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1 Introduction

There is not much need to justify common knowledge as a theoretical construct of paramount
interest. Since Aumann (1987) wrote that “the common knowledge assumption underlies all of
game theory and much of economic theory”, an increasing appreciation of its importance and
pervasiveness has been under way. Specialized fields of inquiry such as interactive epistemol-
ogy or epistemic game theory have been spawned. Expository reviews from Brandenburger
and Dekel (1989) and Geanakoplos (1992) have spread awareness among nonspecialists.

The question that falls within the purview of this paper inquires how restrictive is the
assumption that two or more agents attain common knowledge of a nontrivial event. While a
general answer is bound to depend on many fine details, it is possible to abstract them away
and provide a clean baseline. To this aim, we consider a simple environment aligned to the
standard model in Aumann (1976).

There is a knowledge space formed by a common finite state space S and by a partition
profile over S that defines, for each agent, his knowledge. Each element in the partition
profile is independently and uniformly drawn from a random distribution over the possible
partitions of S and there are at least two agents. We study what is the probability that
the realized partition profile yields at least one nontrivial event (that is, different from S
itself) that is common knowledge among all agents. To put it more simply, we look at the
probability of nontrivial common knowledge.

Our main result is the existence of a phase transition for a fairly general random scheme.
As the size of the state space S grows large, the probability of a nontrivial event being
common knowledge between two or more agents goes to zero (respectively, one) when the
average size of the components of a knowledge partition is large (small). The logic of this
result is described by two illustrative examples in Section 3.

The probabilistic method, of course, is unapt to capture all the specific circumstances that
may favor or counter the attainment of common knowledge in real life. On the other hand,
it provides a clear benchmark that elucidates the technical hurdles that a finite but large
state space imposes in this respect. A well-known instance in the game-theoretic literature
is the study of the probability that a finite game in strategic form has at least one Nash
equilibrium in pure strategies, initiated by Goldman (1957) for zero-sum games and brought
afore in a seminal paper by Goldberg et al. (1968); see Rinott and Scarsini (2000) for a review
of the main results, as well as some advances that dispense with the assumption of stochastic
dependence. A recent addition to this line of research by Daskalakis et al. (2011) takes into
account the structure of the interaction graph.

Finally, we mention related literature that, while different in content, resonate well with
the scope of our inquiry. Hellman and Samet (2012) investigate how restrictive is the assump-
tion of common priors. Using topological rather than probabilistic techniques, they provide
a condition on partition profiles that identifies another phase transition: the set of consistent
type profiles that can be derived from a common prior is topologically large (respectively,
small) when the partition profile is tight (not tight). Dimitri (1993) studies information pro-
cessing skills and provides sufficient conditions for individual partitional knowledge to emerge
asymptotically from possibility correspondences.

The rest of the paper is organized as follows. Section 2 collects notation and mathe-

1



matical preliminaries; we tried our best to make sure that skipping the formalities of this
short section should not impair accessibility for the rest of the paper. Section 3 sets out
assumptions and provides two examples that illustrate the nature of our results. Section 4
states our main theorems and gives an overview of the demonstrative techniques. These are
based on a graph-theoretic characterization of common knowledge that (to the best of our
knowledge) is new and of independent interest; in particular, when agents’ informational
partitions are represented as graphs, the events that are common knowledge are generated
by a simple operation known as graph sum. All proofs and associated lemmas are collected
in the appendix.

2 Preliminaries and notation

Knowledge. The standard model used to describe the knowledge of an agent assumes a
set S of states of the world endowed with a partition; see Geanakoplos (1994). The mutually
disjoint and exhaustive classes constituting the partition are called blocks. If two states are
in the same block, then the agent cannot distinguish them. The possibility correspondence
π : S → 2S \∅ describes the informational partition of an agent: for each s∈S, π(s) is the set
of states that an agent thinks are possible when the true state of the world is s. Moreover,
the possibility correspondence is nondelusional : for all s in S, s ∈ π(s); that is, the agent
never fails to believe that the true state is possible.

Any subset E of S is called an event. When the true state of the world is s and s∈E,
we say that an event E occurs or is true. If π(s) ⊆ E, then every state that an agent thinks
possible (given the true state s) entails E and we say that the agent knows E. In general, an
agent may know E in some state s and may not know it in another state s′. If π(s) ⊆ E for
any s in E, we say that E is self-evident to the agent. Such event cannot be true without
the agent knowing it.

The formal definition of common knowledge was introduced in Aumann (1976). Given
S, consider a finite set A formed by a ≥ 2 agents. Each agent i in A is associated with a
partition πi that represents his knowledge. The finest common coarsening of the partition
profile (πi, i ∈ A) is another partition M called their meet. An event E ⊆ S is common
knowledge among the agents in A at s if and only if for any n and sequence (i1, i2, . . . , in), it
holds that πin(πin−1 . . . (πi1(s))) ⊆ E. When S is finite, there is an equivalent definition that
leads to a simple characterization. An event that is simultaneously self-evident to all agents
in A is called a public event. An event E is common knowledge at s if and only if there is
a public event occuring at s that entails E; or, equivalently, if the (fictitious) agent whose
informational partition is the meet M of the partition profile (πi, i∈A) knows E at s.

Partitions. Let S be a finite set with n elements; when useful, we write it as Sn to make
the number of elements evident. Following custom, we list the blocks of a partition of S in
increasing order of their least elements and the elements of each block in increasing order.
For instance, the blocks of the partition {3, 4, 5}, {6, 1}, {2} of a set with six elements are
listed as 16|2|345.

The set of all partitions of S, ordered by refinement, is a lattice. We write π � π′ to
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denote that π is coarser than π′. The notation π1 ∧ π2 stands for the finest coarsening of
π1 and π2; analogously, π1 ∨ π2 denotes their coarsest refinement. The meet of the partition
profile (πa, a∈A) is M =

∧
a∈A πi.

The number of partitions for a (finite) set Sn of n elements is given by the Bell number
Bn. The first few Bell numbers are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and
B6 = 203. The Bell numbers satisfy the recursive formula

Bn+1 =

n∑
k=0

(
n

k

)
Bk

as well as Dobinsky’s formula

Bn =

+∞∑
k=0

kn ·
(
e−1

k!

)
according to which Bn is the n-th moment of a Poisson distribution with expected value 1.

Random partitions. A random partition of a finite set Sn is a random variable Π taking
values in the set P(Sn) of partitions of Sn. The distribution of Π refers to the collection of
probabilities P (Π = π) as π ranges over P(Sn).

