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Abstract

A recent literature shows how an increase in volatility reduces leverage.
However, in order to explain pro-cyclical leverage it assumes that bad news
increases volatility, that is, it assumes an inverse relationship between first
and second moments of asset returns. This paper suggests a reason why bad
news is more often than not associated with higher future volatility. We show
that, in a model with endogenous leverage and heterogeneous beliefs, agents
have the incentive to invest mostly in technologies that become more volatile
in bad times. Agents choose these technologies because they can be leveraged
more during normal times. Together with the existing literature this explains
pro-cyclical leverage. The result also gives a rationale to the pattern of volatil-
ity smiles observed in stock options since 1987. Finally, the paper presents
for the first time a dynamic model in which an asset is endogenously traded
simultaneously at different margin requirements in equilibrium.
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1 Introduction

After the recent financial crisis there is almost universal agreement that leverage is

pro-cyclical: leverage is high during normal times and low during anxious or crisis

times. Figures 1 and 2, taken from Geanakoplos [19 − 20], display leverage and asset

prices for the housing market and for AAA securities from 1998-2009. They both

show that leverage is pro-cyclical: prices rise as leverage increases, and prices fall

as leverage decreases. In particular, both leverage and prices collapsed during the

recent financial crisis. This has also been documented by Adrian and Shin [2] and

Gorton and Metrick [22].

Figure 1: Pro-cyclical leverage: housing.

A recent theoretical literature has gone quite far in explaining how leverage is in-

fluenced by volatility in equilibrium, and why there is a positive relationship between

leverage and asset prices. For example, Geanakoplos [17 − 19] shows how supply and

demand determine equilibrium leverage and why higher tail volatility reduces lever-

age. In his model higher leverage increases asset prices. He suggested (in [18]) that

big crises occur when bad news is of a particular kind he called “scary bad news”,
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Figure 2: Pro-cyclical leverage: AAA securities.

because the news raises tail volatility, as well as decreasing expectations, and hence

reduces leverage. Prices then decline not only because of the lower expectations, but

also because of the lower leverage.1 A similar story has been told in Brunnermeier

and Pedersen [7]. Geanakoplos has called this amplification mechanism the Leverage

Cycle.2 Fostel and Geanakoplos [13] extended it further to many assets and adverse

selection.

The leverage cycle mechanism essentially assumes that bad news is associated

with high volatility, so that there is an inverse relationship between first moments

(expected future payoffs ) and second moments (volatility of payoff). This assump-

tion that bad news, at least very bad news, is associated with very high volatility

seems quite plausible. Figure 3 shows the history of the VIX index (the Chicago

Board Options Exchange Volatility Index) a popular measure of the implied volatil-

ity of SP 500 index options. A high value corresponds to a more volatile market and

1Prices also decline because the optimists, who leverage up in the ebullient phase of the cycle,
go disproportionately bankrupt when bad news comes and prices start to fall.

2As opposed to credit cycles from the more classical literature in Macroeconomics (such as Kiy-
otaki and Moore [27] and Bernanke and Gertler [5], which refers to the feedback and co-movement
between borrowing and prices, ignoring changes in their ratio, that is, ignoring changes in leverage.
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therefore more costly options. Often referred to as the fear index, it represents one

measure of the market’s expectation of volatility over the next 30 day period. We

clearly see that the index was very high during the recent financial crisis implying

that bad news indeed came associated with high volatility.
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Figure 3: VIX index.

Without a theory that explains why bad news induces high volatility we are only

half way in explaining the pro-cyclical pattern of leverage observed in the data. The

main contribution of this paper is to shed light on this missing link and hence to

more fully understand the relationship between news, volatility and leverage. We

show that in a model with endogenous leverage and heterogeneous beliefs, agents

have the incentive to invest mostly in technologies that become more volatile in bad

times. Agents choose these technologies because they can be leveraged more during

normal times. In this sense, the paper “closes” the leverage cycle models.

More precisely, we consider a family of three-period projects (assets), all with

exactly the same probabilities of ultimate success or failure in the last period. In

the middle period good or bad news arrives which alters the probabilities of ultimate

success or failure for the projects. For some projects bad news comes associated
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with an increase in future payoff volatility, so first and second moments are inversely

correlated. We call these the “Post-Bad News Volatile projects” (from now on BV).

Extreme BV are projects in which uncertainty is completely resolved after good

news, so all future uncertainty comes after bad news. In other projects good news

induces higher future payoff volatility. We will call these the “Post-Good News

Volatile projects” (from now on GV). Extreme GV are projects in which uncertainty

is completely resolved after bad news, so all future uncertainty comes after good

news.

In our model agents have heterogeneous beliefs and can use these projects or

assets as collateral to borrow money. Leverage is endogenously determined in equi-

librium. Agents are presented with a menu of one-period non-contingent promises,

each collateralized by one unit of asset (or project) and leverage becomes endogenous

since in equilibrium not all promises are actively traded.

Which projects will be chosen to be produced in equilibrium, and therefore what

are the equilibrium fluctuations in volatility and leverage and asset prices as good

news or bad news arrives? The main results are the following.

When we study economies endowed with only one project we prove that: i) the

initial prices of all the extreme GV projects are the same, and lower than all other

projects, ii) the highest initial priced project is always an extreme BV project, iii)

initial leverage is higher in extreme BV projects than in extreme GV projects and

iv) leverage is pro-cyclical in extreme BV projects and counter-cyclical in all the

others.

Why do the projects have such different prices and leverage characteristics in

equilibrium despite their identical final payoff distribution? The key is the effect of

news on leverage.

We prove that in binary trees leverage is endogenously given by the VaR=0 rule,

i.e., the maximum that agents can promise is the worst case scenario in the immediate

future: the price of the project after bad news. In extreme BV projects the price

does not fall much after bad news precisely because bad news is little informative. By

contrast, bad news in extreme GV projects is very informative, drastically lowering

the price. Thus extreme BV projects are more valuable than extreme GV projects

at the beginning because they can be leveraged more. A higher borrowing capacity

implies that all of the asset in the economy can be bought by fewer investors. Since
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there is a continuum of buyers with continuously decreasing valuations, the marginal

buyer then has a more optimistic asset valuation. This raises the project’s price.

Finally, an implication of the VaR = 0 rule is that all projects other than extreme

BV projects exhibit counter-cyclical leverage in equilibrium. Every project is worth

the most after good news but as long as every agent still thinks ultimate failure is

still possible, the same minimum promise will be the only traded promise. Hence the

ratio of promise to collateral will be least just when the price of the asset is highest.

Only in extreme BV projects, where there is no chance of ultimate failure after good

news, will leverage be pro-cyclical.

Our results suggest that agents have an incentive to build BV projects rather than

GV projects because they are worth more at the moment of construction. Financial

firms and banks similarly have an incentive to commit to accounting schemes in which

bad news comes out slowly, because that will enable them to leverage more at the

beginning. It is worth remembering that the subprime crisis of 2007-2009 developed

very slowly over two and a half years. Announcements about bank losses dribbled out

a few billion dollars at a time. Over the first year and a half most pundits maintained

that the crisis would turn out to be minor, even though mortgage security prices and

housing prices were steadily declining. It is interesting that when we extend our

model to N periods, the gap in initial price between extreme BV and extreme GV

projects gets bigger and bigger as N grows and as the amount of information released

per period shrinks.

In the last Section of the paper we augment the model by allowing each of the

continuum of agents to use one unit of labor to produce one unit of either an extreme

BV project or extreme GV project. It turns out there is a scarcity value of producing

the project others do not, so in equilibrium both projects are produced. Moreover,

since we assume good or bad news about each project arrives independently, the tree

is no longer binary. We show that our theorem (for binary trees) that there is no

default in equilibrium no longer holds. Even more interesting, different agents will

leverage the same project differently.

Nonetheless, our main results remain intact. We compute equilibrium explicitly

for a fixed class of utilities and show that no matter what the production parameters,

over 70% of the assets produced are extreme BV. Moreover, though each project is

leveraged differently by different people, the average leverage of the extreme BV

project is higher than the extreme GV project and leverage is pro-cyclical in the BV

project and counter-cyclical in the GV project.
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Thus most of the time when we observe bad news about a project we will observe

high volatility and low leverage, explaining the leverage cycle stylized facts above.

This result also suggests an explanation for the observed “Volatility Smile” in stock

options. This refers to the fact that implied volatility has a negative relationship

with the strike price, so volatility decreases as the strike price increases. Hence,

bad news comes (or are assumed to come) with high volatility. This pattern has

existed for the majority of equities only after the stock market crash of 1987. This

has led some economist like Bates [4] and Rubinstein [28] to explain volatilities

smiles by “crashophobia”. Traders were concerned about the possibility of another

crash and they priced options accordingly. Our result provides a completely different

explanation. Our agents are perfectly rational; they endogenously choose projects

associated with volatile bad news since they can leverage more with them.

The paper is organized as follows. Section 2 discusses the related literature.

Section 3 presents the general model of endogenous leverage. Section 4 characterizes

the equilibrium properties of asset prices and leverage in each project considered as a

separate economy. Section 5 extends the model to encompass production and project

choice. Appendix 1 presents the proofs for Propositions 1 to 5. Appendix 2 presents

the systems of equations used to calculate the equilibrium in the long-run economy

in Section 4 and the equilibrium with production and multiple assets in Section 5.

It also includes robustness analysis for our numerical simulations.

2 Related Literature

Our paper is most closely related to Geanakoplos [18], which (in our language) an-

alyzed the leverage cycle in the context of an extreme BV example. Our paper is

related to a literature on collateral and credit constraints as in Bernanke, Gertler

and Gilchrist [5], Caballero and Krishnamurthy [8], Fostel and Geanakoplos [12],

Holmstrom and Tirole [26], Kiyotaki and Moore [27] and Shleifer and Vishny [29].

More closely, our paper is related to a literature on leverage as in Araujo, Kubler

and Schommer [3], Acharya and Viswanathan [1] , Adrian and Shin [2], Brunnermeier

and Pedersen [7], Cao [10], Fostel and Geanakoplos [13 − 15], Geanakoplos [1719],

Gromb and Vayanos [23] and Simsek [30]. It is also related to work that studies

the asset price implications of leverage as in Hindy [24], Hindy and Huang [25] and

Garleanu and Pedersen [16].
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Some of these papers focus on investor-based leverage as in Acharya and Viswanathan

[1], Adrian and Shin [2] and Gromb and Vayanos [23], and others like Brunnermeier

and Pedersen [7], Cao [10], Fostel and Geanakoplos [12 − 15], Geanakoplos [17 − 19],

and Simsek [30] focus on asset-based leverage. Not all these models present a theory

of endogenous leverage; most of them assume a VaR=0 rule and study the cycli-

cal properties of leverage as well as its asset pricing implications. In Acharya and

Viswanathan [1] and Adrian and Shin [2] the endogeneity of leverage relies on asym-

metric information and moral hazard problems between lenders and borrowers. In

Araujo et al. [3] , Cao [10], Geanakoplos [17 − 19], Fostel and Geanakoplos [13 − 15]

and Simsek [30] endogeneity does not rely on asymmetric information, rather finan-

cial contracts are micro founded by a collateralized loan market.

