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Calibration: Respice, Adspice, Prospice

Dean P. Foster∗ Rakesh V. Vohra†

Abstract

“Those who claim for themselves to judge the truth are bound to possess a criterion of truth.”

Sextus Empiricus

1 Introduction

Suppose one is asked to forecast the probability of rain on successive days. How should one assess
the accuracy of the forecast? If one forecasts a 25% chance of rain and it rains, was the forecast in
error?

A popular criteria for judging the effectiveness of a probability forecast is called calibration.
Dawid [5] offers the following intuitive definition of calibration:

“Suppose that, in a long (conceptually infinite) sequence of weather forecasts, we look
at all those days for which the forecast probability of precipitation was, say, close to
some given value ω and (assuming these form an infinite sequence) determine the long
run proportion p of such days on which the forecast event (rain) in fact occurred. The
plot of p against ω is termed the forecaster’s empirical calibration curve. If the curve is
the diagonal p = ω, the forecaster may be termed (empirically) well calibrated.”

Notice, the calibration criterion relies only on the realized forecasts and outcomes to make a
determination. It assumes the data will speak for itself.

The calibration criterion is used, for example, to assess the accuracy of prediction markets, see
Page and Clemen [36]. Philip Tetlock [45] uses it in his comprehensive analysis of pundits. We
quote from a 2006 blog entry by Tetlock [46]:

“Between 1985 and 2005, boomsters made 10-year forecasts that exaggerated the chances
of big positive changes in both financial markets (e.g., a Dow Jones Industrial Aver-
age of 36,000) and world politics (e.g., tranquility in the Middle East and dynamic
growth in sub-Saharan Africa). They assigned probabilities of 65% to rosy scenarios
that materialized only 15% of the time.
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†Department of Managerial Economics and Decision Sciences, Kellogg School of Management, Northwestern Uni-
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In the same period, doomsters performed even more poorly, exaggerating the chances
of negative changes in all the same places where boomsters accentuated the positive,
plus several more (I still await the impending disintegration of Canada, Nigeria, India,
Indonesia, South Africa, Belgium, and Sudan). They assigned probabilities of 70% to
bleak scenarios that materialized only 12% of the time.”

Fans of Isaiah Berlin will be interested to know that Tetlock concludes that foxes are better cali-
brated than hedgehogs.1

2 Notation

The intuitive definition of calibration is meaningless when no forecast is ever repeated. One way
around this is to base the definition on what is known as the calibration component of the Brier
score (see [3] and [29]). To describe it we introduce notation. Let S = {0, 1} be the state space.2

We can think of ‘1’ as recording the state ‘rain’. An element of S is called an outcome. Let Sn, for
n ∈ N , be the n-Cartesian product of S and S∗ the set of all infinite 0-1 sequences. An n-sequence
of outcomes is denoted s = (s1, s2, . . . , sn) ∈ Sn where si denotes the state realized in period i. An
infinite sequence is denoted s∗. Given s ∈ Sn and r < n, let sr = (s1, s2, . . . , sr) ∈ Sr be the prefix
of length r of s.

An element of [0, 1] is called a forecast of the event ‘1.’ A forecast made in period r refers to
outcomes that will be observed in period r + 1. Let ∆∗ be the set of probability distributions over
[0, 1]. A forecasting algorithm is a function:

F :
n−1⋃
r=0

(Sr × [0, 1]r) → ∆∗

At the end of each period r < n, an r-history (sr, f0, f1, . . . , fr−1) ∈ Sr × [0, 1]r is observed. Here
fj ∈ [0, 1] is the forecast made by F in period j. Let f r = (f0, . . . , fr). Based on this r-history, the
forecaster must decide which forecast fr ∈ [0, 1] to make in period r. The forecaster is allowed to
randomize. So, fr ∈ [0, 1] can be selected (possibly) at random, using a probability distribution in
∆∗.

Let nt(p;F, s∗) be the number of times F forecasts p up to (but not including) time t on the
sequence s∗. Let ρt(p;F, s∗) be the fraction of those times that it actually rained. In other words,

nt(p;F, s∗) ≡
t−1∑
r=0

Ifr=p,

ρt(p;F, s∗) ≡
t−1∑
r=0

sr+1Ifr=p

nt(p;F, s∗)
,

1Berlin offered a classification of thinkers inspired by a fragment of poetry due to Archilochus. Rendered in

English, it reads: The fox knows many things, but the hedgehog knows one big thing. Foxes are thinkers who draw

on a variety of perspectives to understand the world. Hedgehogs, believe that the world can only be understood

through a single perspective.
2The results extend easily to more than two states.
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where I is the indicator function. In the definition it is convenient to assume that F is restricted
to selecting forecasts from a finite set, A, fixed a priori. The requirement that F select from a fixed
set A is not a severe restriction for practical purposes. Many weather forecasters, for example,
forecast probabilities to only one decimal place.