The simplest example is the uniform random partition, where Π has the uniform dis-
tribution P (Π = π) = 1/Bn for each partition π in P(Sn). Let ξn be the number of
blocks in a random partition. It is possible to show that the uniform random partition
has E(ξn) = Bn+1/Bn − 1 and Var(ξn) = Bn+2/Bn − (Bn+1/Bn)2 − 1. Moreover, using
standard asymptotic techniques,

E(ξn) =
n

lnn
(1 + o(1))

as n ↑ +∞; see Sachkov (1997).
A more general case is the following random allocation scheme; see Pitman (1997). Throw

n numbered balls into m numbered urns and assume that all mn possible allocations of balls
into urns are equally likely. More formally, let Xi be the number of the urn containing the
i-th ball for 1 ≤ i ≤ n. Then the Xi are independent and uniformly distributed over the
m urns and Πmn is the partition of the n balls induced by the random equivalence relation
i ∼ j if and only if Xi = Xj . The distribution of Πmn induced by the uniform distribution
over the m urns is

P (Πmn = π) =
m(m− 1) . . . (m− k + 1)

mn
if π has k blocks;

see Pitman (1997). For n ≥ 3 this random partition does not have a uniform distribution.
However, it is possible to generate a uniformly distributed random partition by a suitable
randomization of m; see Stam (1983).

3



3 Illustrative examples

The question we investigate in this paper is the probability of nontrivial common knowledge
among a ≥ 2 agents when the finite state space grows large. This section provides two
examples that help elucidate the logic of our approach and the import of our results.

We make the following general assumptions. There is a finite state space Sn with n
elements and there are a ≥ 2 agents. Each agent i = 1, . . . , a is endowed with a partition πi of
Sn representing his knowledge. We assume that the partition profile for the set A = {1, . . . , a}
of agents is obtained by making a independent (but not necessarily identically distributed)
random draws over the set of possible partitions.

3.1 The uniform model

Let Pa(n) denote the probability that a group of a ≥ 2 agents attains common knowledge of
a nontrivial event over the state space Sn. We begin by explicitly computing Pa(n) for the
special case where the informational partition of each agent is i.i.d. according to the uniform
model ; in particular, for each agent any possible partition is equally likely to occur. For
instance, assume that there are a = 2 agents and n = 3 elements in S. For simplicity, label
the elements of S as integers so that S = {1, 2, 3}. The B3 = 5 possible partitions of S are:
123; 1|23; 2|31; 3|12; 1|2|3. Under the uniform model, each of these five partitions has an
identical probability 1/5 of occurring for each agent.

Suppose that the knowledge of Agent 1 is represented by the partition 1|23 and the
knowledge of Agent 2 by the partition 2|13. Then the meet of their partitions is 123, and
only the trivial event S is common knowledge. On the contrary, suppose that Agent 1 has
the partition 1|2|3 and Agent 2 has the partition 2|13; now, the nontrivial events {2} and
{1, 3} are common knowledge. Clearly, the existence of a nontrivial event that is common
knowledge depends on the partition profile for the two agents.

We list in Table 1 the 5 · 5 = 25 partition profiles that may occur and mark by × those
profiles for which some nontrivial event is common knowledge. Since 10 out of the 25 equally

123 1|23 2|13 3|12 1|2|3
123
1|23 × ×
2|13 × ×
3|12 × ×
1|2|3 × × × ×

Table 1: When the meet of two partitions is not the trivial partition.

likely cells are marked, we obtain a probability P2(3) = 10/25 = 0.4 of attaining nontrivial
common knowledge under the uniform model when a = 2 and n = 3.

Our question of interest is what happens to the probability Pa(n) when the size n of the
state space Sn grows large. That is, if two (or more) agents face a large state space and their
partition profile is drawn according to the i.i.d. uniform model, what is the asymptotic prob-
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ability that they can attain common knowledge of a nontrivial event? Perhaps surprisingly,
the answer turns out to be zero for this special case.

Proposition 1 Under the i.i.d. uniform model, limn Pa(n) = 0 for any a ≥ 2.

The proof of this result is a straightforward corollary of Theorem 5 in Pittel (2000), where
it is shown that

Pa(n) = O

(
loga+1 n

na−1

)
.

This result is obtained in a setup very different from ours; in particular, we warn the casual
reader that the lattice of partitions in Pittel (2000) is the dual of what is commonly used
in the game-theoretic literature; thus, his “join” is the equivalent of the “meet” defined in
this paper. Moreover, his result is based on combinatorial techniques that do not extend to
more general random schemes, and therefore are very different from the probabilistic methods
employed in this paper.

3.2 The random allocation scheme

The i.i.d. uniform model is a convenient example, but it is not sufficiently flexible to provide
a plausible benchmark. Two limitations are most prominent. First, there is no clear relation-
ship between the assumption that all partitions are equally likely and the structure of agents’
knowledge. Second, since agents’ partitions are identically distributed, there is an implicit
presumption that the randomness surrounding the generation of an informational partition is
the same across agents. We introduce a richer random allocation scheme that avoids these two
limitations. An extension left for further research is to make agents’ partitions stochastically
dependent.

Concerning the first limitation, we assume that an agent cannot articulate his knowledge
over more than m distinct partitional blocks; that is, any partition of his has at most m
blocks. Let n be the number of states in Sn. Then the ratio κ(m,n) = m/n can be viewed as
a measure of the cognitive capacity of an agent relative to the size of the state space. An agent
with κ < 1 has no access to sufficient cognitive capacity for accommodating perfect knowledge
of each state, because the maximum number of blocks in his informational partition is strictly
lower than the cardinality of Sn.

To generate a random partition consistent with this assumption, we let each of the n
states be independently assigned to one of the m available blocks with equal probability, so
that all the mn possible allocations of states into blocks are equally likely. In particular, if
we let Ni denote the number of states in block i, we find the multinomial distribution

Pr

[
m⋂
i=1

(Ni = ni)

]
=

n!

n1!n2! . . . n!
·
(

1

m

)n
over any configuration (n1, n2, . . . , nm) such that

∑m
i=1 ni = n.

Let us consider an example. For instance, suppose m = 2 and n = 3 so that an agent has
cognitive capacity κ = 2/3. There are 23 = 8 equally likely allocations of three states over
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two blocks, generating four possible partitions: 123; 1|23; 2|31; 3|12. Each of these partitions
can be generated into exactly two different ways, and thus they all have the same probability
1/4 of occurring. Instead, if we let m = 3 and increase the agent’s cognitive capacity to
κ = 1, then there are five possible partitions: 123; 1|23; 2|31; 3|12; 1|2|3. The first partition
occurs with probability 3/27 and the other four with probability 6/27 each.