However, while all of these papers related low leverage with high volatility, none

of them explain or endogenize the type of bad news, but rather assume that bad

news comes with an increase in volatility. Furthermore, our paper is the first model

to solve fully for endogenous leverage in a dynamic economy with a continuum of

agents and more than two successor states. Geanakoplos [17] showed how to make

leverage endogenous by defining a contract as an ordered pair (promise, collateral)

and requiring that every contract be priced in equilibrium, even if it is not actively

traded. In Geanakoplos [17 − 19] , and Fostel and Geanakoplos [13], only one contract

is traded. Araujo et al. [3] , gives a two-period example of an asset which is used

as collateral in two different actively traded contract. Finally papers like Bloom[6],

Campbell and Hentschel [9] and Chanda, Engle an Sokalska [11] provide models that

explain the negative correlation between first and second moment. The main channel

in all these papers is risk aversion as opposed to liquidity.

3 A General Equilibrium Model of Endogenous

Leverage

We describe a simple intertemporal model with uncertainty in which agents can

use their labor to produce assets that pay dividends of the consumption good in

subsequent periods. In each period agents can buy or sell assets and the consumption

good. Most importantly, they can also use the assets as collateral to borrow the

consumption good, either for consumption or for financing purchases of assets. The

collateral value of the assets is a crucial determinant of their equilibrium prices.

8



3.1 Time and Uncertainty

The model is a finite-horizon general equilibrium model, with time t = 0, · · · , T .

Uncertainty is represented by a tree of date-events or states s ∈ S, including a root

s = 0. Each state s �= 0 has an immediate predecessor s∗, and each non-terminal

node s ∈ S\ST has a set S(s) of immediate successors. Each successor τ ∈ S(s) is

reached from s via a branch σ ∈ B(s); we write τ = sσ. We denote the time of s by

the number of nodes t(s) on the path from 0 to s∗.

3.2 Utility

Suppose there is a single storable consumption good c. The von-Neumann-Morgenstern

expected utility of each investor h ∈ H is characterized by a Bernoulli utility for con-

sumption, uh, a discounting factor, δh, and subjective probabilities, qh. We assume

that the Bernoulli utility function for consumption in each state s ∈ S, uh : R+ → R,

is differentiable, concave, and monotonic. Agent h assigns subjective probability qh
s

to the transition from s∗ to s; naturally q0 = 1. Letting q̄h
s be the product of all qh

s′

along the path from 0 to s, we have

Uh =
∑

s∈S

q̄h
s (δh)t(s)uh(cs) (1)

3.3 Production of Assets and Storage

Each investor h has an endowment of the consumption good and labor, denoted by

eh
s ∈ R+ and lhs ∈ R+ in each state s ∈ S. We assume that the consumption good

and labor are present at time 0,
∑

h∈H eh
0 > 0,

∑
h∈H lh0 > 0.

Every agent has direct access to two types of constant-returns-to-scale production

processes in the model: an inter-period and a within-period production. The inter-

period production is a simple way to model durability in the economy. A unit of

consumption warehoused in state s yields one unit of consumption in all successors

states. There is no depreciation.

The second type of production, the within-period production, transforms labor,

l, into a portfolio of assets to be chosen by the investor in the set Zh
s = {(z1

s , ..., z
K
s ) ∈

RK
+ : z1

s + ... + zK
s ≤ lhs}. Any investor can use his lhs units of labor to produce any

combination of assets.
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Each asset k = 1, ..., K pays a dividend dk
s of the consumption good in each state

s. An owner of ys > 0 units of asset k in state s is entitled to the dividends dk
τys in

every immediate successor state τ of s (but not the dividends in state s).

3.4 Financial Contracts and Collateral

A financial contract specifies both a promise and the collateral backing it. Collateral

consists of durable goods, which will be called assets. The lender has the right to

seize as much of the collateral as will make him whole once the loan comes due, but

no more.

We take the consumption good as numeraire and denote the price of asset k in

each state as pk
s . We will focus on one-period non-contingent contracts. We introduce

a compact notation that specifies the contract promise, the collateral, and the state

in which it is made. Contract jk
s promises j units of consumption good in each

successor state of s and the promise is backed by one unit of asset k. Contract

jk
s ∈ Jk

s where Jk
s is the set of all contracts at state s that use as collateral one unit

of asset k. Finally, Js =
⋃

k Jk
s and J =

⋃
s∈S\ST

Js.

The price of contract jk
s in state s is πjk

s . An investor can borrow πjk
s today

at s by selling contract jk
s , that is by promising j tomorrow, provided he holds a

unit of k as collateral. Since the maximum a borrower can lose is his collateral if

he does not honor his promise, the actual delivery of contract jk
s in states τ ∈ S(s)

is min{j, pk
τ + dk

τ}. If the promise j is so small that j ≤ pk
τ + dk

τ ∀τ ∈ S(s), then

the contract will not default. In that case its price defines a riskless rate of interest

(1 + rjk
s ) = j

πjk
s

.

The Loan-to-Value LTV jk
s associated to contract jk

s in state s is given by

LTV jk
s =

πjk
s

pk
s

(2)

The Margin mjk
s associated to contract jk

s in state s is 1 − LTV jk
s . Leverage

associated to contract jk
s in state s is the inverse of the margin, 1/mjk

s and moves

monotonically with LTV jk
s .

Sometimes the same kind of collateral k is used by one agent to back one contract,

and used by another agent to back a different contract, each with different LTV . We

10



define the asset k loan-to-value as the trade volume weighted average of the LTV jk
s

across all contracts actively traded in equilibrium that used asset k as collateral.3

Let ϕh
jk
s

> 0 denote the quantity of sales of contract jk
s by agent h. That obliges

h to hold ϕh
jk
s

units of asset k as collateral at date s, and to deliver ϕh
jk
s
min{j, pk

τ +

dk
τ} in each immediate successor state τ of s. In exchange h receives ϕh

jk
s
πh

jk
s

of the

consumption good in state s. If ϕh
jk
s

< 0, then agent h is a buyer of contract j,

obliging him to pay ϕh
jk
s
πh

jk
s

of the consumption good in state s and entitling him to

receive ϕh
jk
s
min{j, pk

τ + dk
τ} in each immediate successor state τ of s. When ϕh

jk
s

< 0,

agent h is under no obligation to hold collateral.

3.5 Budget Set

Given asset and contract prices ((pk
s , π

jk
s ), s ∈ S, jk

s ∈ Jk
s ), each agent h ∈ H decides

what assets to produce, zs, consumption, cs, warehousing, ws, asset holdings, ys, and

contract sales (borrowing) ϕjk
s

> 0, and purchases (lending), ϕjk
s

< 0, in order to

maximize utility (1) subject to the budget set defined by

Bh(p, π) = {(z, c, w, y, ϕ) ∈ RSK
+ × RS

+ × RS
+ × RSK

+ × (RJs)s∈S\ST
: ∀s

(cs + ws − eh
s − ws∗) +

∑
k pk

s(y
k
s − yk

s∗ − zk
s ) ≤

∑
k yk

s∗d
k
s +

∑
jk
s ∈Js

ϕjk
s
πjk

s − ∑
jk
s∗∈Js∗ ϕjk

s∗min(pk
s + dk

s , j);

zs ∈ Zh
s ;

∑
jk
s ∈Jk

s
max(0, ϕjk

s
) ≤ yk

s ,∀k}

In each state s, expenditures on consumption and warehousing minus endowments

and storage, plus total expenditures on assets minus asset holdings carried over

from the last period and asset output from the within-period technology, can be at

most equal to total asset deliveries plus the money borrowed selling contracts, minus

the payments due at s from contracts sold in the previous period.4 Within-period

production is feasible. Finally, those agents who borrow must hold the required

collateral.

3For a detailed description see [12].
4We take yh

0∗ = 0.
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Let us emphasize two important things. First, notice that there is no sign con-

straint on ϕjk
s
: a positive (negative) ϕjk

s
indicates the agent is selling (buying) con-

tracts or borrowing (lending) πjk
s . Second, notice that we are assuming that short

selling of assets is not possible.5

3.6 Collateral Equilibrium

A Collateral Equilibrium in this economy is a set of asset prices and contract prices,

production and consumption decisions, and financial decisions on assets and contract

holdings ((p, π), (zh, ch, wh, yh, ϕh)h∈H) ∈ (RK
+×RJs

+ )s∈S\ST
×(RSK

+ ×RS
+×RS

+×RSK
+ ×

(RJs)s∈S\ST
)H such that ∀s

1.
∑

h∈H(ch
s + wh

s − eh
s − wh

s∗) =
∑

h∈H yh
s∗ds

2.
∑

h∈H(yh
s − yh

s∗ − zh
s ) = 0

3.
∑

h∈H ϕh
jk
s

= 0,∀jk
s ∈ Js

4. (zh, ch, wh, yh, ϕh) ∈ Bh(p, π),∀h

5. (z, c, w, y, ϕ) ∈ Bh(p, π) ⇒ Uh(c) ≤ Uh(ch),∀h

Markets for consumption, assets and promises clear in equilibrium and agents

optimize their utility in their budget set. As shown in Geanakoplos and Zame [21],

equilibrium in this model always exists under the assumptions we have made so far.

4 News, Asset Prices and Leverage

4.1 The baseline Economy

In this section we assume that there is only one asset. Throughout the paper we

consider assets and projects as synonyms. Suppose there are three periods, t =

0, 1, 2. The single asset, Y , delivers only at the final period. We assume that state

0 has two successors U , for up, and D, for down, representing good and bad news

respectively. Each of these states s ∈ {U,D} has at most two successors sU and/or

12
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Figure 4: Asset payoff description.

sD, at which the asset pays 1 or R < 1, respectively. Thus the set of states is S ⊆
{0, U, D, UU, UD, DU,DD}. Figure 4 depicts a tree consistent with this description.

