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Abstract

We show that long horizon forecasts from the nonlinear models that are consid-
ered in the study by Rapach and Wohar (2006) cannot generate any forecast gains over
a simple AR(1) specification. This is contrary to the findings reported in Rapach and
Wohar (2006). Moreover, we illustrate graphically that the nonlinearity in the fore-
casts from the ESTAR model is the strongest when forecasting one step-ahead and
that it diminishes as the forecast horizon increases. There exists, therefore, no poten-
tial whatsoever for the considered nonlinear models to outperform linear ones when
forecasting far ahead. We also illustrate graphically why one step-ahead forecasts from
the nonlinear ESTAR model fail to yield superior predictions to a simple AR(1).
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1. Introduction

Rapach and Wohar (2006) examine the out-of-sample forecast performance of two widely
used nonlinear statistical models for real exchange rates. The models examined are the
Band-TAR model of Obstfeld and Taylor (1997, OT) and the ESTAR model of Taylor, Peel
and Sarno (2001, TPS). Their study is important, as it is one of the first to provide a com-
prehensive assessment of the out-of-sample gains from using nonlinear models to fore-
cast real exchange rates. However, some of the conclusions that are drawn in the paper
seem rather surprising and counter intuitive. For example, Rapach and Wohar (2006, pp.
350− 352) conclude that: “Overall, there is robust evidence in Tables 2 and 3 that the OT Band-
TAR and TPS ESTAR models offer forecasting gains at long horizons relative to simple linear
AR models for some countries, especially when we use a weighted MSFE criterion.” Since the
nonlinear models utilised in the study are stable and globally covariance stationary, one
would expect, a priori, long-horizon forecasts from such models to converge to their un-
conditional means, so that no gains from using nonlinear models, relative to simple linear
ones, should be realised when forecasting far ahead. Their conclusion seems even more
surprising given that “[t]here is almost no robust evidence that nonlinear models offer forecasting
gains at short horizons for any country.” (Rapach and Wohar, 2006, p. 352).1

Rapach and Wohar also employ graphical methods to visualise the nonlinearity in the
conditional means of the fitted models and to understand why they fail to provide supe-
rior forecasts at short horizons. Such an approach has recently been advocated by Pagan
(2002) and Breunig, Najarian and Pagan (2003). For that purpose, implied conditional
means of the competing models are plotted. Surprisingly, though, these plots are drawn
in (qt−1, qt) space (see Figures 2 and 3 in their paper), making it extremely difficult to
visually identify any differences between the conditional means of the models. In that
respect, the graphical methods are not utilised in the best possible way, leaving the reader
to ponder about how much the conditional means of the nonlinear models differ from
linear ones. Moreover, there is no motivation provided to support the counter intuitive
claim that forecast gains exist at longer horizons, given that no such gains are realised
over short horizons, although the competing models that are employed in the study are
simple enough to warrant a visual exposition to support this claim.

In the current context, graphical methods, in conjunction with simulation techniques,
are particularly useful to show that the nonlinearity in the conditional means of the OT
and TPS models vanishes the farther ahead the forecast, so that no potential exists what-
soever to outperform linear models at longer forecast horizons. At the one step ahead
horizon, where the nonlinearity in the conditional mean is the strongest and where, thus,
the greatest advantage over a linear forecast is realisable, there are two contributing factors
that lead to forecast failure. The first one relates to the spread of the out-of-sample obser-
vations around the conditional means, yielding a relatively large variance when comput-

1Rapach and Wohar also use interval and density forecasts to evaluate one to three step ahead forecasts.
However, no conclusive results are reached regarding the superiority of any models forecasts (see the dis-
cussion on pp. 352− 356).
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ing the Diebold and Mariano (1995, DM) statistic and hence small t-ratios. This is evident
in all four empirical real exchange rate series that are used. The second factor relates to
the location of the out-of-sample data. For two out of the four series, all out-of-sample
observations cluster around an area that is often labelled as the inner regime, where the
conditional means of the linear and nonlinear models are extremely difficult to distin-
guish. Thus, not only is the denominator in the computation of the DM t-ratio large, the
numerator is also very small, resulting in a minuscule test statistic. These are important
results that can easily be illustrated by plotting the conditional means in (qt−1, ∆qt) space
and superimposing the out-of-sample data.

Band-TAR and ESTAR type models have become extremely popular in the empirical
literature in recent years and are widely used among researchers. For example, the search
for ‘ESTAR’ and ‘exchange rate’ in the Google Scholar search engine yields around 6220
hits. The OT and TPS models in particular have been cited 265 and 198 times respectively
in the Google Scholar Citation Index (GSCI). As a comparison, Hall White’s seminal paper
on data snooping published in 2000 has received 285 citations in the GSCI. 2 Additionally,
from a practitioners perspective it is often of interest to see how well nonlinear models
perform out-of-sample, before a decision regarding the implementation of such models is
reached. It is, therefore, important to provide a careful assessment of the relative forecast
performance of these models.