The calibration score of F with respect to s∗ after t periods is denoted Ct(F, s∗) where

Ct(F, s∗) =
∑
p∈A

(ρt(p;F, s∗)− p)2
nt(p;F, s∗)

t

Thus, F is well calibrated with respect to s∗ if and only if Ct(F, s∗) goes to zero as t goes to infinity.

3 Calibrated Forecasts

While a forecast that reports the correct probabilities (conditional on the history) in each period,
will have a low calibration score, what about an ‘incorrect’ forecast? Foster and Vohra [10] exhibit
a randomized forecasting algorithm that almost surely will be calibrated on all sequences s∗. The
‘almost surely’ in the statement refers to the distribution induced by the randomization within the
forecasting algorithm. For economy of exposition, we prove a slightly weaker version of that result
below.3

Since the claim may appear surprising at first glance it will be instructive to consider an example
first.

outcome 0 1 0 1 0
forecast 1 0.5 0.5 0.5 0.5 0.5
forecast 2 0 1 0 1 0
forecast 3 0.1 0.9 0.1 0.9 0.1

In the table above we see that forecast 1 is calibrated with respect to the sequence of outcomes.
However, so is forecast 2. This illustrates that more than one forecast can be calibrated with respect
to the same sequence of outcomes. Notice that forecast 3 is clearly not calibrated with respect to
the outcomes, but in some sense conveys more information than forecast 1. Taken together, this
example suggests that calibration may be a weak criterion that is easily met.

Theorem 1 There exists a randomized forecasting rule F such that for all ε > 0 and s∗,

lim
t→∞

Pr(Ct(F, s∗) < ε) > 1− ε.

Note that s∗ is allowed to depend on the previous realizations of the F ’s and s∗’s.

Proof
The proof constructs a normal form zero-sum game to be played between the forecaster and ‘Nature.’
Fix the number of periods to be t. Nature’s strategy space is the set of all 2t binary sequences.4

3There are a host of other proofs. See, for example, [16], [20], [11], [4], [27], and [13].
4This assumes that Nature’s strategy in each period cannot depend on what happened in the previous period.

The argument is the same if we drop this restriction.
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So that the forecaster’s strategy space is finite, we restrict him to picking one of the following in
each period as a forecast: 0, 1/k, 2/k, . . ., 1. Here k is a sufficiently large integer to be chosen
later. A pure strategy for the forecaster will be a rule that maps each history of outcomes of length
i ≤ t − 1 to a forecast. There are 2i histories of outcome of length i and one can associate one of
k +1 forecasts with each of them. Thus, the forecaster’s strategy space consists of (k +1)2

t−1 pure
strategies. If Nature picks st, then the forecaster’s ‘loss’ from a particular sequence of forecasts is
the calibration score of that sequence of forecasts with respect to st.

Now suppose that Nature picks a (possibly randomized) strategy first. Assume that the fore-
caster knows the randomization strategy that Nature will follow but not the realization. To use the
minimax theorem we need to specify a strategy for the forecaster which will keep his calibration
score less than ε. If we can do this for all possible mixed strategies of Nature, then, by the mini-max
theorem, there must exist a mixed strategy for the forecaster which will guarantee him a calibration
score less than ε.

Fix a mixed strategy for Nature. Given a sequence of outcomes and the randomization, the
forecaster can compute the conditional probability of the next term in the sequence being a ‘1’.
The forecast of the corresponding term will be obtained by rounding this probability to the nearest
i/k value. Assuming that k is much less than n1/3 his calibration score will be less than 1/k. Here
is an outline of why this must be so. The forecasters calibration score is

Ct(F, st) =
k∑

j=0

(
ρt(j/k;F, st)− j/k

)2 nt(j/k;F, st)
t

.

Now, consider all the times the forecaster forecast j/k. He did so because the probability that
Nature would pick a 1 on that round was some number q with the property that |q − i/k| was
minimized for i = j. This implies that |q − j/k| ≤ 1/k. By a standard martingale argument,
|ρt(j/k;F, st)− j/k| ≤ 1/k with high probability. Hence,

E[Ct(F, st)] ≤
k∑

j=0

(1/k)2
E(nt(j/k;F, st))

t
= 1/k.