There is a continuum of heterogenous agents indexed by h ∈ H = (0, 1). The

only source of heterogeneity is in the subjective probabilities qh
s , that agent h believes

measures the likelihood of moving from s∗ to s, where qh
s is a continuous function of

h, for each fixed s ∈ S. If state s exists in the tree, then we suppose that qh
s > 0 for

all h.6 U can be interpreted as good news since we assume that

qh
UU > qh

DU ,∀h (3)

i.e., the probability of full payment after U is higher than after D.

We assume the higher the h, the more optimistic the agent is about all aspects of

the future. So, whenever h > h′, qh
U > qh′

U and, provided s has two successors, qh
sU >

5For a detailed discussion of asset prices implications of short-selling and CDS see Fostel and
Geanakoplos [15] .

6If state s does not exist in the tree, then for brevity we sometimes refer to qh
s anyway, where

we mean qh
s = 0 for all h.
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qh′
sU for s ∈ {U,D}, and, if DU exists in the tree, then

q̄h
UU

q̄h
DU

≡ qh
0U qh

UU

qh
0Dqh

DU
>

qh′
0U qh

DU

qh′
0Dqh′

DU

≡ q̄h′
UU

q̄h′
DU

.

The last inequality means that the more optimistic the agent, the more likely he

thinks the payoff of 1 is reached via the UU route as opposed to the DU route. We

shall refer to all these conditions as the Optimism Assumption.

Agents are risk neutral and do not discount the future. They start at t = 0 with

an endowment of 1 unit of the consumption good and 1 unit of labor. More formally,

Uh =
∑

s∈S q̄h
s cs, eh

0 = 1 and eh
s = 0, s �= 0, and lh0 = 1 and lhs = 0, s �= 0. In this

baseline economy with one asset it is clear that in equilibrium every investor will

transform his labor into one unit of the asset at time 0.

4.2 Projects

We consider a family of projects (assets) k such that every agent h believes every

project has the same probability Qh of ultimate success (UU or DU) and probability

1−Qh of ultimate failure (UD or DD) in the last period. In the intermediate period

agents get good news U , which raises their probabilities of success to qh
UU(k) > Qh,

or they get bad news D, which lowers their probabilities of success to qh
DU(k) <

Qh. Projects k are characterized by the probabilities (qh
U(k), qh

UU(k), qh
DU(k)), where

qh
U(k)qh

UU(k) + (1 − qh
U(k))qh

DU(k) = Qh.

We study first these projects individually as part of the baseline economy just

described and ask and answer: i) which of these projects k, when considered as

different economies, has the highest equilibrium price at 0,? and ii) what are the

cyclical properties of leverage and volatility in each project?

Consider three extreme families of projects. The first one is described in figure

5. If state U is reached in the middle period, uncertainty is completely resolved

since the asset pays for sure 1 at the end. However, if D is reached, uncertainty

remains. D is bad news, but of the sort that not only decreases the expected asset

payoff compared with U but also increases final payoff volatility. This kind of project

represents the situation in which bad news induces higher future volatility. We call

it an extreme “Post-Bad News Volatility” project, or extreme BV for short.7

The second one is described in figure 6. We call this type extreme “Post-Good

News Volatility” projects, or extreme GV for short. If D is reached, all uncertainty is

resolved and the asset pays R for sure. However, if U is reached uncertainty remains.

7This is the example in Geanakoplos [18] and [19].
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Figure 5: Extreme BV Project.

Extreme GV projects represent the situation in which each piece of good news, as

opposed to bad news as in the extreme BV projects, increases expected output and

also induces high future volatility.

Thirdly, consider the “two-period” project shown in Figure 7, in which U is

followed by UU for sure, and D is followed by DD for sure. These projects are

all equivalent to a two-period tree in which 0 is followed immediately by UU with

probability Qh and by DD with probability 1−Qh. Needless to say, the vast majority

of the projects fall into none of these three extreme families.

Propositions 1 and 2 show that for every baseline economy consisting of one

project, equilibrium exists and is unique and that leverage is endogenously deter-

mined in equilibrium and corresponds to the “Value at risk equal zero” rule (VaR=0 ).

Each buyer uses the asset as collateral to promise the value of the asset in the worst

case scenario in the next period, that is borrowing as much as possible while pre-

venting default from occurring in equilibrium. (We call this the maxmin promise).

In propositions 2 to 5 we show that: i) the initial prices of all extreme GV

projects are the same as the two period project, and lower than all other projects, ii)
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Figure 6: Extreme GV Project.

the highest initial priced project is always an extreme BV project iii) initial leverage

is higher in extreme BV projects than in extreme GV projects and iv) leverage is

pro-cyclical in extreme BV projects and counter-cyclical in all the others.

In the remainder of Section 4 we will describe in detail these results and show

numerical simulations for a fixed family of probabilities. All proofs are presented in

appendix 1.

4.3 Endogenous Leverage

Proposition 1 shows that agents will never default in equilibrium, that is, they only

trade VaR=0 contracts. In fact, the proposition proves something stronger, that

only one contract is traded: the maxmin contract.

Proposition 1

Suppose that in equilibrium the max min contract j∗s = minτ∈S(s){pτ + dτ} is

available to be traded, that is j∗s ∈ Js for every non-terminal state s. Then j∗s is
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Figure 7: “Two-period” Project.

the only contract traded in state s, and the risk-less interest rate is equal to zero,

π
j∗s
s = j∗s .

Furthermore, pU > p0 > pD. At each state s with two successors, there is a

marginal buyer hs such that all agents h > hs buy the asset and sell j∗s , and all

agents h < hs buy j∗s and/or hold the consumption good. Finally, h0 > hD, if D has

two successors, and h0 > hU = hD, provided that U and D each have two successors.

Proof: See Appendix 1.

As discussed before, leverage is endogenously determined in equilibrium. In par-

ticular, the proposition derives the conclusion that although all contracts will be

priced in equilibrium, the only contract actively traded is the maxmin contract,

which corresponds to the Value at Risk equal zero rule assumed by many other

papers in the literature.

The equilibrium interest rate must be zero in each state because for simplicity

we assumed that there is no discounting and the consumption good is storable. The
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existence of a marginal buyer in each state comes from the assumption of a continuum

of traders with preferences that move continuously across traders.

Geanakoplos [18] proved a similar proposition for a special case corresponding to

the extreme BV economy. Proposition 1 is more general and encompasses all other

economies characterized by binary trees we will consider in this paper.

The key assumption in the proposition is that the tree is binary. (This implies that

the maxmin promise plus the U Arrow security, obtained by buying the asset while

selling the maxmin contract, positively spans the set of feasible portfolios payoffs.)

Another important ingredient in the proof is the continuum of distinct risk neutral

agents. This allows us to find a marginal buyer who partitions the set of agents into

“optimists” who want to leverage as much as possible and “pessimists” who do not

want to compete with the optimists for any risky portfolio and who therefore end up

holding no risk at all. Another important assumption is that the asset is valued for

its dividends, not for its own sake (unlike housing).

The reader can easily check in the proof that the key to the binary assumption

is that the asset has two distinct payoffs in the immediate successors states of every

node. We could have derived VaR = 0 with three successors states, or even multiple

assets, provided that each asset had exactly two distinct payoffs in the following

period. The proof also does not depend on there being two terminal payoffs 1 and R.

There could just as well have been four final payoffs, a different one for each terminal

node, provided that the tree were still binary. It might be natural to assume that

the worst terminal payoff after D is far worse than the worst terminal payoff after U :

bad news makes a disaster possible. In that case, it is clear from VaR = 0 that the

maxmin promise at D would be much smaller than the maxmin promise at 0 and U ,

and hence leverage would be pro-cyclical in all projects. But we shall not take this

route. We shall tie our hands and assume that there are only two possible terminal

outcomes, 1 and R, but we shall prove that leverage is nonetheless pro-cyclical in

the highest priced projects.

4.4 Equilibrium and Uniqueness

We use Proposition 1 to describe a system of equations that characterizes equilibrium.

First we deal with the case in which each s ∈ {U,D} has two successors. The system

has six equations and six unknowns: p0, pU , pD, h0, hU , hD.
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As explained in the proof of Proposition 1, at each state s there will be a marginal

buyer, hs, who will be indifferent between buying or selling Y . All agents h > hs will

buy all they can afford of Y , i.e., they will sell all their endowment of the consumption

good and borrow to the maxmin using Y as collateral. On the other hand, agents

h < hs will sell all their endowment of Y and lend to the more optimistic investors.

Equating demand and supply, or equivalently, expenditures and revenues, provides

us with the first three equations in our system.

At s = 0 aggregate revenue from sales of the asset is given by p0.
8 On the other

hand, aggregate expenditure on the asset is given by (1− h0)(1 + p0) + pD. The first

term is total income (endowment plus revenues from asset sales) of buyers h ∈ [h0, 1).

The second term is borrowing, which from Proposition 1 is pD. Equating we have

p0 = (1 − h0)(1 + p0) + pD (4)

Let s ∈ {U,D} have two successors sU and sD. Total revenue from asset sales

must equal total expenditure on asset purchases. This gives us

ps = (ps − pD) + (h0 − hs)(p0 + 1) + R (5)

The first term on the RHS is the income after debt repayment of those holding the

asset from period 0. The second term is the income of the new buyers h ∈ [hs, h0),

carried over from period 0. The last term is new borrowing.9

The next equation states that the price at s ∈ {U,D} is equal to the marginal

buyer’s valuation of the asset’s future payoff.

ps = qhs
sU1 + qhs

sDR (6)

8All asset endowments and production add to 1 and without loss of generality are put up for
sale even by those who buy it.

9Notice that since D has two successors, pD > R. All the agents h ∈ [h0, 1) will be forced to
sell off all their assets even though they think the price pD is well below the value they would be
willing to pay if they had the money. At U the original buyers h ∈ [h0, 1) can only borrow R, which
is less than the pD they owe, so they will not be able to roll over all their loans without selling
some assets. Even though the traders h ∈ [h0, 1) think the asset is underpriced at pU , and even
though the news is good, tightening margins force them to sell. Thus fire sales can take place in
equilibrium at both U and D. If s has just one successor then any one agent can buy all the assets
since leverage is 100%. Fire sales do not occur in that case.
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The last equation equates the marginal utility to h0 of one dollar to the marginal

utility of using one dollar to purchase Y at s = 0:

qh0
U pU(qh0

UU/qhU
UU) + qh0

D pD(qh0
DU/qhD

DU)

p0

=
qh0
U 1(qh0

UU/qhU
UU) + qh0

D 1(qh0
DU/qhD

DU)

1
(7)

Notice that payoffs on both sides of the equation are weighted by the ratio

(qh0
sU/qhs

sU) for s ∈ {U,D}. If agent h0 reaches state s ∈ {U,D} with a dollar he

will want to leverage his wealth to the maxmin to purchase Y .10 This will result in

a gain per dollar of
q

h0
sU (1−R)

ps−R
=

q
h0
sU (1−R)

qhs
sU1+qhs

sDR−R
=

q
h0
sU

qhs
sU

.11 Hence the marginal utility of

a dollar at time 0 is given by the probability of reaching U times the dollar times

the marginal utility given above plus the analogous expression for reaching D. This

explains the RHS of equation (7). The LHS has exactly the same explanation once

we realize that the best action for the h0 at s ∈ {U,D} is to sell the asset and use

the cash to buy more of it on margin. This gives six equations in six unknowns.