Concerning the second limitation, we allow heterogeneity in agents’ informational parti-
tions: each agent has a (possibly, different) bound mi with a corresponding cognitive capacity
κi = κ(mi, n). Similarly to the i.i.d. uniform model, we maintain the assumption that agents’
random partitions are stochastically independent for tractability. Therefore, given a agents
and a state space Sn, the random allocation scheme is defined by a profile (κ1, . . . , κa) of
cognitive capacities. A special case of importance occurs when each agent has the same
cognitive capacity κi = κ.

Continuing our example, suppose that there are a = 2 agents with the same cognitive
capacity κ = 2/3. Under the random allocation scheme, their partitions are i.i.d. draws from
the uniform distribution over the four partitions 123; 1|23; 2|31; 3|12. A reasoning similar
to the example in Section 3.1 yields a probability P = 3/16 of attaining nontrivial common
knowledge.

Suppose instead that the agents have different cognitive capacities, with κ1 = 2/3 and
κ2 = 1. Dropping the first row from Table 1 and adding marginal probabilities, we obtain
Table 2 where we mark by × those profiles for which some nontrivial event is common
knowledge. Adding up the products of the relevant marginal probabilities for all the cells

123 1|23 2|13 3|12 1|2|3
123 1/4
1|23 × × 1/4
2|13 × × 1/4
3|12 × × 1/4

3/27 6/27 6/27 6/27 6/27

marked by ×, we find that the probability of nontrivial common knowledge is now P = 1/3.
Note how increasing the cognitive capacity of the second agent raises the probability of
nontrivial common knowledge. This property of monotonicity holds generally. We state first
the formal result, and then the sharp and important intuition behind it.

Given the number n of states and the number a of agents, let Pa(n;κ1, . . . , κa) denote
the probability that a group of a agents, each with his own cognitive capacity κi, attains
common knowledge of a nontrivial event over the state space Sn. The following monotonicity
property holds; see the Appendix for a proof.

Theorem 2 The probability Pa(n;κ1, κ2, . . . , κa) is (weakly) increasing in each κi.

From a technical viewpoint, this result greatly simplifies the comparative statics concerning
the probability of nontrivial common knowledge under the random allocation scheme. Given
a profile (κ1, . . . , κa) of cognitive capacities, let κ∗ = mini κi and κ∗ = maxi κi. Theorem 2
implies

Pa(n;κ∗, κ∗, . . . , κ∗) ≤ Pa(n;κ1, κ2, . . . , κa) ≤ Pa(n;κ∗, κ∗, . . . , κ∗) (1)
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for any profile (κ1, . . . , κa). Hence, an adequate analysis of the behavior of Pa(n;κ1, . . . , κa)
when κi = κ for all i provides natural upper and lower bounds for its value when the profile
of cognitive capacities is heterogeneous. This makes the assumption of identical cognitive
capacities a convenient simplifying device. Unless otherwise stated, in the following we assume
κi = κ for all i and then write simply Pa(n;κ) for Pa(n;κ, κ, . . . , κ).

As n grows large, the ability of a group of agents to attain nontrivial common knowledge
is heavily influenced by the minimum and maximum levels κ∗ and κ∗ of their cognitive
capacities. When κ∗ is sufficiently large (albeit possibly lower than 1), agents have an ample
cognitive capacity that tends to generate knowledge partitions formed by many small blocks.
The meet of partitions with many small blocks is more likely to contain a nontrivial block;
hence, it is easier to find some nontrivial event that is common knowledge among the agents.
Vice versa, when κ∗ is sufficiently small, the reduced cognitive capacity favors knowledge
partitions with few large blocks, whose meet is likely to be the trivial partition. This makes
it unlikely for nontrivial events to be common knowledge.

Table 2 showcases this intuition by listing the probabilities Pa(n;κ) of nontrivial common
knowledge between two agents under the random allocation scheme, with identical cognitive
capacities and two different choices of the parameters for n = 4, 8, 12, 16, 20. (These proba-
bilities are empirical estimates generated over one million simulations.) The first row reports
the probability values for m = n, with a constant cognitive capacity κ = 1. It is apparent

n = 4 n = 8 n = 12 n = 16 n = 20

m = n 0.666 0.928 0.983 0.996 0.999
m = b

√
nc 0.109 0.008 0.008 0.008 0.001

Table 2: Probability of nontrivial common knowledge between two agents.

that, as n increases, the probabilities are increasing towards one: the cognitive capacity is
sufficiently high to support nontrivial common knowledge when the state space grows large.
The second row, instead, reports the probability values for m = b

√
nc, when the (common)

cognitive capacity κ is approximately 1/
√
n. Now, as n grows large, the cognitive capacity

shrinks sufficiently fast that the probability of nontrivial common knowledge tends to 0.
We extend this intuition in the next section by proving that the asymptotic probability of

attaining nontrivial common knowledge in the random allocation scheme undergoes a phase
transition that depends (almost exclusively) on the limit behavior of the cognitive capacities.
Loosely speaking, when the the minimum cognitive capacity κ∗ does not decrease too fast,
the asymptotic probability of attaining common knowledge between a ≥ 2 agents goes to 1;
on the other hand, if the maximum cognitive capacity κ∗ declines sufficiently rapidly, then
this probability goes to 0. Thus, depending on the strength of the epistemic assumptions
supporting the model, the existence of nontrivial common knowledge may be viewed in the
limit as an event that occurs with probability zero or one.
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4 Results

This section states our two main results. Immediately after, we describe the general strategy
used to develop the proofs. These latter ones are collected in the appendix.

Recall the assumptions made at the beginning of Section 3. There is a finite state space
Sn and there are a ≥ 2 agents. Each agent i = 1, . . . , a is endowed with a partition πi of
Sn representing his knowledge. The partition profile for the set A = {1, . . . , a} of agents is
generated by a stochastically independent random draws over the set of partitions following
the random allocation scheme.

When the size of the state space n grows large, we may view the parameter m = m(n) as
a function of n. Throughout the paper, we write m to simplify notation and switch to m(n)
only when it is necessary to emphasize the dependence on n. Accordingly, we slightly abuse
notation and write κ for the cognitive capacity κ(n) = m(n)/n.

4.1 Statements

Let Pa(n;κ) denote the probability that a group of a ≥ 2 agents attains common knowledge
of a nontrivial event over the state space Sn when they all have the same cognitive capacity
κ. The first result is a sufficient condition under which the asymptotic probability Pa(n;κ)
of nontrivial common knowledge between a ≥ 2 agents goes to 1.

Theorem 3 If the sequence κ(n) satisfies

lim inf
n→∞

κ(n) · lnn > a, (2)

then
lim
n→∞

Pa(n, κ) = 1.