Thus, there exists a randomized strategy which will guarantee the forecaster an expected calibration
score of at most 1/k. The existence of an F that is ε-calibrated is implied by Jensen’s inequality:

Pr(min
F

max
s∗

E[Ct(F, s∗)] > ε) ≤ E(min
F

max
s∗

E[Ct(F, s∗)])/ε = ε.

Randomization is essential. While a malevolent nature may be able to make one forecaster look
bad according to the calibration criterion, it is harder for it to make many forecasters look bad at
the same time. To quote Schervish [41]:

“The more different forecasts that nature is trying to make look bad, the more flexibility
all forecasters have to try to look good.”
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3.1 Extensions

Under the calibration criterion, a forecaster with no meteorological knowledge would be indistin-
guishable from one who knew the distribution that governs the change in weather. Is this surprising?
In a sense no, since calibration by itself is not a sufficient condition for a forecast to be deemed
good. To see this, consider the sequence of outcomes and forecasts below.

outcome 0 1 0 1 0
forecast 0.5 0.5 0.5 0.5 0.5

Assuming the sequence of outcomes and forecasts repeats indefinitely, the forecast will be cali-
brated with respect to this sequence. However, the forecast displayed is not the only forecast that
will be calibrated with respect to this sequence. For example, the forecast 0, 1, 0, 1 . . ., is calibrated
with respect to the sequence of outcomes displayed. Thus, calibration isn’t sufficient to distinguish
good from excellent forecasters. Neverthless, one can agree that if someone forecasted “.7” in each
period on the above sequence, their poor calibration would be one way to describe it as a bad
forecast.

We can demand more by breaking the sequence into two subsequences; one corresponding to
even periods and the other to odd periods, and require the forecast to match the frequency on each
subsequence. Consider the table below.

outcome 0 0 1 1 0 0 1 1 0 0
forecast 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Assuming the pattern of 00 followed by 11 repeats indefinitely, the long run frequency of 0 is 0.5 as
anticipated by the forecast. In the odd periods, the long run frequency of 0 is also, as anticipated,
0.5. In the even periods, it is also 0.5. However, if the probability of 0 in every period were, in
fact, 0.5 then we would expect that the frequency of 0, after 00 was observed, to be 0.5. In the
data, this frequency is zero. Analogously, the frequency of 0 in period 4n + 1, n a natural number,
should be 0.5 when it is one.

Thus, dividing the sequence into just two subsequences is not enough. How many subsequences
would suffice? To answer this question, we formalize the notion of dividing up the entire sequence
of observations into subsequences.5

Imagine a rule that, at the end of each period, decides whether or not to mark the period (as
a function of the past). The marked periods define a subsequence on which the forecasts (made in
those periods) could be compared to the outcomes realized next period. One rule might be to mark
every even numbered period. The forecasts made in the even periods will be compared with the
outcomes realized next period. Another rule would be to mark the period if the current outcome is
0. The forecasts made in the periods that 0 occurred will be compared with the outcomes realized
next period.

A rule that decides which periods to mark (as a function of past and current outcomes) is called
an outcome-based checking rule. Formally, an outcome-based checking rule is a function from finite

5This is an idea due to Dawid [6]. See also [23].
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sequences of outcomes to {0, 1}. We say that the rule is active when it assumes the value 1 for that
period. The marked periods are those in which the rule is active. An outcome-based checking rule
could be active when the last three observation were 010, when the period is a prime-number, etc.

Outcome-based checking rules mark a period based on past and current outcomes only. However,
if forecasts change then we may want a checking rule that marks a period as a function of the
forecasts as well. Fix an outcome-based checking rule and an interval D of possible forecasts.
An associated forecast-based checking rule will mark those periods marked by the outcome-based
checking rule and when the forecast lies in D . That is, a forecast-based checking rule is active when
the outcome-based checking rule is active and the forecast is within some interval (these intervals
form a partition of [0, 1]). For example, consider the outcome-based checking rule that is active
in the even periods. Consider the partition [0, 0.5) and [0.5, 1]. A forecast-based checking rule
(associated with this outcome-based checking rule) is active in the even periods when the forecast
for 1 is less than 0.5. Another forecast-based checking rule is active in the even periods when the
forecasts for 0 is greater than 0.5. For each forecast-based checking rule, there is an associated
subsequence of active periods. The forecasts will be compared to the data separately in each of
these subsequences.

Given a collection C of outcome-based checking rules and a partition of [0, 1], we say that a
sequence of forecasts is calibrated with respect to the observed data if the average forecasts match
empirical frequencies, in the subsequence specified by the forecast-based checking rule associated
with the outcome-based checking rules in C. Informally, a sequence of forecasts is calibrated if, in
the subsequences specified by C, the frequency of 0 is p in the sub-subquences in which the forecast
is p.