If s has a unique successor, then the last equation must be modified by replacing

(qh0
sU/qhs

sU) by 1 and dropping the variable hs. Furthermore, the equation in (5) and

the equation in (6) corresponding to state s, are replaced with one simple equation

ps = 1(if s = U) or ps = R (if s = D). Next we prove existence and uniqueness.

Proposition 2

Equilibrium exists and is unique in the baseline economy.

Proof: See Appendix 1.

4.5 Asset Prices and Leverage

In this section we present results that characterize prices and leverage of different

projects.

10Agents are perfectly rational and forward looking. There are other options at s = D, like eating
the good, storing it or buying Y unleveraged, but these are all dominated strategies in equilibrium.

11Another way of understanding the same is to notice that buying Y on margin at s is equivalent
to buying the Arrow security that pays only at up (since at down the net payoff is zero). The price
of this security is given by qhs

sU , the marginal buyer’s valuation. Hence, with a dollar, h0 can buy
1/qhs

sU units which are worth (qh0
sU/qhs

sU ), explaining the ratio.
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Proposition 3

Only extreme BV projects generate pro-cyclical leverage; all other projects (except

the trivial two-period projects) generate counter-cyclical leverage.

Proof: See Appendix 1.

The result is a direct consequence of the VaR = 0 rule. Every project is worth

the most after good news U but as long as every agent still thinks the outcome R is

possible, the minimum promise of R will be the only traded promise at U. Hence the

value ratio of promise to collateral will be least just when the price of the asset is

highest. By contrast, in an extreme BV project U has only one successor, UU, and

so the LTV at U is 100%.

Proposition 4 shows that every extreme GV project has the same price, which

is lower than the price of every other project. Finally, Proposition 5 shows that the

highest priced projects are always exclusively extreme BV projects.

Proposition 4

Every extreme GV project has the same initial price and leverage as the two-

period model, and these are lower than the initial price and leverage of every other

project.

Proof: See Appendix 1.

According to Proposition 4, the extreme GV projects have the lowest initial prices

of all. In Proposition 5 we show that some extreme BV project has the highest price

of all, including projects with four terminal nodes, provided we confine our attention

to projects satisfying one more optimism assumption.

Proposition 5

Let qh
s > 0 be the probabilities in a non-extreme project in the baseline econ-

omy satisfying the optimism conditions and the additional optimism condition that

q̄h
UD/q̄h

DD is weakly decreasing in h.12 Then, there is another set of probabilities qBi
s

satisfying all the optimism conditions that gives rise to a corresponding extreme BV

12The extra assumption guarantees that the higher is h, the more likely an outcome of R came
from DD rather than UD.
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economy with pB
0 > p0. It follows that among projects satisfying all the optimism

assumptions, only an extreme BV project gives the maximal initial price.

Proof: See Appendix 1.

The idea of the proof is as follows. Given an arbitrary project that is not extreme

BV, it is possible to find an extreme BV project such that every agent’s beliefs

conditional on bad news d are the same, (so that if the marginal buyer at 0 stayed

the same, the price after bad news would also be the same, so just as much could

be borrowed in equilibrium at time 0) and for which (qi
Uqi

UU/qi
Dqi

DU)/(qh
Uqh

UU/qh
Dqh

DU)

has risen for all i > h. This makes it more attractive for an optimist to buy the asset

at time 0 by leveraging, rather than waiting to buy the asset after news has arrived,

and thus gives the extreme BV project a higher initial price.

4.6 Numerical Simulations

In this section we present numerical simulations in order to develop more intuition

for all the previous results.

4.6.1 Three-period economy

We simulate equilibrium now in the two extreme cases of BV and GV. To fix ideas,

suppose that in every project, the probability according to h of final good output 1

is

Qh = 1 − (1 − h)2 = qh
Uqh

UU + (1 − qh
U)qh

DU (8)

For the extreme BV economy we take qh
U = qh

DU = h, and for the extreme GV

project we take qh
U = qh

UU =
√

1 − (1 − h)2.

We first solve the system of equations described in Section 4.4 to find the equilib-

rium in the extreme BV project. Figure 8 shows equilibrium prices, marginal buyers

and leverage for R = .2.

The first observation is that the price of the asset falls from 0 to D, from .95 to

.69, a fall of 27%. The marginal buyer at t = 0, h0 = .87, thinks at the beginning

that there is a probability of 1.69% of reaching the disaster state DD, but once D

is reached this probability rises to 13%. This would imply a fall in the price of only
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Figure 8: Extreme BV equilibrium for R = .2.

9%. So why is the crash of 27% so much bigger than the bad news of 9%? There are

three reasons for the crash.

First, as we just saw, is the presence of bad news. The second reason is that after

bad news, the leveraged investors lose all their wealth: the value of the asset at D is

exactly equal to their debt, so they go bankrupt. Therefore even the topmost buyer

at D is below the marginal buyer at 0. Third, with the arrival of bad news, leverage

goes down (margins go up), from LTV0 = .73 to LTVD = .3, so more buyers are

needed at D than at 0. Thus the marginal buyer at D is far below the marginal buyer

at 0: hD = .62 < .87 = h0. The asset falls so far in price at D because every agent

values it less and because the marginal buyer is so much lower. This phenomenon

was called the Leverage Cycle by Geanakoplos [18] and extended further to many

assets and adverse selection by Fostel and Geanakoplos [13].

We solve next the system of equations described in section 4.4 to find the equilib-

rium in the extreme GV project. Figure 9 shows equilibrium prices, marginal buyers

and leverage (LTV) for R = .2.

In equilibrium, the asset price collapses from .89 all the way to .2 given the
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Figure 9: Extreme GV equilibrium for R = .2.

imminent nature of the disaster once D has been reached. It goes up at U to .94.

The marginal buyer at t = 0 and t = U is the same, so optimists roll-over their debt

once they reach U .

These simulations illustrate the propositions. The original price .95 in the extreme

BV is higher than the original price .89 in the extreme GV. Moreover, leverage is

pro-cyclical in the extreme BV and counter-cyclical in the extreme GV. Finally,

leverage is higher at 0 in the extreme BV than in the extreme GV.

4.6.2 Long-run analysis

We extend our previous examples to an N horizon economy. We maintain the same

terminal probabilities for outcomes 1 and R, independent of N . By analogy with the

three period examples, each piece of good news resolves all the uncertainty in the

extreme BV project, and similarly each piece of bad news resolves all the uncertainty

in the extreme GV project. In each project we maintain constant probabilities of

U throughout the tree. The extreme BV and extreme GV projects are described

in figure 10. In the extreme BV project, as before, the imminent occurrence of the
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bad final outcome R is pushed until the very end; thus bad news comes in small

drops, each time with an associated higher future volatility. The probability of each

piece of bad news according to any agent h is now (1 − h)2/N . On the other hand,

in the extreme GV project, good news, instead of bad news, has the property of

revealing little information and inducing high volatility. Each piece of good news

has probability (1 − (1 − h)2)1/N .

We calculate the equilibrium for each project separately. The system of equa-

tions that characterizes the equilibrium in each project and the equilibrium values

are described in detail in Appendix 2. They are the natural (though not obvious)

extension of the three period case. The prices and leverage are noted at some of the

nodes for N = 10 in figure 10.

����. 

1 1 1 

R
p=.9875 
LTV=.9827 

����. 

R R R

1 

t=0 t=1 t=9 t=10 

Extreme BV 

Extreme GV 

p=.9768 
LTV=.9702 

p=.3352 
LTV=.5967 

p=.8928 
LTV=.2240 

p=.9112 
LTV=.2195 

p=.9896 
LTV=.2021 
 

Figure 10: Prices and leverage for extreme BV and extreme GV projects, N = 10
periods for R = .2.

Figure 10 shows that the results of previous sections hold even in longer horizon

economies. The price of the extreme BV project is higher than the price in the

extreme GV project and leverage is pro-cyclical in the extreme BV project and

counter-cyclical in the extreme GV project.
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It is worth remembering that the subprime crisis of 2007-2009 developed very

slowly over two and a half years. Announcements about bank losses dribbled out a

few billion dollars at a time. Over the first year and a half most pundits maintained

that the crisis would turn out to be minor, even though mortgage security prices

and housing prices were steadily declining. It is interesting that when we extend our

model to N periods, the gap in initial price between extreme BV and extreme GV

projects gets bigger and bigger as N grows and the amount of information released

per period shrinks.

5 Does Bad News Come With High Volatility?

In this section we move on to answer a more difficult question: if agents have the

opportunity to use their labor to produce any combination of the two type of projects,

extreme BV and extreme GV, which combination would they choose in equilibrium?

The question is made still more difficult because we assume that news about the

projects are independent, requiring four successors of the initial node. We thus get

a good robustness check of our binary tree conclusions.

It is very tempting to jump to the conclusion that all agents will choose the

extreme BV project since it has a higher price at the beginning as shown in Section

4. Unfortunately, this answer is incorrect. Further inspection reveals that once

everyone else has chosen the extreme BV project, it becomes profitable for any one

agent to produce the extreme GV project. To solve the problem we need to appeal

to the full force of the multiple asset and multiple states model described in section

3.

Suppose there are two assets, X and Y , with independent payoffs. Asset X

corresponds to the extreme BV project and asset Y to the extreme GV project.

Their probabilities are as defined in the numerical simulations in Section 4.6. The

joint tree of payoffs is described in figure 11. Note that state s = 0 now has four

successors. For example, the state (U,U) in the intermediate period corresponds to

the situation in which X (BV ) and Y (GV ) receive good news. The probability of

such event for agent h is h
√

1 − (1 − h)2.