The purpose of this study is twofold. Firstly, it illustrates graphically why no gains
exist when the ESTAR model is used to forecast one step ahead. Secondly, and more
importantly, it is shown that there exists no potential for the ESTAR model to generate any
gains when forecasting far ahead, as the nonlinearity in the conditional mean dissipates
the farther ahead the forecast. The nonlinearity is the strongest at the one step ahead
horizon. Throughout the paper, heavy emphasis is placed on a graphical exposition of
these findings. Formal statistical tests are also provided to verify the graphical results,
however, without any discussion. All computations presented in this study employ the
same data set that is used by Rapach and Wohar (2006), which is publicly available from
David Rapach’s website: http://pages.slu.edu/faculty/rapachde/Research.htm. 3

The remainder of the paper is structured as follows. Section 2 briefly outlines the
competing models that are employed in the forecast evaluation exercise together with a
comparison of the conditional means that each model generates. Section 3 illustrates why
forecast failure is encountered at the one step ahead forecast horizon, and more impor-
tantly, why there exists no potential whatsoever for the nonlinear models that Rapach
and Wohar consider to generate any gains when forecasting far ahead. This section illus-
trates graphically that the nonlinearity in the forecasts from the ESTAR model of TPS is
the strongest when forecasting one step ahead and that it diminish as the forecast horizon
increases. For horizons greater than 10 steps ahead, no visual signs of nonlinearity in the
conditional means are identifiable. The findings of this study are summarised in Section 4.

2Citations statistics were accessed on December 19, 2007.
3The data can also be obtained in Excel format from http://www.dbuncic.googlepages.com/research.
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2. Preliminary Discussion

2.1. Modelling real exchange rates

Rapach and Wohar (2006) study the out-of-sample forecast performance of the empirical
real exchange rate series of the United Kingdom (UK), Germany, France and Japan using
two nonlinear statistical models. These are the Band-TAR model of Obstfeld and Taylor
(1997) and the ESTAR model of Taylor et al. (2001) (see equations (1) and (2) in their paper).
The Band-TAR model has the following specification:

∆qt =
{
σ inεt if |qt−1| ≤ c (inner Regime)
λ sign (qt−1) (|qt−1| − c) +σoutεt if |qt−1| > c (outer Regime)

(1)

where qt is the log of the real exchange rate,4 εt ∼ N (0, 1) and sign is the signum function.5

Under this specification, the real exchange rate follows a random walk in the regime inner,
ie., when |qt−1| ≤ c, and an equilibrium correcting mechanism in the outer regime (when
|qt−1| > c), with λ being the speed of adjustment parameter.

In the ESTAR model, the real exchange rate evolves according to:

∆qt = − (qt−1 − η) Φ (α, η; qt−1) +σεt

Φ (α, η; qt−1) = 1− exp
{
α (qt−1 − η)2

} (2)

where qt and εt are defined as above in (1), η is the long-run equilibrium level of qt, and
Φ (α, η; qt−1) is the standard exponential regime weighting function which is bounded
between zero and unity. Notice here that the ESTAR model was rewritten in ∆qt form to
make it consistent with the formulation of the Band-TAR model in (1). As in (1), the real
exchange rate has two regimes in the ESTAR model, nevertheless, with the movement
between inner and outer regimes being smooth rather than discrete.

The benchmark model in the forecast evaluation of Rapach and Wohar is a simple
AR(1) specification, parameterised in the standard way as:

∆qt = δ (qt−1 −µ) +σεt (3)

where qt and εt are again defined as above in (1). Note that δ and µ are also, respec-
tively, speed of adjustment parameters and the long-run equilibrium level of qt, but are
not necessarily the same as in the nonlinear formulations given in (1) and (2).

4which is defined as, qt ≡ st + (p∗t − pt), where st is the log of the nominal exchange rate and pt (p∗t ) are
the logs of domestic (foreign) CPIs. See footnote 7 on page 343 in Rapach and Wohar (2006) for more details
on the data.

5The signum function is defined in the standard way as sign (x) equal to 1 if x > 0, 0 if x = 0, and −1 if
x < 0.
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2.2. How do the conditional means compare?