The examples above show that forecasts matching empirical frequencies for finitely many check-
ing rules may fail to capture relatively simple patterns. However, consider a countable collection
of outcome-based checking rules that include all functions (mapping finite sequences of outcomes
to {0, 1}) implementable by a recursive algorithm. Consider a countable partition of [0, 1]. This
collection of forecast-based checking rules is also countable. Notice that the countable collection
of checking rules we focus on are all rules that can be implemented by a Turing machine. If the
forecasts match the empirical frequencies for all these forecast-based checking rules then no com-
parison between frequencies and the forecasts, that is implementable by a Turing Machine, would
reject the hypothesis that the forecasts are correct.

The main result of Sandroni, Smorodinsky and Vohra [38] shows that, given any countable
collection of outcome-based checking rules and countable partition of the entire interval, there is a
forecasting scheme that generates sequences of calibrated forecasts on every possible infinite string
of data. So, if a forecaster uses this forecasting scheme then after some point in the future, when he
looks backwards, he will always see that the time average of the forecasts are close to the empirical
frequencies. In this sense, he will not see a contradiction between the forecasts and the data.6

A forecast that would be calibrated with respect to all checking rules (not just countably many)
would satisfy the stronger property of merging (see [23]). The distinction between the countable

6Lehrer [26] establishes this for the special case of outcome based checking rules only. See also Vovk and Shafer

[44].
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and the uncountable case highlights the weakness of the calibration criterion. Calibration is a
guarantee that at some distant point in the future, looking back, the forecast will be consistent with
past outcomes. Merging is a guarantee that at some distant point in the future, looking forward,
the forecast will be consistent with future outcomes. Hence, a test based on passing uncountably
many checking rules would allow one to distinguish between a forecaster with no meteorological
knowledge from one who knew the distribution that governs the change in weather.

4 Testing

Are there tests, other than calibration, that can distinguish between a forecaster who knows the
underlying distribution of the process being forecast from one who ‘games’ the test? Rather than
run through a long collection of criteria, we follow Sandroni [38] and focus on properties that such
tests should have.

Formally, a test takes as input a forecasting algorithm, a sequence of outcomes and after some
period accepts the forecast (PASS) or rejects it (FAIL). Two properties that such a test should
possess appear compelling. First, the test should declare PASS/FAIL after a finite number of
periods. This seems unavoidable for a practical test. Second, suppose the forecast is indeed correct
i.e., accurately gives the probability of a state being realized in each round. Then, the test should
declare PASS with high probability. Call this second condition “passing the truth.” In other words,
the probability of a type I error should be small.7

Call a test that satisfies these two conditions a good test. A test based on calibration is an
example of a good test. A forecaster with no knowledge of the underlying distribution that can
pass a good test with high probability on all sequences is said to ignorantly pass the test. Implicit
in the notions defined is that the forecaster knows the test.

To define these notions precisely we require some notation. A sequence s ∈ Sn and a forecasting
algorithm F determine a probability measure F̄ s on [0, 1]n, where conditional on (sr, f r−1), the
probabilities of forecasts next period are given by F (sr, f r−1). The vector of realized forecasts
associated with F on a sequence s will be denoted f(s).

Denote the unknown data generating process by P . Given P and sr ∈ [0, 1]r let Psr ∈ [0, 1]
be the probability that sr+1 = 1 conditional on sr. Given P let FP (s) ∈ [0, 1]n be the forecast
sequence such that fP

r (s) = Psr .
A finite test is a function T : Sn× [0, 1]n → {0, 1}. After a history of n forecasts and outcomes

are observed, a test must either accept (PASS) or reject (FAIL) the forecast. When the test returns
a 0 the test is said to fail the forecast based on the outcome sequence. When the test returns a 1
the test is said to PASS the forecast based on the outcome sequence.

One can think of a finite test as a subset of Sn × [0, 1]n. If the history of n forecasts and
outcomes lies in this subset, the forecast is failed, otherwise it is passed. A non-finite test would
be a subset of S∗× [0, 1]∗, where [0, 1]∗ is the set of infinite sequences of numbers in [0, 1]. Call the
set of outcomes on which a forecast would be rejected by a test T , T ’s rejection set.

7A type I error occurs when the true hypothesis is rejected. Acceptance of a false hypothesis is a type II error.

Not knowing which is which is a type III error.
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A test is said to pass the truth with probability 1− ε if

Pr
P

({s : T (s, FP (s)) = 1}) ≥ 1− ε

for all P .
A test T can be ignorantly passed by a forecasting algorithm F with probability 1 − ε if for

every s ∈ Sn,
Pr
F̄ s

({f : T (s, f(s)) = 1}) ≥ 1− ε.