Agents are as in the baseline economy in section 4. They can transform their unit

of labor into a portfolio of different projects at t = 0. The within-period technology
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(U,U) 

0 

(UU,UU)=(1, 1) 

(UU,UD)=(1, R) 

(U,D) 

(D,U) 

(D,D) 

(DU,UU)=(1, 1) 

(DU,UD)=(1, R) 

(UU,DD)=(1, R) 

(DD,DU)=(R, 1) 

(DD,DD)=(R, R) 

(DU,DD)=(1, R) 

(DD,DD)=(R, R) 

(.96, .96) 

(1, .99) 

(1, .2) 

(.75, .93) 

(.69, .2) 

Figure 11: Joint extreme BV and extreme GV economy. Equilibrium prices for
R = .2.

is given by Zh
0 = {(zX

0 , zY
0 ) ∈ R2

+ : zX
0 + zY

0 = 1}, where zX
0 is the share of X (BV

project) and zY
0 the share of Y (GV project).

Figure 11 shows the equilibrium prices at each node for both assets, extreme

BV and extreme GV, respectively for R = .2. At equilibrium, all agents choose to

produce the same mix zX
0 = .7 and zY

0 = .3. But how did we find equilibrium?

5.1 Endogenous Leverage

Before moving on to solve the model, let us go back to the question of endoge-

nous leverage. By Proposition 1, VaR = 0 holds for the intermediate states s ∈
{UU, UD, DU, DD}, since for each asset there are at most two distinct successor

payoff values. Hence, the only contract traded in all intermediate states is the one

that prevents default in equilibrium as in Section 4.

However, the situation is different at time 0 since there are four successor states
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in S(0) with three distinct successor payoff values for each asset,13 and therefore it

is not possible to appeal to the result anymore. In fact, as we show next, for each

asset two types of contracts will be traded in equilibrium: one that promises the

worst-case scenario and another that promises the middle-case scenario. While the

first one is risk-less as before, the second one is not since it defaults in the worst

state. In this model, not only is there default in equilibrium, but also the same asset

is traded simultaneously with different margin requirements by different investors.

Araujo et al.[3] and Fostel and Geanakoplos [14] displayed the same phenomenon in

a two-period model. In the following section we show for the first time that multiple

margins can emerge in equilibrium in a multi-period, dynamic setting. The dynamic

setting is more difficult because the payoffs of the risky bonds issued at date 0 depend

on the endogenous asset prices in the intermediate period.

5.2 Procedure to find the equilibrium

This section describes in detail the procedure to compute the equilibrium. The

reader can skip this subsection and go directly to the next sections in which we

further describe the results. The first thing we do is find an equilibrium for any fixed

zX
0 , zY

0 = 1 − zX
0 . Then using the fact that the two asset prices at the beginning

must be equal in a genuine equilibrium,14 we find the zX
0 that precisely accomplishes

that.15

Given price expectations, buying an asset on margin using a financial contract

defines a down-payment at time 0 and a profile of net payoffs in the future. In this

sense, we can think of nine different securities at time 0, six risky and three risk-less:

i) buying X on margin using the risky bond (the one that promises pX
DU), ii) buying

X on margin using the risk-less bond (which promises the smaller amount pX
DD), iii)

buying Y on margin using the risky bond (the one that promises pY
DU), iv) buying

Y on margin using the risk-less bond (which promises the smaller amount pY
DD), v)

the risky bond that promises pX
DU , vi) the risky bond that promises pY

DU , vii) the

risk-less bond that promises pX
DD, viii) the risk-less bond that promises pY

DD and ix)

warehousing.

13X’s price is 1 at UU and UD and Y ’s price is R at UD and DD.
14In general equilibrium all assets are put to sale first, if one asset had a higher price, investors

would invest all of their labor into that asset, sell it and buy the other.
15Hopefully if we start with a good guess of zX

0 near the true value we will be able to shift zX
0

until prices are equal without changing the equilibrium regime by continuity.
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In equilibrium the risk-less interest rate will be zero, as before, hence all the risk-

less bonds will be priced equal to their respective promise. In addition to zX
0 and zY

0

we need to find the value of 20 variables:

• Asset prices: pX
0 , pY

0 , pY
UU , pX

DU , pY
DU , pX

DD.16

• Risky bond prices at s = 0: πX , πY , where πk is the price of the bond that

promises pk
DU in all successors states in the future.

• Asset marginal buyers: hX
M , hY

M , hX
m, hY

m, hY
UU , hX

DU , hY
DU , hX

DD, where hk
M(hk

m)

corresponds to the marginal buyer of the k asset leveraging with the risky

(risk-less) bond at s = 0.

• Risky bond marginal buyers: hBX , hBY at s = 0.

• Asset purchases at s = 0 leveraging with the risky bond: yX , yY .

Following the same idea as in Section 4, we guess a regime, consisting of a ranking

of the securities. Then for every consecutive pair of securities, we find a marginal

buyer that is indifferent between the two. This defines a system of equations. Once

we get a solution we need to check: first, that pX
DU > pX

DD, so that prices are consistent

with our guess about which bonds are risky and risk-less on X, second, that pY
UU >

pY
DU , so that prices are consistent with our guess about which bonds are risky and

risk-less on Y , and finally, that each regime is genuine, i.e. all the marginal agents

strictly prefer their pair of securities to all the others, and all agents in between

consecutive marginal agents strictly prefer just one security.

We now describe the regimes at each node. Figure 12 shows a graphical illustra-

tion of them and of the equilibrium values of all marginal buyers.

At s = 0, the order is the following. hY
M > hX

M > hX
m > hY

m > hBY > hBX . All

h > hY
M buy Y , sell X and promise pY

DU . hY
M > h > hX

M buy X, sell Y and promise

pX
DU . hX

M > h > hX
m buy X, sell Y and promise pX

DD. hX
m > h > hY

m buy Y , sell X and

promise R. hY
m > h > hBY sell both assets and buy the BY bond (lend in the risky

market collateralized by Y ). hBY > h > hBX sell all assets and buy the BX bond

(lend in the risky market collateralized by X). Finally, h < hBX sell everything, hold

risk-less securities (so lend in the risk-less markets).

16Notice that some prices are obvious, X’s price equals 1 for sure at UU and UD, whereas Y ’s
price is R at UD and DD. It is also clear that at UD all uncertainty is resolved and there is no
more trade.
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Figure 12: Equilibrium regimes for R = .2.

At s = UU there is only trade on asset Y , and the marginal buyer is such that

hX
m > hY

UU > hY
m. As before, all h > hY

UU buy Y and promise R. Below lend and buy

X.

At s = DU , there is trade in both assets, and the marginal buyers are such that

hBY > hX
DU > hY

DU > hBX . h > hX
M go bankrupt since they promise exactly what

they own. h > hX
DU buy X and promise R. hX

DU > h > hY
DU buy Y and promise R.

All h < hY
DU lend.

At s = DD there is only trade on asset X and the marginal buyer is such that

hBY > hX
DD > hBX . All h > hY

m are out of business either because they default or

they have no money left. h > hX
DD buy X and promise R. h < hX

DD lend.

We calculate the equilibrium values and finally check the assumed regime is a

genuine equilibrium. The system of equations used to solved for the equilibrium is

presented in Appendix 2.
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5.3 Agents Prefer the Extreme BV Project

All equilibrium values listed in figures 11 and 12 are consistent with the assumed

regimes and prices as discussed in Appendix 2. The most important thing to observe

is that zX
0 = .7, this is, all agents choose to invest their labor in a portfolio with a

70% share of the extreme BV project. Or equivalently, 70% of the economy invests

in extreme BV projects when given the opportunity to choose. The consequence of

this is that, since we assumed that the two projects were independent, 70% of the

time when bad news occurs they will be of the volatile type, and we will observe

pro-cyclical leverage. This result that at least 70% of the projects are BV is robust

to any choice of the parameter R as discussed in Appendix 2.

5.4 Endogenous Leverage Reconsidered

When the asset could take on at most two immediate successor values, equilibrium

determines a unique actively traded promise (namely the maxmin) and hence lever-

age. With three or more successor values, we cannot expect a simple promise. But

equilibrium still determines the average leverage used to buy each asset.

Equilibrium leverage is presented in table 1. There are eight securities in total,

six risky securities and two risk-less securities (without considering warehousing).

Columns 2 and 3 show the holdings and value of such holdings for each of the

securities. Most importantly, column 4 shows the LTV of each of the four traded

contracts. As was expected, LTV is higher for the risky contracts (they have a higher

promise) for both assets. Finally, column 5 shows the LTV for each asset. Whereas

the LTV for BV is .76, it is only .6 for GV. As defined in Section 2, asset LTV is a

weighted average. For example the LTV for BV is obtained from the total amount

.423+ .091 borrowed using all contracts backed by the BV, divided by the total value

of BV collateral, .966 × .695.

As in Section 4, BV is leveraged more on average than the GV. Second, also

as before, leverage in BV is pro-cyclical while it is counter-cyclical in GV. Third,

notice that even though both projects have the same initial price in equilibrium, for

both assets the price is higher than in Section 3 (.966 versus .95 for BV and .89

for GV ). The main reason for this difference is that now with a different tree, more

contracts are traded in equilibrium, not only the risk-less one. Both assets can be

leveraged more now using risky contracts which promise more (and hence default
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as well). Whereas there is not so much difference between the minimum promise

and the medium promise for BV (.691 and .754) this difference is significant for GV

(.2 and .936). For a precise discussion of the connection between leverage and asset

prices see Fostel and Geanakoplos [14] and [15].

Table 1: Equilibrium Contract and Asset Leverage for R = .2.

  Leverage at s=0       
            

Security Holdings Holdings Value Contract LTV Asset Asset LTV 
            
            

Y lev Medium 0.186 0.180 0.947 X (GV) 0.766 
X lev Medium 0.563 0.544 0.778     

X lev Min 0.132 0.128 0.715 Y (BV) 0.660 
Y lev Min 0.119 0.115 0.207     

Y risky bond 0.186 0.171       
X risky bond 0.563 0.423       

Y riskless bond 0.119 0.024       
X riskless bond 0.132 0.091       

            
            
            
  Leverage at intermediate nodes     
            

  UU UD DU DD   
            

X (BV) 1.000 1.000 0.267 0.290   
            

Y (GV) 0.202 1.000 0.215 1.000   

            

So, why did agents choose extreme BV more? The simple reason is that BV

can be leveraged more at the beginning. So the most optimistic agents will choose

extreme BV. However, as soon as less optimistic people opt for volatile bad news

projects, its price will start to decline and the extreme GV project will start to

become attractive to other investors. This process will continue until prices are

equal in equilibrium.

Our main result also suggests an explanation for the observed “Volatility Smile”

in stock options. This refers to the fact that implied volatility has a negative re-

lationship with the strike price, so volatility decreases as the strike price increases.