It is evident from the specifications given in (1) and (2) that the nonlinearity in the OT and
TPS models concerns the conditional mean of the real exchange rate. Rapach and Wohar
show plots of the conditional means of qt, given qt−1, in Figures 2 and 3 in their paper
to provide “a visual feel for how ‘close’ the fitted linear and nonlinear AR models are in terms
of their conditional means” (Rapach and Wohar, 2006, p. 357). That is, they show plots of
E(qt|qt−1), where the expectation is taken with respect to the considered models. Never-
theless, they draw these plots in (qt−1, qt) space, making it thereby extremely difficult to
visually distinguish the models from one another.

A considerably more informative way to present the conditional means of these mod-
els is in (qt−1, ∆qt) space. In Figure 1 a comparison of the implied conditional means of
the OT, TPS and AR(1) models is shown under the two different plot scenarios.6 Panel (b)
of Figure 1 plots the original formulation used in Rapach and Wohar (2006). Notice from
this panel how difficult it is to identify any differences between the conditional means of
the models. In (qt−1, ∆qt) space, as plotted in panel (a) of Figure 1, it is much easier to
appreciate how the models differ. One can see that the nonlinear models, as intended,
contain a fairly wide non adjustment region, within which qt follows a random walk pro-
cess. Outside this non adjustment region the conditional mean of the models changes to
allow for a stronger adjustment, relative to the linear specification. The conditional mean
of the AR(1), on the other hand, remains linear over all states of the conditioning variable
and simply ‘slices’ through the two nonlinear models.

Why is this illustration useful? Recall that a k step ahead point forecast is formed
as E(∆qt+k|Ft), where Ft is a conditioning set containing all available information to the
forecasting agent at time t. Given the simple structure of the models in (1) to (3), once the
unknown parameters have been estimated, all that is needed to form the forecast is qt; that
is, one simply evaluates E(∆qt+k|qt). A one step ahead forecast for the ESTAR model, for
example, can be computed analytically as E(∆qT+1|qT) = − (qT − η) Φ (α, η; qT), where
T is the sample size over which the model was estimated, so that qT is the last in sam-
ple observation. Notice then that the one step ahead forecast E(∆qT+1|qT), or alterna-
tively E(∆qt|qt−1), is nothing else but the conditional mean, evaluated at qT. As shown in
panel (a) of Figure 1, this quantity can easily and informatively be visualised in (qt−1, ∆qt)
space. More importantly, though, the out-of-sample data can be superimposed onto a two
dimensional plot of E(∆qt|qt−1) to graphically assess each model’s relative performance.

A k step ahead forecast, denoted by E(∆qT+k|qT), can be formed and utilised in a sim-
ilar way. Although this quantity may not be available in closed form for the nonlinear
models that are considered here, it can still be computed via simulation. The important
point is, nevertheless, that we can plot E(∆qt|qt−k) in a two dimensional space once the
conditional mean has been formed. Any evidence of nonlinearity in E(∆qt|qt−k), and its

6The model parameters are those of Germany, which are provided in Table 1. An AR(1) was estimated on
the German real exchange rate series, yielding estimates of −0.0207 and −0.1448 for δ and µ, respectively.
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importance in the forecasts, can readily be examined from the plots. Representing and
assessing forecasts in this way is appealing, because a visual representation is likely to
provide a much greater insight into why one model dominates over another one than the
outcome of a statistical test.

3. Evaluating forecasts

The forecast results that are reported here focus solely on the TPS model. The reasons
for this are as follows. Firstly, it is evident from panel (a) of Figure 1 that the OT and
TPS models are very similar in terms of their conditional means and hence their forecasts.
Presenting the results for both models is thus repetitive. Secondly, the TPS appears to be
perceived as the more elegant model in the literature due to the transition between the
inner and outer regimes being modelled by a smooth function.

3.1. Why one step ahead forecasts fail

Figure 2 shows plots of the conditional mean E(∆qt|qt−1) under the nonlinear ESTAR
specification of TPS as well as under an AR(1) model, together with a scatter plot of the
out-of-sample data for the four empirical series that are considered. The plots in Figure 2
also show a non-parametric (NP) estimate of E(∆qt|qt−1) together with approximate 95%
confidence intervals, the in-sample data, as well as dashed vertical lines at the 15th and
85th percentiles of qt−1.7 The reason why an NP estimate of E(∆qt|qt−1) is included in the
plots is to provide a purely data based measure of the conditional mean in order to show
what the parametric models are trying to fit. The parameter values that were used to plot
the conditional means of the TPS model are provided in the lower half of Table 1.