Hence, F can ignorantly pass T if on any sequence of outcomes, the realized forecast sequence will
be passed with probability at least 1−ε (under the distribution induced by the forecasting scheme).
A test T is said to fail the forecasting algorithm F on the distribution Q with probability 1− ε if

Pr
Q

({s : Pr
F̄ s

({T (s, f(s)) = 1}) ≥ 1− ε}) ≤ ε.

For every good test, Sandroni [38] shows there exists a randomized forecasting algorithm that
will ignorantly pass the test.

Theorem 2 Suppose a finite test T passes the truth with probability 1 − ε. Then, there is a
forecasting algorithm F that can ignorantly pass T with probability 1− ε.

Therefore, no good test can distinguish between a forecaster who knows the underlying distribution
of the process being forecast from one who ‘games’ the test. In this sense, Sandroni’s Theorem
is an impossibility result. The argument is similar to the one that established the existence of a
calibrated forecast. A normal form zero sum game is set up with the set of pure strategies for
Nature and forecaster corresponding to the set of measures on [0, 1]n. If the forecaster passes the
test, Nature is penalized 1 unit and the forecaster gains 1 unit. Finiteness of the test ensures that
the payoff function is semi-continuous. For every mixed strategy of Nature, there is a best response
for the forecaster that secures a payoff of 1. This follows from the assumption that Nature always
passes the truth. To complete the argument one invokes Fan’s minimax theorem.

One could imagine ‘secret’ tests that are not revealed to the forecaster. A forecaster approaching
a secret test can always treat this as going up against a mixture of known tests. A mixture over
good tests is also a good test.8

One way to see why Sandroni’s impossibility result holds is to consider a good test that must
decide after one period. Given it must pass the truth, it has little choice but to pass all forecasters.
What about n periods? The decision to pass or fail the forecast is based on some n-period sequence,
sn. Unfortunately, there are uncountably many infinite sequences, s∗, which contain sn as a prefix.
Therefore, two forecasts that agree on the first n observations need not agree subsequently. This
makes it difficult for a good test to distinguish between a correct forecast and one that ‘games’ the
test.9

8Mixtures over tests that are not good can also be accommodated as long as the probability assigned to ‘not good’

tests is small.
9This echoes Sextus Empiricus’ objection to generalizing from a finite collection of the particulars because all of

the particulars are infinite in number.
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The deeper reason, perhaps, lies in the fact that the Nature does not get any additional power
from randomization. Any lottery over distributions is also a distribution. Suppose Nature had a
mixed strategy that the forecaster could not ‘beat’ and Nature announced it. Then, the forecaster
could just use this distribution to forecast!

It is natural to ask if a test, using a proper scoring rule like log-loss, can circumvent the
difficulties identified by Sandroni’s result. The log-loss scoring rule penalizes the forecaster log p if
the forecaster predicts a probability p of rain and it rains and a penalty of log(1− p) if it doesn’t
rain. The lowest possible score that can be obtained is the long-run average entropy of the actual
distribution governing the frequency of rain.10 One could imagine a test passing the forecaster if
its log loss matches the entropy. However, such a test needs to know the entropy of the distribution
ahead of time. As noted in the introduction, we are concerned with tests which operate without
any prior knowledge of the distribution. Proper scoring rules are good methods to compare two
forecasters but are not useful for testing the validity of a forecaster against an unknown distribution
of nature.

If one replaces the proletarian term forecast by the more aristocratic, theory, Sandroni’s impos-
sibility result is a strike against the idea that a theory can be verified on purely empirical grounds.
More generally it is a criticism of the classical notion of induction: the ability to reason about the
future from the past.11

4.1 Surmounting The Impossibility

Any impossibility theorem can be breached by relaxing at least one of its assumptions. Such is the
case here. Technically it amounts to identifying conditions under which the minimax theorem fails.

Dekel and Feinberg [7] surmount the impossibility by dropping the requirement that the test be
finite. The test in [7] takes as input the forecasting algorithm itself rather than just the realizations.
Because a forecasting algorithm specifies a conditional probability given any history, it essentially
specifies a distribution, µ over S∗. Interpret S∗ to be the set of binary expansions of numbers in
[0, 1]. Thus, the forecaster specifies a measure µ over [0, 1] and nature picks an element in [0, 1].
Using only µ and the lone element in [0, 1] the test must decide whether to pass or fail the forecast.
Framed this way, the testing question appears unnatural since one must decide based on a ‘single
draw’ whether to pass or fail the forecaster. It would appear that any test that passes the truth
with high probability can be ignorantly passed.12

Dekel and Feinberg [7] show that associated with every distribution µ over S∗ is a ‘small’ set
Kµ ⊂ S∗ with two properties.