Hence, bad news comes (or are assumed to come) with high volatility. The pat-

tern has existed for equities only after the stock market crash of 1987. This has

led some economist like Bates [4] and Rubinstein [28] to explain volatilities smiles

by “crashophobia”. Traders are concerned about the possibility of another crash

and they price options accordingly. Our result provides a completely different ex-

planation. Our agents are perfectly rational, they endogenously choose projects
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associated with volatile bad news since they can leverage more with them. For 70%

of the projects in our economy, their volatility goes up after their price falls.
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Appendix 1: Proofs of Propositions.

Proof of Proposition 1:

Without loss of generality we only consider contracts in state s with j ≤ maxτ∈S(s){pτ+

dτ} since bigger promises are equivalent.

1. All riskless rates are non-positive. If 0 < j ≤ j∗s then πj
s ≥ j.

Consider first the state s = 0, where we know the endowment of consumption

good is non-zero. Somebody has to hold a positive amount of the consumption

good at the end of period s = 0, either to consume or to inventory. But if

πj
s < j they would have done better investing επj

s in contract j and receiving

εj in the next period giving them a higher utility since there is no discounting,

a contradiction. Consider now state s = U and suppose πj
s < j. No agent

would consume his consumption good at s = 0, because he could do better

inventorying it into states U and D, eating if in D and buying contract j in
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state U , and then consuming even more at UU and UD. Hence agents would

enter state U with consumption good, but that leads to a contradiction as

before. The same argument applies to s = D.

2. Observable riskless rates are zero. If 0 < j ≤ j∗s is traded in equilibrium, then

πj
s = j and π

j∗s
s = j∗s .

Nobody would buy j if πj
s > j, since he could do better by inventorying, so

πj
s = j. The seller of j could have sold j

j∗s
units of j∗s instead (and used less

collateral). If he chose not to do so, then π
j∗s
s

j∗s
≤ πj

s

j
= 1, so π

j∗s
s = j∗s .

3. If j with psU + dsU ≥ j > j∗s is traded in equilibrium, then π
j∗s
s = j∗s . Letting

as = ps−j∗s
psU+dsU−j∗s

and bs = 1−as, then πj
s = asj+bsj

∗
s . (The analogous conclusion

would hold if psD + dsD > j > j∗s .)

Contract j pays fully in the up state, but defaults and pays only j∗s = psD +dsD

in the down state. The seller of the contract must have put up the collateral

of one unit of the asset, and therefore is effectively buying an Arrow security

in the U state, paying a price per dollar of

ās =
ps − πj

s

psU + dsU − j

The seller of contract j could instead have acquired U Arrow securities by

buying the asset while borrowing π
j∗s
s , that is making the riskless promise j∗s .

Hence

1

ās

=
psU + dsU − j

ps − πj
s

≥ psU + dsU − j∗s
ps − π

j∗s
s

≥ psU + dsU − j∗s
ps − j∗s

=
1

as

The buyer of contract j could have instead inventoried j∗s consumption goods

and bought (j − j∗s ) U Arrow securities via the risky promise as above, hence

it must be that

πj
s ≤ j∗s + (j − j∗s )

ps − πj
s

psU + dsU − j

and hence that
(j − j∗s )

πj
s − j∗s

≥ psU + dsU − j

ps − πj
s
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It follows that all the previous inequalities must be equalities, otherwise we

would have17

(j − j∗s ) + psU + dsU − j

πj
s − j∗s + ps − πj

s

>
psU + dsU − j∗s

ps − j∗s

a contradiction.

Thus if contract j is traded, then π
j∗s
s = j∗s and πj

s = asj + bsj
∗
s .

4. π
j∗s
s = j∗s

If π
j∗s
s > j∗s , any agent who ends up holding some of the asset would be foolish

not to borrow. At worst the agent uses ε units of the asset as collateral to

sell ε units of contract j∗s , then inventories επ
j∗s
s and pays back εj∗s , getting

extra utility for nothing. From (2) and (3), no matter which contract j he is

borrowing on, π
j∗s
s = j∗s .

5. If s ∈ {U,D} has two successors, then any portfolio that any agent h would

want to hold delivers (csU , csD), with csU ≥ csD and costs ascsU + bscsD, where

as = ps−j∗s
psU+dsU−j∗s

, and bs = 1 − as.

Any feasible portfolio payoff (csU , csD) requires csU ≥ csD. The cheapest way

to buy those payoffs is to inventory csD units of the consumption good and

to buy csU − csD units of the U Arrow security via the purchase of the asset

borrowing using contract j∗s .

6. If s ∈ {U,D} has two successors, then the only contract traded is the maxmin

contract j∗s . Moreover, defining the “marginal buyer” as the unique hs such

that qhs
sU = as, all agents h > hs simply buy the asset and sell j∗s , and all agents

h < hs simply inventory the consumption good and/or buy j∗s .

Let Hs be the set of all traders with

qh
sU

qh
sD

>
as

bs

and let Is be the set of all traders with

qh
sU

qh
sD

<
as

bs

17We make use of the arithmetic property that if a, b, c, d > 0, and a
b > c

d then a+c
b+d > c

d .
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Since every risk neutral agent h wants to hold a portfolio that maximizes his

return per dollar

μh
s =

qh
sUcsU + qh

sDcsD

ascsU + bscsD

it is evident that agents h ∈ Hs will only buy the U Arrow securities and agents

i ∈ Is will only hold portfolios with payoffs csU = csD. In particular, none of

them will buy the contracts j that involve default in the bad state. Since by

our increasing optimism assumption, there is exactly one (measure zero) agent

hs with
qhs
sU

qhs
sD

= as

bs
, we conclude that there is no default (up to measure zero)

in equilibrium, confirming the VaR=0 rule. It follows that no agent i ∈ Is

will hold any of the asset. Hence, no i ∈ Is = {h ∈ [0, 1] : h < hs} would

be able to sell any contracts. All the asset will be held by agents h ∈ Hs =

{h ∈ [0, 1] : h > hs}, but since they only want to hold the U Arrow security,

they must all be buying the asset via selling the maxmin contract. In short, the

maxmin contract is the only contract sold in equilibrium. Note that for h ∈ Hs,

μh
s = qh

sU/as and for i ∈ Is, μi
s = qi

sU + qi
sD = 1 In short, μh

s = max{1, qh
sU/as}.

7. pU > pD.

If U has just one successor, then pU = 1 > pD. If D has just one successor,

then pU > R = pD. Suppose both s ∈ {U,D} have two successors. By step 6

only agents in Is = [0, hs) consume in state sD, which they do by saving all

their wealth at state s. If pU ≤ pD, then by step 6 (ps = qhs
sU1 + qhs

sDR) and

the optimism assumption, we would need hD > hU . Furthermore, every agent

h ∈ [0, 1] would have at least as much wealth at s = D as he does at s = U. But

that would be a contradiction, since the total supply of consumption goods is

the same 1 + R at UD and DD.

8. Any portfolio that any agent h would want to hold at state 0 delivers (cU , cD),

with cU ≥ cD and costs a0cU + b0cD, where a0 =
p0−j∗0
pU−j∗0

and b0 = 1 − a0. The

only contract traded is the maxmin contract j∗0 . Moreover, there is a “marginal

buyer” h0 who is indifferent between buying the asset or holding money at state

0. All agents h > h0 simply buy the asset and sell j∗0 , and all agents h < h0

simply buy j∗0 and/or hold the consumption good.

Because pU > pD, the description of equilibrium in period s = 0 is completely

analogous to the previous cases, except that now we must replace qh
ss′ with

qh
ss′μ

h
s′ . The identical proof goes through provided that we can show that the

utility agent h gets from the cash flows cU > cD is continuous and strictly
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increasing in h. That follows if whenever h > i,

qh
0Uμh

U

qh
0Dμh

D

>
qi
0Uμi

U

qi
0Dμi

D

or equivalently if
qh
0U max{1, qh

UU/qhU
UU}

qh
0D max{1, qh

DU/qhD
DU}

is increasing in h. For h ≥ hD, this means

qh
0Uqh

UU/qhU
UU

qh
0Dqh

DU/qhD
DU

is increasing in h, which follows from the optimism assumption (since qhU
UU and

qhD
DU are fixed as h varies). For hD ≥ h ≥ hU , this means

qh
0Uqh

UU/qhU
UU

qh
0D

which is increasing in h since qh
0U and qh

UU are increasing, and qh
0D is decreasing

in h. For hU ≥ h, this means
qh
0U

qh
0D

which is definitely increasing.

9. Furthermore, pU > p0 > pD. If D has two successors, then h0 > hD, and if both

U and D have two successors, then h0 > hU = hD. If U has two successors and

D has one successor, then h0 = hU .

The marginal buyer h0 must be indifferent between the asset and the con-

sumption good. Since p0 invested in the consumption good yields p0 in both

states U and D, we must have pU > p0 > pD. Since all the buyers h ∈ (h0, 1)

borrow pD ≥ R at 0, they each owe pD ≥ R at U and D. If D has two suc-

cessors, then pD > R and the most any agent can borrow at D is R. Hence all

the agents h ∈ (h0, 1) go completely bankrupt at D and the marginal buyer

hD < h0. If in adddition U has two successors, then the most that can be

borrowed at U is also R. Hence again the agents h ∈ (h0, 1) are forced to sell

some of their assets, and the marginal buyer hU < h0. But then every agent

h ∈ (0, h0) ⊃ [(0, hU) ∪ (0, hD)] has the same wealth 1 + p0 at U and at D. In

order for consumption demand to equal consumption supply at UD and DD,
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we must then have hU = hD = (1 + R)/(1 + p0). If U has two successors and

D has one successor, then hD = R and the agents h ∈ (h0, 1) can just roll over

their loans at U and keep their assets, so h0 = hU = (1 + R)/(1 + p0).�

Proof of Proposition 2:

Consider first the system of six equations, when each state s ∈ {U,D} has two

successors. We shall now reduce the six equilibrium conditions into one equation

F (h) = 0. We proceed to define F . In accordance with step 9 of proposition 1,

let hU = hD = h. For h ∈ [0, 1] let p0(h) = 1+R
h

− 1. Thus we already know

that p0(h) declines as h increases. Define pU(h) = qh
UU1 + qh

UDR and pD(h) =

min{qh
DU1 + qh

DDR, p0(h)}. From equation (4), we have 1 − h0(h) = p0(h)−pD(h)
1+p0(h)

, or

h0(h) = 1+pD(h)
1+p0(h)

or h0(h) = 1+pD(h)
1+R

h. If p0(h) > pD(h), then pD(h) is increasing in h.

Hence h0(h) is increasing in h if p0(h) > pD(h).

