rates of substitution over all
residents in a city must equal the marginal cost of the public good. (3.8b) is a familiar
equality between the urban rent at the edge of a city and the rural rent.

If the number of citiesis a policy variable, we must add the following condition:

SIRX - RE(dx=C(X). (39)

The total differential rent is equal to the total cost of the public good. Therefore, if a city
government collects land rent, pays the rural rent, and supplies the local public good, its
budget is balanced at the optimal number of cities.

Now, consider the benefit of the public good in a market economy. We first derive a
formula which holds for any type of city, and then consider the special cases of a closed city
and a small open city in an economy with many cities. In our market cities, city
governments are assumed to collect the land rent, and to return the surplus, after the
payment of the rural rent and the cost of the public good, to residents as an equal subsidy.
Since everybody has the same marginal productivity, the wage rate is also the same, and
therefore income is the same for al households. Then the budget constraint for a
household is given by

y = z(X) +t(x) + R(X)h(x), (3.10
for an appropriate income'y.
The bid rent function can be derived as in the previous sections:

R(X) =R[y - t(x),u, X]. (3.11)
The effect on land rent of a change in the supply of the public good is

dR(x) _ _ dy du
dX(x) R dx+Ru +R

I dy I du+ | Uy

h(x) dx vh(x) dX h(x) u,

(3.12)

where the second equality is obtained from (2.5), (1.1.15) and (1.10). Multiplying both

sidesby q(X), integrating from0to X, and rearranging terms, we obtain
X Uy dR(x) Udu _ dy
Q N(X)dx ‘Q q(x)dx+eQ N (x)dx LJ_' P.— e

(3.13)

Thus the marginal benefit of the public good is reflected in the changes of land rent, the
utility level and the income level. Notice that this equation holds for any degree of
openness of acity.

First, consider the public-ownership case of a single closed city, where the population
of the city isfixed. The argument applies as well to an economy with many cities when the
number of citiesis given. The income of a household satisfies
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Ry =Pw+ R0 - R.Ja()dx- C(X). (3.14)
Differentiating this equation, and noting that (3.8b) holds inequilibrium, we obtain

P Q dR(x)

= §Rq (o [RED - RFG- ca

dR(x)

g (x)dx- C&Xx). (3.15)
Substituting (3.15) into (3.13) ylelds

éx1 XUy

eQ—N (X)dX u—- Q

N (x)dx - Cqx), (3.16)

which states that, if the margina benefit exceeds the margina cost, the utility level of
residents rises as the supply of the public good is increased. At the optimum, where the
utility level is maximized, we have

du _

dx

which, coupled with (3.16), yields the Samuelsonian condition (3.8a) for the optimum
supply of the public good. Notice that in a closed city the land rent does not necessarily
reflect the benefit of the public good.

Next, consider a small, open city. When the number of cities is very large, a city
may be considered to be very small. In such a case the utility level of households can be
considered as given for a city and (3.13) becomes

*dR(X)
O ax
Therefore, if the income level is given, an increase in land rent fully reflects the benefits of
the public good:

q(x)dx = Q‘:—X N(X)dx + PC:—;/.

z

@%q (X)dx = Ql:—x N(x)dx. (3.17)
There are at least two such cases.  First, if land is owned by absentee landlords, the income
of city residents is not affected by the supply of the public good. More important in our
context is the case where a centra government collects all the fiscal surpluses of city
governments and distributes them as an equal subsidy. If a city is small compared to the
whole economy, the policy in that city affects the subsidy received by its residents only
negligibly, and the income level can be considered as fixed.

The latter case completely parallels the treatment of the extremely local public good
case: if a profit-maximizing city developer, owned equally by all households in the
economy, supplies the public good, the optimal supply of the public good is achieved. A
city developer maximizes the profit

IR R (ax- C(x)
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with respect to X among market equilibria. Then at the maximum we have

S OROO- R 0ax- cx)

_ XdR(x)

-Q dx

_ X dR(x)
dx

where derivates are taken across equilibria.  Combining this equation with (3.17), we
obtain the condition (3.8a) for the optimum supply of the public good. Therefore, a system
of land developers does not require that the region be either homogeneous or physically
small to achieve an optimum. We do need smallness in the sense that the utility and the
income levels of residents are not affected by policies within a city.

If the number of cities is optimal, the profit of a city developer is zero from (3.9).
Therefore, the zero profit condition from free entry insures the optimal number of cities.
This result parallels those in the cases of increasing returns and Marshallian externality in
Chapter I1I. The main differerce is that in the public good case the supply of the public
good must be determined, as well as the population of a city, while there is no such variable
in previous cases.

In the case of Marshallian externality the market city tended to be too large. This
problem does not appear when city formation results from the existence of public goods.
Consider the utility level attainable in a city given the alocation in the rest of the world. In
the Marshallian externality case the utility level first rose as the population of the city
increases, reached amaximum at P, , and then fell asillustrated in Figure 2a.

a(9ax+-X[RE)- R]- €4

g(x)dx- C¢X)=0.

utility level etility lewvel
u in & city u in a eity

ar

u{PEJ uIPEE

- F P
0 ?c o ]

=
tha popu- the popu-
lation of lation of
a city a city
Figure 2a Figure 2b

The Marshallian The Public Good Case
Externality Case

Figure 2. Comparisgon with the Marshallian Externality Case1

Since the utility level was low when the population was small, it was difficult for a new
small city to attract residents. In the public good case, however, the situation is different.
For the same supply level of the public good the utility level achievable in a city is higher
when the population of the city is smaller asillustrated in Figure 2b. Since the public good
is financed by the land rent, residents do not pay any tax for the public good. The residents
are therefore better off in a smaller city, since they can enjoy the same amount of the public
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good with smaller average commuting costs. In such a case a new small city has no trouble
attracting residents.

Notes

The analyses in this chapter derive from two separate bodies of literature. Thefirst is
concerned with attaining an efficient supply of a loca public good. The second with the
relationship between land rents and the benefits of public goods.

Samuelson (1954) has shown that it is extremely doubtful that any decentralized
market system can determine the optimal level of a pure public good. His main argument
is that there is dways an incentive to misreveal one's preferences. For local public goods,
however, Tiebout (1956) has argued that a decentralized market mechanism can indeed
work. Freedom of personal migration among jurisdictions works as voting with one's feet
which insures efficiency.

As shown elsewhere (Kanemoto (1976)), this hypothesis is not correct if local
governments are passive in supplying local public goods. An argument similar to the
discussion of optimum and market city sizes in the Marshallian externality case in Chapter 11
can be applied to show that, though the optimal; solution is one of market equilibria, there
are many other equilibria, and there is no reason to believe that the optimal solution is likely
to be attained.

The multiplicity of equilibria occurs since a sudden formation of a new community
which is sufficiently large to be viable is usualy impossible in a decentralized economy.
Therefore, one way to avoid the difficulty is to allow free coalition. As shown by Pauly
(1970), however, an efficient alocation is a core only if the total population is divisible by
the best community size. Otherwise, a core does not exist. Furthermore, informational
requirement to attain a core would be formidable.

Another way of avoiding the difficulty is to introduce an active role of local
governments. McGuire (1974) and Berglas (1976) assumed a profit maximizing behaviour
of the suppliers of a local public good. They showed that if there are sufficiently many
suppliers, an efficient alocation of the public good is attained. For this to be true,
however, a firm should be able to determine the number of the members of the club as well
as the supply of the public good and the tax (or the membership charge, in their club theory
terminology). Though this may be plausible in a club theory, it is usualy difficult for a
local government to control the population of its jurisdiction. If the population of a
community is determined by free migration, the difficulty of forming a sufficiently large
new community will remain to be an obstacle to achieving the efficient community size.

If there is a factor whose supply is fixed, notably land, this difficulty disappears. As
alocal government's policy, Margolis (1968) suggested the principle of fiscal profitability:
loca governments seek to minimize the burden to the loca tax payers. However, he
remained doubtful on the optimality of the supply of public goods in a model with the
principle of fiscal profitability and voting with one's feet.

Negishi (1972) developed a formal model to analyze this problem and showed that
Pareto optimality can be attained under the following three assumptions. First, the
marginal rate of substitution between land and local public goods is equal to the reciprocal
of the ratio of land inputs to local public goods. Second, local public goods are financed
by proportional taxes on land. Third, local governments believe that marginal and average
land value productivities of a public good are equal. Unfortunately, these assumptions
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(especially, the first one) are quite restrictive.

We have shown that Negishi's first and second assumptions are not necessary to
establish efficiency of the principle of fiscal profitability coupled with voting with one's feet,
if ajurisdiction is very small relative to the whole economy.

The second source of our analysis is the literature on the relationship between land
rents and the benefits of public projects. Polinsky and Shavell (1975) and Pines and Weiss
(1976) showed that the marginal increase of the land rent in an open and small region
correctly reflects the marginal benefit of a public project. Pines and Weiss. added a
qgualification: if relative prices of goods are affected by the public project (for example, in
the case of leisure), this may not be true. We show in Appendix I, however, that, even if
the wage rate is affected by the supply of the public good, the marginal benefit is correctly
reflected in land rent. We have shown elsewhere (Kanemoto (1978)) that the conclusion
holds for models which are still more genera than the one used in the appendix, even when
leisure is introduced.

The model of an extremely local public good is similar to models in Schuler (1974)
and Helpman, Pines and Borukhov (1976). ) Their main concern is, unlike ours, the
gpatia pattern of the supply of the local public good.

The model of a public good local to a city is similar to that of Arnott and Stiglitz
(1975) who considered only the optimal allocation. They obtained the result that, in a city
with the optimum population, the aggregate land rent equals the total expenditure on public
goods. This result was first obtained by Flatters, Henderson, and Mieszkowski (1974) and
sometimes called the Henry George Theorem or the Golden Rule. We found that this
property follows from the conditions for the , optimal number of cities. It is apparent that
the problem of the optimal number of cities is equivalent to the problem of the optimum
population of a city in amodel with identical cities.

Arnott (1979) discussed market city sizes. His approach, in contrast to ours, was to
assume away entrepreneurship of city developers. He therefore repeated the argument
which Henderson (1974) gave in the case of Marshallian externality and concluded that the
market city size tends to be geater than the optimum.
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CHAPTER IV

TRAFFIC CONGESTION AND LAND USE FOR
TRANSPORTATION:
OPTIMUM AND MARKET CITIES

Traffic congestion probably induces the most important kind of externality in cities;
the waste of resources and time in inefficient transportation may be enormous. In this
chapter we extend the basic model to examine commuter congestion when city land is used
for transportation. A new problem we face is how to allocate land between transportation
and residential uses, or how much road to build.

Traffic produces a variety of externalities, noise, pollution, and risk of injury among
them, which affect people whether they are traveling or not. Traffic congestion, however,
tends to affect travelers most. Each additional vehicle on the road adds to the congestion
and increases the travel time for others. Since the additional traveler decides to travel on
the basis of her own costs, and does not have to compensate other travelers for the increased
costs she imposes on them, her decision may be socially inefficient.

Decisions may be inefficient in various ways:. it may be better to use less congested
roads, or other modes of transportation, to travel at a less congested time, or less frequently,
and so on. In this chapter, we concentrate on the distortion of residential decisions,
assuming that no other decisions can be changed. Households are not charged for costs
they impose on others, so they pay less than the social cost for their transportation.  Since
land rents reflect the differential commuting costs, they are also distorted; and the lot sizes
chosen by households are therefore socially inefficient.

The obvious way of achieving an efficient allocation is to levy congestion tolls equal
to the costs that a commuter imposes on others.  In practice, however, it is technically and
politically difficult to introduce congestion tolls.

Allocation of land between transportation and residential uses introduces another
complication. Policy makers generally presume that market prices correctly reflect the
social marginal value of goods. This presumption, however, is erroneous if congestion
tolls are not levied. The private transportation costs are different from the social
transportation costs, and market rents are not equal to social rents. The usual benefit-cost
criterions based on market prices are, therefore, misleading.

In the next chapter we analyze the "second best” solution under which congestion tolls
are not levied but social benefits and costs rather than market benefits and costs are used as
acriterion for building roads. In this chapter, however, we compare the market allocation
with the optimum alocation based on true social costs. At the optimum, congestion tolls
are levied and the amount of land allocated to roads is optimal, while a the market
allocation congestion tolls are not levied and roads are built according to the erroneous
benefit-cost criterion based on market prices.

For the sake of simplicity we make the following (drastic) simplifying assumptions
about the transportation sector.

72



Traffic Congestion

(&  Automobiles are the only mode of transportation. Although extending the model to
include alternate modes would introduce many interesting problems, the analysis
would require at least another chapter.

(b)  Circumferential travels are costless. This assumption allows us to maintain the
one-dimensional framework. We may imagine that there are so many radial roads
that any household can reach one of them with negligible costs. Miyao (1978)
relaxed this assumption and considered a two-dimensional rectangular city. In order
to carry out this extension, he had to simplify other aspects of the model. Although
the two-dimensional case introduces the problem of route choice, we do not expect
qualitatively different results.

(c) All commuters arrive at and leave the CBD at the same time, and travel at the same
speed. This assumption simplifies the analysis greatly since the traffic volume at
each radius can be represented by the number of workers living outside theradius.  In
reality, people are probably brighter than this, and try to avoid the peak time. Our
assumption essentially describes the upper limit of urban congestion.

(d) There are no road construction costs. The only costs of building roads are the
opportunity cost of land. This assumption can be easily relaxed.

(e)  Allocation within the CBD (central business district) can be ignored. In effect, we
assume that commuting costs inside the CBD are zero.  This assumption was relaxed
by Livesey (1973) and Sheshinski (1973) in amodel simpler than ours.

(f)  Time costs can be ignored. This is consistent with previous chapters, and does not
affect the results.

1. TheModd

Two new elements are required to extend the transportation sector of the basic model
in Chapter |. First, transportation is assumed to require land. Land allocated to
transportation use at radius x isdenoted by L (X). Theland constraint becomes

Ly () +L, ()< 6(X), (11)

where, asin Chapter I, L, (x) denotesthe amount of residential land.

We continue to ignore the allocation within the CBD and assume that the residential
zone stretches from x=0 to x=X. We do not, however, assume that the CBD is a
point. This change is made because, if 6(0) is zero or close to zero, al the available land
is devoted to roads near the CBD. In such acase, the nonnegativity constraint, L, (x) =0,
for 0< x<X, ishinding, and we obtain a corner solution. For simplicity, we assume that
enough land is available near the center to preclude the corner solution.

The second new element is traffic congestion: commuting costs for each individual
depend on the number of others using the same road at the same time.  Specificaly, it is
assumed that the commuting cost per mile per household at radius x is a function of the
volume of traffic T(x) and the amount of land allocated for transportation L, (x) at that

radius:
g(T (%), Ly (¥)), (1.2

where the cost increases as the volume increases,
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g, (T,L;)>0, (1.3)

and decreases as more land is used as roads,

g, (T,L;)<0. (1.4)

We concentrate on the total amount of land used for roads at each radius, and do not
analyze how the width of an individual road is determined. In this chapter the width of the
road refers to the total amount of land used for transportation at a radius, instead of the
width of an individual road.

Commuting costs incurred by a household living at x are

t0) = [ 9(T(x), Ly (x))ax . (15)
Differentiation of this equation with respect to x yields the following differential equation:
t'(x) = g(T(x), L (x)) . (1.6)

This differential equation, with the boundary conditionat x=0,

isequivalent to (1.5).

Since all commuters arrive at and leave the CBD at the same time, and that they travel
at the same speed, the traffic volume at a radius x is equal to the number of households
living outside x:

T(X) = J.:N(x')dx’ , (18)

where N(x)dx is the number of households living between x and x+dx, and is given by
(1.1.25): N(x) =L, (X)/h(x). Thisiseguivalent to the differential equation,

T'(x) = -L,, (X)/ h(X), (1.9)

with the boundary condition,

T(X) =0. (1.10)

t(x) is usually caled the private transportation cost and is different from the social
transportation cost, since it does not include the external costs imposed on other commuters.
The social transportation cost, G(T,L;), at radius x is an increase in the total transportation

cost there, Tg(T,L,), caused by amarginal increasein traffic:

G(T,L,) =d[Ty(T,L,)|/aT

= g(T, L) +Tg, (T, ;). (L.11)

An additional car on the road causes more congestion and increases the transportation costs
of other commuters by g,. Since there are T cars on the road, the total increase in the
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costs for other travelers is Tg,. This external cost must be added to the private

transportation cost, g. In the transportation economics literature, the private transportation
cost is sometimes called the average transportation cost, and the social transportation cost is
called the marginal transportation cost for the obvious reason.

2. A Closed City

In a closed city the population of the city, P, is given. The population constraint
(1.1.24) gives the boundary condition for (1.9) at x=0:

T(0) =P. (2.2)
To save space we anayze only the public-ownership case, which is dlightly simpler

than the absentee-landlord case. In our version of public ownership the resource
constraint is

j;[zLH /h+Tg(T,L;)+RAdx < Pw. 2.2)

The available resource, Pw, is spent on the consumer good, zL,, /h, commuting costs, Tg,
and therural rent, R,@. Thisconstraint is different from the constraint (1.1.30) in Chapter

I in the following two respects. First, equality is replaced by inequality. This does not
change the conclusions because the constraint holds with equality both at the optimum and
in market equilibrium.  For technical reasons, the inequality constraint is more convenient
in this and the next chapters, since the associated Lagrange multiplier can be signed.
Second, the transportation cost, tN, is replaced by Tg. Equivalence of these two
formulations can be easily seen by integration by parts.

2.1. The Optimum City

In the optimum city the sum of utilities,

jox [uLyy (%) 7 h()]elx, 2.3)

is maximized under the constraints (1.1), (1.9), (1.10), (2.1), (2.2), and the equal-utility
constraint,

u(z(x),h(x)) =u, 0<x<X. (2.4)

The control variables are the consumptions of the consumer good and housing, z(x) and h(x),
and the total widths of the road and the residential area, L;(x) and L, (X); and the control

parameters are the utility level, u, and the physical city size, X.

The Theorem of Hestenes, which is stated in the appendix on optimal control theory,
can be applied to this problem. The Hamiltonian is

¢ =[u=AMJL, )/ h(x) = S[Z(X) Ly, () /h(X) +T(NAT (X, L () + R,OMN)],  (25)
where A(X) and O are adjoint variables associated with the differential equation (1.9)
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and the isoperimetric constraint (2.2) respectively. 0 isaconstant, and satisfies

J{Pw—jox[zLH /h+Tg+Ra6?]dx}=O, 320. (2.6)

Asin previous chapters, o can be interpreted as the shadow price of the consumer good in
utility terms. Thead joint variable, A(X), satisfies the adjoint equation

% =~ (% = -olg(T L) +Tg, (T, L) @7

The second equality showsthat A'(x) equals the shadow price of the consumer good times
the social transportation cost at x defined in section 1. Thus A'(X) is the socia cost of

transportation in utility terms.  The first equality confirms this interpretation, since it says
that amarginal increase in traffic at radius x decreases the sum of utilitiesby A'(X) .

According to the maximum principle, the Hamiltonian must be maximized under the
constraints (1.1) and (2.4). The Lagrangian for this problemis

@ = ¢ +v(x)[u(z(x),h(x) —u] + 1([O(X) - L, () = L ()] (2.8)

where v(x) and u(x) are respectively the Lagrange multipliers for the constraints (2.4)
and (1.1). Thefirst order conditions

are
oY _u-A(X)—az(x) _
oL, h(0) H(x) =0 (2.99)
O — _oTg, (T,Ly) - (x) =0 (2.95)
oL,
0 _ _u—A(X) —a(x) _ _
o () N(X) —v(x)u, =0 (2.9¢)
o =-v(X)u, —AN(x) =0 . (2.9d)
0z
M(X) must satisfy the condition that
L) - L, () = L (x)] =0, 1(x) 20, (2.10)

and can be interpreted as the shadow rent of land in utility terms.
The transversality condition for X is
w(x) =[u=A(X) - ER)|L, () /(x) = [T (X)G(T (X), L; (X)) + R,O(X)] =0,
(2.11)

which ssimply says that the city should not extend beyond the point where the marginal
social contribution of developing an additional unit of land is zero. The transversality
condition for u,
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jox N(X)dx = jox V(x)dx (2.12)

isthe same as (1.2.22€) and has the same interpretation.

To simplify the interpretations of the optimality conditions, it is convenient to recast
shadow pricesin terms of the consumer good. Define

r(x) = %[A(x) - A(0)]. (2.13)
Then 7(x) satisfies both
7(0)=0 (2.14)
and
r'(x)=9(T,L;)+Tg, (T,L;), (2.15)

and can be interpreted as the social transportation cost of commuting from radius x to the
center. Similarly, the social rent at X is

R(X) = u(x)/ 3. (2.16)

Equation (2.9a) may be interpreted as the optima household budget. We can
rewrite (2.9a) as

u=0z(x) + u(x)h(x) + A(x).
Dividing through by &, defining
y=[u-4(0)]/d, (2.17)
and using (2.13) and (2.16), we obtain

y = z(X) + R(X)h(X) + 7(X) . (2.18)

This equation expresses the socialy optimal allocation of household income at x if y is the
income, R(X) the market rent, and 7(x) thecommuting costs. Then, by (2.15), households

must pay the social transportation costs, or the private transportation costs plus the costs of
externalities imposed on other travelers. In other words, some way must be found to
collect a congestion toll if the price system isto achieve the optimum city.

Notice that in this ssmple model congestion tolls can be levied according to the
location of residence. A household living at x should pay the amount

[ TO)Gr (T, Lr (X)X

of congestion tolls. However, this kind of distance tax is not optimal in a more general
model in which households can choose when to travel or the best mode among several
modes of transportation.

Rewriting Equation (2.9b) aswe did (2.9a), we obtain

-Tg, (T,L;) =R(X) . (2.19)
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Now since —Tg, (T,L;) issimply the marginal reduction in total transportation costs from
widening the road at x with the traffic volume fixed, (2.19) reveals that at the optimum the
marginal reduction in transportation costs from widening the road equals the shadow rent.
For later use, we define —Tg, (T,L;) asthemarket benefit, B(x), of widening the road:

B(x) = -T(X) g, (T(x), Ly (x)) . (2.20)
Combining (2.9¢c) and (2.9d), and solving for u, /u, yields

Y = R(x), (2.21)
uZ
which says that the marginal rate of substitution between land and the consumer good equals

the shadow rent at the optimum. This condition is obtained if a household maximizes
utility and pays the congestion tax, and therefore allocates its budget according to (2.18).

The transversality condition (2.11) becomest
R(X) =R, (2.22)
that is, the urban rent at the edge of the city equals the rural rent.

Thus the optimum solution can be attained by the decentralized market mechanism if
three conditions are met: all households are given the equal income y; congestion tolls equal
to the external costs, Tg,, are levied at each x; and roads are built according to the

benefit-cost criterion, equating the marginal reduction of transportation costs from widening
the road to the market rent.

Note that the marginal benefits of the road are given by the marginal reduction of
transportation costs with the volume of traffic fixed. This is true even though the
construction of a new road changes the allocation of the entire economy: the change in
commuting costs induces a change in land rent, and hence in the consumption decisions of
households, which changes the residential structure of the city. Due to the envelope
property, all the indirect effects cancel out each other and the benefits are simply given by
the direct saving in transportation cost.2 This is a general property of the first best
optimum. As will be shown in the next chapter, however, the effects of induced changes
do not wash out in the second best world where congestion tolls are not allowed.

When we consider the relationship between the total congestion tolls and the total
land rent of the road, one of the standard results from production theory is obtained: profit is
negative under marginal cost pricing when there are increasing returns to scale, zero in the
constant returns case, and positive in the decreasing returns case. First, consider the case
where transportation technology exhibits constant returns to scale: the average transportation
cost, g, remains the same if the volume of traffic, T, and the width of the road, L,, are

increased with the same proportion. In the constant-returns-to-scale case, g(T,L;) can

1 We have been able to prove this only in the case where g(T,L;)is finiteat X andg, (O,L;) <~ for all
L >0. Inthat caseT(X)g(T(X),L; (X)) =0, and Ly (X)=6(X), and hence (2.11) implies R(X)=R,. Thefirst
equality isobviousfrom T(X)=0. The second equality isobtained since otherwise R(X) iszero from (2.19)
and T(X)=0. From (2.11) and (2.9a), this implies that R,8(x) =0, which cannot happen if R, >0and
6(X)=0.

2 \Wheaton (1977) and Arnott (1976) observed this well-known result in the context of urban land use.
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be written as

o(T,L,)=G(T/L,).

Then, the total congestion tolls at x are

T?g; = (T(X)*/ L ()8, (T(X)/ L (¥)
and thetotal land rent at X is

—TLrg, =(T(¥)*/ L ()T (T(X)/ L; (X))
Thus the congestion tolls exactly cover the land rent of the road at each radius.

A proportionate increase of T and L, decreases the average transportation cost, g, in
the case of increasing returns to scale, and increases in the case of decreasing returns to
scale. Therefore, for achangein Tand L; satisfying

dT _d,
T L

the corresponding changein g,

dg = g.dT +g, dL;
=(Tg; +Lrg, )L d,

IS negative in the case of increasing returns and positive in the case of decreasing returns.
Thusthetotal congestion tolls are less than the total land rent in the increasing returns case,

ngT <-TL;g,,
and greater in the decreasing returns case,
ngT >-TL;g, .

If the transportation authority pays for land rent of the road and collects congestion
tolls, its budget is balanced in the constant returns case, it makes a profit in the
decreasing returns case, and suffers a loss in the increasing returns case, which is
analogous to the results in the usual production theory.

2.2. TheMarket City

Let us consider an alocation where the congestion tolls cannot be levied. The width
of the road is not determined by the market, but by the benefit-cost criterion based on
market prices (to be explained below).

When congestion tolls are not levied, households pay only the private transportation
costs, t(x), given by (1.6) and (1.7). Assuming that all households receive the same income
Yy, we obtain the budget constraint (1.1.3),
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y = z(X) + R(X)h(X) +t(X) 0<x<X,

where R(X) is land rent. The first order condition for utility maximization is given by
(1.1.4):
Y - Rx).
z

The utility level must be the same everywhere in the city because of spatial arbitrage.
Thisis equivalent to the condition

h(X)R () +t'(x) =0, 0

IN
X
IN
x|

(2.23)

which is obtained from (1.1.16).

Since the residential rent is equal to the rural rent at the edge of the city, we have
(1.1.13):

R(X) = R, .

In the public-ownership case on which we shall concentrate, the differential rent is
returned to residents.  Thus the income level is given by

y=w+ %{ jox R(X)Ly (X)dx — jox R,O(X)dxX} . (2.24)

It iseasy to seethat thisis equivalent to (2.2) with equality.

It is assumed that the (erroneous) benefit-cost criterion based on market prices is
adopted to determine the allocation of land between housing and transportation uses.
Roads are widened until the market benefit equals the market rent. The market benefit,
B(X), is the reduction of transportation costs from a marginal increase in land used for roads,
which isgiven by (2.20). Then we have

~T(9L (T(X), L () = R(X) (2.25)

in equilibrium. Note that this is the same as the benefit-cost criterion (2.19) adopted in the
optimum city.  Although this naive benefit-cost criterion leads to the optimum allocation of
land when congestion tolls are levied, it is no longer optimal in the absence of congestion
tolls.

Since no available land is left vacant unless the rent is zero, (1.1) holds with
equality:
L, (x) + L (X) =8(x), 0<x<X. (2.26)

Comparing these equations with those obtained in the optimum city, we can see that
the only difference lies in transportation costs.  In the market city residents pay the private
(or average) transportation cost, while in the optimum city they also pay congestion tolls,
which make up the difference between the private and social (or marginal) transportation
cost.