As anticipated, when the cognitive capacity is large and (2) is satisfied, nontrivial common
knowledge asymptotically occurs with probability one. For instance, go back to the first
example in Section 3.2 where we assume m(n) = n and thus κ(n) = 1. Replacing this
into (2), we see immediately that the condition holds for any a ≥ 2 and thus the asymptotic
probability of nontrivial common knowledge is one for any group of a ≥ 2 agents. The special
case of Theorem 3 for m(n) = n was first claimed in Pittel (2000), with an explicit proof
given in LiCalzi and Surucu (2012).

An immediate consequence of Theorem 2 is the following extension of Theorem 3 to
the case of heterogenous cognitive capacities. Given the profile (κ1(n), κ2(n), . . . , κa(n)) of
agents’ cognitive capacities, let k∗(n) = mini κi(n).

Corollary 4 If the sequence κ∗(n) satisfies

lim inf
n→∞

κ∗(n) · lnn > a, (3)

then
lim
n→∞

Pa(n, κ1, κ2, . . . , κa) = 1.
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The second result is a sufficient condition under which the asymptotic probability Pa(n;κ)
of nontrivial common knowledge between a agents with identical cognitive capacities is 0.

Theorem 5 If the sequence κ(n) satisfies

lim sup
n→∞

κ(n) · lnn < 1

8
, (4)

then
lim
n→∞

Pa(n, κ) = 0.

Dual to the above, when the cognitive capacity is small and (4) is satisfied, nontrivial common
knowledge almost surely fails to occur asymptotically. For instance, the second example in
Section 3.2 assumes m(n) = b

√
nc and thus κ(n) ≈ 1/

√
n. Then (4) holds for any a ≥ 2

and thus the asymptotic probability of nontrivial common knowledge is zero for any group
of a ≥ 2 agents. As a remark, we mention that it is possible to improve the constant 1/8
in (4), but this would make the proof more complicated and fail to produce a sharp phase
transition. Nonetheless, the results are sharp up to a multiplicative constant.

Similarly to before, Theorem 2 implies an analog of Corollary 4 for heterogenous cogni-
tive capacities. Given the profile (κ1(n), κ2(n), . . . , κa(n)) of agents’ cognitive capacities, let
k∗(n) = maxi κi(n).

Corollary 6 If the sequence κ∗(n) satisfies

lim sup
n→∞

κ∗(n) · lnn < 1

8
, (5)

then
lim
n→∞

Pa(n, κ1, κ2, . . . , κa) = 0.

Taken together, Theorems 3 and 5 show that the asymptotic probability of attaining com-
mon knowledge of some nontrivial event under homogeneous cognitive capacities undergoes a
phase transition that is driven by the common cognitive capacity κ, with criticality reached
at κ(n) ≈ 1/ lnn. Corollaries 4 and 6 extend these results to the case where agents have
heterogenous cognitive capacities.

4.2 The demonstrative approach

The key observation in our demonstrative approach is that any partition π of the set Sn is
equivalent to a collection of connected components for an undirected graph over the vertex
set Vn = {1, 2, . . . , n}. To see why, it suffices to place an edge between two (distinct) vertices
i and j from Vn if and only if the corresponding elements from Sn belong to the same block.
Then any block of π corresponds to a connected component over Vn, and the partition π
corresponds to the union of all the connected components of the graph G.

For instance, consider Figure 1. The central column uses the traditional set-theoretic
representation to describe the informational partitions of two agents over a set S with six
elements, and their corresponding meet. The right column replicates the same information
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using a graph-theoretic visualization. Remarkably, using this latter representation, the graph
of the meet is generated by joining the edge lists of all the agents’ graphs. Formally speaking,
this operation is known as graph sum.1 When such graph sum is connected, as in the bottom-
right corner of Figure 1, then the agents share only trivial common knowledge.

Set-theoretic Graph-theoretic
representation representation

Agent 1 3 4

1 5

2 6

3 4

1 5

2 6

Agent 2 3 4

1 5

2 6

3 4

1 5

2 6

Meet
3 4

1 5

2 6

3 4

1 5

2 6

Figure 1: The partitions of two agents and their meet.

Thus, given a partition profile (πi, i∈A) for a ≥ 2 agents over the state space Sn, we can
equivalently represent it as a profile (Gi, i∈A) of corresponding informational graphs. The
meet generated by the partition profile (πi, i∈A) is equivalent to the graph-sum Ga(n,m) over
the graphs (Gi, i∈A). In particular, the graph Ga(n,m) is connected if and only if the meet
of (πi, i∈A) is the trivial partition. When we add the assumption that the partition profile
is generated by stochastically independent draws according to the random allocation scheme
described in Section 2 and 3.2, the probability of attaining nontrivial common knowledge is
the same as the probability that Ga(n,m) is not a connected graph.

This turns our goal into a study of the connectedness of the random graph Ga(n,m) when
the number of blocks m for the random allocation scheme is a function of n and n grows
large. In particular, we prove Theorem 3 by showing in the appendix that, when (2) holds,
then

lim
n→∞

P
(
Ga(n,m) is not connected

)
= 1.

Analogously, Theorem 5 is proven by demonstrating that (4) implies

lim
n→∞

P
(
Ga(n,m) is connected

)
= 1.

The proof of this second result is more challenging and necessitates a few intermediate propo-
sitions.

1 We are not aware of any literature on graph-theoretic representations of common knowledge. Fagin et
al. (1995) represent Kripke structures as labeled graphs.
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Remarkably, our results state that there is a phase transition when m(n) ∼ n/ lnn,
similarly to a well-known result in the Erdös-Renyi theory of random graphs, where m(n)
can be interpreted as the inverse of the probability that an edge is open. However, the model
studied in this paper has a richer structure than in the Erdös- Renyi’s construction, due to
the presence of stochastic dependence among the edges.

A Proofs

A.1 Proof of Theorem 2

As discussed in Section 4.2, the probability Pa(n;κ1, . . . , κa) that a group of a agents with
heterogeneous cognitive capacities attains nontrivial common knowledge is equal to the prob-
ability that the graph sum Ga(n, κ1, . . . , κa) over the profile (Gi, i∈A) of their informational
graphs is not connected. Therefore, it suffices to prove that P

(
Ga(n, κ1, . . . , κa) is connected

)
is (weakly) decreasing in any κi. By symmetry, this is accomplished if we show that

P
(
Ga(n, κ′1, κ2 . . . , κa) is connected

)
≥ P

(
Ga(n, κ1, κ2, . . . , κa) is connected

)
when κ′1 < κ1. Recall that m1 = κ1n. For simplicity, we drop all other arguments and write
Ga(m1) instead of Ga(n, κ1, κ2, . . . , κa) so that our goal becomes to prove that

P
(
Ga(m′1) is connected

)
≥ P

(
Ga(m1) is connected

)
for m′1 < m1.