Let F (h) =
q

h0(h)
U pU (h)q

h0(h)
UU /qh

UU+q
h0(h)
D pD(h)q

h0(h)
DU /qh

DU

p0(h)
− q

h0(h)
U 1q

h0(h)
UU /qh

UU+q
h0(h)
D 1q

h0(h)
DU /qh

DU

1
.

We will show that at any point h ∈ [0, 1] where F (h) = 0, F is increasing in

h. Note first that as h increases, p0(h) decreases, and this causes F to increase.

Next, note from the preceding paragraph that at any h ∈ [0, 1] , pU(h) > pD(h).

Hence at F (h) = 0, pU(h)/p0(h) > 1 > pD(h)/p0(h). Hence, h0(h) increases when h

increases in a neighborhood of F (h) = 0. By the optimism assumption this means

q
h0(h)
U q

h0(h)
UU /q

h0(h)
D q

h0(h)
DU increases, which (by the previous inequalities) has the effect of

increasing F (h). Finally,
pU (h)/qh

UU

p0(h)
− 1

qh
UU

=
[qh

UU1+qh
UDR]/qh

UU

p0(h)
− qh

UU+qh
UD

qh
UU

= ( 1
p0(h)

− 1) +

( R
p0(h)

− 1)
qh
UD

qh
UU

. This is increasing in h because R
p0(h)

< 1. Exactly the same argument

can be used to show that
pD(h)/qh

DU

p0(h)
− 1

qh
DU

= ( 1
p0(h)

− 1) + ( R
p0(h)

− 1)
qh
DD

qh
DU

is increasing

in h. Thus we have shown that indeed F (h) is increasing in h in a neighborhood of

F (h) = 0. This and the continuity of F proves that there is at most a unique h with

F (h) = 0, and hence that equations (4)-(7) have at most one solution.

Notice that as h → 0, p0(h) → ∞, so F (h) must become negative. But when

h = 1, p0(h) = R = pD(h) < pU(h), so F (1) > 0. Since F is continuous, there must

be an h ∈ [0, 1] with F (h) = 0. This completes the proof in the case where each

s ∈ {U,D} has two successors. If exactly one s ∈ {U,D} has two successors, the

proof can be handled almost the same way.

If both U and D have a single successor, then the proof is modified by defining the

equation F in the single variable h0 as follows. As before, define p0(h0) = 1+R
h0

− 1.

Now define F (h) = Qh01+(1−Qh0 )R
p0(h0)

−1. Raising h0 near where F (h0) = 0 lowers p0(h0)
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and raises Qh0 , both of which increase F. Hence for the reasons above F (h0) = 0 has

a unique solution.�

Proof of Proposition 3:

By proposition 1, buying 1 unit of Y on margin at state s means: selling a promise

of minτ∈S(s)[pτ +dτ ] using that unit of Y as collateral, and paying (ps−minτ∈S(s)[pτ +

dτ ]) in cash. The Loan to Value (LTV) of Y at s is, LTVs =
minτ∈S(s)[pτ+dτ ]

ps
. If

s ∈ {U,D} has only one successor sU , then s must be good news and so s = U .

Moreover, every agent will agree on qh
sU = qh

UU = 1 and so in equilibrium we must

have pU = dUU = 1 and therefore LTVU = 1/1 = 100%. If we are not in the trivial

two-period model, there will still be uncertainty remaining at s = D, i.e. s = D

has two successors, so R < pD < 1 and hence LTVD = R/pD < 100% = LTVU .

Hence, leverage is pro-cyclical. In the other extreme case, if s ∈ {U,D} has only

one successor sD, then s = D, qh
sD = qh

DD = 1, pD = dDD = R and therefore

LTVU = R/R = 100%. Since there will still be uncertainty remaining at s = U , i.e.

s = U has two successors, then R < pU < 1 and hence LTVU = R/pU < 100% =

LTVD. Hence leverage is counter-cyclical. Every project in which both U and D

have two successors gives rise to counter-cyclical leverage because pU > pD and hence

LTVU = R/pU < R/pD = LTVD. �

Proof of Proposition 4:

From the proof of proposition 1 it is evident that the initial price p0 is the same

as in the trivial two-period project. As we saw in the proof of proposition 2, in the

trivial two-period model p0(h0) = 1+R
h0

− 1 = Qh01 + (1 − Qh0)R.

Consider now any other project in which at least one s ∈ {U,D} has two suc-

cessors and a marginal buyer h̄. We know from proposition 1 that the initial price

p0(h̄) = 1+R
h̄

− 1 > Qh̄1 + (1 − Qh̄)R. The first equality is the familiar equality

derived in step 9 of proposition 1. The strict inequality holds because by proposi-

tion 1 the marginal utility to h̄ of holding the consumption good at 0 is 1 (since

the price of Y at U and D is equal to its expected payoffs according to h̄, that is

μh̄
U = μh̄

D = 1) and because h̄ strictly prefers not to buy Y at 0. Thus if h̄ < h0,

then p0(h̄) = 1+R
h̄

− 1 > 1+R
h0

− 1 = p0(h0). But by the optimism assumption, if

h̄ ≥ h0, then p0(h̄) > Qh̄1 + (1 − Qh̄)R ≥ Qh01 + (1 − Qh0)R = p0(h0). Either way,

p0(h̄) > p0(h0).

We now turn to initial leverage, which is R
p0

in the two-period model (and in

any extreme GV project) and p̄D

p̄0
in the other project. Suppose R

p0
≥ p̄D

p̄0
. Then
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the down-payment would be strictly less in the two-period project, while the payoff

1 − R > 1 − p̄D would be strictly more. Hence in order for the marginal buyer in

each economy to be indifferent between the project and money, h0 < h̄0. But that

leads to a contradiction since then from the supply equals demand equation for each

economy, h0 = (1−h0)
p0

+ R
p0

> (1−h̄0)
p̄0

+ p̄D

p̄0
= h̄0.�

Proof of Proposition 5:

We will make use of the following lemma.

Lemma:

Let qh
s (0) > 0 be probabilities for an extreme BV. Let t : [0, 1] → (0, 1) be a

continuous, weakly declining function of h. Define probabilities qh
s (t) ≡ qh

s (th) by the

terminal probabilities

q̄h
UU(t) = q̄h

UU(0) + thq̄
h
DU(0)

q̄h
UD(t) = q̄h

UD(0) + thq̄
h
DD(0)

q̄h
DU(t) = q̄h

DU(0) − thq̄
h
DU(0)

q̄h
DD(t) = q̄h

DD(0) − thq̄
h
DD(0)

obtained by moving th of agent h’s probability from DU and DD to UU and DU ,

respectively. Then the qh
s (t) also satisfy the continuity and optimism assumptions.

Moreover the unique equilibrium initial price p0(0) of the original extreme BV econ-

omy is greater than the unique equilibrium price p0(t).

Proof of lemma:

Notice that for all h, q̄h
UU(t) + q̄h

DU(t) = q̄h
UU(0) + q̄h

DU(0) = Qh and q̄h
UD(t) +

q̄h
DD(t) = q̄h

UD(0) + q̄h
DD(0) = 1 − Qh and

q̄h
DU (t)

q̄h
DD(t)

=
q̄h
DU (0)

q̄h
DD(0)

. Notice that for i > h,

q̄i
UU (t)

q̄i
DU (t)

>
q̄h
UU (t)

q̄h
DU (t)

and
q̄i
DU (t)

q̄h
DU (t)

≥ q̄i
DU (0)

q̄h
DU (0)

. Fix the marginal buyer h at D at the equilibrium

level for the original extreme BV economy qh
s (0). Following the proof of proposition

2, note that pD does not depend on t because
q̄h
DU (t)

q̄h
DD(t)

=
q̄h
DU (0)

q̄h
DD(0)

. Hence h0 is a function of

h alone. Consider the expression F (h, t), where F (h, t) = q̄
h0(h)
UU (t)[( 1

p0(h)
−1)+( R

p0(h)
−

1)
qh
UD(t)

qh
UU (t)

]+ q̄
h0(h)
DU (t)[( 1

p0(h)
−1)+( R

p0(h)
−1)

qh
DD(t)

qh
DU (t)

]. Then F (h, t) = ( 1
p0(h)

−1)(q̄
h0(h)
UU (t)+

q̄
h0(h)
DU (t))−(1− R

p0(h)
)[q̄

h0(h)
UU (t)

q̄h
UD(t)

q̄h
UU (t)

+q̄
h0(h)
DU (t)

q̄h
DD(t)

q̄h
DU (t)

] = ( 1
p0(h)

−1)(q̄
h0(h)
UU (t)+q̄

h0(h)
DU (t))−

(1− R
p0(h)

)[
q̄

h0(h)
UU (t)

q̄h
UU (t)

q̄h
UD(t)+

q̄
h0(h)
DU (t)

q̄h
DU (t)

q̄h
DD(t)]. We wish to show that F (h, t) < 0 for t > 0.
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Since (q̄
h0(h)
UU (t) + q̄

h0(h)
DU (t)) = Qh0(h) is independent of t, and since (1 − R

p0(h)
) > 0,

we must show that G(h, t) > G(h, 0), where G(h, t) =
q̄

h0(h)
UU (t)

q̄h
UU (t)

q̄h
UD(t)+

q̄
h0(h)
DU (t)

q̄h
DU (t)

q̄h
DD(t).

Recall that h0(h) > h, hence
q̄

h0(h)
DU (t)

q̄h
DU (t)

≥ q̄
h0(h)
DU (0)

q̄h
DU (0)

. Moreover, q̄h
UD(0) = 0. At any (h, t),

q̄
h0(h)
UU (t)

q̄h
UU (t)

>
q̄

h0(h)
DU (t)

q̄h
DU (t)

, so G(h, t) > G(h, 0) because q̄h
UD(t) + q̄h

DD(t) = q̄h
UD(0)+ q̄h

DD(0).

Thus we have shown F (h, t) < 0. Hence as in the proof of proposition 2, there must

be h(t) > h with F (h(t), t) = 0. But then by the familiar formula for the initial price

given in (9) of proposition 1 and in proposition 2, p0(h(t)) < p0(h). This concludes

the proof of the lemma.

To prove proposition 5, notice that given any non-extreme project qh
s , we can find

an extreme BV project defined by qh
DD(0) = qh

UD + qh
DD and qh

DU(0) = qh
UD

qh
DU

qh
DD

+ qh
DU

and a weakly decreasing function th (defined by th =
qh
UD

qh
DD(0)

) so that the original

project corresponds to project t in the lemma. �

Appendix 2

Equations for Long Run Extreme BV Projects

Notice that since the final probability of disaster is constant (regardless of N), the

probability of bad news in period k is given by (1 − hk)
2/N .