2.3. Comparison Between the Optimum and Market Cities
In this section the optimum and market cities characterized in the previous sections are
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compared. Unfortunately, the complexity of the model prevents us from carrying out the
comparison in the general case. We, therefore, calculate numerical examples using the
Cobb-Douglas type utility function.

u=h7z", (2.27)
and the Vickrey type transportation cost function without a constant term,
t'(x) = o(T/L;)" , (2.28)

where g and k are positive constants.

These functions are chosen for the convenience of computation and are not quite
realistic. The properties of the functions are as follows. The Cobb-Douglas utility
function (2.27) implies that the proportion of income net of commuting costs spent on land
isalways a. In other words, the income elasticity of demand for land is one and the price
glasticity is minus one.  The transportation cost function (2.28) represents constant returns
to scale in transportation technology.  Since there is no constant term, transportation costs
are zero when there is no other car on the road. Transportation costs rise when the traffic
density, T/L;, or the number of travelers per unit width of the road, rises. The elasticity

of transportation costs with respect to traffic density is k and constant.

The city is assumed to be circular, although not necessarily a complete circle.  Since
commuting costs in the CBD are zero by assumption (€), we need only consider the
residential zone, where the supply of land is

8(x) =8 (x+c), (2.29)

with positive constants  and c. The constant ¢ is chosen so that roads do not cover all
thelandat x=0. Inthenumerical calculations, d =2 and c¢=50.

The results of calculations are shown on Tables1 and 2.3 In Table 1, k is assumed to be 1
andgtobe 10™°. a isassumed to be 0.2, which means that afifth of the income net of

3 For the details of calculations, seethe Appendix to Chapter V, Part | of Kanemoto (1977).
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transportation costs is spent on land. It should be remembered that actual housing is
included in the consumer good. The number of households in the city is 100,000, and 1
unit of resources expressed in terms of the consumer good is available for each household.

Therura rent is 1 per unit of land.

Tablel

Comparison between Optimum and Market Cities: k=1

Optimum |(Market

Rent at radius0 (R(0)) 313 14.9
Income per household (y) 1.30 1.03
City size (X) 94.29 120.3
Utility level (u) 0.3955 0.3640
Total area (x10%) 6.39 12.0
Total areaof roads (x10°%) 2.14 5.88
Total rent (x10%) 1.91 1.50
Total transport costs (x10*) 1.72 2.79

g =107,k =1.0,w=1,P =100,000,R, =1.0

a =0.2,6(x) = 2(x+50)

Table2

Comparison between Optimum and Market Cities. k=2

Optimum |Market

Rent at radius0 (R(0)) 18.9 5.22
Income per household (y) 1.33 0.83
City size (X) 123.0 177.7
Utility level (u) 0.4450 |0.3619
Total area (x10%) 1.26 2.91
Total areaof roads (x10%) 5.10 18.5
Total rent (x10%) 1.85 1.22
Total transport costs (x10%) 1.34 2.23

g= 0.5x1078 k = 2.0,w=1, P =100,000, R, =1.0

a =0.2,6(x) = 2(x+50)
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There is a striking difference in physical city size between the optimum and market
cities: the length of the residential zone of the optimum city isjust over three quarters of that
of the market city, and the total area of the residential zone (including the road) isjust over a
half. Because congestion tolls are levied in the optimum city, the land rent tends to be
higher and consequently the optimum city is denser than the market city.

Therentat x=0 inthe optimum city is more than twice as high as that in the market
city, and the total land rent of the residential land in the optimum city is greater than that of
the market city even though the market city is considerably bigger. Thetotal rent is 19.1%
of the total available resources in the optimum city and 15% in the market city.

In the optimum city the total transportation cost not including congestion tolls is about
62% of those in the market city. Transportation costs constitute 17.2% of the total
available resources in the optimum city and 27.9% in the market city. Thus the absence of
congestion tolls results in the excessive use of resources in transportation. Since k=1,
congestion tolls in the optimum city equal the private transportation cost. This means that
when congestion tolls are included, the total commuting costs paid by households are twice
as much as the total transportation costs calculated in Table 1. Therefore, although less
resources are devoted to transportation in the optimum city than in the market city,
households pay more commuting costs in the optimum city if we include congestion tolls.
Of course, the revenue from congestion tolls is returned to the city residents in our model,
and congestion tolls do not represent any consumption of resources.

The total land allocated to housing is greater in the market city. On the average,
therefore, residents in the optimum city consume less land. Notice, however, that housing
consumption need not decrease because it is a part of the composite consumer good. Since
the total transportation costs (excluding congestion tolls) are smaller in the optimum city,
the total consumption of the consumer good is greater. This overwhelms the decrease of
the consumption of land and the utility level is higher in the optimum city. Thus the main
advantage of the optimum city lies in the fact that the total transportation costs are reduced
through dense habitation.

Notice that household income y is 1.3 although we assumed that only one unit of the
consumer good was available to each household. The difference is the average expenditure
on rent and congestion tolls which is returned to city residents in the public-ownership case.

The road width functions are plotted in Figure 2. The superscripts ® and ™ denote
respectively the optimum and market solutions. The road in the market city is wider than
that
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Figure 2
Optimum and Market FEoad Width Functions: R Clozed city

in the optimum city everywhere in the city. In this sense, the benefit-cost criterion based
on market prices has atendency to overinvest in roads. The ratio between the width of the
road and the available land is plotted in Figure 3. In both optimum and market cities the
ratio decreases monotonically with distance from the center.
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The rent function is plotted in Figure 4. The rent is higher in the optimum city than
in the market city near the center but lower near the edge.

As shown in Figure 5, near the CBD the traffic density is higher in the optimum city,
which reflects the fact that the road is narrower in the optimum city. Near the edge of the
city, however, the traffic density is higher in the market city even though the market city has
the wider road, because the optimum city has fewer commuters near the edge simply
because the optimum city is smaller.

Table 2 shows the results of the case of g=0.5x10"°, k=2 and ¢ =0.2. The

assumption of k=2 implies more acute congestion than in the previous case. Thisisthe
reason why the difference in the utility level is greater here.  All the qualitative results are
the same, however.

l_'Il-il

T () /Loy ()

FPigure 5§
Optimum and Market Traffic Density Funckions: A Closzed City

3. An Open City

In this section we consider a small, open city where the utility level in the city must
equal the level outside the city. This case would be relevant when a planner of asmall city
is contemplating a long-run policy. In order to isolate problems pertaining to traffic
congestion from others, we assume constant returns to scale in production: the aggregate
production function of the city is

wP,

with a constant w. The analysis can be easily extended to the case where the aggregate
production function of a city exhibitsincreasing or decreasing returns to scale.

In a small, open city, the utility level of residents is given and the population of the
city becomes an endogenous variable. Therefore, (2.1) isreplaced by

u(z(x),h(x)) =u, (3.1

where U istheutility level given for the city.
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Only the absentee-landlord case is considered in this section. Absentee landlords
receive congestion tolls as well asland rent. The income of a household, then, is given by
w, and the resource constraint (2.2) no longer holds.

3.1 TheOptimum City

Asin Chapter |, we maximize the net product of the city after the cost of maintaining
the given utility level of residents. Thus our problem is one of maximizing

[ {[w=2(9 ~t(9]L; (x)/1(x) - R,B(x} dx (3.2)

subject to the constraints (1.1), (1.6), (1.7), (1.9), (1.10), and (3.1). The Hamiltonianis
— [ _ L (X) _ _ Ly (X)
® =[w- 2(x) t(X)]—h(X) R.6(x) A(X)—h(x) +7()9(T(X), Ly (x)), (33

and the Lagrangian for the problem of maximizing the Hamiltonian under the constraints
(1.1) and (3.1) is

W = +v(x)[u(z(x),h(x) = T] + £()[O() - Ly () = Ly ()], (34)

where A(Xx) and 7(xX) are respectively adjoint variables associated with differential
equations (1.9) and (1.6). v(x)and u(x) areLagrange multipliersfor (3.1) and (1.1).

If we defineR(x) = u(x) and 7(x) =t(x) +A(X), the first order conditions
become, after simple manipulations:

r'(x)=g+Tg, (3.5)
w=z+Rh+r1 (3.6)
-Tg,, (T,L;) = R(X) (3.7)
‘J—: = R(X) (38)
7(0)=0 (3.9)
R(X)=R,. (3.10)

It can be seen immediately that these equations coincide with (2.15), (2.18), (2.19),
(2.21), (2.14) and (2.22) obtained in a closed city if w is replaced by y. Therefore, the
difference between open and closed cities lies in the determination of income and utility
levels. In aclosed city these two variables are determined so as to satisfy the population
constraint (2.1) and the resource constraint (2.2), whereas in an open city the utility level is
given from outside, and the income level is equal to the marginal productivity of labor,
which is also assumed to be given. Note that neither land rent nor congestion tolls are
returned to residents in this section.

If the production sector is competitive, the wage will be equal to the marginal
productivity of labor. Therefore, if the land is owned by absentee landlords, the optimal
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solution can be obtained by levying congestion tolls and by constructing roads so as to
equate the market rent to the marginal benefit from widening the road.

3.2 TheMarket City

In the market city, it is assumed that production is carried out competitively. Since
we consider only the absentee landlord case, the income of residents is the competitive wage
w. In the absence of congestion tolls, the commuting costs are given by t(x). When the
market rent isgiven by R(X), ahousehold faces the budget constraint,

w = z(X) + R(X)h(x) +t(X).

A household maximizes the utility level under this budget constraint, which yields the
first order condition:

Y - R(y).
u

z

The maximized utility level must be equal to the given utility level, U, everywhere
in the city.

Roads are built according to the benefit-cost criterion based on market prices:
_TgL(T’ LT) = R(X) .
At the edge of the city, the market rent equals the rural rent:

R(X) =R,.
Again, we can observe that the only differences between closed and open cities are

boundary conditions which determine the income level and the utility level: in a closed city
the income level is given by (2.23) and the population constraint (2.1) must hold, but in an

open city the utility level isfixedat U and the income level is also a constant w.

3.3. Comparison Between Optimum and Market Cities

The optimum and market cities obtained in the previous sections are compared.
First, since 7(0) and t(0) are both zero, households at x=0 face the same
budget constraint,
w=2z+R(0)h,

in both optimum and market cities. In order for the utility levels to be the same, the rents
a x=0 must bethe same in the two cities:

R°(0) =R"(0),
where superscripts ® and ™ respectively denote optimum and market solutions.

Since congestion tolls are levied in the optimum city, it is expected that households
pay more transportation costs in the optimum city. If this is true, the rent function has a
steeper slope in the optimum city than in the market city and the land rent in the optimum
city is lower than that in the market city everywhere in the city except a8 x=0 where they
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are equal. Though we have not been able to show this in a general case, it is true if we
assume the Cobb-Douglas type utility function (2.27) and the Vickrey type transportation
cost function (2.28).4 Therent profilesin this case are depicted in Figure 6.

The traffic density has the same pattern as the rent function. At x=0, optimum
and market cities have the same traffic densities and in the rest of the city the market city
has a higher traffic density.

The market city size is bigger than the optimum city size. It can be shown that, in the
case of the Cobb-Douglas utility function and the Vickrey transportation cost function, the
residential zone is exactly k+1 times longer in the market city than in the optimum city.
In aclosed city, the difference between market and optimum city sizesis not as large as in
an open city. This is because the population is fixed in a closed city and the rent at the
CBD and the income level are both higher in the optimum city.

R{D]

Figure &

Aont Profiles in Market and Optimam Cities: AR Open Cicy

The widths of roads have been calculated for a variety of parameters. In most cases
the market city has a wider road than the optimum city though we have found some
exceptional cases where the optimum city has awider road near the center. However, even
in such cases the ratio between the total area of roads and the total area of residential land is
greater in the market city. One exampleinwhich w=1, k=1 h=10" and u=-0.364 is
plotted in Figure 7.  In this case roads are wider everywhere in the market city.

4 See Chapter V, Part | of Kanemoto (1977).
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L i®l

Figara 7

Rosd Width Functions in Market and Optimam Cities:

An Opan Caity
L

4. An Economy Consisting of Many Cities

In this section we briefly consider an economy consisting of many cities, under the
assumption that the number of citiesisavariable. Only the optimum allocation is analysed
since the market city size may be indeterminate as shown in Chapter 1.

For simplicity, we assume that no one lives in the rura area and that al cities are
identical. Then the population of the economy, P, the population of a city, P, and the
number of cities, n, must satisfy the relationship

P=nP,. (4.2)

C

The boundary condition for T(x) a¢ x=0 isnow

TO)=P.. (4.2)

The aggregate production function of acity is

F(R), (4.3)

and we assume increasing returns to scale.  The resource constraint (2.2) must be rewritten
as

Jj[zLH /h+Tg(T,Ly) + RGJdx< F(R,). (4.4)

Now, our problem is one of maximizing the common utility level, u, subject to the
resource constraint (4.4), the traffic flow constraint (1.9), the equal utility constraint (2.4),
the land constraint (1.1), the population constraint (4.1), and the boundary conditions for
T(X), (4.2) and (1.10). The Lagrangian for thisproblemis
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A= u+dr1[F(Pc)—I;((ZLH Jh+Tg + Rae)dx}
+ nKA(x)[— L, /h=T'(x)]dx

+n E(V(x)[u(z, h) —u]dx +n jox L(X)(8 - Ly — Ly )dx

+y(nP, = P) + &P, =T (0)]. (4.5)
If we define
() =2(109 - A©) (46
and
R(x) = u(x)/d, (4.7)
the first order conditions become, after some rearrangements,
F'(Pc) = z(X) + R(X)h(x) + 7(X) 0<x<X, (4.8)

and (2.14), (2.15), (2.19), (2.21), and (2.22). The only new condition is (4.8), which means
that aworker is paid the value of marginal productivity of labor.

The condition can be related to the results in Chapter 1. Multiplying (4.8) by N(x)

and integrating from0to X yields

RF'(R) = [ TZ0NG) + T(N(X) + R(Lys (x)]0x . (4.9)

The resource constraint (4.4) holds with equality, and the total transportation costs are the
same regardless of how costs at different radii are added,
X X
Io Tgdx = IO tNdXx .

We therefore have
F(R) = [} [Z09N() +1IN(¥) + Ri(x)]ax. (4.10)
Subtracting (4.8) from (4.9) yields

[F(R)-RF(R)]+ [ [ROILY ()~ Rl

. (4.12)

+ jo [7(x) -t(x)]dx =0.
The first sguare bracket is the profit from production, which is negative because of
increasing returns to scale; the second term is the net rent revenue after the payment of the
rural rent; and the third term the total congestion toll. Thus the loss incurred by a producer
equals the sum of the net rent revenue and the total congestion toll. This is more genera
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than the result in Chapter Il, which states that the operating loss of a producer equals the
total differential rent, or the market rent minus the rural rent. Notice also the similarity
with the results of Section 2 of Chapter 111 which considers congestion in the consumption
of local public goods.

If transportation technology has constant returns to scale, the total congestion toll
equals the land rent on the road. In this case (4.11) is equivalent to the result obtained in
Chapter |1,

[F(R)-RF(R)]+ [, [RO) -~ RuJo09ax = 0: (4.12)

the loss of a producer equals the total differential rent.
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Notes

Traffic congestion has usualy been analyzed in nonspatial frameworks. Strotz
(1965) extended the usual analysis to a spatial model in which a city is divided into afinite
number of homogeneous rings. He characterized the optimal solution and showed that the
optimal solution requires congestion tolls. He also showed that congestion tolls exceed or
less than expenditure on roads if transportation technology has decreasing or increasing
returns to scale respectively.

Solow and Vickrey (1971) formulated a model of a long narrow city in which
distance is a continuous variable. They solved the problem of minimizing transportation
costs using calculus of variation. Mills and de Ferranti (1971) consider a similar
transportation-cost-minimization problem in a circular city Livesey (1973) and Sheshinski
(1973) extended their model to analyze land use within the CBD. Legey, Ripper and
Varalya (1973) extended the model to include capital. They also introduced the market
city where roads are built according to the benefit-cost criterion based on market prices and
compared optimum and market cities. It was shown that the market city is more dispersed
than the optimum city.

All these papers considered closed cities where the tot product (or the total
population) of the city wasfixed. Kanemoto (1975) introduced an open city where the city
faces fixed export price.

None of the above models allow for substitution between land and other factors.
Dixit (1973), Oron, Pines and Sheshinski (1973) and Riley (1974) considered traffic congest
in a model which allows for the choice of housing lot size and therefore substitution
between land and other goods.  Indepedent of our work, Robson (1976) compared optimum
and market cities in the same model as ours. He considered the case of a =1/2 in the
utility function (2.27). Though calculations are easiest in this case, the assumption implies
that all households spend half of their incomes-after-commuting-costs on land which is quite
unrealistic.

Kanemoto (1976) considered a production city with substitutability between labor and
land in an open city framework. The results are parallel to those in section 3 on the open
city.
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CHAPTER YV

TRAFFIC CONGESTION AND LAND USE FOR
TRANSPORTATION:
THE SECOND BEST CITY1

In the previous chapter we introduced traffic congestion and analyzed the
optimum and market allocations. With transportation congestion, an additional
traveler imposes externa costs on other travelers by slowing them down. The optimal
solution requires congestion tolls to "internalize" this externality. It is, however,
difficult to charge congestion tolls because of very high administrative costs. In fact,
there are very few roads where congestion tolls are levied and there is no city where
congestion tolls are adopted in the whole city. It is, therefore, very important to
consider what can be done given the constraint that congestion tolls are not allowed.

In the market city of the preceding chapter, we assumed that roads are built
according to a naive benefit-cost criterion: the direct saving in transportation costs from
widening the road is equated to the market land rent. This benefit-cost criterion leads
to a misallocation of land between transportation and residential uses since, given the
absence of congestion tolls, the market rent does not correctly reflect the true socia
scarcity of land.

In this chapter we consider the second best problem, which is to optimize the
alocation of land between roads and residence when congestion tolls are not levied.
The benefit-cost criterion that must be adopted to achieve the second best allocation is
more complicated than the one in the optimum city or the market city. The cost side
must be the shadow rent, or the social rent, which is no longer equal to the market rent.
The benefit side also differs from the marginal direct saving in transportation cost
(unless compensated demand for land is completely price or rent inelastic). The
reason is as follows. A reduction of transportation costs from widening the road
induces a change in the market rent. If demand for land is responsive to a price
change, this has a side effect of changing the consumption decisions of housetolds.
As shown in the previous chapter, the social value of the change is zero due to the
envelope property if the market rent equals the socia rent. In the second best city,
however, the market rent is not equal to the social rent, and a change in the consumption
decision results in a net socia gain or loss. The loss or gain is the difference between
the social benefit and the marginal reduction in transportation costs.

Since the naive benefit-cost criterion usually adopted by policy makers leads to a
suboptimal alocation of land, it is of interest to know the direction of the misallocation,
that is, whether there is overinvestment or underinvestment in roads. The direction of

1 This chapter is based on my 1977 paper in the Journal of Urban Economics. | would like to thank
Academic Press, Inc. for permitting me to include an extended version of the paper in this book.
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misallocation may be determined by comparing the market city with the second best
city, but the second best city is, unfortunately, so complicated that we have not been
able to carry out the comparison directly. We therefore examine the direction of a
change that the naive benefit-cost criterion suggests at the second best optimum. More
specifically, we compare the marginal saving in transportation costs and the market rent
when roads are built in the second best way.

This comparison yields unambiguous results only if the benefit-cost criterion is
adopted in a small region while the alocation in the rest of the city is held constant.
The criterion leads to overinvestment in roads if the margina saving in transportation
costs is greater than the market rent at the second best optimum. If, however, the
criterion is adopted in the entire city, interrelationships among different locations
introduce complicated reactions, and we cannot obtain a definite answer.

In the second best city, the market rent at the edge of the city does not equal the
rural rent although the shadow rent dbes. This result is in sharp contrast to those
obtained in the optimum and market cities. The city must be expanded out to the
radius where the contribution of an additional unit of land equals the rura rent. This
requires the shadow rent to be equal to the rura rent. Since the market rent equals the
shadow rent in the optimum city, the market rent also equals the rura rent at the edge of
the city. In the second best city, however, the market rent is no longer equa to the
shadow rent and hence is not equal to the rural rent at the edge.

Imposing another constraint that the market rent equals the rural rent at the edge
of the city does not essentially change the situation. It is always possible, for instance,
to make the width of the road zero and transportation costs per mile infinite at the edge
of the city. This can cause a sudden drop in the market rent profile at the city's edge so
that the market rent equals the rura rent after the drop and the constraint can be
satisfied without changing the allocation inside the city. The only way to make the
constraint significant is to restrict the shape of the road width functions, for example, to
the class of linear functions asin Solow (1973).

The case where compensated demand for land is completely pice inelastic is
peculiar in the following two respects. First, the social marginal benefit of the road
eguals the direct marginal saving in transportation costs, since a change in rent caused
by widening the road does not induce any change in consumption decision. Second,
the absolute level of the market rent is indeterminate as long as difference in rents at
different locations is such that the utility levels are equal. The second property
mislead Solow and Vickrey (1971) and Kanemoto (1975) to conclude that the market
rent is lower than the shadow rent everywhere in the city. In this case, there is no need
for ajump in the market rent to make the market rent equal to the rural rent at the edge
of the city, since the level of the market rent is indeterminate. This, coupled with the
result that the slope of the shadow rent is steeper than that of the market rent, implies
that the market rent is lower than the shadow rent everywhere in the city. This result,
however, is mideading since it does not carry over to the case where the elasticity is not
zero even when the elasticity is extremely small.

This chapter is organized as follows. The modd is set up in section1. Section
2 is the largest section in this chapter and devoted to the case of a closed city. The
section is divided into three subsections: in subsection 2.1 the first order conditions for
the second best optimum are derived and interpreted, in subsection 2.2 the benefit (the
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direct marginal saving in transportation costs) and cost (the market rent) of the naive
benefit-cost criterion based on market prices are compared at the second best optimum,
and in subsection 2.3 the case of completely inelastic demand for land is considered.
An open city is analyzed in section 3, and an economy corsisting of many cities in
section4.

1. TheMod€

In this chapter we make the same technological assumptions as in Chapter 1V.
The only difference lies in the nature of the optimization problem: in this chapter
congestion tolls are not allowed but the width of the road is optimized, whereas in the
optimum city both congestion tolls and the width of the road could be chosen, and in the
market city congestion tolls were not allowed and the road was built according to the
erroneous benefit-cost criterion based on market prices.

Since congestion tolls are not allowed, households pay the private (or average)
transportation cost, t(x), defined by (1V.1.6) and (IV.1.7):

t(x) = 9(T(x),L; (x)), (1.1
t(0)=0. 1.2
If we denote the income of a household by y and the rent a x by R(X), a

household at x maximizes the utility function, u(z(x),h(x)), under the budget
constraint

y = 2(X) + R(x)h(x) +t(X). (1.3

Because of spatial arbitrage, the rent function, R(X), must be such that the utility levels

are equa everywhere in the city. As in section 1.1.1, al this information can be
summarized in the bid rent function,

R(X) = R(y- t(x),u), (1.4)

which satisfies(1.1.14) and (1.1.15):
R (y- t(x),u) =1/h(x), (1.5)
R, (Y- t(X),u) =-1/v,h(X), (1.6)

where u is the equal utility level. Consumptions of the consumer good and housing are
given by the compensated demand functions,

2(X) = 2(R(x),u), @7
h(x) = h(R(x),u), (1.8)
which satisfy (1.1.19) and (1.1.20):
zz(R(x),u) ¢ 0, (2.9
hg(R(X),u) £0. (12.120)

The volume of traffic at x, T(x), satisfies(1V.1.9) and (1V.1.10):
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T(x) =- Ly, (%) /HR(y- t(x),u),u], (1.11)
T(x) =0. (1.12)

The widths of the residential area and the road must satisfy the land constraint (1V.1.1):
Ly 00+ L () £a(X) . (113)

2. A Closed City

In a closed city the population of the city is fixed, which yields the boundary
condition(1V.2.1) for T(x) a& x=0:

T(0)=P. 2.1)

Using (1.4), (1.7), (1.8) and a different representation of transportation costs (tN instead
of Tg), we can rewrite the resource constraint (1V.2.2) as
& ZR(y - t(x),u), u] +t(x)
hR(y - t(x),u),u]

Ly (X) + R (X)}dx £ Pw. (2.2

2.1. Derivation and Interpretation of First Order Conditions

In the second best problem the distortion of relative prices caused by the absence
of congestion tolls is taken as given. The bid rent function (1.4) and demand
functions, (1.7) and (1.8), of the consumer good and land capture the response of
households to this distortion. Thus the second best problem maximizes the sum of
utilities, (1V.2.3),

B uLy (X)
h[R(y - t(x),u), u]

under the constraints (1.1), (1.2), (1.11), (1.12), (1.13), (2.1), and (2.2). There are two
state variables in this problem: t(x) and T(x). The control variables are L, (X)

and L;(X). The control parameters arey, u, X,and t(X).

(2.3)

We assume that the market rent at the edge of the city, R(X), is not restricted to
equa the rura rent. In this case, there is no congtraint on t(X). The constraint on
the market rent at the edge of the city does not cause any essential difference in the
optimum allocation if we assume that transportation costs per mile become infinite, as
the width of the road tends to zero. Under this assumption it is possible to have the
same allocation inside the city and at the same time to satisfy the constraint by causing a
jump in the market rent. Since the difference in alocation occurs only in an
infinitesimal interval, this is possible without violating the resource constraint.  Thus
the constraint on the market rent is superfluous.

The Hamiltonian for the second best problem is
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Ly (%)
ROy - 100 0 0909, Ly ()

ZR(y- t(x), u),u] +t(x)
h[R(y- t(x),u),u]
where | (X), h(X), and d are respectively adjoint variables associated with (1.11),

(1.1), and (2.2). Forming the Lagrangian,
Y =F +m(x)[a(x)- Ly () - Lt ()], (2.5)

where m(x) is the Lagrange multiplier for the congtraint (1.13), we obtain the
following necessary conditions for the optimum:

F=[u-1(X)]

- df

Ly (%) + RA (X}, (2.4)

=1 0 =hgr(T.Lo), (26)
T _
W—-h((x)

(2.7)

= dN+[u- | - d(z+t)]%hRR +dNZgR
1?:' ~[u- | -d(z+t)]—- m=0, 2.8)
ﬁLYT =hg, (T, L)- m=0, (29)
where m and d satisfy

mX)[q(x) - L, (X)- L (x)] =0, m(x) 2 0 (2.10)
d{ Pw- (‘S[ZLH /h+Tg+Rg]dd =0, d3o. 2.11)

The transversality conditionsfor X, t(X),u,andy are

F(X)=[u-1(X)-d(z(X)+t(X)IN(X) - dRaQ(X)

(2.12)

+h(X)g(T(X), Ly (X)) =0
h(x) =0 (2.13)
g{N S[u-1 - d(z+t)]%[hRRJ +h,]- dN[zgR, +2,]}dx =0, (2.14)
5{[u- | - d(z+t)]%hRR| +dNzgR }dx =0. (2.15)

For convenience, we divide the shadow prices, | ,h, i, and the utility, u, by d,
and substitute the original notations for the variables obtained. This operation converts
the shadow prices from utility terms into pecuniary terms. Substituting (2.8) into (2.7),
and noting that the rent function and the compensated demand functions satisfy both
(1.5) and
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Rh,+2z,=0,2 (2.16)
we can rewrite (2.7) as

m- R

~h¢x)=-N- eN, (2.17)

where e isthe price (rent) elasticity of compensated demand for land defined by

Rh
e=- hR 3 0. (2.18)

The inequality is obtained because the substitution effect, h, is always nonpositive as
in (1.10). Notice that e is afunction of R and u and hence in general varies over space.