But, by induction, this follows if we prove that the above inequality holds for adjacent values
of m1:

P
(
Ga(m1 − 1) is connected

)
≥ P

(
Ga(m1) is connected

)
for m1 ≥ 2. (6)

Let G−1 denote the graph sum over the profile (Gi, i∈A \ {1}); that is, G−1 is the random
graph generated by all agents except the first one. Since G−1 is a subgraph of Ga(m1),
whenever G−1 is connected it follows that Ga(m1) is connected for any value of m1. On the
other hand, suppose that G−1 is not connected and consider Ga(m1) as the graph sum of G−1
and the random graph G1(m1) for Agent 1.

Clearly, Ga(m1) is connected if G1(m1) carries enough links to fill the gaps among the
connected components of G−1. Since G1(m1) is stochastically independent of G−1, the links
are exchangeable and thus only their number matters to achieve connectedness. The greater
the number of links added by G−1, the more likely Ga(m1) is to be connected. Let N (m1)
denote the (random) number of links associated with G1(m1). Then (6) follows if we show
that N (m− 1) stochastically dominates N (m1) for any m1 ≥ 2.

Recall from Section 3.2 that, given m1, the random allocation scheme distributes n states
over (at most) m1 blocks and the profile X = (N1, N2, . . . , Nm1) of the number of states in
each block has a multinomial distribution. Correspondingly, the random graph G1(m1) has
(at most) m1 connected components, and a component i with Ni nodes carries (N2

i −Ni)/2
links. Therefore,

N (m1) =

m1∑
i=1

N2
i −Ni

2
=

m1∑
i=1

(
N2
i

2

)
− n

2

11



where we use the equality
∑

iNi = n.
To prove that N (m−1) stochastically dominates N (m), we apply the theory of stochastic

majorization. We say that a random vector X′ stochastically majorizes another random vector
X if f(X′) stochastically dominates f(X) for any Borel measurable Schur-convex function
f : Rn → R. A family Xθ of random vectors indexed by a parameter vector θ in Rm is a Schur
family if whenever θ′ majorizes θ then Xθ′ stochastically majorizes Xθ. Application 4.2.a in
Nevius et al. (1977) shows that the family of multinomial distributions over m1 categories
indexed by the vector θ = (θ1, . . . , θm) of probabilities for each category is a Schur family,
when θ1 > 0 and

∑
i θ1 = 1. By continuity, their result extends to the case θm1 = 0 which

generates the the multinomial distribution over m1 − 1 categories as a special case of the
multinomial distribution over m1 categories (under the obvious normalization 00 = 1). Now,
note that N (m − 1) and N (m) are generated by the multinomial distributions respectively
associated with the parameter vectors(

1

m1 − 1
,

1

m1 − 1
, . . . ,

1

m1 − 1
, 0

)
and

(
1

m1
,

1

m1
, . . . ,

1

m1
,

1

m1

)
,

where the first vector majorizes the second. Since the function f(n1, . . . , nm1) =
∑

i(ni/2)−n
is Schur-convex, we obtain that N (m1 − 1) stochastically dominates N (m1). �

A.2 Proof of Theorem 3

As discussed in Section 4.2, we show that limn→∞ P
(
Ga(n,m) is not connected

)
= 1. We

speak only of vertices (or, equivalently, nodes), but recall that each state in Sn corresponds
to a vertex in Vn = {1, 2, . . . , n}. We say that a vertex is single for an agent k when it is not
connected to other nodes in his informational graph Gk; and it is everywhere single when it
is single for each agent. Given n nodes, let

Hi
def
= {the i-th vertex is everywhere single},

be the event that the i-th vertex (out of n) is single for each of the agents. Let

Xn =
n∑
i=1

1lHi

be the random variable counting how many nodes are everywhere single. The strategy of
the proof is the following. Since the graph Ga(n,m) cannot be connected when a vertex is
everywhere single,

{Xn ≥ 1} ⊂ {Ga(n,m) is not connected}

and thus
P(Xn ≥ 1) ≤ P (Ga(n,m) is not connected}) .

We state a lower bound for P(Xn ≥ 1) and show that it converges to 1 when the sequence
m(n) is such that κ(n) satisfies (2).

12



The lower bound is provided by the inequality

P(X ≥ 1) ≥ E[X]2

E[X2]
, (7)

that holds for any non-degenerate random variable X on the non-negative integers. This can
be deduced from the Cauchy-Schwartz inequality

E[X] = E[X1l{X≥1}] ≤ E[X2]1/2 P(X ≥ 1)1/2,

after squaring both sides and rearranging. We need to show that the right-hand side of (7)
converges to 1.

We begin with a few observations. The probability that a vertex i is everywhere single is

P(Hi) =
(m(m− 1)n−1

mn

)a
=
(

1− 1

m

)a(n−1)
.

Hence,

E[Xn] = n
(

1− 1

m

)a(n−1)
.

Moreover, for i 6= j, we claim that

P
(
Hi ∩Hj

)
=
(

1− 1

m

)a(n−1)(
1− 1

m− 1

)a(n−2)
.

To see why, consider the following. Conditional on the first node i being everywhere single,
the other n−1 vertices are uniformly distributed over the remainingm−1 components for each
agent. Hence, the probability that the vertex j is everywhere single is (1− 1/(m− 1))a(n−2).
Combined with the exchangeability of the Hi’s, this yields

E[X2
n] = nP(H1) + n(n− 1)P(H1 ∩H2)

= n
(

1− 1

m

)a(n−1)
+ n(n− 1)

(
1− 1

m

)a(n−1)(
1− 1

m− 1

)a(n−2)
.

Finally, note that (2) implies that we can choose ε > 0 such that

lim inf
n→∞

κ(n) · lnn ≥ a+ ε. (8)

13



Consider now the right-hand side of (7). We have

E[Xn]2

E[X2
n]

=
n2
(

1− 1
m

)2a(n−1)
n
(

1− 1
m

)a(n−1)
+ n(n− 1)

(
1− 1

m

)a(n−1)(
1− 1

m−1

)a(n−2)
=

n
(

1− 1
m

)a(n−1)
1 + (n− 1)

(
1− 1

m−1

)a(n−2) ≥ n
(

1− 1
m

)a(n−1)
1 + (n− 1)

(
1− 1

m−1

)−a(
1− 1

m

)a(n−1) (9)

=
n(

1− 1
m

)−a(n−1)
+ (n− 1)

(
1− 1

m−1

)−a ≥ n[(
1− 1

m

)−am] n
m

+ n
(

1− 1
m−1

)−a
=

n

O
(
n

a
a+ε

)
+ n

(
1− 1

m−1

)−a =
1

O
(
n
−ε
a+ε

)
+
(

1− 1
m−1

)−a ,
where the first inequality follows from 1/m ≤ 1/(m− 1), the second inequality is justified by
using n− 1 ≤ n twice, and the next to last equality obtains because (8) implies[(

1− 1

m

)−am] n
m

= O
([

ea
] n
m

)
= O

(
n

a
a+ε

)
.