1. µ(Kµ) = 1.
10Lambert [24] is a recent example of work on scoring rules.
11There is also a connection to the modern formulation of the problem of induction due to Goodman [18] which

we recount. First, call a thing grue if and only if it has been observed to be green before a finite time t or blue after

that time. Recall now that all emeralds ever seen are both green and grue. Why is it, Goodman asks, that we believe

that after after time t we will find green but not grue emeralds? Goodman argues that an appeal to Occam’s razor

does not apply here.
12In fact, even if we allow for k > 1, independent draws from [0, 1], the challenge is the same. One can concatenate

the k independent binary expansions into a single sequence.
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2. The set of distributions that assign Kµ positive probability is also ‘small’.

The intuitive idea is that to every distribution one can assign an essentially unique signature that
is hard to duplicate by another distribution. The notion of ‘small’ used is the topological one
of category. The set Kµ is category 1 (countable union of nowhere dense sets) and the set of
distributions that assign positive probability to Kµ is also category 1. The test fails the forecast if
the outcome falls outside of Kµ and passes the forecast otherwise.

The topological notion of ‘small’ differs from the measure theoretic notion of small.13 That
difference is exploited in Olszewski and Sandroni [32] to show that the test in [7] can be igno-
rantly passed by a suitable randomized forecasting scheme. However, as shown in [7], assuming
the continuum hypothesis, the test in [7] can be modified so that it cannot be ignorantly passed.
Furthermore, the set of outcomes on which an ignorant forecaster would fail is uncountable. Re-
liance on the continuum hypothesis is problematic. Olszewski and Sandroni [31] describe a test
that cannot be ignorantly passed that avoids the continuum hypothesis. It invokes, instead, the
axiom of choice (AC).

Dropping the requirement that the test be finite is unattractive, so, Olszewski and Sandroni [32]
propose a compromise: Requiring the test to declare FAIL in a finite number of periods but PASS
‘at infinity’. The compromise is consistent with Popper’s notion of falsifiability. They show the
existence of a test that passes the truth with high probability that cannot be ignorantly passed.
However, the number of periods before an ignorant forecaster is failed can be extremely large and
depends on the forecaster.

Olszewski and Sandroni [33] observe that the tests considered in [7] and [31] rely on the fore-
casting algorithm itself. Specifically, the test can use the predictions the forecast would have made
along sequences that did not materialize. As noted in [33] this is not the case for many natural tests.
For this reason they restrict attention to tests that are not permitted to make use of counterfac-
tual predictions. Call these sequential tests. Essentially, two different forecasting algorithms that
produce the same forecast on a realization must be treated in the same way. The test must declare
FAIL in a finite number of periods but can PASS ‘at infinity’. Under these conditions they recover
the impossibility result. Specifically, if a sequential tests passes the truth with high probability they
show that for each such sequential test, there is a forecasting algorithm that can ignorantly pass
the test. The proof relies on a minimax argument of the type described above. The requirement
that the test declare FAIL in finite time ensures that the payoff function in the underlying zero
sum game is semi-continuous which allows the Fan mini-max theorem to be invoked.

Shmaya [42] shows that one can relax the condition that the sequential test must declare FAIL in
finite time and recovers the same impossibility result. Dropping the condition that the test declare
FAIL in finite time means that the payoff function is no longer semi-continuous and prevents the use
of a mini-max argument. Shmaya gets around this by modeling the interaction between forecaster
and Nature as an extensive form zero-sum game and uses the determinacy of Blackwell games (see
[28]) to establish a ‘winning’ strategy for the forecaster in the extensive form game.

The result in [42] suggests attention be directed to the axiom of determinacy (see Mycielski
and Steinhaus [30]). The axiom presumes a certain class of two person extensive form games of

13See problem 55(d) in [37].
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perfect information with a countable number of moves on each path is determined. The game has
players who take turns choosing the next term in the decimal expansion of a number in [0, 1]. If
the number thus chosen lies in some given A ⊆ [0, 1], player 1 wins, otherwise player 2 wins.

The axiom of determinacy (AD) is incompatible with the axiom of choice (AC). However,
(AD) like (AC), is consistent with Zermelo-Fraenkel set theory.14 Hence, the existence (or not) of
sequential tests that cannot be ignorantly passed hinges on which of (AC) or (AD) one accepts.