From (2.7), - h(X) can be interpreted as the social benefit of a unit increase of
the commuting costs, t(X), of residentsliving at X. When t(X) increases by one unit,
the total commuting costs are paid by N(x) households who are living a x. This is
represented by the first term on the RHS of (2.17). In addition to this direct effect, the
increase of t(x) has a side effect on the consumption decisions of households. The
market rent, R(X), must fall to compensate the increase of the commuting costs, t(x),

which induces a change in consumptions of housing and the consumer good. The
second term on the RHS of (2.17) captures this indirect effect.

By the envelope property the second term vanishes when the socia rent is equal to
the market rent. The envelope property, (2.16), insures that, in the neighborhood of
the equilibrium (or optimal) point, the changes in consumptions of the two goods
evaluated at market prices counteract each other. In the first best world, therefore,
where market prices reflect socia values, the socia cost of a unit increase of t(x) is

N(X).

There is another case where the second term vanishes. When housing demand is
completely price inelasticc e=0, the change of the rent does not affect the
consumption decision. Therefore, there is no side effect even when the socia rent is
different from the market rent. Thisis aso afirst best situation because the decisions
of households are not affected by the existence of congestion and the first best solution
can be attained without congestion tolls.

(2.17) shows that the adjustment of consumption has a socialy desirable effect if
Ris greater than mr, which makes sense intuitively. An increase in commuting costs,
t(x), lowers the market rent, R(X). When the market rent is higher than the social
rent, a fall in the market rent brings it closer to the socia rent, and the adjustment of

2 This can be shown as follows. By the definition of compensated demand functions, h(Ru) and
z(Ru) must satisfy
u :u[h(R,u),z(R,u)] ,
for any R. Differentiating both sides with respect to R, we obtain
u,hg+u,zz =0.
Since u,/u, =R, thisimplies
Rhg + 23 =0 .
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consumption works in the socialy desirable direction.

Integrating (2.17) from x to X and using the transversality condition (2.13), we
obtain

h(x)=-T- 5”'RReNdx¢. 2.19)

Thus, - h(x) isthe socia cost of increasing commuting costs of all households living
between x and X by one unit.

Using this interpretation of h(x), we can interpret | (x) in (2.6) as the socid
congestion cost due to a unit increase in traffic. A unit increase in traffic between x
and x+dx causes more congestion there and raises transportation costs to pass
through the ring by gT(T,L,)dx. Since al households living beyond the ring must

pass through the ring, the socia cost of this increase in transportation costs is
approximately - h(x)g,dx =1 (x)dx.

From (2.8) and the budget constraint (1.3), we have

m(X) = R(X) +L|(X), 220
h(x)
where m(x) is the shadow rent of land a x and the right hand side is the marginal

value of land in residential use. The shadow rent differs from the market rent, and
hence from the marginal rate of substitution between housing and the consumer good.
The difference is caused by the second term on the right side, which reflects the
congestion costs.

From (2.9) the shadow rent mr(x) aso satisfies
mX) =h (x)g, (T(x), L+ (X)) . (2.21)

The right side can be interpreted as the social marginal value of land in transportation
use. A margina increase of land allocated to roads lowers transportation costs at the
radius. The social value of this decrease is given by the right side of (2.21).

From(2.6) and (2.21), we obtain
I ((X)T - rTLT = 'h[TgT + LT gL] )

where, as shown in subsection 2.1 of Chapter |V, the square bracket on the right side is
negative if transportation technology exhibits increasing returns to scale and positive in

the case of decreasing returns. Since g, is negative and m(X) iS nonnegative,
(2.21) implies that h(x) is nonpositive. Thus the following relationships hold

between the total social congestion costs and the total shadow rent of roads at any
radius:

< inthe increesing returns case
| €)T(X) = inthe congtant returns case
> inthe decreasing returns case.

(2.22)
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This result is more general than the condition obtained for the first best solution, where
the relationship was expressed in terms of the actual congestion tolls and the road rent.

Using (2.19), we can rewrite (2.21):

M = BO)- 90 (T L) G

eNax¢, (2.23)

where
B(x)° -Tg, (T,L;) (2.24)

Is the marginal direct saving in transportation costs from widening the road as defined
by (1V.2.20), and is sometimes called the market benefit. The second term on the right
of (2.23) represents the social cost of the adjustment in the consumption of land for
housing, which is characteristic of the second best world.

The naive benefit-cost criterion based on market prices cannot achieve the second
best allocation of land. Although the social marginal values of land in residential and
transportation uses are equal at the second best optimum, the market rent of the
residential land is not in general equal to the market benefit of the road, since the market
values differ from the socia values as shown in (2.20) and (2.23).

It is easy to see that the transversality conditions, (2.12) and (2.13), imply that the
shadow rent equals the rural rent at the edge of the city:3

mX) = R,. (2.25)
Thetransversality condition, (2.15), can be written more simply:

xm-R

eNdx =0. (2.26)

Though this equation is very important in deriving qualitative results (it is used in both
Theorem 1 and Theorem 2 below), it is difficult to provide an interesting interpretation.

(2.14) can be simplified by using uncompensated demand functions for land and
for the consumer good, ﬁ(I,R) and 2(l,R), definedin (1.1.5) and (1.1.6) respectively.
Compensated and uncompensated demand functions satisfy the following relationships
derived in (3.14) and (3.16) of Appendix I11.

hyv, =h
Zuvl = 2I
h, =h, - hh, .
From these equations and (1.1.9), (1.6), and (2.16), (2.14) can be written
xé1 10 X hg N
&~ - —(Ndx=- [m- RI-R —dx. (2.27)
o~
Qéd V|H 9 h v

31n deriving this condition, we assumed that g is finiteat X. It seems very unlikely that g becomes
infiniteat X because traffic is very light and available land is very large there.
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This equation describes the relationship between the social value of the numeraire good
(d) in utility terms and the marginal utility of income (v,). When there is no
congestion, the right side vanishes and we obtain (1.2.23d) which says that the averages

of reciprocals of these two are equal. When the shadow rent is not equal to the market
rent, the reciprocal averages differ by the term on the right.

From (2.20) and (2.23), the benefit-cost criterion that must be used to achieve the
second best allocation differs from the naive one adopted in the optimum and market
cities. Unfortunately, it is not easy to calculate the correct benefit and cost. We can
express the difference, r(x), between the shadow rent, which represents the correct

social cost, and the market rent by
r(x)° mx) - R =[u- y- 1 (x]/h(x). (2.28)
The difficulty is that the values of uand | (X) are not directly observable. The policy

maker can, howewer, observe h(x),N(x),T(x),L;(x), and R(x) without too much
difficulty, and canestimate, with some more difficulty, the compensated price elasticity,
e(x) . We therefore express r(x) in terms of these variables. From (2.6) and

(2.19), r(x) sdaisfies

r (x)h(x) +r(xX)h(x)
- ér(x) + (; ;{(();2 e(xON (xfydxd‘ang (T(X,Lr (X)), (2.29)
and from (2.26),
S eINGI=0. 230

The difference between the shadow rent and the market rent can be calculated by
solving the differential equation (2.29) with the boundary condition (2.30). Then the
social marginal cost of widening the road is simply the sum of the difference, r(x), and
the market rent, R(X). Although it is not extremely difficult to solve the differential

equation numericaly in simple models like ours, the caculation is likely to be
formidable in a more realistic model.

Once the difference between the shadow rent and the market rent is obtained, the
social benefit can be easily calculated from (2.23):

B9~ 00 (T,Ly) g ox

?) e(XON(xdx¢.

R(x

2.2. Comparison of the Market Benefit and the Market Rent

Having ssimplified and interpreted first order conditions, we can now proceed to
examine the consequence of the benefit-cost analysis based on market prices. Our
ultimate goa is to compare the market benefit, B(X), and the market rent, R(X), a the

second best optimum. It is convenient to compare the social rent, n(x) , with each of
these first.
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In this subsection we consider the case where compensated demand for land is not
completely priceinelastic: e>0.

The social rent is equal to the market rent in the optimum city with optimal
congestion tolls. If, however, congestion t tolls are not levied, the market rent diverges
from the social rent.  Since transportation costs are lower than they should be,

R {x)
uixl

=4 (%]}

(x)-R{x)= 2

rix)

i}

Figure 1. The Relationship between the Market
Rent and the Social Rent

Households tend to locate too far from the CBD. People seeking land farther
from the center bid up the rent at larger radii, and the market rent tends to be flatter than
the social rent. The following Theorem shows that the market rent crosses the social
rent at some intermediate radius, and that the social rent must be higher than the market
rent inside the radius and lower outside the radius. This isillustrated in Figure 1.

Theorem 1: If e>0 for any radius, then there exists an X strictly between 0 and X
(0< X <X) such that m(X) =R(X), and

m(x) > R(X) for O£ x<X,

m(x) < R(X) for X<XE£X.

Proof:

From (2.26) and e>0, it is impossible to hae m(x) >R(x) for al x or
m(x) <R(x) for dl x. Since both m(x) and R(X) are continuous, they must cross
somewhere: there exists an X, 0<X<X, where n(X) =R(X). From (2.20), at this
point | (x) satisfies

[ (X) =u-y.
From(2.6), (2.9), (2.10), (IV.1.3), and (1V.1.4), we obtain
| (x) =-ng, /g, >0.
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This inequality is dtrict a X since m(X) =R(X) >R, >0. Hence we obtain the
following inequalities:
l (X)<u-y X <X
I (X) >u-vy X<X.
From (2.20), these inequalities imply
m(x) > R(X) X <X
m(x) < R(X) X<X,
which in turn impliesthat X must be strictly betweenOand X to satisfy (2.26).

QED.

We next compare the market benefit and the scial rent. The next Theorem
shows that they areequal a& x=0 and that the market benefit is greater than the social
rent in the rest of the city. Thus the market benefit overestimates the true socia
benefit. Thisis illustrated in Figure 2.

The result can be understood intuitively as follows. Recal that the difference
between the market benefit and the social rent is the social value of the adjustment of
consumptions in response to a decrease in transportation costs. First, consider the
socia value of the adjustment caused by a transportation improvement at x=0. The
improvement reduces commuting costs for al households by the same amount, which is
equivalent to

Bix)
nix)

i B F ﬂ i
Biﬂ% ukx) oy g e

s

H X X

Figure 2. The Relationship between the Market Benefit
and the Social Rent

an increase in the income, y, of every household in the city. Since y is optimally
chosen, the change in the utility level caused by an infinitesmal increase in y is zero.
The socia value of the consumption adjustment is, therefore, zero for an improvement
a x=0.

Next, consider an improvement at any radius x beyond X in Theorem1. This
decreases commuting costs of households living farther than x and raises the market rent
there. Since the socia rent is lower than the market rent beyond X, this works in a
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socially undesirable direction and causes a socia loss. Thus the social benefit (and
hence the social rent) is less than the market benefit at any radius beyond X.

An improvement inside X benefits both households living outside X and inside
X. The consumption adjustments of households outside X cause social losses for the

same reason as above, but those of households inside X are socialy beneficia since
the socia rent is higher than the market rent there. The next Theorem shows,

however, that the former is always greater than the latter except for an improvement at
x =0 inwhich case the two are equal.

Theorem 2: If e>0 for any X, then we obtain
n(0) =B(0)
and
nm(x) <B(X), for 0<xX.
Proof:
We first show that for any x strictly betweenO and X,

- ReNdx¢<O.

For x greater than or equal to X, this can be immediately obtained since
m(x) < R(X) from Theorem1. For x lessthan X thisis obtained from

xIm- R xm- R
Q—‘ eNdx¢=- ¢ eNdx¢< 0.
R Q R
Hence (2.23) yields
nm(x) < B(X) O0<x<X.

At x=0, thefollowing equality is obtained:

xm- R

m0) =B(0)- 9. (T(0).L+ (0)Q =

= B(0),

eNdx

where the second equality is obtained from (2.26), since g, can be seen to be finite at
x=0.

At x =X, however g, becomes infinite and we must use L'Hopital’s Rule to
obtain
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R.[R.- R(M)]e
R(X) +[R, - R(X)]e
<0,

where the first equality is obtained from (2.9), the second equality by L'Hépital’s Rule,
the third equality from (2.17), and the inequality from R(X)> mX)= R, and the
elementary result that the limit must be nonpositive when it is approached through
nonpositive values. From (2.23) thisimplies

nm(X) < B(X)

QED.

Combining Theorems 1 and 2, we can immediately see that the market benefit is
greater than the market rent near the center. However, it is not clear whether or not
this remains to be true when we move farther from the center. The next proposition
throws alight on this question.

Proposition 1: If the compensated demand for land is not completely price inelastic
(e>0), then the market benefit is always greater than the market rent near the CBD.

Near the edge of the city, however, the market benefit is smaller than the market rent if
the price elasticity isless than one, and is greater than the market rent if the elasticity is
greater than one.

Proof:
The first half is immediately obtained from Theorem1 and 2.

From the proof of Theorem2, we obtain
R(X)- B(X)=R(X)- R, +R, - B(X)

_[R® - RJRx)( - €)
RX) +[R, - RX)le °

Noting that the denominator and the square bracket of the numerator are both positive,
we get

R(V=B(X) where e=L.

QED.
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Figure 3 illustrates the relationship between the market benefit and the market rent
in the case of price inelastic demand for land: the market benefit is greater than the
market rent near the center of the city, but drops below it near the edge. As a result,
the naive benefit-cost criterion has a tendency to overinvest in roads near the center and
to underinvest near the edge. When demand for land is price elastic as in Figure 4, the
benefit-cost criterion tends to overinvest in roads both near the center and near the edge
of the city*.

R

T
= —_——=

Figure 4

Figure 3
Price Inelastic Case: & < 1

Price Elastic Case: e * 1

Since the Cobb-Douglas type utility function (1V.2.27) has the elasticity 1- a
which is aways less than 1, there is a tendency in that case to overinvest in roads near
the center and to underinvest near the edge.

The conclusion depends on the elasticity of demand for land since difference
between the market benefit and the social rent reflects the side effect due to the change
of housing consumption, and the change of housing consumption is greater when the
elagticity is bigger.

Notice that since these results are valid only in the neighbourhood of the second
best solution, we do not have a definite answer as to whether the second best solution
has a wider road than the market solution.

When the naive benefit-cost analysis based on market prices is adopted only in a
small ring at x, and roads are built in other parts of the city to achieve the second best
alocation, the above comparison between two equilibria is valid. If, for example, the
market benefit is greater than the market rent in the ring between x and x+dx, the
naive criterion cals for the road to be widened until the marginal market benefit of
further widening falls to the market rent. When the ring is very narrow the market rent
is not significantly affected by a change in road width there, and the preceding
conclusions hold.

If, however, the naive benefit-cost criterion is adopted in the entire city, this

4 Note that the case where B(x) is lower than R(x) somewhere in the middle of the city is not
excluded.
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argument cannot be applied because the market rent curve changes. Widening of the
road in the rest of the city might cause such arise in market rent at some locations that,
even though the market rent at the second-best allocation was below the market benefit,
the road might become narrower as a result of changes elsewhere.

Furthermore, since the market rent is higher than the rural rent at the edge of the
city, the city tends to expand.  This causes another tendency toward overinvestment in
roads. The reader may think that this effect would not appear if the second best
problem were solved with the additional constraint that the market rent equa the rural
rent at the edge of the city. In our model, however, under the reasonable assumption

that transportation costs per mile, g(T,L;), are infinite when the width of the road is
zero, the constraint is superfluous and the effect does not disappear.

The constraint on the market rent at the boundary,
R(y- t(X),u) = R,, (2.28)

would restrict y, t(X), and u to a hypersurface. The optimum allocation for the

problem with this additional constraint is essentially the same as that for the problem
without the constraint: the alocation is exactly the same within the boundary X, and
o(T,L;)ismadeinfiniteat X causing ajumpin t(x) of an appropriate size to satisfy
the constraint (2.28). Since the jump which occurs in an infinitesimally small interval
does not involve a finite social cost, the same maximum without the constraint is
attained.®

Now, we briefly consider the possibility that t(x) has jumps even without the

constraint (2.28). In such a case the usual maximum principle like the Theorem of
Hestenes in Appendix 1V cannot be applied since it assumes that state variables are
continuous. Kanemoto (1977b) analyzed the case by considering the problem with an

upper boundon g(T,L;) and letting the upper bound tend to infinity.

The following argument showsthat ajumpin t(x) is indeed possible. Equation
(2.21) suggests that h(x) must be nonpositive, since r(x) is nonnegative. There is
no guarantee, however, that h(x) is nonpositive since h(x) must also satisfy (2.19).
If compensated demand for housing is sufficiently price elastic, the indirect benefit from
increasing transportation costs (the second term on the right side of (2.19)) may
overwhelm the direct cost (-T), in which case h(x) becomes positive. Then the
necessary conditions for the optimum involve contradiction, which suggests that the
maximum does not exist within the range of functions assumed by the maximum
principle.

In order to show that such a case can occur, we rewrite (2.19) as

m- R U

h(x):-Q§L+ - eHNdxtl:.

S |t can be shown that, if g isinfinite when L; is zero, then ajumpin t(x) may occursat X. See

Kanemoto (1977b). Although the proof there has a minor error, the conclusion can be easily seen to be
correct.
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This equation shows that, if &(X) > R(X)/[R(X)- R,], h(x) is positive near X. In
particular, if R, =0 and €e(X)>1, then h(x) is positive. There certainly exists a
well-behaved utility function whose compensated demand function is price elastic.

In Kanemoto (1977b) it wes shown that, if g(T,L;) tends to infinity as traffic
density, T/L,, approaches infinity, a jump in t(x) occurs a a point where h(x) is
positive. Theorem 1 remains valid even when a jump occurs. Theorem 2 and
Proposition1 aredso vaidif R, and R(X) are replaced by the left side limits,

lim
_m(x),
X- X

m (X) =

- lim
R (X) = _R(X).

X- X
If g remainsfinite even when T/L, approaches infinity, L; becomes zero for a

finite length. 1t can be easily seen that if the upper bound for g is sufficiently large, the
same results are obtained.

2.3. Completely Pricelnelastic Demand for Land

Next, consider the case where the compensated demand for land is completely
priceinelastic.: e=0 for any uand R This case is obtained, for example, if the utility
function is a Leontief type, so that land and the consumer good are aways consumed in
fixed proportions.

As we mentioned in subsection 2.1, the side effect due to the adjustment of
consumption decisions vanishes in this case,

h(x) =-T(x),
and the market benefit coincides with the socia rent,
m(x) = B(x), O<x<X.

Since(2.26) is satisfied at al levelsof R(X),thelevel of R(X) is indeterminate.

This can be understood as follows.  Suppose that the optimum is obtained by the rent
function, R*(x). Consider the effect of raising the rent function by an arbitrary
amount ¢ everywhere in the city. Since the utility level cannot be higher than the
optimal level, if we can show that the optimal utility level is attained even when the
market rent is R* (x) +c, we can conclude that the market rent is indeterminate at the

optimum.

When the utility level is given, the assumption of completely inelastic demand
implies that lot sizes are constant regardless of the market rent. This has two
implications: the lot size is the same everywhere in the city, and it does not change
when the rent profilerisesto R* (x)+c. In our mode differential rent is returned to
residents as an equal subsidy, so the income of households rises by ch*, where h* isthe
optimal lot size. Households, therefore, can afford the optimal bundle at the higher
rent level, and the optimum utility level is attained with the new market rent profile,
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R* (x)+c. The market rent is thus indeterminateif e=0.

One important implication of this indeterminacy is that the optimal solution can
be achieved without having a jump in the rent function even if we add the constraint
that the market rent be equal to the rural rent at the boundary. After solving for the
optimal allocation without the constraint, we ssimply lower the market rent curve until
the rent at the boundary equals the rural rent. This observation yields the following
proposition which is the result obtained by Solow and Vickrey (1971), and Kanemoto
(2975).

Proposition 2: If the compensated demand for land is completely price inelastic, and if
the market rent equals the rural rent at the edge of the city, then at the optimum the
market benefit equals the market rent at the edge of the city and is greater in the rest of
the city.

This proposition is illustrated in Figure 5. Note that the second best optimum
coincides with the first best optimum, since, when demand for land is completely price
inelastic, the only difference between them is the market rent that does not affect
consumption decisions of households.

R

wixl=8(x)

0 b7 *®
Figure 5

Completely Price Inelastic Case

with RiX) = R

a

The proposition suggests that there is a strong tendency towards overinvestment
in roads when e=0. Considering the results obtained in the preceding section,
however, the proposition is somewhat misleading. As long as compensated demand
for land is not completely price inglagtic, the market rent is not indeterminate and we
obtain a gituation like the one depicted in Figure 1, where the socia rent is higher than
the market rent near the center and lower near the edge. Although the market benefit
approaches the social rent as the elaticity tends to zero, the relationship between the
market rent and the socia rent remains basically the same as long as the eladticity is
positive, since (2.26) is effective even when the elasticity is very small. How the
relationship among the market rent, the socia rent, and the market benefit changes as
the elasticity becomes smaller is illustrated in Figure 6. If the elasticity is greater than
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1, the market benefit is greater than the market rent at the edge of the city, as in Figure
6a (which reproduces Figure 4). If the elasticity is between 0 and 1, the market benefit
falls below the market rent but is still higher than the socia rent at x = X, asin Figure
6b (or Figure 3). As the elasticity approaches zero, the market benefit tends to the
social rent, but the market rent remains higher than the social rent a¢ x=X. In the
limit we obtain the case, depicted in Figure 6¢, in which the market benefit is less than
the market rent near the edge of the city. Thus Figure 5 and hence Proposition 2
cannot approximate the case where the elasticity is close to, but not exactly, zero.

Figure Ga. erl Figure 6b. O<e<l

Rix)

-

Bix)

i
i
Rdl._,._.._...-__---- plx)=lim B{x)
: e+0
|
i
1] # =

Figure 6c. e+l

Figure 6, Completely Price Inelastic Case as a

Limit as & + 0.

The conclusion that the naive benefit-cost criterion has a tendency toward
overinvestment is nevertheless correct, since the market city has a wider road than the
optimum city, as shown in Kanemoto (1975). The main reason is that at the second
best optimum the market rent is higher than the rural rent at the edge of the city. This
tends to make the market city larger than the second best city. In the models in Solow
and Vickrey (1971) and Kanemoto (1975), where a fixed amount of land is required for
nontransportation use, the city can grow only if the road is widened.

3. An Open City

Next, consider an open and small city in which the utility level is given from
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outsde u=u. This time we consider the, absentee-landlord case. The income of a
household is given by the value of margina productivity of labour: y=w. These

two conditions replace the population constraint (2.1) and the resource constraint (2.2)
inaclosed city.

The bid rent function (1.4) and the compensated demand functions, (1.7) and
(1.8), become

R(X) = R(w- t(x),0O), (3.1
2(x) = z(R(x),0O), (3.2
h(x) = h(R(x),T) . (3.3

The net product of the city after the cost of maintaining the given utility level of
residents,

X
Oflw- 200 - teIINX) - Ra (o}ex, (3.4)
is maximized. The Hamiltonian and the Lagrangian for this problem are

_w- ARW- t(x),0),T]- t0)- 1 (9, .y
k= H[RW- t(x), ), d] L (09~ RA () (3.5)

+h ()g(T (), L+ (X))

ad

Y =F +m(x) (9 - Ly ()Lr (9], (36)
where | (xX) and h(x) are respectively the adjoint variables associated with (1.11)
ad (1.1),and mr(x) is aLagrange multiplier for (1.13).

The control variablesare L, (X) and L, (X), and the control parametersare X,
t(X) and T(0). We assume that a city planner can determine the boundary of the city

regardless of the level of the market rent there. Under this assumption there is no
constrainton t(X) .

The first order conditions are

m(x) = R(¥) - | (X)/ h(x), 37)
m(x) = B(X)- g, (T, LT)C); ”I': R eNx, (39)
1 (X) =-ng, /g, (3.9
| (0)=0, (3.10)
mXx) =R, (311)

where B(X) is defined by (2.24), m(x) satisfies (2.10), and e is the price elasticity of
compensated demand for land as defined by (2.18). These conditions are similar to
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those obtained for a closed city and have similar interpretations.6

Cdculations of the correct benefit and cost are the same as in the closed city
except for the boundary conditions. From (3.7) through (3.10), the difference between
the shadow rent and the market rent, r(x), satisfiesthe differential equation

YN+ () =57+ () (r/ RIeNablor (T, L), (312)

with the boundary condition
r(0) =0.

When this differential equation is solved, the social marginal cost of the road is given
by r(x)+R(x), and the social marginal benefit is

B(X)- g, 5(r / R)eNdx¢.

Next, we compare the market benefit, B(X), and the market rent, R(X), at the

second best optimum to see whether the naive benefit-cost criterion results in
overinvestment in roads. Inorder to do so, we first compare the market rent, R(X),
and the social rent, m(x). Since congestion tolls are not imposed, the social
transportation costs are greater than the private trans-portation costs. The socia rent,
therefore, tends to be steeper than the market rent. In the open city, however, both
rents are equa at the center by the transversality condition (3.10). Thus the social
rent is lower than the market rent everywhere in the city except at the center where
they are equal, and the following theorem is obtained.

Theorem 3:
n(0) =R(0),
and
n(x) <R(x), 0< X<X.

We omit the proof, which is quite simple. Notice that this theorem holds even if
the compensated demand for land is completely price inelastic.

Next, we compare the market benefit and the socia rent. The market benefit
differs from the social rent by the indirect effect through consumption decisions. A
reduction in transportation costs at a radius has a tendency to raise the market rent
beyond that radius. Since, by Theorem3, the market rent is higher than the social rent,
raising the market rent increases the gap. The indirect effect of a reduction in
transportation costs thus causes a social loss, and the social benefit is smaller than the

6 Asin the closed city, h(x) may become positive, and a jump in t(x) may occur. However, the
following theorems and proposition hold evenif t(x) has ajump.
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market benefit.

Theorem 4: If e> O for all x, then

m(x) <B(x), O<x<X.

For x <X, the Theorem is immediately obtained from (3.8) and Theorem 3. At
X =X, L'Hopital's ruleyields the inequality as in the proof of Theorem 2.

The above two theorems show that the market benefit is greater than the market
rent at least near the center. The naive benefit-cost analysis, therefore, has a tendency
to overinvest in roads near the center. The following proposition shows that this
pattern is reversed near the edge of the city if the elasticity of demand for land is less
than one.

Proposition 3: Suppose the compensated demand for land is not completely price
inelastic. Then the market benefit is greater than the market rent near the center. If,
further, the price elagticity of compensated demand for land is less (greater) than one,
the market benefit is smaller (greater) than the market rent near the edge of the city.

The proof is the same as that of Proposition 1. Figure 7 depicts the case of
inelastic demand.  Figure 8 the case of elastic demand. Notice that relative positions
of the market benefit and the market rent are the same as in a closed city though their
relationships with the social rent are different.

Bix)

Figure 7 Figure 8
Inelastic Demand: Elastic Demand;
En Open City An Open City

In a closed city the market benefit equaled the social rent at the center, but in an open
city the market benefit exceeds the social rent everywhere. In a closed city the market
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rent crossed the social rent at some intermediate point, while in an open city the market
rent is equal to the social rent at the center.