Since O
(
n
−ε
a+ε

)
→ 0 and

(
1 − 1

m−1

)−a
→ 1 as n ↑ ∞, the last expression in (9) goes to 1.

Hence, the right-hand side of (7) converges to 1, and this proves the theorem. �

A.3 Proof of Theorem 5

As discussed in Section 4.2, we show that limn→∞ P
(
Ga(n,m) is connected

)
= 1. The strategy

of the proof is the following. We prove that with high probability the random graph Ga(n,m)
contains a connected subgraph whose size is larger than n/2. Then, we show that this
subgraph is very likely to connect all the vertices of Ga(n,m). Thus, we conclude that
Ga(n,m) is very likely to be connected.

We begin with a key estimate. We say that two (nonempty) disjoint sets of states overlap
when there is a block that contains states from both collections. Our first intermediate result
is an exponential bound for the probability that two sets of states overlap. More precisely,
consider the following experiment where each random draw is assumed to be stochastically
independent. There are k ≥ 1 white states and n− k ≥ 1 black states. (Colors are used only
for presentational purposes, and are otherwise irrelevant.) We randomly place each of the
n colored states into the m blocks with uniform probability. Then we repeat the procedure
afresh r − 1 more times. Let Wr(k, n− k) be the event that the two sets of white and black
states overlap; that is, in some of the r repetitions, at least one block contains states of
different colors.

Proposition 7 Suppose n ≥ 4m. Then

P
(
Wr(k, n− k)

)
≥ 1− (4.35)r exp

{
− rn

2m

}
.

14



Proof. By definition, it is clear from symmetry that P
(
Wr(k, n − k)

)
= P

(
Wr(n − k, k)

)
.

Hence, without loss of generality, we assume 1 ≤ k ≤ n/2. We prove the lower bound
by establishing an upper bound for the probability of the complementary event, denoted
W c
r (k, n− k).

Label each block using a different integer from 1 to m. For any nonempty proper subset
M ⊂ {1, . . . ,m} of the blocks, let E(i)

M denote the event that, in the i-th repetition, each
block with a label in M is not empty and the union of the blocks with labels in M contains
all and only the white states. For a fixed repetition i in {1, . . . , r}, the events E(i)

M , with M
running over all nonempty proper subsets of {1, . . . ,m}, are disjoint. Thus, we have

W c
r (k, n− k) =

r⋂
i=1

⋃
M

E(i)

M .

Denote by J(j, `), with 1 ≤ j ≤
(
m
`

)
, a given list of all the subsets of blocks whose cardinality

is 1 ≤ ` ≤ m − 1. For a fixed `, all events E(i)

M with cardinality |M | = ` share the same
probability. Hence, using the independence between repetitions,

P
(
W c
r (k, n− k)

)
=
( (m−1)∧k∑

`=1

(m` )∑
j=1

P
(
E(1)

J(1,`)

))r
=
( (m−1)∧k∑

`=1

(
m

`

)
P
(
E(1)

J(1,`)

))r
≤
( (m−1)∧k∑

`=1

(
m

`

)( `
m

)k(
1− `

m

)n−k)r
.

We now apply the inequality
(
m
`

)
< (em/`)`, which holds for any m ≥ ` ≥ 1. This can be

proved using the Stirling approximation n! ≥ (n/e)n
√

2πn e1/(12n+1) as follows(
m

`

)
<
m`

`!
≤ m`

(`/e)`
√

2π` e1/(12`+1)
=

(em/`)`√
2π` e1/(12`+1)

< (em/`)`.

We thus have[
P
(
W c
r (k, n− k)

)]1/r
<

(m−1)∧k∑
`=1

(em

`

)`( `
m

)k(
1− `

m

)n−k
≤

(m−1)∧k∑
`=1

e`
( `
m

)k−`
exp

{
− (n− k)`

m

}
(as 1− `/m ≤ e−`/m)

≤
(m−1)∧k∑
`=1

exp
{
− (n− k)`

m
+ `
}

(as `/m ≤ 1)

≤
(m−1)∧k∑
`=1

exp
{
− n`

2m
+ `
}

(as k ≤ n/2)

= e−n/(2m)+1

(m−1)∧k−1∑
`=0

exp
{
− n`

2m
+ `
}

≤ 1.6e−n/(2m)+1 ≤ 4.35e−n/(2m),
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where the next to last inequality follows from

(m−1)∧k−1∑
`=0

exp
{
− n`

2m
+ `
}
≤
∞∑
`=0

(
exp

{
− n

2m
+ 1
})`

=
1

1− exp{− n
2m + 1}

(and, as n ≥ 4m)

≤ 1

1− exp{−4m
2m + 1}

≤ 1

1− e−1
≤ 1.6.

�

Recall that our ultimate goal is to show that the probability of the event {Ga(n,m) is
connected} goes to one. To this purpose, we produce a stochastic algorithm that generates
an event Ψn whose occurrence implies that Ga(n,m) is connected. Once this event is defined,
it suffices to show that limn→∞ P(Ψn) = 1.

The construction of such event is accomplished as follows. Recall that there are a agents
and m blocks for each of them. (We toss n labelled states into m blocks to generate the
random partition of an agent.) Arrange these am blocks over a (a ×m) grid A, where the
rows represent the agents and the columns represent the blocks. Let Aij = Anij be the set
of states found in the j-th block (j = 1, . . . ,m) of the i-th agent (i = 1, . . . , a). Since we
distribute a set N = {1, . . . , n} of distinct states over the blocks in each row, it is clear that⋃m
j=1Aij = N for any agent i; moreover, Aij ∩Ak` 6= ∅ only if i 6= k.2

Given the grid A, we construct a second grid A′. For any set of states Aij in A, we copy
a subset of states from Aij and put them into A′ij : we count the number of states τij in Aij
and choose

⌊
τ
2

⌋
of them, randomly and uniformly over the

( τ
b τ2c
)

possibilities. In particular,

if τij = 0 or 1, then we leave A′ij empty.
We construct a special subset of states from the m blocks of the first agent such that the

vertices associated with these states generate a connected component, and moreover they are
very likely to be connected with the other vertices of Ga(n,m).