The results of [33] and [42] appear to dash any hopes of a purely empirical approach to validating
a forecast. However, as discussed below it is too early to muffle the drums and call out the mourners.
Most practical tests have a complexity that is polynomial in the length of the history, so it seems
reasonable to restrict attention to good tests that have a complexity that is polynomial in the length
of the history. Restricting the test in this way should, make it ‘easier’ to be ignorantly passed. It
seems natural to conjecture that for every polynomial time test that passes the truth with high
probability, there exists a polynomial time randomized forecasting algorithm that will ignorantly
pass the test. This is not the case. Fortnow and Vohra [9] describe a linear time test that can be
ignorantly passed only if the the forecaster were able factor numbers under a specific distribution.
The existence of an efficient (i.e. probabilistic polynomial time) algorithm for factoring composite
numbers is considered unlikely. Indeed, many commercial available cryptographic schemes are
based on just this premise. This result suggests that the ‘ignorant’ forecaster of Sandroni [38] must
have a complexity at least exponential in n. Hence, the ‘ignorant’ forecaster must be significantly
more complex than the test. In particular its complexity may depend on the complexity of nature’s
distribution.

The idea behind this result is to interpret the observed sequence of 0-1’s as encoding a number
followed by a list of its possible factors. Call a sequence correct, if its suffix is a correct factorization
of its prefix. The test fails any forecaster that does not assign high probability to these correct
sequences when they are realized. Consider now the distribution that puts most of its weight on a
correct sequence. If the forecaster can ignorantly pass the test, it must be able to identify correct
sequences.15 The result in [9] suggests that the relative complexity of both forecaster and test
matter in evaluating the forecast. A ‘simple’ test that is passed by a vastly more ‘complicated’
forecaster should make one skeptical about the reliability of the forecast.

One could also relax the condition that the Type I error of the test must be small. One way
to do this is to restrict ‘nature’ to picking it’s distribution from a restricted set known to the test.
In doing so we step away from a test that is based on pure empiricism, since the test incorporates
prior knowledge. This prior knowledge amounts to a restriction on the class of forecasts considered.
The test can simply fail any forecast not in this class. Observe that doing so raises the probability
of a type I error.

Clearly, how one restricts the forecaster (or nature) matters. [32] show that when nature is
restricted to picking distributions from a certain non-convex set, there exists a test that cannot be
ignorantly passed. The restriction is no more than a counter-example to a possible generalization
of their main result. Al-Najjar, Sandroni, Smorodinsky and Weinstein [2], propose two criteria for

14Many games can be shown to be determined without an appeal to (AD). Blackwell games are an example[28].
15Hu and Shmaya [21], in the same vein, suppose that forecaster and test must be Turing computable.
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identifying a ‘natural’ restriction.

1. Learnable: Nature’s distributions should permit the forecaster to learn from data.

2. Predictive: The forecaster should not need to keep learning forever; eventually, she will have
learned enough so that new evidence will have a small effect on predictions about the distant
future.

The notions are formalized in Jackson, Kalai, and Smorodinsky [22]. Restricting nature to distri-
butions that are learnable and predictive, [2] design a test in which the forecaster is required to
submit a date, d, by which she will have learned enough to deliver sharp predictions about future
frequencies. They show this test passes a forecaster who knows the data-generating process and
cannot be passed by an uninformed forecaster (restricted to forecasts in this class).

The difficulty that [2] overcome with this restriction is that a distribution can be represented as
a convex combination of ‘component’ distributions in many ways. As an example, nature first draws
a number, θ, uniformly at random from [0, 1]. Next, nature generates a 0-1 sequence by flipping a
coin that will come up heads (= 1) with probability θ. Here is a second representation. Imagine two
coins, called high and low. The high coin comes heads with probability θh, where θh is a draw from
the uniform distribution over [0.5, 1]. The low coin comes heads with probability θl, where θl is a
draw from the uniform distribution over [0, 0.5]. This suggests an alternative restriction on Nature’s
distribution: The set of distributions Nature employs is non-convex. Babaioff, Blumrosen, Lambert
and Reingold [25] takes such an approach as well as providing examples of natural instances that
are non-convex.16

5 Multiple Forecasters

Rarely is it the case that a single theory or forecast is subject to an up or down decision. Rather,
theories and forecasts are compared and the best of the lot is picked. At first blush, this makes the
work just summarized irrelevant. Not so. Imagine one is being compared against another forecaster,
call them C. Now suppose, your forecasts will be compared with C’s forecast in some way and,
eventually, one of you will be selected. Suppose also, you know both C’s forecasting algorithm as
well as the metric by which you will be compared with C. Then, C’s forecasts and the metric
constitute a test and the previous results apply. They apply because you knew both the metric
and C’s forecasts and therefore knew the test. In some contexts, it is unreasonable to expect that
you would know the forecasting algorithm of the competing forecaster. In this case, one is faced
with a ‘secret’ test in the sense that you cannot tell ahead of time what you will be ‘tested’ on. As
there is a possibility a ‘secret’ test may fail the truth, one may wonder if amongst the alternative
forecasts being evaluated, if there is one that is ‘correct’, could a ‘secret’ test determine it? Yes.