R

(®)=B{x)

Figure 9
Completely Price Inelastic Demand:
An Open City

When compensated demand for land is completely price inelastic, the secord term
on the RHS of (3.8) vanishes. The market benefit, therefore, coincides with the social
rent and we obtain the following proposition which isillustrated in Figure9.

Proposition 4: If compensated demand for land is completely price inelastic, then the
market benefit is equal to the market rent at the center and is smaller than the market
rent in the rest of the city.

Thus, in sharp contrast to Proposition 2 in a closed city, there is a tendency to
underinvest in roads everywhere in the city. Since the market rent is higher than the
rural rent at the edge of the city, however, the market city tends to be bigger than the
optimum city. This increases the total population of the city and hence the total traffic,
which works in the direction of widening the road. In Kanemoto (1975), the road is
shown to be wider in the market city than in the optimum city.

4. An Economy with Many Cities

In this section we consider an economy consisting of many cities. The model is
the same as that in section4 of the preceding chapter. The population constraint is

P=nP, (4.1)

where P, P., and n are respectively the population of the economy, the population of a
city, and the number of cities. The resource constraint is

&1 Z[R(y- t(x),u),u]+t(x) v
O HR(y- (00.0).] +Raq(x)gdxsF(Fz). (4.2)
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The aggregate production function, F(P,), has increasing returns to scale. The
boundary condition for T(x) a x=0 is

T()=P. (4.3)

The common utility level is maximized under the constraints (1.1), (1.2), (1.11),
(1.12), (1.13), (4.1), (4.2), ad (4.3). The control variables are L, (x) and L;(X),
and the control parameters are P, n, y, u, X, and t(X). The Hamiltonian for this
problem is

_ Ly (X)
" MR- (o0
] di’ z[R(y- t(x),u),u]+t(x)
i hRy- t(),u),u]
and the Lagrangianis
Y =F +mY[g(x)- Ly (x)- Ly ()], (45)
where | (X), h(x), and d are adjoint variables associated with (1.11), (1.1), and
(4.2) respectively, and n(x) isaLagrange multiplier for (1.13).

+h (x)g(T(X), Ly (X))

L, () +Rg (x)g, 44

After dividing | (x)-1 (0), h(x), and nm(x) by d and denoting the obtained
variablesby | (x), h(x), and m(x) respectively, the first order conditions become
(2.19), (2.23), (2.25), (2.26),

and
| (X)=- Qh(x9gr (T(x9, Ly (x9)chxe, (4.6)
1 _
ﬁ[F &P - 2(9)- t(x) - | (] =m(x), (4.7)
21 e 2o Fhoo - roglRN
QVl Ndx - Q[m(x) R(X)] =V dx . (4.8)

(4.6), (4.7), and (4.8) correspond to (2.6), (2.20), and (2.27). Asbefore, - h(x) isthe
social cost of increasing commuting costs of all households passing through x by one
unit. - h(X)g; is, therefore, the social cost of an increase in congestion caused by a
unit increase in the traffic at x, and | (X) isthe social congestion costs that a resident
at X imposes on other travelers by commuting from X to the center.

Multiplying (4.7) by h(x)N(x) and integrating fromOto X yields
PFER)= (g[(zﬂ)N +I N+ iy, Jox.

Comparing this equation with the resource constraint (4.2) and noting that the resource
constraint holds with equality at the optimum, we obtain
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-[F(R)- RFER)]= QI N+, - Ralix. (49

Thus the operating loss of a producer at the optimum equals the total social congestion
costs, plus the total social rent of residential land, minus the total payment of the rural

rent. Thisissimilar to the result obtained in the previous chapter: the operating loss of

a firm equals the total congestion tolls, plus the total rent of residential land, minus the
total payment of the rura rent. The difference is that there are no tolls capturing the
socia congestion costs in this chapter and the social rent does not equal the market rent.
It is quite natural that the same relationship holds for social values instead of market

values.

As shown in subsection 2.1, if we assume constant returns to scale in
transportation technology, the social congestion costs equal the total shadow rent of
roads at each radius:

()T (x) = mMX)Ly (x), O<x<X.
Then by integration by parts, (4.9) becomes

-[F(R)- RFER)]= §m) - Ra(yax. (4.10

This is again similar to the relationship obtained in Chapter IV. The operating loss of
a producer equals the difference between the total socia rent and the total payment of
the rural rent, where the total social rent includes the rent on the road. Note that this
relationship does not in general hold for the market rent, since (2.26) requires that the
sums of the market and socia rents be equal when they are weighted by eN/R which
equals q(x) only by chance.

It is easy to see that the socia benefit and cost can be calculated exactly in the
same way as in the closed city. The relationships among the socia rent, the market
rent, and the market benefit are also the same asin the closed city.

5. Concluding Remarks

The analysis in this and the preceding chapters are centered on the interaction
between pricing of traffic congestion and the investment decision of roads. If
congestion is optimally priced, the investment decision is quite straightforward. The
allocation of land between roads and residence must be determined in such a way that
the marginal social benefits of widening the road equals the marginal social cost at each
radius. The marginal social benefit at a radius is smply the margina direct saving in
transportation costs with the volume of traffic there fixed; the marginal social cost is the
market rent of the residential land.

This smplicity in the benefit-cost criterion is the genera property of the first best
world where al goods are priced properly. Since al prices reflect the true socia
margina values of the goods, prices may stand in for social values in the calculation of
benefits and costs. Thus the margina socia cost of widening the road is given by the
market rent in our model.

The fact that al prices reflect the social marginal values has another important
implication. When the road is widened, commuting costs decrease and hence the land
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rent rises. This induces a change in the allocation of the entire city through a change
in the consumption bundles of households. The change however, can be ignored in the
calculation of the marginal benefit and cost. The reason is that the social values of the
induced change is zero, since the market value of the induced change is zero due to the
envelope property, and the market value equals the socia value when all prices equal
the social marginal values. This is the reason why the marginal social benefit equals
the marginal direct saving in transportation costs with the fixed traffic volume.

The simplicity disappears if traffic congestion is not properly priced. Prices no
longer reflect the marginal social values of goods accurately, and in particular, the
market rent does not equal the social marginal value of residential land. Accordingly,
the cost side of the benefit-cost criterion must be changed. The benefit side aso
becomes more complicated since the induced change in the consumption decisions has a
nonzero social value or loss. The naive benefit-cost analysis usually adopted by policy
makers, therefore, gives rise to an inefficient land use.

Unfortunately, the correct benefit-cost criterion is difficult to calculate.
Furthermore, boundary conditions that must be used to calculate the benefit-cost
criterion are different between closed and open cities. The correct benefit cost
criterion is, therefore, unlikely to be practical, at least until we know more.
Meanwhile, it would be useful to know whether the naive benefit-cost analysis leads to
too wide aroad.

The results in Chapter 1V suggest that the road in the city with the naive
benefit-cost analysis is usually wider than that it in the first best optimum where
congestion tolls are levied and roads are optimally built. This comparison, however,
may not be useful, since it is difficult to levy congestion tolls because of very high
administrative costs. The analysisin this chapter is a partial attempt at the comparison
with the second best optimum in which roads are built optimaly under the constraint
that congestion tolls are impossible. We compared the benefit and the cost in the
erroneous benefit-cost criterion at the second best optimum and showed that the benefit
exceeds the cost near the center and that the benefit exceeds the cost also near the edge
in the case of price elastic demand for land and is less than the cost in the price inelastic
case. Thisimpliesthat, if the erroneous benefit-cost criterion is adopted only in avery
narrow ring near the center, overinvestment in roads will result. If it is adopted near
the edge underinvestment will result in the inelastic case and overinvestment in the
elastic case.

Unfortunately, the analysisis not conclusive if the erroneous benefit-cost criterion
is adopted everywhere in the city. It ®ems, however, more likely that the naive
benefit-cost criterion leads to overinvestment in roads. The major reason is that the
market rent is higher than the rural rent at the second best optimum and the market city
with the benefit-cost criterion tends to be bigger, which is made possible only by
building wider roads and lowering commuting costs. The results obtained in
somewhat different models by Wheaton (1978), Pines and Sadka (1979), and Wan
(1979) aso support this conjecture.

Notes

The anaysis in this chapter originates in Solow and Vickrey (1971). They
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formulated a transportation cost minimization problem in along narrow city framework
and asked the question whether or not the cost-benefit analysis based on the market rent
yields too wide aroad. To see this, they compared the benefit from widening the road
with the market rent at the optimum configuration.

They, in effect, made the following three assumptions. First, the city was
assumed to be closed in the sense that the total production (or the total population when
interpreted as a residential model) in the city was fixed. Second, they assumed that
only production required land, that production required only land, and that the price
elasticity of demand for land was zero so that demand for space was not affected by the
level of land rent. Third, the market rent was constrained to be equal to the rural rent
(in thelir case, zero rent) a the boundary of the city. Their model, therefore,
corresponds to the case of subsection 2.3 in this chapter. Naturaly, they obtained
exactly the same conclusion as in Proposition 2 - that the benefit is greater than the
market rent everywhere in the city - and concluded that the cost-benefit analysis based
on market rent has a tendency to overinvest in roads.

Kanemoto (1975) introduced an open city facing a given export price, and
compared it with a closed city. The modd is essentidly the same as the
completely-price-inelastic case of the open city in this chapter. The relationship
between the market benefit and the market rent at the optimum allocation of land is the
same as that in Proposition4.

Since these models assume completely price inelastic demand for land, the first
best alocation coincides with the second best allocation. The second best allocation
differs from the first best alocation if substitution between land and other goods is
possible. Solow (1975) first considered this type of a second best problem in a spatial
equilibrium framework. He maximized the utility level of households within the class
of linear road width functions in a closed city. According to his numerical
calculations, the market benefit from widening the road is greater than the market rent.
He explained this result as follows. Since congestion tolls are not levied, the market
rent is flatter than the social rent. But the two rents are equal to the rura rent at the
edge of the city. The market rent is therefore lower than the socia rent, and the value
of land is underestimated in the naive cost-benefit calculations.

Our analysis indicates that this explanation fails to notice the following two
aspects of the second best alocation.  First, though the socia rent is steeper than the
market rent, the two are not in general equal a the edge of the city. Our analysis
shows that the market rent is higher than the socia rent at the edge of the city.
Second, the market benefit from widening the road does not correctly reflect the social
benefit. The market benefit is greater than the social benefit because the adjustment of
consumption caused by a decrease in transportation costs involves social costs when
congestion tolls are not levied.

Kanemoto (1976) considered a production city with substitutability between
labour and land in an open city framework. The results are parallel to those in section
3. The analysis of a closed city is based on Kanemoto (1977a).

Wheaton (1978) considered a similar problem in a nonspatial framework with
more than one type of roads. He also analyzed the problem of finding the optimal
uniform congestion tax which is constrained to have the same tax rate on al roads
regardless of different degrees of congestion.
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Arnott (1979) extended our analysis to the case where the road is of arbitrary
width. Arnott and MacKinnon (1978) obtained the numerical solution of using the
fixed point algorithm. Wan (1979) applied the perturbation method to the second best
problem and also obtained numerical solutions.

Pines and Sadka (1979) considered a discrete model in which a city is divided into
two rings. Assuming that the areas of the two rings are fixed, they showed that there is
more investment in roads in the market city with the naive benefit-cost analysis than in
the second best city.
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CHAPTER VI

NEIGHBOURHOOD EXTERNALITIES AND A
CUMULATIVE DECAY PROCESS

Whether we like it or not, people often believe they suffer externa costs from the
presence of some other type of people in their neighbourhood: the rich may fear heavier
taxes if poorer households live in the same municipality; whites may not like to live
close to blacks; Greeks may believe that their daughters are not safe if there are too
many scots in a neighbourhood; and so on. Whether real or imaginary, such
externdlities raise many issues, some of which are more political or mora than
economic. One of the fundamental issues that arise in the context of externalities
between different races is whether we approve preferences of individuals who are
racially prejudiced: some societies do not, and force individuals to act against their
preferences. A typical example is the "busing” regulation in American cities, where
school children in aracially segregated area are "bused” to a school at a distant location
in order to have racially mixed schools.

Although these issues are extremely important, we concentrate on the economic
consequences of the externalities and avoid moral or political judgements. We also
restrict ourselves to what might be termed passive discrimination: the well being of
discriminators is affected by the locational decisions of others, but discriminators are
unable to influence the decisions of others. The reader must be aware that the
problem analyzed in this chapter has other important aspects.

We first examine the stability of spatia residential patterns. We find that
externalities introduce a tendency toward segregation by type: individuals who suffer an
externality from the presence of individuals of another group tend to cluster together to
avoid the externality.

We next consider a specia kind of a dynamic problem which arisesin a city with
externalities between different types of households. This analysis is motivated by the
experience of American cities in 1960's and 70's. American cities have experienced
extensive migration of the middle class households from central cities to the suburbs.
Explanations of this phenomenon can be roughly classified into the following two types.
The first type sees the migration as an equilibrium process. As the income level rises
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and commuting costs fall due to technological progress in transportation, the population
density gradient becomes flatter in equilibrium. The population in the suburbs,
therefore, increases relative to that in central cities. The population increase in the
suburbs consists of wealthier families because, for a variety of reasons, richer families
have a tendency to live farther from the center.!

The second type focuses on the deterioration of central cities that accompanied the
out- migration of the middle class.  This type explains the process as one of cumulative
decay: the deterioration of central cities drives out wealthier residents and so lowers per
capita income, and the reduction of per capita income leads to further deterioration.
The central city deteriorates cumulatively until it eventually reaches a new equilibrium
state. The process of middle class out-migration is thus viewed as a disequilibrium
rather than equilibrium process

In our treatment the decay process appears as a problem of the stability of the
boundary between rings of different types of households. When the previously stable
boundary becomes unstable as a result of a change in some exogenous factor, a rapid
movement of the boundary occurs. The shift to a new stable equilibrium can be
interpreted as the cumulative decay process. an increase of one type of households
increases the external costs for the other type, causing them to move away and inducing
afurther increase of the first type.

In section 1 we formulate a model with two types of households, one of which
receives a higher income than the other, and also suffer an external cost from the
presence of the other. Set up this way, the model can be used to explore the spatial
behaviour of ‘rich' and ‘poor’. Stability of different spatial patterns is examined in
section 2. In section 3 we analyze stability of the boundary between the two types,
allowing for migration into and out of the city. The possibility of a cumulative process
is considered in section4 and severa examples are examined in section5.

1. TheModel

Consder a gingle-centered city whose residents consist of two types of
households that we can call discriminators and nondiscriminators.  Discriminators
suffer external diseconomy if they live close to nondiscriminators.

1 For example, since there are more newer houses in the suburbs, the quality of housing is better in the
suburbs. A trade-off between commuting costs and housing dso works in favour of the suburban

locations of richer households, as seen in Chapter |.
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In contrast to our method in previous chapters, we assume that the city stands
ready built: houses with certain qualities and lot sizes are aready built in the city and
the characteristics of houses do not change during the time interval relevant to our
analysis.

It is not difficult to relax this assumption and consider the case of malleable
housing capital: although the analysis becomes quite tedious, the results are basically
thesame. The present formulation is preferable because housing capital isin fact quite
durable and we are concerned with short-run phenomena. The only serious problem
arises at the boundary of the city, where new houses must be built when the city
expands. Since we assume that houses are readily available even outside the current
boundary of the residential zone, the expansion of the boundary occurs instantaneously
in our model. In reality, however, new construction takes time and our results should
not be taken too literally. We discuss the problem in the end of section4.

h(x) denotes the services provided by a house and lot at distance x from the
center. Since houses are usualy larger farther from the center,

h(x) > 0.

Note that in this chapter h(x) denotes the services from both land and buildings, rather
than the lot size as in previous chapters.

There are N(x) dx houses in the ring between x and X+ dx, where we assume
that N(X) does not decrease as distance from the center increases:

(1.1)

N(x)>0. (1.2)

This assumption requires that the width of the residential zone, L, (X), increases faster
than the lot size with distance from the center. It precludes the case of a linear city
when the lot size increases with distance.

The opportunity cost of a unit of housing servicesis assumed to be aconstant R, .
In equilibrium the rent at the edge of the city must equal R;:

R(X) =R,.

Since we assumed that ready-built houses are standing outside the edge of the city, we
may take R, equal to zero. In order to include other possibilities, however, we do
not specify the valueof R, inthe following analysis.

We want to know how the two groups of households distribute themselves over
the ready-built houses when there is externality between the two groups. For the sake
of simplicity, we analyze an externality that operates in only one direction.
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Discrimination may in fact be extremely complex, but this assumption leads to useful
insights about the effect of discrimination on city form. The discriminators, denoted
by superscript d, suffers external diseconomies from the presence of nondiscriminators,
denoted by superscript n: the nondiscriminators do not experience any externality.
Thus the utility function of adiscriminator at x is

u’(2* (x),h(x), A(¥) (14)

where A(X) denotes the external diseconomy suffered by the discriminator as a result
of living near nondiscriminators, and z°(x) is the consumption of the consumer good.
A nondiscriminator at x has a utility function with no externality term:

u"(z"(x),h(x)). (1.5)

We assume positive marginal utilities of the consumer good and housing for both, and a
negative marginal utility of the externality for the discriminator:

ud(z%,h,A >0, ul(zhA>0, (1.6)
uy(z",h) >0, up(z",h) >0, (1.7)
d/-d
ua(z',h,A) <0, (1.8

where the subscripts z, h, and A denote partial derivatives.

The externality given by a nondiscriminator living at x' to a discriminator at x is

a(|x- x(9| . The function a () is nonnegative and nonincreasing,
a(x- x¢)2 0, (1.9)
agx- x) £0, (1.10)

and |x- x¢isthe absolute value of x- x(. The total external diseconomies received

by adiscriminator at X is the sum of diseconomies generated by all nondiscriminators:

A(X) = 5 a(x- xhN"(xqdxc, (111)

where N"(x9dx¢ is the population of nondiscriminators between x( and x(+dx(. If
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we imagine that the residential zone is circular, (1.11) implies that a nondiscriminator at
the same radius, but on the opposite side of the city, induces a larger externality than
one very near by but at a dightly different radius. Although this oddity disappears in a
linear city, it may affect the generality of the results that follow.

We can now analyze the city forms arising from discrimination if we specify the
budget constraints of discriminators and nondiscriminators. Choosing the case which
is most common, and probably therefore most interesting, we assume that
discriminators are richer than nondiscriminators. A rich discriminator earns an income
y? and pays the commuting costs t%(x). The budget constraint is

y? = z4(x) + R(X)h(X) +t*(X), (1L.12)

where R(X) is the rent of a unit amount of housing services at X. A poorer
nondiscriminator earns alower income y" and pays lower commuting costs t" (X):

y' >y" (1.13)
t4'(x) > t"'(x), 0£XEX, (114
t?(0) =t"(0) = 0. (1.15)

Lower commuting costs for a nondiscriminator may be considered as representing lower
time costs. Introducing different transportation costs complicates the anaysis dightly,
as the discussion of the assumption expressed by equation (1.30) below shows. There
are, however, gains in realism and in generality which compensate for the additional
complexity. The budget constraint for a nondiscriminator is

y" =2z2"(x)+ R(X)h(X) +t"(X) . (1.16)
We assume that neither a discriminator nor a nondiscriminator owns a house in

the city. Our model, therefore, corresponds to the absentee-landlord case in Chapter |,
with landlords that do not discriminate.

By spatia arbitrage, all households in each group receive equa utility levels in
equilibrium:

u® =u?(z*(x),h(x), A(X)), (L.17)
u" =u"(z"(x), h(x)) . (1.18)

By the assumption of positive margina utilities, (1.6) and (1.7), these equations can be
uniquely solved for z¢ and z° to obtain demand functions for the consumer good,

z°(x) =z (h(x),u?, A(x)), (1.19)
z"(x) = 2" (h(x),u"), (2.20)
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where
z¢ (h(x),u?, A(x)) =-u¥ / z¢ <0, (1.22)
2% (h(x),u?, A(x)) =1/ ud >0, (1.22)
25 (h(x),u?, AX)) =-ul/ud >0, (1.23)
and
Z0(h(x),u™) =-ul /ul <0, (1.24)
2" (h(x),u") =1/u? > 0. (1.25)

Substituting (1.19) and (1.20) into (1.12) and (1.16) respectively, we obtain the
bid rent functions:

R (%) :Tlx)[yd - 2°(h(x),u”, A(¥)) - t°(x)]

o RI[14(x),u’,h(x), A(X)], (1.26)
R"() :Wlx)[y“ - 2(h(x),u") - 1" ()]
° RI™(X),u",h(x)], (2.27)
where
14(x)° y*-t%(x), (1.28)
I"(x)° y" - t"(X). (2.29)

The bid rent functions in this chapter are dightly different from those in other chapters,
since h(x) appears in the bid rent functions. A household must take the amount of
housing services as given and the only variable a household can choose is the location
of a house. It is important to notice that this implies the margina rate of substitution
between housing and the consumer good need not equal the bid rent.

Since the externality A(x) depends on how the nondiscriminators are distributed
over space, we must know the locational patterns of the nondiscriminators to obtain the
bid rent of the discriminator. The bid rent function of the discriminators, however,
influences the gpatial distribution of the nondiscriminators. This gspatial
interrelationship is the only complicationin our model.
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The following assumption plays a crucia role in determining the stable residential
pattern:

R'™(X) + Rihgx) =t™" (x) + z (h(x), u") h&x)
<t9'(x) + 23 (h(¥),u?, AX)h' (x)
=R%19'(x) + RYh€x) (1.30)

for any relevant range of x, A, u®,and u". This assumption is made to ensure that, if
the rich did not discriminate, they would have a flatter bid rent curve and live farther
from the center than the poor, asin Chapter I.

From(1.21) and (1.24), we can rewrite (1.30) as

up (29 (¥, h(x), (X)) uf(z"(¥), h(x))
ug (2% (3, h(x), A(x))  uz(z"(¥), h(x))

1 e
> @[t (x)- t"'(x)] >0, (2.31)

where the last inequality is obtained from (1.14). The condition can now be
interpreted in terms of two opposing forces. First, since discriminators have higher
transportation costs, they tend to live closer to the center. Second, if they have a
higher margina rate of substitution between housing and the consumer good than
nondiscriminators - if they are willing to give up more of the consumer good for a
marginal increase in housing services -, then there is an opposing tendency for
discriminators to live in larger houses farther from the center of the city. Our
assumption requires that the latter tenderncy overwhelm the former.

The difference between the marginal rates of substitution between housing and the
consumer good is closely related to the normality of housing. Roughly speaking,
condition (1.31) is satisfied if housing is a norma good and the normality is strong
enough to offset the greater transportation costs of discriminators.2

2 This statement is precisely true if we assume a utility function which is separable and can be written
u?(z®,h,A)=u"(z%,h), A).

Given the above functional form, a discriminator has exactly the same preferences over housing and the

consumer good as a nondiscriminator, and the preferences are not affected by the externality. Consider
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2. Stability of Spatial Patterns

In the absence of externalities, assumption (1.30) assures that the bid rent of the
rich will be flatter than that of the poor, and the poor therefore live closer to the center
of the city. It can be shown that when the rich suffer external diseconomies, the
pattern is unaffected if the number of housesper unit distance is constant. This
qualification is required because our externality function (1.11) employs only radial
distances. If the number of houses per unit distance increases with distance, the
assumption (1.30) must be strengthened.

When the number of houses per unit distance is constant,
N(x)=0 , O<x<X. (2.1

We assume there is no active discrimination in the housing market: neither
discriminators nor landlords try to influence where nondiscriminators live.

To see that only the centra location of nondiscriminators is stable, we examine
each of the possible configurations. The pattern where both the rich discriminators
and the poor discriminators live a a same distance from the center is unstable.

a hypothetical problem of choosing both h and zunder the budget constraint, | =z+Rh. Because of the
separability, the choice of adiscriminator isthe same for any level of externality. Moreover, both types
behave in exactly the same way, and have the same uncompensated demand function for housing,

h(1,R) . Asin (1.2.7), the uncompensated demand functions satisfy

A 1R =42 b - ot

_(u)® up/u})

D 9z
where
D = 2uj,uiuf, - () - (U5)7 U >0, i=nd.
Now if housing isanormal good, we have
TN
Iz

Since z%(x)>z"(x) from y®>y",thisimpliesthat

uf (21 (%.h(x), AX) _ u(2° ().h(9) _ uf (2" (x).h(x)
ul (2% (0,h(x), A¥) Ul (z* (x),h(¥) Ul (Z"(x),h(x)’

and if the normality is strong enough, (1.31) is satisfied.
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Consider a zone at radius x where both the rich and the poor locate Under the
assumption that there is no active discrimination in the housing market, both must pay
the same rent at X, and therefore their bid rents must be equal there. Since, by
assumption (1.11), the strength of the externality depends only on the radia distance
between a discriminator and all nondiscriminators, any increase in the number of
nondiscriminators at x drives down the bid rent of the discriminators by increasing the
externality. This induces a further increase of the number of nondiscriminators
because the bid rent of the nondiscriminators remains the same, and the
nondiscriminators outbid the discriminators. The process continues until the zone is
filled with nondiscriminators.3

It is convenient to introduce a formula which will tell us the relative levels of bid
rents of discriminators and nondiscriminators at X" if we know their relative positions at
x'.  Since it is smpler to work with the bid rent on a house and lot, E(x) = R(X)h(X),
than with the bid rent per unit amount of housing services, R(x), we rewrite (1.26) and
(1.27) as

E*(x)° RY()h(¥) =y* - 2°(h(x),u, A(X) - t(X),

E"(X)° R"(X)h(x) =y" - z"(h(x),u")- t"(x).

In order to isolate the effect of the externality, we consider the difference between the
dopes of E%(x) and E"(x) a x between x( and xC, fixing the level of the
externality at  A(xQ) :

H(x;x® © zp (h(x),u™)h&x) +t""(x)

- [Z (h(),u, Ax@)hex) +t9"(X)]
>0, (2.2
where the inequality follows from assumption(1.30). We then obtain
[E°(xG - E"(x®] - [E*(x9- E"(x9]
=h(x[R* (x® - R"(x@] - h(xJ[R* (x9 - R"(x9]

3 Note that this result crucially depends on our assumption (1.11) that the strength of the externality
depends only on the radial distance. It is still an open question whether the result carries over to the case

where the externality depends also on circumferential distance from a nondiscriminator.
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= C‘;:H (x; x@ydx + J(xEx®, (2.3

where J(x(x€) captures the effect of the difference in the externality between x' and

X

J(x¢x@ = z°[h(x9,u?, A(x9] - z°[h(x9,u?, A(xG] . (2.4
From(1.23), J(x(x€) satisfies
> >
J(x¢x®=0 as A(XY = A(xG . (2.5)
< <

Now consider the case illustrated in Fig.1 where the zone of nondiscriminators
extends from x* to x**, between two zones of rich discriminators. In equilibrium the
bid rent of the two groups must be equal at the two borders, since there is no price
discrimination in the housing market. Suppose that two bid rents are equal at the inner
boundary, x*, a in Fig.1. From (2.1) the external diseconomy is the same at two
boundaries:

A(X*) = A(x**).

o x* whw x ®

Figurel
The intermediate location of nondiscriminators

Ifwesat x(=x* and xt=x** (2.3) becomes
*% d *% n *% _ ‘X** . *%
h(x )IR"(x )- R"(x )_Q H(x;x )dx>0,

which implies that the bid rent of discriminators is higher than that of nondiscriminators
a the boundary.  Therefore, discriminators outbid nondiscriminators in the
neighbourhood of the outer boundary and the boundary moves closer to the center.
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Thus the intermediate location of nondiscriminators cannot be an equilibrium.