If necessary, relabel the blocks in M = {1, . . . ,m} to make sure that the first block is
not empty. For simplicity, we identify each block with its label. Now, set `(1) = 1 and pick
the first block. Let M t = M \ {`(1), . . . , `(t − 1)} be the set of (yet) unpicked blocks, and
recursively define `(t) as follows. The subset

U t
def
=
{
k ∈M t : ∃ i ∈ {2, . . . a}, j ∈ {1, . . . ,m} s.t. Aij ∩

( t−1⋃
s=1

A′1`(s)

)
6= ∅ and Aij ∩A′1k 6= ∅

}
is not empty when there exists a block for some agent i 6= 1 that contains states in common
with some block A′1s with s ∈ {`(1), . . . , `(t − 1)}, and at least one state from a block A′k
with k ∈ M t. That is, U t is not empty when there are unpicked blocks from M \M t whose
content is connected with the blocks in M t by means of another agent’s block. When U t

is not empty, we let `(t) point to one of the unpicked blocks in M \M t, randomly chosen

2 We abuse notation in the interest of simplicity. Formally speaking, one should speak of a sets of N states
with identical labels and claim that only blocks in distinct rows may contain states with the same labels.
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with uniform probability among all the blocks in U t. When U t is empty, we set `(t) = ∞
and terminate the procedure. The key point of this construction is that, for `(t) < ∞, the
vertices associated with the states in

⋃t
s=1A1`(s) form a connected component in G(n,m).

Denote by

T
def
= inf{t ≥ 1 :

∣∣ t⋃
s=1

A1`(s)

∣∣ ≥ n/2}.
the smallest time step in the algorithm when more than half of the states of Agent 1 are
linked. (Set T = ∞ if the defining event never occurs.) Given a subset B of states from
N = {1, . . . , n}, denote by Ui(B), with 2 ≤ i ≤ a, the collection of blocks of the i-th agent
that contain states from B. Formally speaking, for 2 ≤ i ≤ a, we set

Ui(B)
def
= {j ∈ {1, . . . ,m} : Aij ∩B 6= ∅}.

We are now ready to define the event

Ψn
def
=
{
T <∞ and max

2≤i≤a

∣∣∣Ui( T⋃
t=1

A1`(t)

)∣∣∣ = m
}

(10)

and prove the claim that its occurrence implies that Ga(n,m) is connected.

Proposition 8
Ψn ⊆ {Ga

(
n,m

)
is connected}.

Proof. Suppose that Ψn holds. For T < ∞, the vertices associated with the states in⋃T
t=1A1`(t) form a connected component in G(n,m). When Ψn holds, there is at least an

agent i 6= 1 for whom |Ui
(⋃T

t=1A1`(t)

)∣∣∣ = m; or, equivalently, we can find states from⋃T
t=1A1`(t) in each of i’s blocks. Therefore, there exists a path in Ga

(
n,m

)
connecting any

pair of vertices, and we can conclude that Ga
(
n,m

)
is connected. �

We remark that the only role played by the A′1`(s) in the definition of Ut is to concatenate

the A1`(t), with t ∈ {1, 2, . . . , T}. This concatenation makes the A′1`(t) dependent on each

other. On the other hand, conditional on its cardinality, the set A1`(t) \A′1`(t) is independent

of T because this latter random variable depends only on the collection A′1i, with 1 ≤ i ≤ m.
We now state a few intermediate results that lead up to estimating P(Ψn).

Proposition 9 Let B a given set of bn/4c states. For any i ∈ {2, . . . , a},

P
(∣∣∣Ui( T⋃

t=1

A1`(t)

)∣∣∣ = m
∣∣ T <∞

)
≥ P

(∣∣∣Ui(B)∣∣∣ = m
)
.

Proof. Suppose T < ∞. By the definition of T , we have Q
def
=
∣∣∣⋃T

t=1A1`(t)

∣∣∣ ≥ n/2. Recall

that by construction |A′1j | =
⌊
|A1j |/2

⌋
≤ |A1j |/2 for any j = 1, . . . ,m. This yields

∣∣∣ T⋃
t=1

A′1`(t)

∣∣∣ =
T∑
t=1

|A′1`(t)| =
T∑
t=1

⌊ |A1`(t)|
2

⌋
≤ Q/2,
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and thus we obtain∣∣∣ T⋃
t=1

(
A1`(t) \A′1`(t)

) ∣∣∣ =
∣∣∣ T⋃
t=1

A1`(t)

∣∣∣− ∣∣∣ T⋃
t=1

A′1`(t)

∣∣∣ ≥ Q−Q/2 = Q/2 ≥ n

4
≥ |B|. (11)

Given the random variable Q, the random variables T and
⋃T
t=1

(
A1`(t) \A′1`(t)

)
are inde-

pendent. Together with (11), the monotonicity of Ui(·) with respect to set inclusion yields
that ∣∣∣Ui( T⋃

t=1

A1`(t) \A′1`(t))
∣∣∣ is stochastically larger than

∣∣∣Ui(B)
∣∣∣.

Since these two random variables cannot exceed m, this proves the Proposition. �

Proposition 10 Define

γn
def
=
bn/4c
m

− lnm (12)

and let B be a given set of bn/4c states. For any i ∈ {2, . . . , a},

P
(∣∣Ui(B)∣∣ = m

)
≥ 1− e−γn .

Proof. Define the event

Gj
def
= {the block Aij contains no states from B}.

Then {∣∣Ui(B)∣∣ = m
}

=
( m⋃
j=1

Gj

)c
and the conclusion follows from the upper bound

P(
m⋃
j=1

Gj) ≤ mP(G1) = m
(

1− 1

m

)(bn/4c)
≤ exp{−(bn/4c /m) + lnm} = e−γn .

�

The next result states a lower bound for the probability that Ga
(
n,m

)
is connected. Once

this is in place, the main theorem will follow easily.

Theorem 11 Suppose n ≥ 4m. Then

P
(
Ga
(
n,m

)
is connected

)
≥(

1− exp{−(a− 1)γn}
)
·
(

1− (4.35)a−1 exp
{
− (a− 1) bn/4c

2m

})m−1
,

(13)

where γn is defined in (12).
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Proof. Recall from Proposition 8 that Ψn ⊆ {Ga
(
n,m

)
is connected}. We can estimate

P(Ψn) and provide a lower bound for the probability that Ga
(
n,m

)
is connected. By the

definition of Ψn in (10), we have

P(Ψn) = P
(

max
2≤i≤a

∣∣∣Ui( T⋃
t=1

A1`(t)

)∣∣∣ = m
∣∣ T <∞

)
· P
(
T <∞

)
. (14)

We estimate the two terms on the right-hand side one at the time, beginning with the

first one. Recall that max2≤i≤a

∣∣∣Ui(⋃T
t=1A1`(t)

)∣∣∣ ≤ m. We have

P
(

max
2≤i≤a

∣∣∣Ui( T⋃
t=1

A1`(t)

)∣∣∣ < m
∣∣ T <∞

)
≤
[
P
(∣∣Ui(B)∣∣ < m

)]a−1
=
[
1− P

(∣∣Ui(B)∣∣ = m
)]a−1

≤ 1− exp{−(a− 1)γn},

(15)

where the first inequality follows from Proposition 9 and the independence between agents’
partitions, and the second inequality from Proposition 10.