• pN+1 = R

• pN = (1 − (1 − hN)2/N) + (1 − hN)2/NR

• hN−1 = hN (1+pN )
1+pN+1

• pN−1 =
(1−(1−hN−1)2/N )+(1−hN−1)2/N (1−(1−hN−1)2/N )

(1−(1−hN )2/N )
pN

(1−(1−hN−1)2/N )+(1−hN−1)2/N
(1−(1−hN−1)2/N )

(1−(1−hN )2/N )

• hN−2 = hN−1(1+pN−1)

1+pN

...

• p1 =
(1−(1−h1)2/N )+(1−h1)2/N (1−(1−h1)2/N )

(1−(1−h2)2/N )
p2

(1−(1−h1)2/N )+(1−h1)2/N (1−(1−h1)2/N )

(1−(1−h2)2/N )

• h0 = h1(1+p1)
1+p2

= 1

Tables 2 presents the equilibrium values.
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Table 2: BV equilibrium N=10, R=.2.

            
            

Period Mrg buyer Price bad state Price good state 
Leverage bad 

state 
Leverage good 

state 
            
0 0.9914 0.9875   0.9827   
1 0.9768 0.9704 1.0000 0.9702 1.0000 
2 0.9547 0.9415 1.0000 0.9534 1.0000 

3 0.9244 0.8976 1.0000 0.9327 1.0000 
4 0.8856 0.8372 1.0000 0.9081 1.0000 
5 0.8394 0.7603 1.0000 0.8791 1.0000 
6 0.7870 0.6684 1.0000 0.8441 1.0000 
7 0.7301 0.5642 1.0000 0.7995 1.0000 
8 0.6718 0.4511 1.0000 0.7431 1.0000 
9 0.6038 0.3352 1.0000 0.5967 1.0000 
10   0.2000 1.0000      
            
            

Equations for Long Run Extreme GV Projects

We use the fact that the marginal buyer rollover his debt at every node to build up

the system and then verify that the guess is correct. Notice that the probability of

good news in period k is given by (1 − (1 − hk)
2)1/N .

• p1 = ((1 − (1 − hk)
2)1/N)N + (1 − ((1 − (1 − hk)

2)1/N)N)R

• p1 = (1−h1)+R
h1

...

• pk = ((1 − (1 − hk)
2)1/N)N−k + (1 − ((1 − (1 − hk)

2)1/N)N−k)R

Tables 3 presents the equilibrium values.

System of Equations in Section 5

The system of equations is conceptually an extension of the system in Section 4. In

every state supply equals demand for all the securities. Also marginal buyers are

determined by an indifference condition between investing in two different securities.
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Table 3: GV equilibrium N=10, R=.2.

            
            

Period Mrg buyer Price good state Price bad state 
Leverage good 

state 
Leverage bad 

state 
            
0 0.6340 0.8928   0.2240   
1 0.6340 0.9112 0.2000 0.2195 1.0000 
2 0.6340 0.9205 0.2000 0.2173 1.0000 
3 0.6340 0.9300 0.2000 0.2151 1.0000 
4 0.6340 0.9396 0.2000 0.2129 1.0000 
5 0.6340 0.9494 0.2000 0.2107 1.0000 
6 0.6340 0.9592 0.2000 0.2085 1.0000 
7 0.6340 0.9692 0.2000 0.2064 1.0000 
8 0.6340 0.9793 0.2000 0.2042 1.0000 
9 0.6340 0.9896 0.2000 0.2021  1.0000 
10   1.0000 0.2000      
            
            

As before, all marginal utility of a dollar invested in any security is weighted by

the marginal utility of future actions in each state. Equations (a)-(l) corresponds to

state s = 0. Equations (m)-(n) to state s = UU . Equations (o)-(r) to state s = DU

and the rest to state s = DD.

Notation: qh
s is the probability of state s by buyer h.

1. yY =
(1−hY

M )+αpX
1 (1−hY

M )+(1−α)pY
1 (1−hY

M )

pY
1 −πY

2. yX =
(hY

M−hX
M )+(1−α)pY

1 (hY
M−hX

M )+αpX
1 (hY

M−hX
M )

pX
1 −πX

3. (αhX
m + α(1 − hY

M) − yX) =
(hX

M−hX
m)+(1−α)pY

1 (hX
M−hX

m)+αpX
1 (hX

M−hX
m)

pX
1 −pX

DD

4. ((1 − α)hY
m + (1 − α)(hY

M − hX
m) − yY ) =

(hX
m−hY

m)+αpX
1 (hX

m−hY
m)+(1−α)pY

1 (hX
m−hY

m)

pY
1 −R

5. ((1 − α)(1 − hY
M) + yY ) =

(hY
m−hBY )(1+αpX

1 +(1−α)pY
1 )

πY

6. (α(hY
M − hX

M) + yX) =
(hBY −hBX)(1+αpX

1 +(1−α)pY
1 )

πX

7.
q

hY
M

UU (pY
UU−pY

DU )

pY
1 −πY

√
1−(1−hY

M )2(1−R)

pY
UU−R

=
q

hY
M

UU (1−pX
DU )

pX
1 −πX

√
1−(1−hY

M )2(1−R)

pY
UU−R

+
q

hY
M

UD (1−pX
DU )

pX
1 −πX

8.
q

hX
M

UU (1−pX
DU )

pX
1 −πX

√
1−(1−hX

M )2(1−R)

pY
UU−R

+
q

hX
M

UD (1−pX
DU )

pX
1 −πX =
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=
q

hX
M

UU (1−pX
DD)

pX
1 −pX

DD

√
1−(1−hX

M )2(1−R)

pY
UU−R

+
q

hX
M

UD (1−pX
DD)

pX
1 −pX

DD
+

q
hX

M
DU (pX

DU−pX
DD)

pX
1 −pX

DD

hX
M (1−R)

pX
DU−R

9.
q

hX
m

UU (1−pX
DD)

pX
1 −pX

DD

√
1−(1−hX

m)2(1−R)

pY
UU−R

+
q

hX
m

UD(1−pX
DD)

pX
1 −pX

DD
+

q
hX

m
DU (pX

DU−pX
DD)

pX
1 −pX

DD

hX
m(1−R)

pX
DU−R

=

=
q

hX
m

UU (pY
UU−R)

pY
1 −R

√
1−(1−hX

m)2(1−R)

pY
UU−R

+
q

hX
m

DU (pY
DU−R)

pY
1 −R

hX
m(1−R)

pX
DU−R

10.
q

hY
m

UU (pY
UU−R)

pY
1 −R

+
q

hY
m

DU (pY
DU−R)

pY
1 −R

hY
m(1−R)

pX
DU−R

=

=
q

hY
m

UU pY
DU+q

hY
m

UDR+q
hY

m
DUpY

DU
hY

m(1−R)

pX
DU

−R
+q

hY
m

DDR
hY

m(1−R)

pX
DD

−R

πY

11.
qhBY

UU pY
DU+qhBY

UD R+qhBY

DU pY
DU

hBY (1−R)

pX
DU

−R
+qhBY

DD R
hBY (1−R)

pX
DD

−R

πY =

=
qhBY

UU pX
DU+qhBY

UD pX
DU+qhBY

DU pX
DU

hBY (1−R)

pX
DU

−R
+qhBY

DD pX
DD

hBY (1−R)

pX
DD

−R

πX

12.
qhBX

UU pX
DU+qhBX

UD pX
DU+qhBX

DU pX
DU+qhBX

DD pX
DD

πX = 1

13.

√
1−(1−hY

UU )2(1−R)

pY
UU−R

= 1

14. (1 − α) =
(pY

UU−pY
DU )((1−α)(1−hY

M )+yY )+(1−pX
DU )(α(hY

M−hX
M )+yX)

pY
UU−R

+

(1−pX
DD)(α(hX

M−hX
m)+(αhX

m+α(1−hY
M )−yX))(hX

M−hY
UU )/(hX

M−hX
m)

pY
UU−R

15.
hX

DU (1−R)

pX
DU−R

=

√
1−(1−hX

DU )2(1−R)

pY
DU−R

16.

√
1−(1−hY

DU )2(1−R)

pY
DU−R

= 1

17. α =
(pX

DU−pX
DD)(α(hX

M−hX
m)+(αhX

m+α(1−hY
M )−yX))+(pY

DU−R)((1−α)(hX
m−hY

m)

pX
DU−R

+

((1−α)hY
m+(1−α)(hY

M−hX
m)−yY ))

pX
DU−R

+

pY
DU ((1−α)(1−hY

M )+yY )(hBY −hX
DU )/(hBY −hBX)

pX
DU−R

18. (1 − α) =
(hX

DU−hY
DU )/(hBY −hBX)pY

DU ((1−α)(1−hY
M )+yY )

pY
DU−R

19.
hX

DD(1−R)

pX
DD−R

= 1

20. α =
R((1−k=α)(1−hY

M )+yY )+
hBY −hX

DD
hBY −hBX pX

DD(α(hY
M−hX

M )+yX)

pX
DD−R
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All the values listed in figures 8 and 9 are consistent with the assumed regimes

and prices as discussed in section 4.2. It turns out also that this equilibrium is

genuine in the sense that all agents’ decisions are optimal. The risky bond prices

at date 0 are πX = .7521 on a promise of .7548, corresponding to an interest rate

of .36% and πY = .9156 on a promise of .9366, corresponding to an interest rate of

2.3%. The most leveraged asset purchases at date 0 are yX = .520 and yY = .184.

The verification that each agent is indeed maximizing is available upon request.

Robustness Analysis.

Table 3 presents the proportion invested in the extreme BV project (α) and leverage

for each project at s = 0 for a grid of values of R, the key parameter in our sim-

ulations. We can see that the two properties, that α > .5 (so that investors invest

mostly in the BV technology) and that initial leverage higher in extreme BV than

in extreme GV, are valid for values of R other than .2 considered in the main text.

The grid presents values up to R = .6. For values larger than R = .7 the equilibrium

regime discussed in section 5.2 is not genuine anymore. Two contracts are still traded

for the extreme BV project, but only the riskless contract is traded for the extreme

GV project. It is obvious that for higher values of R, the extreme BV project will

be leveraged even more and hence our result is clearly true.

Table 4: Robustness Section 4.

R α price  LTVBV LTVGV 

          

          

0.2 0.6950 0.9664 0.7662 0.6596 

          

0.3 0.7120 0.9800 0.8135 0.5968 

          

0.4 0.7280 0.9891 0.8582 0.5691 

          

0.5 0.7450 0.9947 0.8978 0.5984 

          

0.6 0.7600 0.9978 0.9323 0.6429 
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