The same reasoning can aso be applied to a city which has only two zones,
nondiscriminators living in the outer zone and discriminators living in the inner zone.

When nondiscriminators live in more than one zone, denote the borders of
nondiscriminators zone farthest from the center by x* and x**. Suppose the two bid
rents are equal at x*. The externality is stronger at the inner boundary than at the outer
boundary, since the inner boundary is closer to other zones of nondiscriminators.
Hence, J(x*,x**) is postive and

h(X** )le (X**) _ Rn(X**)J
= 6 H(x; x**)dx+ J(x*, x**) >0.

This case is not an equilibrium, either.

Finally, consider the case of the central location of nondiscriminators. Let x* be
the boundary between the zones of nondiscriminators and rich discriminators as in
Fg.2. Inequilibrium, the bid rents are the same at the boundary:

RY(x") = R"(X).
Forany x(<x*,we hawe

A(X9>A(X').

Figure 2
The central location of

nondiscrininators

Substituting x* for x" in (2.3), we obtain
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- h(x9|RY (x) - R”(x@]: Qxc H(x; X )dx+ J(x¢x") >0.

Hence, R*(x§ <R"(x9forany x(<x* and nondiscriminators outbid discriminators
inside the boundary.

At any point, X', outside the boundary, discriminators have a higher bid rent:
h(x4|RY (x§- R"(x9|= QX¢H (x; x9dx+ J (x¢x9 >0,

snce A(XQ<A(X).

Thus the central location of nondiscriminators is an equilibrium. Since the cases
considered here exhaust all the possibilities, the central location of nondiscriminators is
the only stable market equilibrium under the assumption (1.30) and (2.1). This result
shows that the existence of externalities does not alter the spatial pattern when (1.30)
and (2.1) hold. No discrimination is, therefore, necessary to confine nondiscriminators
in the central part of the city. Moreover, the external diseconomy makes the
segregated pattern more stable since the bid rent curve of discriminators becomes
flatter. Note that it is not the strength of the externality that makes the bid rent curve
of discriminators flatter, but the fact that externality diminishes with distance. It is
easy to see that if externdlity is uniform in the city, no change in the dope of the bid
rent curve occurs.

We have shown that passive discrimination of the sort we have modeled can
explain the spatial distribution of racial groups, blacks in American cities for example,
when the group discriminated against is uniformly poorer than the discriminators.
This result does not suggest that active discrimination does not exist. Recent studies
support the view that there is in fact active discrimination in the housing market of
American cities.

If the number of houses per unit distance increases with distance from the center,
N(x) >0, the above result must be modified. In order for the central location of
nondiscriminators to be a unique stable configuration, the inequality (1.30) must be
strengthened to

z8hgx) +t9'(x) > z'h¢x) +t"'(x) +e, (2.6)

for some large enough e >0. The problem arises because our externality function
(2.11) employs only radial distance. If there are more households per unit distance at
larger radii, the externality will be higher at the outer boundary than at the inner
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boundary, which causes an additional tendency to lower the bid rent of discriminators at
the outer boundary. The inequality (1.30), therefore, must be strong enough to offset
this effect. In the rest of the chapter, (2.6) is assumed to hold for a sufficiently large
e so that the only stable configuration is the central location of nondiscriminators.

3. TheBoundary Bid Rent Curves

In section 2 we established the existence of a single boundary between two types
of households, with the rich discriminators living farthest from the center. In section4
we will examine the stability of the boundary between the two zones, but in order to do
so we develop an additional concept, the boundary bid rent curve. The boundary bid
rent curve is the bid rent at x when the boundary is at x.

Assume that the city is open: migration into and out of the city is free and
costless. The utility levels of rich discriminators and poor nondiscriminators in the
city, u® and u", then equal the corresponding utility levels in the rest of the world,
V¢ and V", respectively. The utility levels, however, are not necessarily fixed. An
increase in the population of the city is accompanied by a decrease in the population of
the outside world, which causes arise in the utility level in the outside world because of
diminishing returns. We assume that the genera utility level of discriminators is a
nondecreasing function of the population of discriminators in the city, and, that the
same is true for nondiscriminators.4

ud :Vd(Pd),
(3.2)
u"=v"(P"), 32
where
va(phs o, (3.3)
VAN CGIDENE (3.9

and P?Y and P" ae respectively the populations of discriminators and

41n general, the utility level of discriminators (and also nondiscriminators) depends on the popul ations of
both discriminators and nondiscriminators. For simplicity, we assume that the population of one type

has no effect on the utility level of the other type. We make a similar assumption for income levels in

(3.5) and (3.6) below.
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nondiscriminators in the city. V9'(P%) and V"'(P") are amost zero if there are so

many people of each type in the outside world that an additional individual does not
cause any significant change in alocation there. Since our formulation implicitly
assumes that the population of the city is small enough for an additional individua to
matter within the city, this in effect requires that the city is small compared with the rest

of the world. Roughly speaking, therefore, V9'(P%) and V"' (P") are zero if the

city is small, and increase for cities which are larger relative to the rest of the world.

The income of a city resident also depends on the population of the city. This
reflects two factors. First, if prices of products are constant, the wage rate falls due to
diminishing returns as the population increases. Second, when the population
increases, production expands, which reduces prices of products in the world market.
This also causes adecrease in wage rate.  We therefore assume that the income of each
type of household is a nonincreasing function of the population of that type in the city,

y! =y (P?), (35)
y" =y"(P"). (3.6)
where
y®'(P?)<0, 3.7)
y"(P™<0. (3.8)

yd'(PY) and y™'(P") aresmallerin absolute valuein asmaller city, since the effects
on the world prices are smaller by the same argument as we applied to the case of
va(PY) and V"(P").

Let x* denote the boundary between the zones of discriminators and
nondiscriminators. Then

P'(X) = QX N(x)dx, (39)
PY(x') =y N(9 e (3.10)

where X is determined so that the highest bid rent equals the rural rent, R,, a the
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edge of the city.

Now, we express bid rent functions as functions of x* using (3.9) and (3.10).
Thebid rent, R"(x;X"), of anondiscriminator at x when the boundary is at x* is

R'(x X' ) = (){y (P (x) - [V (P ()] " (0b. (31D)

The slope of the bid rent curveis

RI(xX)° — 0 R”(xx )
(3.12)
= 20+ 9] R0 e

The location of the boundary enters this formulation, not because nondiscriminators

discriminate, but because the location of the boundary determines P", which affects
income and utility levels.

The bid rent of discriminators depends in addition on the externality that they
suffer from nondiscriminators. The externality received by a discriminator at X is

AXX )= @X a(x- x¢) N(x9adxe. (3.13)

The bid rent of discriminatorsisthen

RY(x;x")
3.14
=y @) - 2w, v et ewh O
Itsslope is
RI(x;x") = - —[zh hgx) +t9" (x)+zAA(] RY (X )';((X)) (3.15)
A is defined as
A ° ﬂ—‘lLA(x;x*) :6* I(x- x9aklx- XN (x9dx¢ (3.16)
where
i+l if X- X3 0,
ox-29=1 4 it x- x6<0.

A  is nonpositive at least when X is greater than or equal to x*. The externality,
therefore, tends to make the bid rent curve of discriminators flatter. It follows from
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assumption (1.30) that the bid rent curve of discriminators is flatter than that of
nondiscriminators at the boundary:

oL e s  od o hEX)
R, (X ;x)= h<) [zhhttx )+t (X )+zAAX] R™(x )—h(x*)
s L [agoryadien] pd ooy NEX)
h(x*)[zhh(k'x ) +t%'(x )] R¥(x) hoc) (3.17)

h&x")
h(x")

3 _

1 [ omron] onpos
h(x*)[zhhctx )+ (x)]- R
=R (X';X)

This confirms the result in the preceding section that nondiscriminators live closer to the
center.

At the edge of the city, the bid rent of discriminators must equal the rural rent:
R(X;x") =R?, (3.18)

which determines X as a function of x* and hence P®(x") in(3.10).

Next, we introduce the concept of the boundary bid rent curve, which is the bid
rent at X when the boundary isat x. The boundary bid rent curves will play a crucial
role in the analysis of acumulative process. For nondiscriminators it is

R"(X) =R"(X;X), (3.19)
and from (3.11) its slope iis
R™(x) = R (x;X) + RY (%)
=RI060) - [2v™ (P y P (320
£ R (X X),
where

R)r(l(x;x*) o R (x; X ) /X .

Thus the boundary bid rent curve is steeper than the bid rent curve. An expansion of
the boundary is possible only if the population of nondiscriminators increases in the
city. This raises the utility level in the outside world and lowers the income level in
the city, causing a fall in the bid rent curve. The relationship between the bid rent
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curve and the boundary bid rent curve isillustrated in Figure3.

U N {9
o xi KE X

Figure 3
The relationship between the boundary
bid rent curve apd the bid reat curves

The boundary bid rent of discriminatorsis

RY(x) = RY(x;X), (3.21)
with a dope
RY(x)
3.22
=R{ (X X) - Tlx){ziAX*(x;xH Zve(PY)- yd'(Pd)]Pd'(x)} (322
where
A (X x*) ° i A(X; x*) (3.23)
X 1IX
and hence
AX* (% X) =a(0)N(x)>0. (3.29)

Whether the slope of the boundary bid rent curve of the discriminators is steeper
than that of the bid rent curve is not clear. An outward movement of the boundary acts
on the bid rent curve of discriminators in two opposing ways. The increased
population of nondiscriminators drives up the externality causing the bid rent to fall.
As will be shown, however, P9 (x) is usually negative: the population of
discriminators decreases as the boundary moves outward, lowering the utility for
discriminators in the outside world, increasing their income in the city and tending to
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cause their bid rent to rise. The boundary bid rent curve of discriminators is therefore
either flatter or steeper than the bid rent curve depending on which tendency is stronger.

The first term in the sguare bracket of (3.22), zf\AX* (x;X), is positive from
(3.24), since zf\ is positive from (1.23). The second term is more complicated.
PY4"(x) can be obtained by differentiating (3.10) and (3.18).

PY"(X)
ZA[N(X)A +N(X)A(]+ N(x)[t "(X) + (R, + z2)h€x) . (3.25)
T AT (PY) -y (PHINGR) 17 (R) + Z3A, (%) + (R + 20)h€)

The first square bracket on the numerator is positive under the assumption that
N(x)>0, since

N (X) A (X; X) + N(X) A (X; X)

= N(x)ga(X)N(Y) +Qaqx- xH(N(9- N(Y))dxtg (3.26)
>0,

The first term in the second square bracket of the numerator of (3.25) is positive but the
second term may be negative. The second term is zero if the marginal rate of
substitution between housing and the consumer good equals the bid rent, which is the
caeif h(x) can be freely chosen. If houses are newly constructed at the edge of the
city, h(X) may be optimize It is, therefore, plausible to assume that the magnitude of
the second term is small. Thus, the numerator tends to be positive.

The first two terms of the denominator are positive. The third term is
nonpositive but the magnitude is small since the externality is weak at the edge of the
city. The fourth term is also smal since R, +Zz' is smal as argued above.
Therefore, the denominator also tends to be positive and PY'(x) is likely to be
negative.

The reason for this result is roughly as follows. If the zone of nondiscriminators
expands, the city must expand to accommodate the same population of discriminators.
Consider the effects on a discriminator at the edge of the city. There are three major
effects. commuting costs increase, the strength of the externality increases since there
are more nondiscriminators in the city, and the boundary shifts outward to where houses
are larger, by the assumption that h((x) >0. The first two effects tend to lower the
utility level of the discriminator, but the direction of the third effect depends on whether
houses are larger or smaller than the optimum at the edge of the city. If houses are
smaller than the optimum, the third effect tends to raise the utility level. Since the
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third effect disappears when h(x) is optimized, the first two effects are likely to be
dominant, and the utility level declines as x* increases. This induces emigration of
discriminators, resulting in a decrease in the population of discriminatorsin the city.

4. Stability of the Boundary and a Cumulative Process

Next, we examine stability of the boundary between the zones of rich
discriminators and poor nondiscriminators. It is easy to show that, if the boundary bid
rent of discriminatorsis less steep than that of nondiscriminators, the boundary is stable,
and if steeper, the boundary is unstable. Consider the situation represented by Fig.4b.
The boundary is a x*, and beyond x* the discriminators outbid the nondiscriminators.
The boundary bid rent of the discriminators is steeper, however, as illustrated in Fig.4a.
Notice that, if the boundary x* isto be an equilibrium, the boundary bid rents must be
equal there as well as the bid rents.

Figure 4. Stability of Boundaries

boundary
bid rent

R0 (x%) =R (x%) [ 1

R (x*') [0
Rd(x*')'
X*"X*X* 'X**"X**X**' X
Figure 4a
bid rent

?g(x*)=Rd(x*)__
R" (x*1)

RY (x% 1)

F Figure 4Db
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Now imagine that the boundary shifts outward to x*' because of some random
disturbances. The bid rent of discriminators falls farther than the bid rent of
nondiscriminators, as in Fig.4b. Nondiscriminators outbid discriminators at the new
boundary and the boundary moves farther outward. The process continues until the
boundary reaches x**.

If the boundary had shifted inward, discriminators would have outbid
nondiscriminators, causing the boundary to move inward until it reached the center, x*
istherefore unstable. The same argument applied at x** will show that the boundary
isstable at that point.

We have seen that the bid rent curve of discriminators is flatter than that of
nondiscriminators at the boundary.  As shown in the preceding section, the boundary
bid rent curve of nondiscriminatorsis steeper than their bid rent curve, and the boundary
bid rent curve of discriminators is flatter than their bid rent curve if the externaity is
weak. In order to have an unstable equilibrium, therefore, the externality must be
strong.

We next examine the condition for an unstable equilibrium more carefully. The
difference between the slopes of the two boundary bid rent curvesis

RY'(x)- R™(%)

. i{- H(x x) + ZA A¢X)

, (4.0
h(x)
+[(ZV -y pd (%) - (ZV"- y"INXL
where
Agx) © iA(x; X)
dx (4.2)

= a(x)N(x) + @Xa'(|x- x(N(x§- N())dx¢>0

The first and third terms in the brace of (4.1) are negative, and the second term positive.
Therefore, if the second term is greater than the absolute value of the sum of the first

and third terms, the boundary bid rent curve of discriminators is steeper than that of

nondiscriminators, and the boundary is unstable. This is more likely to occur if

@ H(xx) is smaler: the tendency of the poor to live closer to the center in the
absence of the externality is smaller;

() (V9= yIPI(x)- (ZV"- y™)N(X) is smaler: the city is smaller in
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comparison with the rest of the world;
(© z,‘i is bigger: the marginal disutility of the external diseconomy is larger;

(d) a(x) is bigger, which is true if x is smaller, that is, the boundary is closer to the
center, or if the externality diminishes less rapidly with distance.®

Now consider a historical process in which bid rent shift up due to some
exogenous factors such as technological progress. We assume that the bid rent of
nondiscriminators rises more rapidly than that of discriminators. This assumption does
not necessarily mean that the income of nondiscriminators rises more rapidly than that
of discriminators. Even if the income of discriminators were to rise faster than that of
nondiscriminators, the bid rent of nondiscriminators might rise faster if the utility level
of nondiscriminators attainable in the rest of the world was increasing more slowly.
To make our analysis easier, we fix the boundary bid rent of discriminators and allow
the boundary bid rent of nondiscriminators to rise over time.

Since the boundary bid rent curve depends on the choice of utility and
transportation cost functions and on other parameters of the model, we cannot say
much, a priori, about its shape. Instead, we illustrate a few examples. If the
boundary bid rent curve of nondiscriminators is steeper than

R

0 x*(tl) x*(t2) x*(t3) x

Figure 5. No Cumulative Process

that of discriminators everywhere in the city, we obtain Fig.5. In this case,
X* (ty),X* (t,) and x*(t3) are al stable and the boundary gradually shifts outward

as the bid rent of nondiscriminators rises.

5Theintegral in (4.2) is greater when N(x) isgreater. However, if N(x) islarge, H must be large

enough to insure the central location of nondiscriminators, and the net effect is uncertain.
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Figure 6 depicts the case where the boundary bid rent curve of discriminators is
steeper at the center.  Attime t, x*(t;) isan unstable equilibrium and x**(t;) is
a stable equilibrium.  If the boundary were to the right of x* (t;), it would move to a
stable equilibrium at  x**(t;). With the boundary initialy a x=0, however, no
nondiscriminator would enter the city until time t,, when the boundary bid rent at
x=0 of nondiscriminators rose as high as that of discriminators. Then any small
perturbation would induce a sudden outward shift of the boundary to x**(t,). Thus
a very rapid movement of discriminators to the suburbs occurs after the first
nondiscriminator enters the city.

o it

® &k Y dek

0 x [tJ.] x ':t_.l. HEE (L) ®
FPigure &

A Cumilative Process at the Center

Finally, consider the case where the boundary bid rent curve of discriminators is
flatter than that of nondiscriminators near the center but becomes steeper at some point
asinFigure7. In this case, the boundary gradually moves outward until the bid rent of
nondiscriminators becomes tangent to that of discriminators, and then jumpsto x**.

Figure 7b illustrates the corresponding bid rent curves. The rapid shift of the
boundary is accompanied by a downward shift of both bid rent curves. The bid rent of
nondiscriminators must fall because the population of nondiscriminators in the city
rises, resulting in an increase in the externa utility level by (3.4). Since u" =Vv"(p"),
the utility level of nondiscriminators in the city must also rise, and for utility levels to
rise rents must fall. Similarly, since the shifting boundary would usualy drive out
some discriminators, the utility level of discriminators falls, and rents are likely to rise.
Paradoxically, then, the so-called deterioration of the city center may be desirable in
terms of income distribution.

In the inner part of the zone of discriminators, the increased externdlity leads to a
fal in the bid rent. In the outer part, however, the rent will usualy rise.
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The cumulative decay process analyzed by Baumol (1972a, b) and by Oates,
Howrey, and Baumol (1971) can be viewed as a rapid movement of the boundary of the
sort described in this chapter. If a small increase in the number of nondiscriminators
lowers the utility level of discriminators, the discriminators move out to the suburbs,
leading to a further deterioration of central cities. This process occurs only if the rent
does not fall sufficiently to compensate discriminators for the increase in the external
diseconomy, or in our model only if the boundary bid rent curve of nondiscriminatorsis
flatter than that of discriminators.

As discussed in section 1, the fact that the cumulative process is instantaneous in
our model depends on the assumption that houses are readily available even outside the
current boundary of the city. In redlity, however, houses cannot be constructed
immediately, and the cumulative process may take

B (1)

Pigqure Ta

R™ (2] _

" ix:a—:""’ﬁ"l-

e (axpx*) =T
erzilibrivm ront before the cumilative process

B {xpa®vha

Pigure b

Figure 7. A Cumulative Process at a Later Stage

quite a long time. It is not the rate of change that characterizes a cumulative decay
process, however. The process is cumulative if it can be seen as a disequilibrium
process moving towards a new equilibrium, like the boundary shift from x* to x** in
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Figure 7, rather than an equilibrium process.

Notes

Baumol formalized a process of cumulative urban deterioration in section7 of his
paper (19724). Policy implications of his model were further analyzed by Baumol
(1972b) and Oates, Howrey and Baumol (1971). The process of decay is described by
two difference equations. One equation embodies the mechanism through which an
increase in deterioration leads to a reduction in income per capita in the subsequent
period as a consequence of induced emigration to the suburbs, while the other equation
describes how the fall in income induces further deterioration. For a suitable set of
parameters, these equations obviousdy have a solution which converges to an
equilibrium point and the process toward an equilibrium can be viewed as a cumulative
process of urban deterioration.

The weakness of this argument is that individual behaviour and market
adjustments are not explicitly considered. For example, we immediately face the
following question. Why does the land rent in the central city not fal to keep the
wealthier people in the center? If the land rent falls sufficiently, wealthier people will
remain even in the deteriorated central city. For a cumulative deterioration process to
occur, therefore, something must prevent the land rent from falling enough.

Obviousdly the rent cannot fall below zero. If it reaches zero, therefore, a
cumulative process occurs. In this case deterioration results in vacant houses.
Alternatively, poorer households might support the rent. This case can occur in two
ways. One is through an increase in per capita housing demand by the poorer
households and the other is through migration of the poorer households from other
areas. Our model in this chapter formalizes the latter case.

Kanemoto (1978) considered the same problem in a ssmpler model with three
discrete regions: the city center, the suburbs, and the rest of the world. The paper
explores the case of fiscal burden and the case where one type receives an external
economy from the other type while generating an external diseconomy. The modédl in
this chapter can easily be extended to include these cases.

We chose not to formulate an explicit dynamic adjustment model because
exposition would become tedious, and because the basic results can be explained
heuristically, as done in this chapter. Schelling was the first to formulate dynamic
models of segregation in the housing market in his papers (1971) and (1972), following
his earlier work (1969). Miyao (1978a) extended his analysis, explicitly including the

144



Neighbourhood Externalities

individual choice of space and location within a city. Kanemoto (1978) also
considered a model of dynamic adjustment. Miyao (1978b) considered the same
problem in the framework of a probabilistic model of locational choice. These
analyses correspond to that in section2.

Yellin (1974), Rose-Ackerman (1975), (1977), Yinger (1976a, b), and Courant
and Yinger (1977) provide static analyses of an externality between different types of
households. Yellin has the most general formulation of the externality which we
adopted in this chapter.

Although we did not use any results from mathematical theory of catastrophe, our
analysis may be cast in that framework. In section 4 we examined how the phase
portrait changes as various parameters change. A cumulative process occurs at what is
called in catastrophe theory a bifurcation point, where a basic change in the phase
portrait occurs. a stable equilibrium becomes an unstable equilibrium.
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CHAPTER VII

OPTIMAL GROWTH OF CITIES

There have been very few works on the mathematical theory of urban growth.
Recently, however, this area has begun to attract the attention of theorists. Miyao
(1977a,b) analyzed capital accumulation in urban transportation. Rabenau (1976)
considered the optimal growth of a small and open factory town with durable housing
stock. Fujita (1976a,b) studied accumulation of more than one kind of durable
housing capital. These works, however, are concerned only with growth of a certain
city, despite the fact that in a modern economy the migration of households and firmsis
not difficult. Limiting the analysis to a single city prevents us from examining the
interaction among cities. Isard and Kanemoto (1976) made an attempt to consider the
optimal growth of an economy consisting of many cities and their hinterlands, though
the model there is too complicated to go beyond the derivation and interpretation of first
order conditions. This motivates the drastic simplifying assumptions of the model in
this chapter.

For the first time, productive capital appears in our economy. Like capital in
simple neoclassical growth models, it has a number of convenient features: it does not
depreciate; it can be applied to any task; and if it is not needed for production, it can be
eaten. In addition, because we are considering an economy with many cities, we also
require capital that can be moved between and within cities costlessly.

The time dimension must be added to analyze capital accumulation. Since we
already have the spatial dimension, the model becomes quite complicated. To keep
the model manageable, we make the following drastic simplifying assumptions.

a.  Theeconomy consists of cities only: there is no rural sector (except possibly for the
constant rural rent).

b. Capital accumulation occurs only in the urban production sector and there is no
capital accumulation in the transportation sector.

c. Capital is pefectly mobile: capital can be moved between an within cities
instantaneously and without cost.
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d. Households are perfectly mobile.

e. All cities are identical. This assumption can be made only when capita is
perfectly mobile: otherwise, a new city has zero capital stock initially, and cannot
be identical with older cities. Under the assumption of mobility, capital stock in
other cities can be instantaneously moved to the new city, and al cities can be
made identical.

We assume that there is a Marshallian externality of the sort discussed in Chapter
[l. At the optimal city size declining production costs, which result from increasing
city size, exactly match increasing transportation costs.

The utility level that households achieve in our economy has been determined by
the amounts of land and of the consumer good they received. Now that the economy
contains capital, some part of output can be invested in physical capital.

The problem of determining the optimal path of our economy may be solved in
two stages. At each instant of time, all cities must maintain the optimal spatial
alocation, as in Chapter 1. The key difference is that when there is capita, the
optimization is performed using the part of the product allocated to current
consumption, rather than the entire product. The maximum utility level achievable in
each city is then obtained as a function, U (c, P), of current consumption, ¢, and the
population of the city, P. Insection 1, the model from Chapter | is reformulated with
capital, and in section 2 the static spatial optimum is derived given the level of
consumption.

At this point the inhabitants of each city know how to alocate their
consumption, but not how much of their total product to consume. We assume
that they choose to maximize the undiscounted sum of utilities over an infinite time
horizon. That is, they are exactly as concerned about the welfare of their most
remote descendants as they are about their own. We chose this assumption mainly
for the sake of simplicity, but also because we see no mora justification for
discounting the welfare of future generations. At any rate, it is quite easy to
extend our analysis to the discounted case.

In maximizing the undiscounted sum over an infinite time horizon, we encounter
awell-known difficulty: the undiscounted sum of future utilities is infinite, and we are
left attempting to compare infinities. Economists have, of course, found several ways
of avoiding this problem. In this chapter, we adopt a version of the Ramsey device
used by Koopmans (1965). This approach changes the origin of the instantaneous
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utility function, taking the utility level of the optimal steady state as zero, where the
optimal steady state, or the Golden Rule, is the balanced growth path which maximizes
the utility level among all feasible balanced growth paths. If u(x) denotes the utility
level at time t, and u* that at the optimal steady state, the sum of the difference over
infinite time horizon,

¥
QLU - u*ldt,

Is maximized. The new objective function turns out to be bounded from above, ard
the difficulty of comparing infinities disappears. In section3, the objective function is
maximized with respect to the paths of consumption and population of a city.

In optimal growth theory, it is usually assumed that the utility function is concave.
In our model, however, the maximum utility function, U (c, P), may not be concave,
although the origina utility function over the consumer good and land is assumed to be
concave. As it turns out, the maximum utility function is not even quasi-concave in
most cases. This does not create serious difficulties for our analysis, if we assume that
the concavity of the per capita production function is strong enough.

In section 4, a phase diagram analysis is carried out to determine whether a city
grows during the process of capital accumulation. Section 5 contains remarks on the
limitations of the model, and speculations on how the results might be modified if the
model is extended.

1. TheModel

Consider the growth of an economy consisting of cities. Let capita
accumulation occur in the urban production sector and the number of cities change in
the process of growth.  Assume there is no non urban sector and the total population of
the whole economy is partitioned into cities. Thisassumption is clearly unrealistic and
precludes the analysis of the evolution of an economy through different stages, for
example, from the rural stage to the urban stage, as anayzed by Isard and Kanemoto
(1976). Considering the complexity of the problem and the dominance of the urban
sector in a modern economy, however it seems worthwhile to start with this ssimple
formulation.