Next, we estimate P
(
T < ∞

)
. The event {T < ∞} occurs if and only if, for each

t = 1, . . . ,m, it is true that either {`(t) <∞ and T ≥ t} or {T < t} take place. Hence, if we
define the event

Et
def
=

t⋂
k=1

{{
`(k) <∞, T ≥ k

}
∪ {T < k}

}
for t = 1, . . . ,m, then

{T <∞} = Em. (16)

Note the initial value P(E1) = 1, because `(1) = 1. We get the recursive relation

P(Et) = P
({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ Et−1) · P(Et−1). (17)

We begin by deriving a lower bound for the first probability in the right-hand side of the
above equation. Recall that, for any triplet of events A,B,C, we have

P(A | B) = P(A | B ∩ C) · P(B | C) + P(A | Bc ∩ C) · P(Bc | C).
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Hence,

P
({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ Et−1)
= P

({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ T > t− 1, Et−1

)
· P
(
T > t− 1 | Et−1

)
+ P

({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ T ≤ t− 1, Et−1

)
· P
(
T ≤ t− 1 | Et−1

)
= P

({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ T > t− 1, Et−1

)
· P
(
T > t− 1 | Et−1

)
+ P

(
T ≤ t− 1 | Et−1

)
≥ P

({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ T > t− 1, Et−1

)
·[

P
(
T > t− 1 | Et−1

)
+ P

(
T ≤ t− 1 | Et−1

)]
= P

({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ T > t− 1, Et−1

)
= P

({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ T > t− 1, `(t− 1) <∞
)

= P
(
`(t) <∞

∣∣∣ T > t− 1, `(t− 1) <∞
)

where the next to last equality uses {T > t− 1, Et−1} = {T > t− 1, `(t− 1) <∞}, and the
last equality ignores the redundant events. This shows that

P
({
`(t) <∞, T ≥ t

}
∪ {T < t}

∣∣∣ Et−1) ≥ P
(
`(t) <∞

∣∣∣ T > t− 1, `(t− 1) <∞
)
.

Combining this inequality with (17), we get

P(Et) ≥ P
(
`(t) <∞

∣∣∣ T > t− 1, `(t− 1) <∞
)
· P
(
Et−1

)
=

t∏
k=2

P
(
`(k) <∞

∣∣∣ T > k − 1, `(k − 1) <∞
)
,

where the last step comes from recursion. Applying (16) yields

P
(
T <∞

)
= P(Em) ≥

m∏
t=2

P
(
`(t) <∞

∣∣∣ T > t− 1, `(t− 1) <∞
)
. (18)

It remains to estimate the probabilities in the last product above. Fix any t ≥ 2 and suppose
{T > t− 1, `(t− 1) <∞} holds. Pick one state at random in

⋃t−1
k=1A

′
1`(k) and color it white;

paint in black all the states in the complementary set(
t−1⋃
k=1

A′1`(k)

)c
,

and ignore all other states from
⋃t−1
k=1A

′
1`(k). The total number of black and white states

exceeds bn/4c because T > t − 1. When the white state overlaps with the black ones, then
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`(t) < ∞; that is, Wa−1(1, bn/4c) ⊂ {`(t) < ∞}. Moreover, Wa−1(1, bn/4c) is independent
of the event {T > t − 1, `(t − 1) < ∞} because we chose the only white state at random.
Hence, by virtue of Proposition 7 with r = a− 1 repetitions, we get

P
(
`(t) <∞ | T > t− 1, `(t− 1) <∞

)
≥ P

(
Wa−1(1, bn/4c)

)
≥ 1− (4.35)a−1 exp

{
− (a− 1) bn/4c

2m

}
.

Replacing in (18), we obtain

P
(
T <∞

)
≥
(

1− (4.35)a−1 exp
{
− (a− 1) bn/4c

2m

})m−1
. (19)

Let us put everything together. By Proposition 8, we know Ψn ⊆ {Ga
(
n,m

)
is connected}.

Replacing the two estimates (15) and (19) into (14), we get

P
(
Ga
(
n,m

)
is connected

)
≥ P(Ψn) = P

(
max
2≤i≤a

∣∣∣Ui( T⋃
t=1

A1`(t)

)∣∣∣ = m
∣∣ T <∞

)
· P
(
T <∞

)
≥
(

1− exp{−(a− 1)γn}
)
·
(

1− (4.35)a−1 exp
{
− (a− 1) bn/4c

2m

})m−1
(20)

and the theorem is proved. �

Proof of Theorem 5. It suffices to show that the last expression on the right-hand side
of (20) goes to 1 as n ↑ ∞. We check below that the two bracketed terms in this expression
converge to 1. Note that, if m(n) satisfies (4), then for all sufficiently large n we have
n > 8m lnn, and in particular n ≥ 4m.

Consider the first bracketed term. By (4), for all sufficiently large n, we get

γn =
bn/4c
m

− lnm > b2 lnnc − lnm > lnn+ ln
( n
m

)
− 1 > lnn+ ln (8 lnn)− 1.

As n → ∞, the last expression on the right diverges and thus γn → ∞. Hence, the first
bracketed term on the right-hand side of (20) goes to 1.

Recall a ≥ 2. Substituting n > 8m lnn, the second bracketed term yields the asymptotic
estimate

exp
{
− (a− 1) bn/4c

2m

}
≤ exp

{
− (a− 1) b2m lnnc

2m

}
= O

(
1

na−1

)
= O

(
1

n

)
,

and thus (
1− (4.35)a−1 exp

{
− (a− 1) bn/4c

2m

})m−1
=
(

1− (4.35)a−1O
( 1

n

))m−1
=
(

1−O
( 1

n

))m−1
.

(21)
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For sufficiently large n, the expression 1 − O
(
1
n

)
in parenthesis is larger than 1/2. Observe

that, for some appropriately large constant C, the inequality (1 − x) ≥ e−Cx holds for any
x < 1/2. Thus, for sufficiently large n and C, the last expression in (21) is larger than

exp{−C(m− 1)O(1/n)},

and this converges to 1 because limn→∞m(n)/n = limn→∞ κ(n) = 0 by (4). �
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