Feinberg and Stewart [8], for example, propose a cross-calibration test of predictions by multiple
potential forecasters. The test checks whether each forecaster is calibrated conditional on the
predictions made by other forecasters. They show this test is a good test that cannot be ignorantly
passed.

16The main result is a good test that can be passed if and only if the forecast merges with the true distribution.
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Al-Najjar and Weinstein [1] show that a simple ‘reputation-style’ test can distinguish between
two experts one of whom is informed about the true distribution.17 The test presumes no prior
knowledge of the true distribution, achieves any desired degree of precision in some fixed finite time,
and does not use ‘counterfactual’ predictions. It exploits a rate of convergence of supermartingales
result.

Olszewski and Sandroni [34] also consider the case of multiple forecasters but do not assume
that amongst them is one that ‘knows’ the truth. Assume a test that will compare the forecasters
and select one if it knows the truth. Suppose none of the forecasters knows the truth. Then, they
can still independently produce false forecasts that will pass the test, independently of how the
data evolve.

6 Prospice

We see three lines of inquiry as promising. The first is prompted by the observation that what one
cares about is not the forecast itself but the payoffs that result from actions taken based on the
forecast.

One might imagine that on those occasions when the forecast does not ‘match’ nature, the
payoff consequences from having chosen the ‘wrong’ action are small. In these cases it is not
essential that the forecaster ‘know’ the true distribution. (see [35] and [19]). Thus, the task is to
identify an ‘informative’ forecaster without spending to much. The spending constraint is essential
to make the problem non-trivial. A concrete instance of just this problem is that of evaluating the
performance of money managers (hedge funds, for example). If investors use a particular metric to
reward money managers, then, unsurprisingly, those managers have an incentive and the ability to
manipulate their performance [14].

Classic financial metrics, like the Sharpe ratio, that are used to evaluate the performance
of money managers, assume the returns on the manager’s portfolio are normally or lognormally
distributed. Through the use of derivatives, one can generate return patterns that substantially
deviate from this assumption. This allows the manager to ‘look good’ for extended periods by
concealing large downside risks in the tail of the distribution. For this reason, manipulation proof
metrics have been proposed (see for example [17]). These measures are similar to the proper scoring
rules used to evaluate probability forecasts, but pegged to returns rather than probabilities. The
metric in [17], for example, satisfies three properties.

1. The metrics value is independent of the portfolio’s dollar value.

2. An uninformed investor cannot increase his score by deviating from a given benchmark port-
folio. However, informed investors should be able to produce higher scoring portfolios.

3. The metric is consistent with standard financial market equilibrium conditions.

Notice, item 2 on the list is concerned with distinguishing between an informed and an uninformed
‘expert’. In this particular context an informed expert does not need to ‘know the truth’. Rather,

17The test can be interpreted as a likelihood ratio test. See also [43].
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they should outperform some alternative. For example, under the efficient market hypothesis,
compound excess returns returns should be a martingale, and so beating the martingale would be
a way for the forecaster to prove that she is informed (for example, [15]).

The second line of inquiry is to examine how far the calibration criterion can be used in place
of the common prior assumption. Specifically, instead of assuming agents have a common prior,
assume only that their beliefs are calibrated with respect to the relevant outcomes. One example
of just such a substitution is in the connection between calibration and correlated equilibrium (see
[12] as well as [40]). One can imagine others, for example, no trade theorems.

The third line of inquiry, is understanding the relationship between the work described here and
the problem of testing random sequences. Checking whether a 0-1 sequence was generated by an
iid 50-50 coin flip, say, is in a sense ‘dual’ to the problem of verifying a probability forecast. This
question goes back at least as far as von Mises [47].18 von Mises proposed a test for randomness
based on what he called Kollektiv’s now called selection or checking rules. Essentially, a 0-1 sequence
would be random if the long run frequency of 1’s on the subsequence generated by any checking
rule was 0.5. von Mises’s original definition of checking rule was ambiguous as noted at the time.
Subsequent work, considered various restrictions on the notion of Kollektiv’s. One thread in this
investigation lead eventually to the theory of Kolmogorov complexity.
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