As discussed in Chapter 11, economic factors which cause cities can be classified
into three categories: concentration of immobile factors, increasing returns to scale, and
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externalities. In this chapter we consider cities based on a Marshallian externality of
the kind analyzed in section 5 of Chapter Il. Instead of starting from the production
function of an individual firm, we simply assume that the aggregate production function
of acity can be written as

F(P,K,P), (1.2

where P and K are respectively the population and the aggregate capital stock of the
city. The production function is homogeneous of degree one with respect to the first
two terms and the derivative with respect to the third term is positive. The production
function, therefore, exhibits increasing returns to scale if the third term is taken into
account.1

Because it is easier to work with the capita-labour ratio and consumption per
capita, k=K/P and c, than with the absolute quantities, we want a per capita
production function f(k,P). By the homogeneity assumption, the per capita
production function is

f(k,P)=F@k,P)=FLK/P,P), (1.2
where
fp > 0. (1.3
We assume that the per capita production function is strictly concave and
f, >0. 1.4

As in previous chapters, we assume that al cities are identical. If at time t the

population of the whole economy is P(t), the capital stock for the whole economy is

K(t) = P(t)k(t), and per capita consumption of the produced good is c(t), then the
output available for capital accumulation after consumption is

k(t) =P () f (k(t), P(t)) - P(t)c(t). (1.5)

1|t isnot difficult to show that if an individual firm has a production function ?(f,k, P) where ¢ and

k are respectively labour and capital inputs, the aggregate production function can be written as (1.1)

when the number of firmsis optimal.
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If we assume that the population growth rate is a constant
| =P(t)/P(t), (1.6)

then (1.5) can be rewritten as

K(t) = f(K(t), P(t) - 1 k(t) - c(t). (1.7)

The spatia structure of a city is the same as in the previous chapters. g(x)dx of

land is available in the ring between x and x+dx, where x is the distance from the
center of a city. A household living at x at timet has alot Ssze h(x,t). Then there

are (q(x)/h(x,t))dx households between x and x+dx at timet. A household at x at
timet consumes z(x,t) of the produced good and spends T (x) on commuting costs
expressed in terms of the produced good. For simplicity, we assume that there is no
capital accumulation or no technological progress in the transportation sector. Note
that we have changed the notation for commuting costs and that t now denotestime. A
city uses c(t)P(t) of the produced good for consumption, which includes direct
consumption, commuting costs, and the payment of the rural rent R,. The resource

constraint for acity is then
c©P) = G {[20x) +TOA/ hx.) + R (9 (18)

where x(t) isthe edge of the city at time't.

The population constraintsare

X(1)
Pt)=Q o (%) /h(x,t)]dx, (1.9)
and
P(t) =n(t)P(t), (1.10)

where n(t) isthe number of cities a time t. We shall ignore the constraint that n(t)
be an integer and take n(t) as a continuous variable.

The utility function is u(z,h), and we impose the constraint that the utility level
be equal everywhere at each instant of time. The utility level may vary over time.

151



Optimal Growth

The equal -utility constraint can be written

u(t) = u[z(x,t), h(x,t)] (1.11)

Having set up the model, our problem is to maximize the undiscounted sum
over an infinite time horizon:

6[u(t) - u*dt, (1.12)
subject to the constraints (1.7) through (1.11), and the initial condition,

k(0) =k,, (1.13)

where u* isthe utility level in the optimal steady state. The problem is solved in
two stages.

2. Optimal Spatial Structure

In this section the first stage optimization is carried out for given c(t) and P(t),
and the properties of the maximum utility function U (c(t), P(t)) are examined. This
problem is exactly the same as the one in subsection 2.1 of Chapter | if we substitute
c(t), P(t),and T(x) for w, P, and t(x). The utility level is maximized under the
resource constraint, the population constraint, and the equal- utility constraint, which are
in this case, (1.8), (1.9), and (1.11) respectively. Control variables are 2(x) and
h(x) , and control parametersare X and u. The time variable t is suppressed in this
section, since it plays no role in the optimization.

Thefirst order conditions can be rewritten

U, (2(x), h(x)) /u,(z(x), h(x)) = R(x), (219
y=2(X)+R(X)h(X) +T(X), (2.1b)
R(X) =R, (2.1¢)

after smple manipulations. As in Chapter I, the optimal solution can be achieved as a
competitive equilibrium if al households receive the same income y. The solution,
therefore, can be described by using the bid rent function R(I (x),u) = R(y- T(x),u)
defined in Equation (1.12) of Chapter I:

y=Cc+sg, (2.29)
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P = (‘S[R(y- T(x),u)- R.J(x)dx, (2.2b)
P= (‘SR, (y- T(x),u)g (x)dx, (2.20)
R(y- t(X),u) =R, (2.2d)

sisthe socia dividend each household receives and is equal to the total differential rent
divided by the population of the city. (2.2a) and (2.2b) correspond to (1.28) in Chapter
I. (2.2c) isarestatement of the population constraint using the property of the bid rent
function: R =1/h.

If cand P are given, the four equations, (2.2a)-(2.2d), determine the four

variables, vy, s, x,and u. The utility level which is obtained can then be written as a
function U(c,P) Tota differentiation of (2.2) yields the partial derivatives of the

maximum utility function:

Up(c,P) = s/(‘gqu(x)dx <0, (2.3)
U.(c,P)=- P/Q;qu(x)dx >0, (2.4

where subscripts P and ¢ denote partial derivatives with respect to P and ¢ respectively.
Thus an increase in the population of a city, given the consumption of resources per
capita, lowers the utility level which can be attained in the city. An increase in per
capita consumption given the population raises the utility level. The margina rate of
substitution between P and c is equal to the negative of the social dividend divided by
the popul ation:

S(c,P)° Up(c,P)/U.(c,P)=-5s/P. (2.5)

Further properties of the maximum utility function are difficult to derive in the

general case. The following results for four cases have been obtained by tedious
caculations. Thecasesare

()  the Leontief utility function u(z h) =[min( z/a,h)][**,g>1, in alinear city,

a(x)=q;
(i) the Leontief utility function in apie-dice city, q(x) =gx;

153



Optimal Growth

(iii)

(iv)

the Cobb-Douglas utility function u(z,h) =(z2h"?)"¢, g >1, in a linear
city; and

the Cobb-Douglas utility function in a pie-dice city.

In al cases, linear commuting costs are assumed: T(X) = Tx. The results are

@

e

©)

(4)

©®)

U IS negative in the linear city cases (i) and (iii).
In circular cities (ii) and (iv), U, is positiveif g iscloseto 1 and is negative
for alarge enough g (in case (iv) we have proven thisonly inthecase R, =0).

Upp is positive in dl cases (in the Cobb-Douglas cases we have proven this only
inthecaseof R, =0). Thisshowsthat U(c, P) is not concave.

U(c,P) is not usualy quas-concave. In order for U to be quasi-concave,
D=2U U Up-UUp?-UppU.> must be nonnegative. In the case of the
Leontief utility function, D equals zero in a linear city, and D is negative if
c>Tx in acircular city. In the Cobb-Douglas case, D is negative in a linear
cityandinthecaseof R, =0 in acircular city.

S.(c,P) is negative in al cases. This implies that -P would be a norma good
if U(c,P) were quasi-concave. (Note that P isa'bad and hence - P isa
good.)

Sqo(c,P) is positive in al cases (in case (iv) we have proven this only in the case
of R,=0). This implies that ¢ would be an inferior good if U(c,P) were
guasi-concave.

These results show that even if the original utility function u(z,h) is concave,

the maximum utility function U (c, P) is not usualy well behaved: U (c, P) is usually

neither concave nor quasi-concave. As it turns out, however, this does not cause a

serious difficulty in the second stage optimization if the concavity of the production

function (1.2) is strong enough.

3. Optimal Growth of Cities

In the second stage of our optimization procedure, the undiscounted sum over

an infinite time horizon,
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S, Py urkt, (3.)

IS maximized subject to (1.7), (1.10), and (1.13). U(c, P) is the maximized utility
level from section 2 and u* is the utility level at the optimal steady state. Since
n(t) appears only in the constraint (1.10) and is taken as a continuous variable, the
problem is equivalent to the one of maximizing (3.1) under the constraints (1.7) and
(1.13) with respect to c(t) and P(t). Although the population of a city P(t)
must be greater than one, we ignore this constraint, assuming that it is always satisfied
aong the optimal path.

Before solving this problem, we first examine the optimal steady state, at which
the utility level is maximized among al feasible steady states. The optimal steady
state is therefore the solution to the problem of maximizing

U(c,P)
subject to
f(k,P)-1k-c=0, (3.2
with respect to ¢, P, and k.

First order conditions for an interior optimum are

f (k,P)=1, (3.39)
Up(c,P) _
NG + fo(k,P) = 0. (3.30)

The first equation is the usual condition that the system operate at the biological rate of
interest: the marginal productivity of capital must equal the population growth rate.
The second equation requires that the population of a city be determined so that the per
capita marginal external benefit on the production side equals the margina rate of
substitution between population and resource consumption per capita. From (2.5) and
(2.2b), this is equivaent to

PlPf, (k,P)] = Q[R(9 - Ri ()l (34)

which may be interpreted as the condition obtained in Chapter Il that the total

differential rent equals the total Pigouvian subsidy. An additional worker in a city
produces f (k,P) of the product himself, but at the same time increases the population
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of the city and raises the production of other workers by Pf,. The latter is the
marginal external benefit, and the Pigouvian subsidy must equal Pf, to achieve an
efficient alocation. The left side of (3.4) is, therefore, the total amount of the
Pigouvian subsidy in the city, which must equal the total differential rent when the
number of citiesis optimal.

The second order conditions are as follows.

f £0, (3.59)

So-S S+ fpp- (fip)?/ iy £0, (3.5h)

where S(c,P) is the margina rate of substitution between P and ¢ and is defined in
(2.5). The first two terms are

1 2 2
Sp-S S =- ? 2UpUUp -UcUp - UppU

Cc

°.D/UZ.

Since U (c, P) is not usualy quas-concave as seen in section2, S, - S S, is usudly
positive.  fpp - (fkp)zlfkk is, however, negative if f(k,P) is concave. (3.5b)

can, therefore, be satisfied if the concavity of the production function is strong enough.
(3.59) is satisfied because we assumed that the production function is concave. We
henceforth assume that (3.5a) and (3.5b) are satisfied with strict inequalities. We aso
assume that the optimal steady state is unique.

The following two observations can be immediately obtained from the first order
conditions (3.3). First, unlike usual one sector growth models, the optimal steady state
depends on the shape of the utility function. The population of a city serves as a link
between the consumption side and the production side, and the capital- labour ratio at
the optimal steady state is affected by the shape of the utility function. Second, at the
optimal steady state, the configuration of a city remains exactly the same, and the
number of cities increases at the same rate as the population growth.

Now, let us go back to the origina problem of maximizing (3.1) with respect to
c(t) and P(t) subject to (1.7) and (1.14). As shown in section2 of the appendix on

optimal control, the Hamiltonian for this problem is
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F =U (c(t), P(t) +a)[f (k(t), PE) - 1 k(1) - cb)], (36)
where q(t) is an adjoint variable associated with the constraint (1.7). q(t) satisfies
the adjoint equation:

- q(t) =a®[f, k). PE)- 1 ], (3.7)
and the Hamiltonian must be maximized with respect to c(t) and P(t). The first
order conditions for the maximization are

U (c(t),P(t)) =q(t), (3.89)
Up (c(t), P(1) +a(t) fp (k(t), P(t)) =0, (3.80)
and the second order conditions are

U, £0, (3.93)
Upp +0fpp £0, (3.9b)
UeUpp - Uep)? +0U fpp 3 0. (3.9¢c)

As seen in section 2, (3.9a) is satisfied if the concavity of the origina utility
function u(z,h) is strong enough. For (3.9b) to be satisfied, fpp Must be negative
and its absolute value must be greater than U, /q, since U, is usually positive, and
by (3.84), q is aso postive. In (3.9c) the sum of the first two terms is usually
negative. Again, f,, must be negative with alarge absolute value.

Combining (3.7) and (3.8a) yields the differential equation:
U () +UPt)=U[l - f] (3.10)

and from (3.8a) and (3.8b) we obtain
S(c(t), PM) + fp(k(t), P(1)) = 0. (3.11)
Using (2.5), (3.11) becomes

1) = P(t) fp (k(1), P(1)). (312

Thus the socia dividend equals the Pigouvian subsidy at each point of time along the
optimal path. In other words, the total amount of the Pigouvian subsidy for residents
of the city must aways equal the total differential rent.
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Since there is no constraint on k(t) at termina time t=%¥ , the transversality
condition must be obtained to determine the value of k(t) a t=¥. If we can show
that the optimal path converges to the optimal steady state, the transversality condition
must be

lim g(tk(t) =q* k*, (3.13)

where g* =U(c*,P*), and asterisks denote the optimal steady

state values of the variables.

We prove that the optimal path converges to the optimal steady state in two
steps2  In the rest of this section, we show that the optimal path visits any
arbitrarily small
neighbourhood of the optimal deady state. This result still allows the possibility that
the optimal path enters a neighbourhood of the optimal steady state but leaves there
eventually. In the next section, we examine the behaviour of the optimal path near the
steady state, and show that the steady state is a saddle point. Since this means that al
paths except the one which converges to the saddle point diverge, the only path that
visits an arbitrarily small neighbourhood of the optimal steady state is the convergent
one. Thus the optimal path must converge to the optimal steady state, and (3.13) isin
fact the required transversality condition.

To establish that the optimal path must visit an arbitrary neighbourhood of the
steady state, we observe that the Kuhn-Tucker Theorem shows that when the constraint

qualification is satisfied3, there exists a multiplier g* such that the optimal steady state
maximizes the Lagrangian

U(c P)+q*[f(k,P)- I k- c]

Thus the optimal steady state (k*,c*,P*) satisfies

2 This approach is smilar to the one used by Scheinkman (1976) in the discounted case with many

stocks.

3 Seg, for example, Mangasarian (1969). See also section 3 in the appendix on optimal control theory

for the explanation of constraint qualification.

158



Optimal Growth

U(c*,P*) +q* [f(k*,P*)- I k*-c¥]

(3.14)
3U(c,P)+q*[f(k,P)- I k- c], foranyk,c,adP.

It is not difficult to show that under some regularity conditions this inequality can be
strengthened to the following: if |k- k*|>e for any positive e, then there exists

r >0 such that

ur =U (c*, P*) +q* [ f(k*,P*)- | k*-c*] (3.15)
>U(c,P)+q*[f (k,P)- I k-c]+r, forany candP. '
If a path does not visit an arbitrarily small neighbourhood of the optimal steady state,

there exists some e >0 such that |K(t)- k*>e for any t. Inequality (3.15) then
holds for any t and we can integrate it from O to ¥ to obtain

¥ ¥

@[U (c,P)- uldt <- g* [k(¥) - k,]- Orct. (3.16)

Since k(¥)3 0O, the right side of the inequdity is minus infinity. Thus the value of
the criterion function of any path that does not visit an arbitrarily small neighbourhood
of the optimal steady state is minus infinity.

Now it is easy to congruct feasible paths which have values of the criterion
greater than - ¥ . For example, consider a path which approaches the optimal steady

state with a constant k(* 0) and stops there. Such a path always exists if the initial
capital-labour ratio, k,, islarger than k*, since we can determine c(t) in such a way
that Kk(t) is negative and constant until k(t) reaches k*. Even if the initial

capital-labour ratio is smaler than k*, such a path exists aslong as f (k- P)- I k is
positive for any k between k, and k*.

Since k is constant and is not equal to zero, k* will be reached within a finite
length of time. The value of the criterion up to that time is then finite, and after that
time the value can be made equal to zero by setting c(t) =c* and P(t)=P*. Thus
there exists a feasible path with a finite value of the criterion, and any path that does not
visit an arbitrarily small neighbourhood of the optimal steady state cannot be optimal.
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4. Phase Diagram Analysis

Now we examine the local behaviour of the optimal path near the optimal steady
state. The optimal path satisfies differentia equations (1.7) and (3.10), and equation
(3.11) which must hold at each instant of time. The dynamic system contains three
variables: k, ¢, and P. In order to work with a two-dimensional phase diagram, we use
(3.112) to express c as afunction, c(k,P), of k and P, and obtain differential equations
of kand P. Then implicit differentiation of (3.11) yields derivativesof c(k,P):

6 (K,P) = - fo /S, 4.1)
Cp(K,P) =- (Spp + fpp)/S:.. (4.2)

Observing

¢(t) =gk +cpP,

we can rewrite (3.10) as follows using (4.1), (4.2) and (1.7):

P(t) = Bk P){f &Pl - f (kP)+j (kP)f (K, P)- k- ck, P, (4.3)
where
D(k,P) =U¢(Sp + fpp) - UpS, (4.42)
f (k,P)=-U.S,, (4.4b)
j (k,P)=-Uq fpy. (4.4c)

The differential equation(1.7) can also be rewritten using c(t) = c(k(t), P(t)),
k(t) = f(k,P)- I k- c(k,P). (4.5)

(4.3) and (4.5) describe the pathsthat k(t) and P(t) must follow. Theoptimal
steady state isthe rest point of (4.3) and (4.5) since (3.2), (3.3a), and (3.3b) hold at the
rest point.

To construct the phase diagram, we must know thesignsof D, f and | .
By smple manipulations, D becomes as follows.

D(k,P) =Uc fpp + lUccU pp- (U CP)ZJ/UC
3,

160



Optimal Growth

(4.6)
where the inequality is obtained from (3.8a) and (3.9c). In order to determine the
ggnsof f and | , weassume

for 3 0, 4.7
S. £0. (4.8)

The first inequality implies that capital and population are complementary in production.
As mentioned in section2, the second inequality is satisfied in all the examples we have
calculated. Since U, £0 from the second order condition (3.9a), f and | are

both nonnegative under these assumptions:

f (k,P)3 0, (4.9

j (k,P)3 0. (4.10)
These assumptions also imply that

c. (k,P)>0. (4.11)

We now construct the phase diagram of (4.3) and (4.5). Following the usua
procedure, we first examinetheloci of P=0 and k=0. Thelocusof k=0 is

f(k,P)-1k-c(k,P)=0, (4.12)
and the dope of the locusis
$|. —_feCe (4.13)
dP'*0 ¢+l - f,

Since by (3.38) we have f, =1 at the optimal steady state, the slope there is

dk; _fo-c
d_P|l'<=o— Pck : (4.14)

The denominator is positive by (4.11). By (4.2) the numerator is

1
fP - Cp :g[fpp +SP - S>Sc]!

C

which is aso positive from (4.6), (3.5b) and the strict concavity of f (k,P). Thus the
k=0 locus is upward sloping a the Golden Rule:

dk

$|k:O >0 a fo=1. (4.15)

Since we have
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%[f(k, P)- 1k- c(k P)| = fp- cp >0, (4.16)

k=f- k- c isnegative above the k=0 locus and positive below the locus as

illustrated in Figure 1.

k<0

Figure 1
The Locus of k=0

Next, consider the locusof P =0. From (4.3) it is acombination of the k=0
locus and the locus of

| - f (k,P)=0. (4.17)
The slope of the locus of (4.17) is
dk
$|fk:| =- fo/ fy >0, (4.18)

where the inequality is the result of concavity and complementarity. The locus of
(4.17) is, therefore, upward sloping. Since

)l
—|l - f (k,P)|=-f

>0,
| - f, is positive above the locus of | = f, and negative below the locus. This is

illustrated in Figure 2.
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k
a=£. =0 .
k :-u—fk
Jx-fk{ 0
o Figure 2 F
The Locus of A=fk
Thelocus of | = f, intersects with the k=0 locus at the Golden Rule. The
k=0 locus is steeper than the locus of | = f, a the intersection point since the
following inequality holds there:
dk dk
d_P||(:0 - d_P|| =fk
:—f':> -G +k
Ck fic
_ S-S5+ fpp- (fp)?/ fi
fox
3 0,
(4.20)
where we used (3.5b) and (4.7). Figure 3 illustrates the relationship between the two
loci. Since D, f and | are dl nonnegative, the P =0 locus passes through

regions (A) and (C) in Figure 3, and P is positive on the side of region (D). There
are three possibilities:

() the P =0 locus is downward sloping,

(i) the P =0 locus is upward sloping but flatter than the | = f, locus, and
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Picure 3. The Loci of k=0, a=f,, and P=0

(i) the P =0 locusis upward Soping and steeper than the k=0 locus.

The slopeof the P =0 locusis, at the Golden Rule,

dky Dl
AP U il (- 1/ Fd(F)® - ((Uc/Uge)(S0)’]
> 2> 2
<0 a (- Vfu)(fey) <(‘ U U (&)
(4.21)
and
dk dk
Koo Sl
_ Ue(S)?[Sp - SS: + fop - (fip)®/ fiul]
Uee (- 1 fud(Fip)? - (- U U )(S)°]
> 2 2
.0 as -V He)(fer)™ (U /Ue)(S)7
(4.22)
These relationships imply that
dk dk .
o> gplice I (Y Rd(f)® > (Uc/Ug)(S)? (4.23)
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dk

d_p|P=o <0 it (- U fg )(For)? <(-Uc /U )(S)? (4.24)

Thus case (i) isobtained if (- 1/ f,. )(fp ) <(-U./U_)(S.)?, and case (iii) otherwise,

but case (ii) never occurs.

In case (i), we obtain a phase diagram depicted in Figure 4. The optimal steady
state is a saddle point and all paths except for the two stable branches diverge. Since it
was shown in the preceding section that the optimal path must visit any arbitrarily small
neighbourhood of the optimal steady state, the optimal path must be one of the stable
branches. The diagram also shows that at least in the neighbourhood of the steady
state the optimal path is either in the region where k>0 and P <0 or in the region

where k<0 and P <0. Thepopulation of acity therefore declines as capital
accumulates. Notice,

Figﬂre 4. A Phaze Diﬂr._'lr.cg:'n

however, that this conclusion may not hold globally as Figure 5 illustrates.
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0 Figure 5 P

Global Behaviour Which Is Different
from Local Behaviour

In case (iii), we obtain a phase diagram like Figure 6. The optimal steady state is
a saddle point in this case as well and the optimal solution is either of the stable
branches. It can be seen from the diagram that the population of a city rises as capita
accumulates in the neighbourhood of the Golden Rule.

0 Figure 6 P

An Upward Sloping P=0 Locus

These results are summarized in the following theorem:

Theorem 1: Suppose S £0and fp 3 0. If (-1 fiu )(fo)? <(-U /U )(S.)?, then

the population of a city falls as capital accumulates in the neighbourhood of the optimal
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steady state ; and if (- 1/ f,y )(fp )% > (- U /U4 )(S.)?, then the population rises.

The assumption of complementarity, fp, 3 0, is rather arbitrary although the

assumption is satisfied in most widely used production functions such as the
Cobb-Douglas and CES functions. If capital and population are anticomplementary,
the following result is obtained.

Theorem 2: Suppose S £0and fp £0. Then the population of a city falls as

capital accumulates in the neighbourhood of the optimal steady state.

Labour augmenting technical progress, or Harrod neutral technical progress, can
be incorporated in this analysis quite easily although other types of technical progress
are not easy to handle. When the rate of labour augmenting technical progressis s ,
the same result & in the case without the technical progress is obtained if | is

replaced by | +s and P by the population in terms of efficiency labour, Q=Pe’".

Since P and Q have the relationship:

P
— -S, 4.25
5 (4.25)

Q|-

the rate of increase of the population of a city is smaller by the technical progress rate
than the case without the technical progress. Thus labour augmenting technical
progress introduces a tendency for city size to decline over time.

The reason why the sign and the magnitude of f, , are crucia in Theorems 1
and 2 must be obvious. The population size is determined in such a way that
S+ fp =0, i.e, the margina cost of having a bigger population on the consumption
side balances the marginal externality benefit on the production side. If fp, is
positive, an increase in the capital-labour ratio increases the marginal benefit and tends
to increase the population of a city. Thistendency would be offset if the marginal cost
on the consumption side rises. As capital-labour ratio rises, per capita consumption
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usualy increases. If S, isnonpositive as assumed in the Theorems, the marginal cost
2 dso rises.  Theorem 1 states that when (-U_/U_)(S.)* is greater than
-V fkk)(fpk)z, this effect overwhelms the effect of the rise in the marginal benefit.
If fp, iSnegative, both effects work in the same direction and the population of a city
always declines in the process of capital accumulation as in Theorem 2.

5. Concluding Remarks

We have characterized the condition required for capital accumulation to be
accompanied by an increase in the population of a city. It was shown that the
population growth tends to occur if capital and the externa economy are
complementary in production and that the population tends to decline if the marginal
rate of substitution between the population and consumption becomes greater in
absolute value as the consumption increases. It is believed that ordinary factors of
production

are usually complementary, although it is not clear whether this is true if there are
externalities. In examples that we have calculated, the marginal rate of substitution
between the population of a city and consumption rises in absolute value as the
consumption increases. Empirical studies are therefore necessary to determine
whether capital accumulation favours bigger cities.

It is quite obvious that our model is too simple to capture the complexity of
modern cities. It does not deal with the following important aspects of real cities.

First, we do not have a hierarchy of cities. Rather, our cities are identical.
More than one kind of good has to be introduced to obtain a hierarchy of cities

Second, the production function is assumed to remain the same over time (except
for the possibility of labour augmenting technical change). It might have been shifting
to increase the benefits of bigger cities.

Third, perfect mobility and malleability of capital is not a realistic assumption,
and there are costs involved in building a new city, which tends to reduce the number of
citiesand hence to increase the size of acity.

Fourth, there is a good reason to believe that a market economy has a very
different growth path from the optima one. As shown in Chapter 1I, the market
equilibrium is not unique and a city size greater than the optimum may well be an
equilibrium.
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Fifth, technical progress and capital accumulation in transportation sector has
worked to reduce the cost of bigger cities
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APPENDIX |

EQUALITY AND THE BENTHAMITE SOCIAL
WELFARE FUNCTION

In this appendix we explain the reason why utility levels differ between different
locations at the Benthamite optimum. The basic reason is that the utility possibility
frontier is skewed in favour of households living farther from the center. This can be

illustrated by considering a rectangular city consisting only of two households. For
notational simplicity, the width of the city is assumed to be 1, i.e, q(x)=1.
Household i consumes z of the consumer good and h; of space. Both households

are assumed to commute to the center of the city from the center of their properties, i.e.,

commuting costs of household 1 and 2 are respectively t(%hl) and t(h1+%h2),

where household 1 lives closer to the center. This city is illustrated in Figure 1.

CED

Figure 1. A Rectangular Two-Household City

The resource constraint for the city is given by

1 1
21+22+t(5h1)+t(h1+§h2)+Ra(hl"'hz):Y- 1)

Given the resource constraint, we can obtain the set of feasible utility levels of the
two households. The frontier of the set is caled the utility possibility frontier and
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depicted by the curve LL' in Figure 2. The utility possibility frontier expresses the
maximum utility that household 1 can achieve at every possible utility level for
household 2. It is obtained by maximizing u,, subject to the resource constraint and

to
u(z,,h,) 3 u,. 2
The Lagrangian is therefore
L =u(zh) +d§Y - 3 - UG- L+ 30~ Ralh+hy)y
+1 Ju@zy,hy) - w) 3

Thefirst order conditions can be summarized as

1 1
| = ug(z,hy) _ un(z.hy) 1, tQEhl) +tqh1+§h2) @
u,(z,h;) un(z,hy) 2 Un(2,hy)
Now it can be shown that the utility possibility frontier; is skewed as in Figure 2,
so that its dope is flatter than minus 1 when the two households obtain the same utility
level.

By the Envelope Theorem in Appendix Ill, the slope of the utility possibility
frontier is

du _ T _ - w(&@h) 5)
du,  fu, U,(2,h5)
Since the last term on the RHS of (4) is negative, we have
un(z,hy) S Un(23,h5) ©)

u,(z,h;)) U,(z,,h,)

Thus the slope of an indifference curveis steeper a (z,h;) thana (z,h,). Dueto

the convexity of indifference curves, thisimplies, as shown in Figure 3, that z >z,
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and h;>h, if u, =u,.Butif land isanorma good, the following inequality is

obtained from (1.2.7) and (1.2.8):

du,(z h) ~ dh
dz u=const.— Uz + Uz E' u=const.

- u,

= U, - Uy —2

Up

=-D(u,/u,)h, <O.

utility pogsibility

frontder I4|F.a'.«"_51a:1|

I iwith a kink at B}

EI:Sm:mth and Sym=
metric)

I1 [Benthanite)

Figure 2

Hence, u, decreases as z increases along an indifference curve and we finaly
obtain

du, _ U(zhy) 5.1

d_uZ e uz(ZZ’hZ)

As the simple sum of utilities is maximized in the Benthamite case, the Benthamite
optimum is point A in Figure 2 a which the 45° line |, is tangent to the utility

possibility frontier. Since the utility possibility frontier is flatter than 45° when
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utility levels are equal, the optimum must lie below the equal-utility line 00'.1 Thus
household 2 receives a higher utility level than household 1.

Figure 3

This result generalizes to any smooth symmetric quasiconcave social welfare
function, W(u,,u,), represented by indifference curves like |, since al indifference
curves of a smooth symmetric social welfare function must have slope -1 along the
equal-utility line 00'. A symmetric quasi-concave social welfare function yields equal
utility levels only if indifference curves have kinks along the 45° line, as |, does.
One example is the Rawlsian case represented by 1.

The skewed utility possibility frontier is a result of the so-called concealed
nonconvexity. In our model, it is assumed that a household must choose only one
location and cannot live at more than one location at a time. This assumption can be
interpreted in two ways. First, it may be considered as a restriction on the
consumption set. For example, in Figure 4, which describes housing consumptions at
two locations x and X', the consumption set is limited to the two axes, and any point
within the first quadrangle cannot be chosen. In this case, the consumption set is not
obvioudly convex. Second, the assumption may be a consequence of nonconvex
preferences. |If indifference curves are concave to the origin as in the Figure 4, a
household, given alinear budget constraint, always chooses one of the corners.

Litis implicitly assumed that the utility possibility set is convex. This is true if the transportation cost
function is convex and the utility function is concave.
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h(x)

Concave

indifference curve

Budget line

h(x"')

Figure4. Conceded Nonconvexity

In our model, this nonconvexity is not harmful for the existence and efficiency of
competitive equilibrium, since enough smoothness is obtained by introducing a
population density function. The crucial assumption is that the population density at
each distance can be any real number. Thisis not true in a model with several regions
in which the population in each region must be an integer. In such a case demand for
land in one region is discontinuous at the price level where an individual moves in or
out of the region. Hence, there may never be a price vector that equilibriate the market
for land. If, however, the population in a region can be any real number, such
discontinuity will not occur and the existence of competitive equilibrium will be
guaranteed.  Schweizer, Varaya and Hartwick (1976) proved that competitive
equilibrium exists in a model with the concealed nonconvexity if a population density
can be any real number.

This result is analogous to the well-known result in general equilibrium theory
(due to Star (1969) and others) that nonexistence of equilibrium caused by
nonconvexities of individual units disappears as the economy becomes larger relative to
individual economic units. In particular, it is parale to the work of Aumann (1966)
which shows that in a model with a continuum of households, each of infinitesimal
endowment, the existence of competitive equilibrium can be proven without making
any assumption about convexity.

Although the nonconvexity does not introduce any difficulty concerning the
existence and efficiency of competitive equilibrium, it causes inequality in utility levels.
The asymmetry in the utility possibility frontier arises since housed holds living near
the center, for example, are not allowed an access to land in the suburbs. In such a
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case, households living at different locations face different opportunity sets. |If,
however, households can live at more than one location, they all face exactly the same
budget constraint and there is no difference between households. The utility
possibility frontier is then symmetric and all households receive the same utility level at
the Benthamite optimum.

Some economists prefer the Benthamite case on the grounds that the Rawlsian
socia welfare function must be assumed to obtain the equal- utility optimum. As can
be seen from Fig. 2 however, this claim is not true. Utility levels are equa at the
optimum if the socia welfare indifference curves have sufficiently strong kinks aong
the equal- utility line.

Any symmetric indifference curve with no kinks has a slope -1 along the equal
utility line. This implies that in the neighborhood of the equal utility line the social
welfare function behaves in the same way as the Benthamite social welfare function.
Thus at least locally the aggregate utility is maximized and the social welfare function
exhibits no preference for equality of utility levels. If local preference for equality is
assumed at the point where utility levels are equal, indifference curves will have kinks
and utility levels may be equal at the optimum.
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APPENDIX 11

LOCAL PUBLIC GOODSIN A MORE
GENERAL MODEL

In this appendix the analysis in Chapter 111 is extended to the case of two factors
of production. It is assumed that there is more than one kind of consumer goods and
that land as well as labour is used in producing the consumer goods. The production
function of the i-th consumer good is written as

Fi(L,H) =1k (1)

where L, and H, are respectively labour and land inputs. Assuming that the
production function is homogeneous of degree one, we obtain the per-unit-land
production function, f'(l.):

Fi('—i’Hi):HiFi(HL—i,l):Hifi('i) 2
i
where |, isthelabour-land ratio, L;/H;.
The utility function of city residentsis
u(z(x), h(x), X), ©)
where z(x) =(z(X),...,z(X),...,z.(X)), isthevector of corsumer goods.

In contrast to our procedure in Chapter 111, we assume a vector of transportation
costs t(x) = (t;(X),...,t; (X),...,t, (X)), for consumer goods within a city. Each city
now has a port, or perhaps a railroad station at the center, where goods are bought at
prices p=(py,.--» P;s---, P) for distribution throughout the economy. Cities are

small, so that prices are effectively parametric, and producers at x face the net price
vector

pP(X) = p- t(X). (4)

If good i is produced at x, we obtain the following equations by profit
maximization:

ROl () =w(x) Q)
ROLE' - O (1090 = R(¥) (6)
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where w(x) and R(x) are respectively wage rate and land rent at x.

We assume that there is also a retail market at the center of the city. In buying
the consumer goods, residents in the city are assumed to incur transportation costs from
the market to the place of residence. Therefore, households living at x face the price
vector of the consumer good:

q(x) = p+t(x). ()

In each city one developer collects land rent and pays the rural rent and the costs
of the public good. The profit is distributed equally among all households in the
economy. |If we assume that there are many identical cities, a household receives
dividends from many developers and a change in one city does not significantly affect
the total dividend, s, that a household receives. A household working at x' receives the
wage, W(x(), and the dividend. If the household lives at x, the budget constraint is

W(X) +5=(x)X2(X) +[th(X) - ty(x9]+ ROIN(X) 8)
where t,(x) is the commuting costs from x to O and hence t, (x)- t,(x) is the

commuting costs from x to x'.

We assume that al households have the same skill and the same utility function.
Then all households receive the same utility level in equilibrium.  This implies that all
households living at the same location must receive the same net income after
commuting costs wherever they work.  Therefore, we obtain

W(X) = w- 1, (X9, 9)
where w° w(0) .

A household's utility maximization yields

;‘—Z*::% =1k (10)
Using (9), we can rewrite (5) and (8) as
pi (%) £1'(1 () = w- ty(X) (12)
W+ s = q(x) %2(X) +t, () + ROYh(X) (12)
Totally differentiating (11) and (6), we obtain
dw= p;(x) £ (i ())dl; (%) (13)
- (0L 00 T Ol (%) = dR(X) (14)

Combining these two equations, the following simple relationship can be obtained:
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dR(X) =- I; (x)dw (15)

Totally differentiating (3) and (12), and noting the small city assumption that the
utility level is given, we obtain

0 =u,dz(x) + u,dh(x) + u,dX
dw = q(x):dz(x) + R(x)dh(x) + h(x)dR(x).

From these two equations we have

h(x)dR(x) = dx +dw. (16)

Z

From (15) and (16) , the change of the total rent in the city due to an increase of
the public good is equal to the social benefit of the public good:

o 4 ()X
5 ¢ dW d N d N dx
= = + aw N Uy
§1O ix li (x)a (x)dx Q (x)dx Q (x) @
dw é.x k. ) X u,
:KEQ—N(X)dX i§10L.(X)dx§+ QIN(X)dX

The last equality is obtained using the fact that the total labour force must be

equal to the population of the city. Thus, even if there are more than one factor of
production and more than one consumer good, the benefit of the public good is reflected
in the increase of land rent in a small city.

We can aso see that the profit maximization of a city developer leads to an
efficient supply of the public good. A city developer maximizes

O[RO)- R (xdx- C(x),
where C(X) isthe cost of producing the public good. Then

S 13[R0o- RRoos c<x)§

_ de(X)

q(x)dx - C&x)
= Q;u_x N(x)dx- C&x) =0.

As in section 3 of Chapter |11 it can be seen that the last equality is the condition
for an efficient supply of the public good.
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Notice that this result does not depend on the number of commodities produced in
the city, or on whether different goods are produced in different zones. We used only
the conditions for a small city: given utility level; given price vector of consumer goods;
and constant returns to scale in production. Although in general the wage rate changes
as the supply of the public good changes, it does not affect the conclusion, since the
effects on the production side and the consumption side cancel out each other.

Thisresult can be interpreted in the same way asin section1 of Chapter 11I. The
benefits of the public good must accrue to somebody or become a deadweight loss.
But there is no deadweight loss if there are no distortions in the rest of the economy.
Therefore, al the benefit must be received by somebody. By the assumption of a
small city, the residents cannot benefit from the public good. Because of constant
returns to scale there is no profit in equilibrium. Thus the land rent is the only place
the benefit appears.

This argument suggests that if returns to scale are constant, the sum of land rent
and the profits (or losses) of producers reflects the benefit of the public good. It is not
difficult to show that thisisindeed true.
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APPENDIX 11

THE ENVELOPE PROPERTY

Optimization imposes a very strong structure on the problem considered. Thisis
the reason why neoclassical economics, which assumes optimizing behaviour, has been
the most successful of social sciences. One of its important aspects is the envelope
property discussad in this Appendix.

The envelope property is concerned with the rate of change of the maximum (or
minimum) value of a criterion function caused by a change in some parameter; for
example, a change in the maximum utility level of a household caused by a change in
income, a change in the minimum cost of production caused by a change in the output
level, and so on. A change in a parameter in general induces a change in the optimum
levels of choice variables. According to the envelope property, however, the induced
change in the choice variables may be ignored in calculating the effect of a change in a
parameter on the maximum value if the change is very small. In other words, a change
in the maximum value caused by a marginal change in a parameter, which also induces
a change in the choice variables, is equal to a change in criterion function with choice
variables fixed.

In section 1, the envelope property is explained in the simplest possible case.
The Envelope Theorem is stated and proved in section2.  Insection3 properties of the
indirect utility function and the expenditure function are derived as applications of the
Envelope Theorem.

1. TheSimplest Case

The essence of the envelope property may be explained using the following
simple maximization problem. Consider the problem of maximizing the criterion
function, V(x,b), with respect to x for a given parameter b. An interior maximum is

obtained at the point where the derivative of the criterion function with respect to x is
zero,

Vv (x,b)
fix

=0.

The maximizing value of x changes as the parameter b changes. from x* to x*' as
b moves to b'. The envelope property states that the total effect of an infinitesimal
change in the parameter on the maximized value of the criterion function (including the
effect of an induced change in the optimum value of x) equals the partial effect on the
criterion function with the level of x fixed. In Figure 1 the former is the movement

from V to V'; and the latter from V to V . Since the criterion function is
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approximately flat near the optimum point, the difference between the two, \7V¢, is

very small compared with W . Asthe change in the parameter approaches zero, the
difference becomes negligible and the envelope property can be invoked.

Figure 1.

The envelope property can be derived by mechanically differentiating the
criterion function at the maximum. Since the optimum value of x depends on b, it
can be described as a function, x*(b), of b. Then the tota effect including a

changein x* is

Vet BL.0) TV et IV
db ix do b

and the partial effect is

™V (x*,b)
T

Thetwo areequal since fV/{x=0 at the optimum.
Figure 2 illustrates why this property is called the envelope property. The heavy
curve represents the maximum value, V *(b) =V (x* (b),b), of the criterion function

corresponding to different values of the parameter. The lighter curves describe the
value of the criterion achieved with fixed values, X (and X¢) of X, as b is varied.

The values and the slopes of the two types of curves, V(x*(b),b) and V(xb), are
equal at the value of b for which x is optimal, that is, where x=x*(b). The two

curves are tangent at that point, and V(x,b) is below V *(b) everywhere else, since
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V *(b) is the maximum: V*(b)>V(x,b) if x=x*(b). This holds for any X and
thecurve V *(b) isthe envelope of the curves V(x,b).

v

Figure 2.

Figure 2 suggests another way of proving the envelope property. Since V * (b)
is maximum, V*(b)3 V(x,b) for any b and V*(b)=V(xb) if x=x*(b). This
impliesthat V(x,b) lies below V *(b) everywhere and the two coincide at the value

of b for which X isoptimal. If the two curves are smooth, thisis possible only when
the two curves are tangent at this point, which proves the envelope property:

dv* (b)/db=9V(x,b)/fb if X=x*(b).

The envelope property appears in many areas of economics. Probably the most
famous application is the relationship between the long-run cost curve and the short-run
cost curve. The short-run cost curve is obtained when only a subset of factors are
optimally chosen, and the long-run cost curve when all factors are chosen optimally.
In the short run some factor inputs are fixed whereas in the long run they become
variable and can be chosen optimally. Cost curves describe the minimized cost as
functions of the output. The argument in the last proof of the envelope property can be
applied to show that the long-run cost curve is an envelope of short-run cost curves 1

Another important example is concerned with benefits of a public good.
Consider a household with the utility function, u(z,h, X), where z is the composite

consumer good and the numeraire, h is the lot size, and X is the supply of a public good.
For a given consumption bundle the marginal benefit of the public good is
fu(z,h, X)/9X . When the consumption bundle is optimally chosen, the maximum

utility level depends on the income, |, the land rent, R, and the level of the public good,

1 see Dixit (1976).
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X, and it can be described by the indirect utility function, v(R,1,X). For the

optimum consumption bundle the marginal benefit of the public good is
Iv(R,1,X) /X . The envelope property implies that

Tu(z,h, X)X =v(R,I,X)/ X if zand h are optimal given R |, and X. This result
is used in Chapter I11.
2. TheEnvelope Theorem

Consider the problem of maximizing the criterion function f (x,b) subject to the
congtraints g;(x,b) =0, j=12...,m, with respect to the vector x=(x,X,,...,x,) for
afixed vector of parameters b=(b,,b,,...,b,). Let x*(b) be the optimal choice for

this problem. Then granted a certain regularity conditior? there exists the vector of
Lagrange multipliers | =(1 ,1 ,,...,I ) suchthat x* (b) maximizes the Lagrangian

F(x,l,b)=f(xb)+] :g(xb) 2.1)

without any constraint, where g(x,b)=(g,(xb),9,(x,b),...,9,(x,b)), and the dot
between A and g(x,b) denote the inner product so that

h
| g(xb)=4 1,9, (xb)

If f(x,b) and g(x,b) are differentiable with respect to x, the optima choice,
x =x* (b), satisfies the first order necessary conditions,

T (x,b) /9% +1 4, (x,b)/ % =0, i=12,...,n. 2.2)

The Envelope Theorem describes a relationship between the maximum value function
f*(b) = f (x* (b),b) and the Lagrangian F (x,I ,b) .

2 The condition is called the Jacobian condition, and requires that the Jacobian matrix of first order
partial derivatives of constraint functions,

¢fo, o 9. o
g’ Tx T, g
el T, T
g X X2 Xn 3
609 W9m - TGng
g Tx, Xz x, g

be of full row rank m at the optimum. In nonlinear programming which deals with the more general
case which includes inequality constraints, a similar condition, called the constraint qualification, must
be satisfied.
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The Envelope Theorem: Assume that f*(b) and F (x| ,b) are continuously
differentiadbleinb. Thena x=x*(b),

it * (b)/ b, = T (x| ,b)/ b, k=12,....q. (2.3)

Proof
Since x* (b) satisfies the constraint g(x* (b),b) =0 for any b, we have

& (T9/7%)(1% (b) / Tb,) +9g/ b, =0, k=12,...,q. (2.4)
i=1

By the definition of the maximum value function and the first order condition(2.2), we
obtain

Tt * (0) /b = & (TF/Tx)(Tq / ) +1f / b,
= (2.5)
=-1 %3 (Tg/ 7% )(Tx /Tb) + 9 /b,

i=1
(2.4) now yields the desired result:

Tf* (0) /My =1 g /1o, + TF / Ty,
=1f (x,1 ,b)/Tb.

Q.ED.

3. Applications: Properties of Indirect Utility Function and the
Expenditure Function

Consider a consumer with a utility function, u(x), where x is the consumption
vector, X° (X,X,,...,X,). The consumer maximizes the utility function subject to the
budget constraint,

p:x=lI, (3.1

where p isthe price vector, p° (py, P,,..., P,), | the money income, and
n
[¢]
pX=a PiX-
i=1

The Lagrangian for this maximization problem is

184



Appendix 111

Y =u(x)+d[I - p:X], (3.2

where & is the Lagrange multiplier associated with the budget constraint (3.1). The
first order conditions are

fu/x =dp;, i=12,...,n (3.3

The optimal consumption depends on income and prices, and can be written as
x(p,l). Substituting x=x(p,l) into the utility function u(x) yields the maximum
utility level, v(p,I1)° u(x(p,!)), which can be achieved at the given values of income
and prices. v(p,l) is caled the indirect utility function. The Envelope Theorem,

(2.3), may then be applied to examine the effect of a change in prices and the income on
the maximized utility level:

W/p =-dx, i =12,...,n, (34

/Tl =d. (3.5)

The latter equality shows that the Lagrange multiplier equals the marginal
contribution to the maximum utility level made by an increase in income, or the
margina utility of income. The multiplier is, therefore, interpreted as the shadow
value of the moretary income in utility terms.

If adollar increase in income is all spent on good i, the increase in utility is given
by

flu/ 1%

—Pi :
This is equal to the marginal utility of income which is obtained when the increase in
income can be optimally distributed among all goods, since by (3.3) a marginal increase
In expenditures increases the utility by the same amount, whichever good is purchased.
Thus

flu/ 1%

=qv/ I i=12...,n

(3.4) has the following interpretation. If the price of the i-th good is raised by a
dollar per unit and consumption of thei-th good is fixed, expenditure on that good must

increase by x dollars, and expenditure on other goods must decrease by the same

amount. The utility level would therefore decline by x times the margina utility of

income. By (3.3) it does not matter if substitution occurs: a the optimum all goods
have the same marginal utility per dollar expenditure.

Combining (3.4) and (3.5) yields Roy's Identity:

X == (Tv(p, 1)/ ;) I(Tv(p, 1)/ 1)

° % (p,l), i=12,...,n, (36)
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which is derived in Chapter | withou using the Envelope Theorem. X (p,l) is the

uncompensated (or Marshallian) demand function. This result is quite useful: demand
functions can be obtained simply by differentiating the indirect utility function.

Next, consider the problem of minimizing the expenditure necessary to achieve a
given utility level. In this problem, p:x is minimized under the constraint,

u(x) =u, (3.7)

for agiven u. The minimum expenditure level is a function of prices and the utility
level, E(p,u), which is caled the expenditure function.

If | isthe Lagrange multiplier, the Lagrangian is

F = p:x+l [u- ux), (3.8)
and
pi =1 (Tu/fx), i=12..,n (3.9
By the Envelope Theorem, (2.3),
| =9E(p,u)/fu, (3.10)
x =fE(p,u)/Tp; ° x;(p,u). (311)

The latter equation is usualy caled Shephard's Lemma and gives the compensated
demand function x (p,u).

It can be easily shown that the expenditure function is concave as a function of
prices for any fixed utility level. Let p and p' be two arbitrary price vectors and x* and
x*' be corresponding optimal consumption vectors. Then

E(puy=p X

E(pGu) = p¢ X '.

Consider a new price vector p=tp+(1- t)pt for an arbitrary t between O and 1, and
the corresponding consumption vector X . The following inequalities hold:

p X £p X,

p¢ X £pt X.
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Multiplying the first inequality by t and the second by 1-t and adding them
yields

E(tp+ (1- t)pdu) = (tp+(L- )p9 X
3tp X +(1-t)pe X
=tE(p,u) +(1L- t)E(ptu).

Thus E(p,u) is concave with respect to p. If E is twice differentiable, the concavity
implies

T?E(p,u)/Tp? = 1% (p,u)/fp, £0. (312

This shows that price increase for any good does not increase the uncompensated
demand for that good, i.e., the own substitution effect is nonpositive. This is used in
Equation (1.1.20) of Chapter 1.

Now, we derive the Sutsky equation, describing the relationship between the
uncompensated and compensated demand functions. For given prices and income,
utility maximization yields the indirect utility function v(p,1) and the uncompensated

demand function X (p,1), i=12...,n. Consider the expenditure minimization given
the maximum utility level u=v(p,l). Unless some prices are zero, in which case
some technical difficulty appears, the optimal choices coincideand | =E(p,u). The
uncompensated demand function therefore satisfies

x(pu)=%(p,E(p,u)), i=12..,n. (3.13)

Differentiation of this equation with respect to P, yields

% (p,u)/ Ip; = 1% (p, 1) /p; +[1% (p, 1) / MITE(p,u)/ Tp; ]

A A (3.14)
= (p, /Iy +[1% (P, 1) 1111X; (s u),

where the last term results from substituting according to (3.10). This is the Slutsky
equation,

5 X X, T (3.15)
TP, TP 1
J u=const ] | =const

used in deriving (V.2.27)

Compensated and uncompensated demand functions satisfy another relationship
which is also used in deriving (V.2.27). Following an argument similar to that which
led to (3.13), we obtain

X (p,v(p,1))=%(p,1), i=1..,n.
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Taking a partial derivative with respect to |, we obtain

[ﬂxi,\( p, U)/ﬂU][ﬂ\{(p,l)/ﬂl] (3.16)
=% (p, /M, i=1..,n.

Notes

Discussions in this Appendix owe very much to Dixit (1976). The Envelope
Theorem in section 2 was proved by Afriat (1971) and can aso be found in Takayama

(1974).
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APPENDIX IV
OPTIMAL CONTROL THEORY

This appendix provides a concise review of optimal control theory. Many
economic problems require the use of optimal control theory. For example,
optimization over time such as maximizations of utility over an individual's life time
and of profit and social welfare of a country over time and optimization over space such
as the ones analyzed in this book fit in its framework.

Although these problems may be solved by the conventional techniques such as
Lagrange's method and nonlinear programming if we formulate the problems in
discrete form by dividing time (or distance) into afinite number of intervals, continuous
time (or space) models are usually more convenient and yield results which are more
transparent. Optimization over continuous time, however, introduces some technical
difficulties. In the continuous time model, the number of choice variables is no longer
finite: since decisions may be taken at each instant of time, there is a continuously
infinite number of choice variables. The rigorous treatment of optimization in an
infinite-dimensional space requires the use of very advanced mathematics.
Fortunately, once proven, the major results are quite smple, and analogous to those in
the optimization in a finite-dimensiona space.

There are three approaches in the optimal control theory: calculus of variations,
the maximum principle and dynamic programming. Calculus of variations is the oldest
among the three and treats only the interior solution. In applications, as it turned out,
choice variables are often bounded, and may jump from one bound to the other in the
interval considered. The maximum principle was developed to include such cases.
Roughly speaking, calculus of variations and the maximum principle are derived by
using some appropriate forms of differentiation in an infinite-dimensional space.
Dynamic programming however, exploits the recursive nature of the problem. Many
problems including those treated by calculus of variations and the maximum principle
have the property that the optimal policy from any arbitrary time on depends only on
the state of the system at that time and does not depend on the paths that the choice
variables have taken up to that time. In such cases the maximum vaue of the
objective function beyond time t can be considered as a function of the state of the
system at timet. This function is called the value function. The value function yields
the value which the best possible performance from t to the end of the interval achieves.
The dynamic programming approach solves the optimization problem by first obtaining
the value function. Although the maximum principle and dynamic programming yield
the same results, where they can both be applied, dynamic programming is less general
than the approach based on the maximum principle, since it requires differentiability of
the value function.

We firgt try to facilitate an intuitive understanding of control theory in section 1.
In order to do so, a very simple control problem is formulated and the necessary
conditions for the optimum are derived heuristically. Following the dynamic
programming approach, Pontryagin's maximum principle is derived from the partial
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differential equation of dynamic programming. As mentioned above, this approach is
not the most general one, but it facilitates economic interpretation of the necessary
conditions. In section 2 the results in section 1 are applied to an example taken from
Chapter VII.  Section 3 considers a more genera form of the control problem (due to
Bolza and Hestenes) and Hestenes theorem, giving the necessary conditions for the
optimum, is stated without proof. This theorem is general enough to include most
problems that appear in this book. Finaly, in section4, Hestenes' theorem is used to
solve the control problemsin Chapter |.

1. A Simple Control Problem

Consider a dynamic process which starts at inital time t, and ends a terminal
time t,. Both t, and t, are taken as given in this section. For simplicity, the
state of the system is described by only one variable, x(t), called the state variable.

In most economic problems the state variable is usually a stock, such as the amounts of
capital equipments and inventories available at time t. In Chapters IV and V of our
book the volume of traffic at aradiusis a state variable.

The state of the system is influenced by the choice of control variables,
u, (t), u,(t),...,u, (t), which are summarized as the control vector,

u(t) = (U (0),u, 0),...u, (©)). (L.1)
The control vector must lie inside a given subset of a Euclideanr-dimensional space, U:
u®i U, toEt £, (1.2)

where U is assumed to be closed and unchanging. Note that control variables are
chosen at each point of time. The rate of investment in capital equipment is one of the
control variables in most models of capital accumulation; the rate of inventory
Investment is a variable in inventory adjustment models;, and the population per unit
distance is a control variable for the models in this book. An entire path of the control
vector, u(t), t,£t£t, is a vector-valued function u(t) from the interva [to,tl]

into the r-dimensional space and is simply called a control. A control is admissible if
it satisfies the constraint (1.2) and some other regularity conditions which will be
specified in section 3.

The state variable moves according to the differential equation
dx _ .
T X(t) = f,(x(t),u(t).1), (13

where f, is assumed to be continuously differentiable. Notice that the function f,,
isnotthesameas f,. Inthissectiontheinitial state, x(t,), isgiven,

X(t,) = %°, (1.4
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where x° is some congtant, but the terminal state, x(t,), is unrestricted. For
example, the capital stock at initial time is fixed; the rate of change of the capital stock

equals the rate of investment minus depreciation; and the capital stock at terminal time
IS not restricted.

The problem to be solved is that of maximizing the objective functional
t
J= Ql fo (X(1), (), t)dt + Sy (X(ty), 1) (1.5)

with respect to the control vector, u(t), t, £t £t;, subject to the constraints (1.2),

(1.3), and (1.4), where f, and S,, the functions which make up the objective

functional are continuously differentiable. A functional is defined as a function of a
function or functions, that is, a mapping from a space of functions to a space of
numbers. In the investment decison problem for a firm, for example,
fo(x(t),u(t),t)dt is the amount of profit earned in the time interval [t,t+dt] and

S (X(t,),t,) isthe scrap value of the amount of capital x(t,) at terminal time t,.

Ztate Vvariable

t:l £ +ht ! Eme
Figu 1 Trajectory oF the Stats Variable.
Ohiective
Funcitioral
rp Epteltyhetg)
)
! £ dt
k 4 -
0 1
t
."I_ﬂ '-r I.'I.:.:-C'\.L Julgr £l

t = 4 t time
Bl ERAL 1

Figure 1lbk. T"he Dbjective Funciional.
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The problem isillustrated in Figure 1. In Fig.la, apossible trgjectory of the state
variable with the initial value x° is depicted. If the trajectory of the control vector is
specified for the entire time horizon [to,tl], the trgjectory of the state variable is
completely characterized. The value of the state variable at time t and the choice of
the control vector then jointly determine f,(x(t),u(t),t).

In Fig.1b we graph the part of the value of the objective functional which has
been realized at any time t for the particular trgjectory of the control vector f;,
therefore, appears as the dope in Fig.1b, while the value of the objective functional is
the sum of the integral from t, to t,of f,,and S, the scrap value at terminal time.

Our problem is to obtain the trgectory of the control vector that maximizes the
objective functional.

The mgjor difficulty of this problem lies in the fact that an entire time path of the
control vector must be chosen. This amounts to a continuously infinite number of
control variables. In other words, what must be found is not just the optimal numbers
but the optimal functions. The basic idea of control theory is to transform the problem
of choosing the entire optimal path of control variables into the problem of finding the
optimal values of control variables at each instant of time. In this way the problem of
choosing an infinite number of variables is decomposed into an infinite number of more
elementary problems each of which involves determining a finite number of variables.

The objective functional can be broken into three pieces for any time t - apast, a
present and a future - :

J :C‘s fo(X(t)Gu(t)¢t9ate
¥ C‘Sﬂ fo (x(t) Su(t)Gtgaite

+ (im fo(X(t)Gu(t)tdte+ Sy (x(ty). ty).

The decisions taken at any time have two effects. They directly affect the present
term,

J+Dt

Q fo(x(®)Su(t)§t9dtd,

by changing f,. They also change X, and hence the future path of x(t), through

x = f(x(t),u(t),t). The new path of x(t) changes the future part of the functional.
For example, if afirm increases investment at time t, the rate at which profits are earned
a that time falls because the firm must pay for the investment. The investment,
however, increases the amount of capital available in the future and therefore profits
earned in the future. The firm must make investment decisions weighing these two
effects. In general, the choice of the control variables at any instant of time must take
into account both the instantaneous effect on the current earnings f,Dt and the

indirect effect on the future earnings &Dt fodt¢+ S, through a change in the state
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variable. The transformation of the problem is accomplished if a simple way to
represent these two effects is found.

This leads us to the concept of the value function, which might be used by a
planner who wanted to recal culate the optimal policy at timet after the dynamic process
began. Consider the problem of maximizing

O folx(t9, u(td,t9ct &+ Sy(x(t).1y) (16)

when the state variable at time tis X; Xx(t) =x. The maximized vaue is then a
function of x and t:

J* (x1), (1.7)

which is cdled the value function. The optimal value of the objective functiona for
the original problem (1.2)-(1.5) is

I*(x* (@),1) = 3* (x°,tg). (1.8)

The usefulness of the value function must be obvious by now: it facilitates the
characterization of the indirect effect through a change in the state variable by
summarizing the maximum possible value of the objective functional from time t on as
afunction of the state variable at timet (and t).

The next step in the derivation of the necessary conditions for the optimum
involves the celebrated Principle of Optimality due to Bellman.  The principle exploits
the fact that the value of the state variable at time t captures al the necessary
information for the decision making from time t on: the paths of the control vector and
the state variable up to timet do not make any difference as long as the state variable at
timetisthesame. Thisimpliesthat if a planner recal culates the optimal policy at time
t given the optimal value of the state variable at that time, the new optimal policy

coincides with the origina optimal policy. Thusif u*(t),ty£t£t;, is the optimal
control for the aiginal problem and x* (t),t, £t £1;, the corresponding trajectory of
the state variable, the value function satisfies

\t * * *
J* = Ql fo(X* (t,u* (t9,tGdt G+ Sy(x* (t,),t,). (1.9)
Applying the principle of optimality again, we can rewrite (1.9) as

J*(x*(t),1) = (‘5”1 Fo(X* (t9,U* (£, t9iter (‘im £ (¢ (9, U* (9, tgclte
+Sp(x* () 4) (1.10)
= Q”Dt o (X* (9, U* (19, 1§t G+ 3 * (x* (t + D)t + D),

for any t and t+Dt such that ty £t£t+Dt£t;. This construction alows us to
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concentrate on the decisions in the short interval from tto t+ Dt by summarizing the
outcome in the remaining period in the value function, J* (x* (t +Dt),t + Dt) .

By the definition of the value function, any admissible control cannot do better
than the value function if the initial state is the same. Consider the following special

type of control, u(t(), t £ tC£t,: the control is arbitrary between time t and time t+ DX

and optimal in the remaining period given the state reached at time t+Dt. Then the
corresponding value of the objective functional satisfies

I (x* (t),t)z(‘pHDt £, (X(t9, u(t®, t9dtC+ J * (x(t + Dt), t + Dt) (1.11)
where x(t), tE£t(£t,, is the state variable corresponding to the control u(t¢) with
theinitia state x(t) = x* (t) .

Combining (1.10) and (1.11) yields

IO = ¢ folx* (t, u* (t9,t9dter J* (x* (t+ Dt),t +Dt)

) q\;m Fo(X(t9, U(t9, t9dte+ J * (x(t + Dt),t + Dt)

forany u(tQl U t£tEt+Dt.  (1.12)

This shows that the optimal control in the interval [t,t + Dt] maximizes the sum of the

objective functional in the interval and the maximum possible value of the functional in
the rest of the period [t+Dt,t,]. If both sides of the inequality are differentiable,

Taylor's expansion around t yieldst

1 The details of Taylor's expansion here are as follows. Taylor's theorem states that if F(t) is
differentiableat t=a,then

F(t)=F(@)+(t- aF(a)+o(t- a),

where [_IL%]O%=O Noting that
Fo(t+Dt) © 5[" fo(tgdte
satisfies
Fo (1) = fo(0),
we obtain
t+Dt
(‘p fo(X* (tQ,u* (t"),t)dt'+I* (x* (t +Dx),t + Dx)
= fo (x* (t),u™ (1), t)Dt+ 3 * (x* (1), t)
+H[(19 % (x* (1), 1)/ T X* (1) +93 * (x* (t),1) /1] DX + o( DY),
and
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- (3% (x* (t),t)/ t) Dt
= o (* (t),u* (£), D+ (TI* (¢* (£),) /1) 1 (¢* (), u* (1), Dt +...
3£ (X* (t), u(t), )DE+ (3% (X* (t), 1) /%) F,(x* (1), u(t),)Dt+...,

forany u(t)T U, (1.13)

where ... represents higher order terms which become negligible as Dt tends to zero,
since they approach zero faster than Dt . Note that we used x(t)=x*(t) ,

(1) = f,(x(0),ut),yand x* (€)= fL(x* (t),u* (), 1).

Inequality (1.13) has a natural economic interpretation. For example, if afirmis
contemplating the optimal capital accumulation policy, f,(x*(t),u(t),t)Dx , is
approximately the amount of profits earned in the period [t,t + Dt] .
13 * (x* (t),t)/9x is the margina value of capital, or the contribution of an additional
unit of capital at time t; and f;(x* (t),u(t),t)Dt = X(t)Dt is approximately the amount
of capital accumulated in period [t,t+ Dt]. Thus (13*/9x) f,Dt represents the value

of capital accumulated during the period. (1.13), therefore, shows that the optimal
control vector maximizes the sum of the current profits and the value of increased

capital.
Dividing (1.13) by At and taking limits as At approaches zero, we obtain
- fI* (x> (@), 1) /1t
= fo (x* (t),u™ (©),1) + (13 * (x* (£),) /%) fL (x* (1), u™ (1), 1)
3 fo (x* (1), u(), t) + (T * (x* (t),1)/ Tx) f1 (x* (t),u(t),t)

forany u()l U. (L.14)

Thus the optimal control vector u* (t) maximizes
fo (X* (1), u,t) +(TI* (x* (t),t)/ Ix) f(x* (t),u,t) (1.15)
at each instant of time, and we have finaly transformed the problem of finding the
optimal path to that of finding optimal numbers at each point in time. From the above

discussion, it must be clear that (1.15) summarizes both the instantaneous effect and the
indirect effect through a change in the state variable.

(1.14) can be rewritten as

63 Fo(X(E),U(t), ')t +3* (x(t + Dt),t + D)
= fo(x(t),u(t),t)Dt + I * (x(t),t)
+[(T0* (x(t), )/ TOX(t) + 13 * (x(t),t)/9t] Ot +0(DX)
= fo (x* (1),u(t), ) Dt + I * (x* (1), 1)
F[(9* (x* (£),)/TIX(E) + 13 (x* (£),1)/ Dt + o(DY),
wherewe used x(t) = x*(t) . Substituting these two equations into (1.12) yields (1.13).
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- 0+ /9t = maX ey o (X* (0),U,t) + (T3 /91%) fy (x* (1), u,t)] (1.14")

This equation holds for any x, not just x*(t), and can be considered a partial
differential equation of J*(x,t). It is cadled the partial differential equation of
dynamic programming or Bellman's equation.

In the dynamic programming approach, the right side of (1.14") is maximized with

respect to u, yielding the partia differential equation. The partial differential equation
is then solved with the boundary conditions. At the initial time t,, x(t,) = x°, while

at the terminal time t,, the value function satisfies
J*(X(t), 1) = Sp(X(ty). 1) (1.16)

for any x(t,). This equation is the terminal boundary condition associated with
Bellman'sequation.  Since (1.16) holds for any x(t,) , we have

% (x(t1), ) /1% = 1 (X (t1) . t,) /91, (1.17)
which is called the transversality condition at time t, .

One of the disadvantages of the dynamic programming approach is that the partial
differential equation is usually hard to solve. Pontryagin's maximum principle, which
can be immediately derived from the partial differential equation of dynamic
programming, is often more useful for economic applications. Furthermore, the
method of dynamic programming employs the Taylor expansion in (1.13), which
requires that the value function be differentiable. There are many problems for which
the value function is not differentiable everywhere.  The maximum principle, however,
can be proven using a different and more general method.  In this section we derive the
maximum principle from Bellman's equation, and in Section3 we state a more general
version of the maximum principle without proof.

To derive Pontryagin's maximum principle, we define the adjoint, or costate, or
auxiliary, variable,

p(t) =13* (x* (t),1)/ 1%, (1.18)
and rewrite (1.15) as the Hamiltonian,
HIX(®),u(t).t, p)] = £ (x(), u(®).t) + p(t) f,(X(V), u(t), 1) (1.19)

(2.14) now reads. if u*(t) is the optimal control and x* (t) the associated path of
the state variable, then there existsa p(t) such that for any t

H[x* (1), u* (©),t, p(t)] = max ) H[x* (©),u,t, p(t)} (1.20)

Since p(t) equas 9YJ*/9x, the adjoint variable p(t) is the margina value of
the state variable (if, for example, x(t) is capital, p(t) is the margina value of
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capital) and has the interpretation of the shadow priceof x(t).

(1.14") aso contains information about the adjoint variable. We can rewrite
(1.14") asthe Hamilton-Jacobi equation:

STt =H (%, k135 TX). (1.21)

If the value function is twice differentiable, the derivative of (1.21) with respect to x can
be taken:

- 23/ 9Ixqt = TH /I + (TH /9p) 123 * / %2 (1.22)
Differentiating (1.18) with respect to t, however, yields
P = (123 */Ix*)x* +923* /Tt (1.23)

If we further assume twice continuous differentiability, the second order mixed partial

derivatives are equal whatever the order of differentiation: 2J* /fxfit = 12J* / ity
Since from (1.19) and (1.3) we have

x* = (1/Mp)H (x*,u*,t, p), (1.24)

we can substitute (1.22) and (1.24) into (1.23) to get
- p=(T/MIX)H (x*,u*t, p). (1.25)

Equation (1.25) is often called the adjoint equation and the pair, (1.24) and (1.25), is
called the canonical equations of the maximum principle.

The transversality condition (1.17) gives the value of the adjoint variable at time

p(t,) = 1S, (x* (t,), ) /Tx. (1.26)
Finally, the time derivative of the Hamiltonian along the optimal path is

dH _SH o JH L TH L TH

dt Tx T Mt

From (1.24) and (1.25), the sum of the first two terms on the RHS is zero. The third
term vanishes because either H/fu=0 for an interior solution or u=0 for a
boundary solution.

Thus we have

aH _TH (1.27)

a 1t
except when the control vector has a jump.

The maximum principle approach solves the ordinary differential equations (1.24)
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ad (1.25) with the boundary conditions x(t,)=x° and (1.26). Since boundary
conditions are given at two points, i.e, at initial time t, and terminal time t,, this

problem is called a two-point boundary value problem. The pair of ordinary
differential equations are usually easier to solve than the partial differential equation of
dynamic programming.

2. An Example: Optimal Growth of Cities

Consider the problem which was formulated in section 3 of Chapter VII:
maximize

U, P - vt (21)
subject to the differential equation,
k(D) = f (K(D), P() - 1K(D) - o(t), (22)
and the initial condition,
k(0) =k, (2.3)

where control variables are the per capita consumption of resources, c(t), and the
population of a city, P(t); the state variable is the capita stock, k(t); A is the

growth rate of the whole population; and u* is the utility level at the optimal steady
Sate.

The fact that the terminal time is infinite causes some complications. We first
solve the finite-horizon problem of maximizing

QLU etd). Po) - urlet + S (k(t) 1) (24)

subject to the same constraints.

The Hamiltonian for this problem is
H (k(t),c(t), P(t),t, q(t)) =U (c(t), P(®)) - u* +a(t)[ f (k(t), P(t) - 1 k(t) - c(t)], (2.5)

where q(t) is the adjoint variable associated with the differential equation (2.2).
Discussions in the previous section show that q(t) can be interpreted as the marginal
value of capital.

According to (1.20), the Hamiltonian must be maximized with respect to the
control variables, c(t) and P(t). Assuming an interior solution, we obtain

U, (c(t), P(t) =a(t), (2.5)

U, (c(t), P(t) =q(®) fo (k(D), P)), (2.6)
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which are equations (V11.3.8a) and (V11.3.8b) in Chapter VII.
q(t) satisfies the adjoint equation,
- 4(t) = TH /Tk =qO[ f, (k©). P(t) - 1] (27)
which is (VI11.3.7).
The transversality conditionat t=t, is
q(t,) =1S,(k(t,),t,)/ Tk. (2.8)

In the case where the terminal time is infinite, a straightforward application of the
transversality condition(1.26) would yield

lim q(t) =0.

It can be shown, however, that this is not the correct transversality condition. As
shown in Chapter VI, the optimal path converges to the optimal steady state at which

U(c,P)- u*
is maximized subject to the constraint,
f(k,P)- k- c=0.

Denoting the values of variables at the optimal steady state by asterisks, we can write
the transversality condition as

Iim q()k(®) =g k*, (2.9)
where g* =U_(c*,P*).

3. TheMaximum Principle: The Problem of Hestenes and Bolza

In this section the problem in section 1 is generalized in a number of respects.
Differences from the problem in section1 are as follows.

(i) The number of state variablesis arbitrary.

(i) Control parameters are added. Control parameters are choice variables which are
restricted to be constant for any t.

(iii) The constraints on the control vector may depend on the state vector, control
parameters, and time.

(iv) Isoperimetric constraints, or constraints involving integrals, are added.
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(v) Theinitial time t, and the terminal time t, may be chosen by the choice of control
parameters.

(vi) The initia state x(t,) and the terminal state x(t,) can also be chosen by the
choice of control parameters.

The problem to be solved is that of maximizing the objective functiona,

J =éi fo (X(t), u(t), b, t)dt + Sy(b), (3.2
subject to the constraints,

% = f. (X(t),u(t),b,1), i=12..n; (3.29)
g; (x(t),u(t),b,t)>0, j=12,..mc; (3.2b)
g; (x(t),u(t),b,t) =0, j=m+1m+2,..m; (3.2¢)
(t‘tim(x(t),u(t),b,t)dt +S.(b)2 0, k=12,...,/¢ (3.2d)
é;m(x(t),u(t),b,t)dﬁsk(b):0, K=/0(+10+2,...,0; (3.2¢)
t, =t,(b); (3.2f)
t, =, (b); (3-29)
X (t,) = X (b), i=12..n; (3.2h)
X (t,) = %' (b), i=12..n. (3.2)

X(t) = (% (t), X (1),..., X, (1)) is the state vector; u(t) =(u(t),u,(t),...,u, (t)) is the
control vector; b= (by,b,,...,b,) is the vector of control parameters; (x(t),u(t),t) lies
inaset R, in (xu,t) space; and b lies in an open set B. The maximization is
carried out with respect to the control vector and control parameters.  S,, S, fg,
fi, g;, he, X2, X, to,and t,, areall assumed to be continuously differentiable.

Now, defineaset A asthesubset of R,” B satisfying

g] (X!u!b!t)S 01 J :].,Z,m(
g;(xubt)=0, j=m+lim+2,.m

The set A is called the set of admissible elements.
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The constraints are assumed to satisfy the condition that the matrix G, defined as

eﬂgl TIgl Wﬂgl ,gllo 0 >°°<0 8
"ﬂul Tu, T, U
eﬂgZ ﬂgZ »«ﬂgz 0, do, 0,20 l;l
GO gy ‘fu, T, i (33)
WMWOOOO«W l:l
é a
e‘ﬂgm T9m o T 0 0 0x¢ xe¢g, U
@ﬂul flu, flu, H

hasrank m.  This condition is called the constraint qualification.

The necessary conditions for the maximization problem can be stated as the
following Theorem, which is due to Hestenes (1965).

Theorem: Suppose the trajectory {(x* (t),u*(t),b*):to £t£} maximizes (3.1)
subject to the constraint (3.2) among the trajectories whose x(t) is continuous, u(t)
piecewise continuous, (continuous except possibly for a finite number of discrete
jumps), (x(t),u(t),t)T Ry,and bl B. Assume the constraint qualification (3.3) holds
for any (x,u,b,t) inthe set of admissible elements A. Then there exist multipliers;

P=(P,P,...P),
=0l el ),
m=(m, m,,...,m),

not vanishing simultaneously on t, £t £t;, and functionsH and L where

H (x(t), u(t), b,t, p(t), m)

= pofo(X(t),U(t),b,t) +é- P| (t) fi (X(t),U(t), b!t) +é. n}(h((X(t),U(t),b,t)

i=1 k=1
L(x(t),u(t),b,t, p(t),m,I (1)

= H(x(®.ut) b, pO.m+a 1 ;g (xB).u(t).bt)
=1

such that the following relations hold;

(@ The multipliers py,m,k=12....¢, are constant, p,>0, and m >0,k =1.2,..., ",
with
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Ml GO .U .0 D+ S, ()P =0, k=12,...0.

(b) The multipliers | ,(t), j =12,...,m, are piecewise continuous and are continuous
over each interval of continuity of u* (t). Moreover, for each j=1,2,...,m’, we have

1,130, 1;(t)g;(x*(t),u* (t),b*,t) =0.

(¢) The multipliers p,(t),i =1,2,...,n, are continuous and have piecewise continuous
derivatives. They satisfy the adjoint equations;

- Pi(®) = (T/9% )H (x* (t),u* (), b*,t, p(t),m), i=12,..,n.
(d) The maximum principle expressed in the inequality
H (x* (t),u* (t),b*,t, p(t),m) 3 H(x* (t),u,b,t, p(t), m)
holds for all [x*(t),u,bx,t,]11 A, which implies that
(1/u) L(x* (1), u* (£),b*,t, p(t),m, ! (t)) =0.

(e) The following transversality condition holds:

T || I 1S 3 5
dt=-pp - § M
Qﬂbj Po fIb; 9:1 Kflb;
¢ M,  d % U
+ L*(t,)—L + - (t,) ——
g (t) b ia:tl p; (ty) ﬂbja
¢ M, & U
S & L*(t )_0+a pi(t )—/4 ]=12,..,q,
8 ° b, = ° Tb; g

where L* (t) = L(x* (t),u* (t),b*,t, p(t),m,I (t)).
(f) Thefunction L*(t) iscontinuouson t, £t £t;, and
(d/dt)L* (t) = (T/ M)L(x* (t),u™ (t),b*,t, p(t),m, 1 (1))

on each interval of continuity of u* (t).

The reason why these conditions are necessary for the optimum can be understood
by considering the following Lagrangianin the integral form:

202



Appendix 1V

L = Pogf:;l‘b’ o(X(0) u(). b )t + S (0)%

Jb), o

{a P (O f; (x(1), u(t), b, t) - % (1)]

vy (g, (x(t), u(t), b, ld
j-l

a rn({oﬁi’) hy (X(0), u(t). b, )ckt + S (b)}

+ a 9% (to) - X (b)] + a giTx () - (o).

i=1

Observing that integration by parts yields
J . N . e
Q P OXMdt =g ROX M) - g RH)xt)at
=R ()% (1)~ Rlto)x () - ¢ R OX M)k,
we can rewrite the Lagrangian as

L = (‘j( b Lxt).u(t).bit, po),m! (t))+a Px,i;dt

n

A DX W)+ A P o)X ()

i=1 i=1
J4

+ PoSp(0) + & McSk(b)
k=1

+8 0lx (t)- x°0)]+ & gilx () - )]
i=1 i=1

By analogy to the usual method of Lagrange, this Lagrangian must be maximized,
without constraints, with respect to u(t), b, x(t), x(t;) and x(t,). Maximization of
the Lagrangian with respect to u(t) between t and t+Dt is equivalent to
maximization of

L(x(t),u(t),b,t, p(t),m,1 (t))Dt
with respect to u(t). Thisyields condition (d).

In the same way, maximization with respect to x(t) yields the adjoint equations
in(c). Maximization with respectto x;(t,),x (t,) and b, yields
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L

" P@II=0 i=12...n,
L . .
=- 'tO i _O, =12,..., ,
™ (t,) Pi{to) *0 =12
oIS, g m IS T L(to>’“°

™, °W, &, <Tb ﬂb

0 ﬂX, a gul ﬂX, u&

o
b, %% Qb

ag| ) j :1,2,...,(].

=0

Condition (e) can be obtained by combining these equations.

Condition (f) is a generaization of (1.27) to alow for time dependent constraints
(3.2b,c).

The multiplier p, is added to include the so-caled abnormal case in which

p,=0. If p,=0, the same control is optimal for problems with any objective

functionals so long as al the constraints are the same.  Thus for abnormal problems the
necessary conditions do not involve the objective functional, but are already specified
by constraints.  This happens, for example, when there is only one control trajectory
that satisfies all the constraints.  If constraints are

x=u(t)®,
S1EU(DEL  tEtEL
X(t;) =0,
x(t,) =0,
then the only possible control trgjectory is
u(t) =0, to EtEL,

and the optimal solution does not depend on the objective functional.

The reason why p, is zero in such a case can be seen by going back to the

dynamic programming approach in section1. Since the control cannot be changed, it
Is also impossible to change the state trgjectory. This means that it is prohibitively

costly to change the state trajectory:  §J*/xin (1.14°) and hence p(t) in (1.19) are
infinite. Since p, was taken to be 1 in section 1, this is equivalent to p, =0 with
p,, 1=1..,n, finitein this section.
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In this book, we assume that all the problems are normal, and normalize p, to
be 1.

The constraint qualification is assumed because the proof of the maximum
principle considers perturbation of the control vector u(t) such as

G-l v trestat
“1u(t) for other values of t1 [to,4]

for a small e, and derives the necessary conditions from the property that at the
optimum no perturbation can make the objective functional greater. If the constraint
qualification is not satisfied, there exist no nontrivial perturbations that satisfy the
constraints (3.2b) and (3.2c). For example, if there are two equality constraints:

g, (u,u,) =0,
g, (uy,u,) =0,

which are tangent only at a single point  u* = (u*,u,*) asin Figure 2, only one control
vector satisfies the constraints and no perturbation is possible.

Figure 2. Constraint Qualification

In this case, the gradient vectors,

N €19, (U*)/ flu, G
Ng,(u*)=a i
%)= g, 1)/, 4
€19, (u*)/Tu, 0

NG = g )/,
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are linearly dependent and the rank of the matrix,

_ éﬂgl/ﬂuliﬂgl/ﬂub 91’0@
B a]gz/ﬂul,ﬂgz/ﬂuz,O, ng
_ éﬂgl/ﬂul’ﬂgl/ﬂubo’o@

_g‘ﬂgz/‘ﬂul,ﬂgz/ﬂuz,0,0H ’

islessthan m=2.

4. Examples: Optimum Cities

Two optimum control problems formulated in Chapter 1 are solved in this section.
Consider first the problem of maximizing the Benthamite social welfare function,

c‘fu(z( x), h(X))N(X)dx, (4.1)
subject to the resource constraint,

Pw- 1209 +t(IIN () + R ()} dx = 0 42)
the population constraint,

(‘;N(x)dx- p=0, (4.3

and the land constraint,
g(x) = N(x)h(x), O£ xXEX. (4.9

Control variables are the consumption of the consumer good, 2z(X), the consumption of
land for housing, h(x), and the population density, N(X). The edge of the city, X,

Is a control parameter. There is no state variable in this problem because there is no
congtraint in the form of a differential equation.

The function H in the previous section now reads

H (z(x), h(x), N(x),x,1 ,d,g)
=1 u(z(x), h(x))N(x) - d{[z(x) +t(X)IN(X) + Rg (x)} + AN (X)

Thefunction L is

L(z(x),h(x), N(x), %1 ,d,g,m(X))
=H +m(x)[q(x) - N(x)h(x)]
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and the Lagrangian L is
L =y Lox
Assuming | >0, we normalize | . Withl =1, condition (d) yields
/20 =[u/fz- dIN() =0
L/Th(9) =[fu/fh- MIN(x) =0
TL/IN(X) = u(x) - d[2(X) +t(X)] - mx)h(x) =0,
which corresponds to (1.2.5a), (1.2.5b), and (1.2.50).
From condition (€), we obtain the transversality condiition,
L*(X) = u(z(X), h(x))N(X) - d{[z(x) +t(X)]N(X) + R (X)} +aN(X) =0,
which corresponds to (1.2.50).
Condition (f) implies

dL* (x)/dx = m(x)q (x)
Next, we impose the constraint that households receive equal utility:
u =u(z(x), h(x)), O£ XEX,

and maximize the sum of utilities,
X
QUN (X)dx.

Constraints, (4.2), (4.3), and (4.4), remain the same. In this case, u is an additional
control parameter. Define

H (z(x),h(x), N(x),u,x,l ,d,g)
=1 uUN(x) - d{[z(x) + t(X)]N(x) + R,q(x)} +gN(x)

L(z(x),h(x), N(x),u, x,1 ,d,g,u(x), m(x))
= H +u(x)[u(z(x),h(x)) - u] + m(x)[q (x) - N(x)h(x)]

L = Sde.

Again, we normalize | . Condition (d) becomes

L/%2(0) = - AN (x) +u(x) y/ Iz =0
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L/Th(x) =u(3) Tu/h- ME)N (x) =0
TIL/TN (x) =u- d[z(X) +t(x)] - m(x)h(x) =0
which correspond to (1.2.22a), (1.2.22b), and (1.2.22c), respectively.
Condition (e) yields
L* (X) =uN(X) - d{[z(X) +t(X)IN(X) + Rq (X)} =0

(‘5N(x)dx- (‘;u (x)dx=0,

which correspond to (1.2.22d) and (1.2.22€) respectively.
Finally, condition (f) yields
dL* (x)/x = m(x)q ().

NOTES

Discussions in section 1 are greatly influenced by Dixit (1976), Dorfman (1969)
and Intriligator (1971). For rigorous proofs of the maximum principle, see, for
example, Fleming and Rishel (1975) and Lee and Markus (1967).

The Theorem in section 3 is taken from Hestenes (1965) Hestenes (1966) contains
the theorem and its extensions.
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