What can be seen from Figure 2? The plots displayed in panels (a) and (d) for the em-
pirical real exchange rate series of the UK and Japan are particularly interesting, because
over the entire out-of-sample period that is considered in the study by Rapach and Wohar,
not a single observation exists that falls into the region that would be classified as an outer
regime. In fact, all out-of-sample observations cluster around an area where the forecasts
coming from the nonlinear TPS model and the linear AR(1) are difficult to distinguish. It
is also easy to see from these plots why the weighted version of the DM test statistic that
Rapach and Wohar (2006) use,8 which is designed to give a larger weight to observations
falling into the tails of the distribution of qt−1, is unlikely to provide any advantage over
the unweighted version of the test and why forecast failure is consequently encountered.

For Germany and France, as shown in panels (b) and (c) of Figure 2, the out-of-sample
data points show a somewhat wider dispersion, with approximately half of them falling
below the 15th percentile of qt−1. Nevertheless, it is evident that not a single observation
falls outside the in-sample data range, or close to the extreme ends of the density of qt−1,

7A local linear regression estimator was used to compute the NP conditional mean (see Pagan and Ullah,
1999, p. 104 for details).

8See p. 347 in Rapach and Wohar (2006) for more details on the construction of this test.
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where a weight of unity would be received in the computation of the weighted DM statis-
tic. Notice also that the spread of the out-of-sample data points across the conditional
means of the two models is substantial. This makes forecast evaluation more difficult, as
not only is the difference between the conditional means fairly small over the range of the
out-of-sample observations, but the variance of these data points around the conditional
means is also considerable, resulting in small t-ratios.

As a final comment, notice also from Figure 2 that over the entire data span — includ-
ing the in-and out-of-sample observations — the spread around the conditional means
is fairly large. It is not clear, therefore, whether a strategy to increase the out-of-sample
evaluation period to obtain a better measure of the DM statistic has any potential of being
successful. A ‘too short’ evaluation period is often thought to be one of the contributing
reasons why the DM test fails. For completeness and without discussion, the weighted
and unweighted DM test results are provided in Table 2.

3.2. Why long horizon forecasts cannot succeed

It is again most informative to resort to a graphical exposition to illustrate why long hori-
zon forecasts from the nonlinear TPS model do not have the potential to generate superior
forecasts over a simple linear AR(1). To do so, it is, nevertheless, necessary to use simu-
lation techniques to compute forecasts beyond one step ahead from the TPS model. The
approach that is employed by Rapach and Wohar (2006, see p. 346) is fairly standard.9

They simulate a large number of pseudo realisations of qt+k, ∀ k = 1, ..., 24, given qt,
using the following recursion:

q∗t+1 = qt − (qt − η) Φ (α, η; qt) +σε∗t+1

q∗t+2 = q∗t+1 −
(
q∗t+1 − η

)
Φ
(
α, η; q∗t+1

)
+σε∗t+2 (4)

...

q∗t+k = q∗t+k−1 −
(
q∗t+k−1 − η

)
Φ
(
α, η; q∗t+k−1

)
+σε∗t+k

where q∗t+k is the k step ahead pseudo realisation of qt+k given qt and random draws{
εt+ j

}k
j=1. The k step ahead conditional forecasts are then constructed by simply taking

the arithmetic mean over the simulated pseudo realisations of q∗t+k.
An alternative approach that can be used to obtain the forecasts is to simulate a large

number of realisations of qt from the ESTAR model in (2) and then compute the condi-
tional mean directly using non-parametric methods. The benefit of this approach is that
it allows us to evaluate E(∆qt|qt−k) over an arbitrary range of values of qt−k. This way
one can evaluate forecasts at a sufficient number of points over a given interval, mak-
ing it possible to draw a line and examine E(∆qt|qt−k) visually. Any nonlinearities in
the conditional forecasts should then be identifiable from the plots of the NP estimates of

9See section 3.5 in Franses and van Dijk (2000) for a textbook style treatment.
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E(∆qt|qt−k). With the recursive scheme of (4) one generally only evaluates the forecasts at
a particular set of conditioning values, which are typically the out-of-sample data points.
Although these points could also be used in a scatter plot to visualise the shape of the
forecasts, this strategy is rarely employed in the literature.

To illustrate how this approach can be put into practice, 4 million observations of qt

are simulated from the parameter estimates of the UK series in Table 1. A non-parametric
estimate of E(∆qt|qt−k) over 100 equally spaced points in the interval [min (qt), max (qt)]
is computed and plotted in Figure 3. Short horizons, with k = [1, 2, 3, 5], are displayed in
panel (a). Panel (b) shows conditional means corresponding to longer horizons, ie., when
k = [10, 15, 20, 25]. It is evident from panel (a) of Figure 3 that the nonlinearity in the
forecasts is strongest at the one step ahead horizon, that is, when k = 1. The curvature,
as well as the steepness, of the conditional means decreases at the transition points as the
forecast horizon increases. For longer horizons shown in panel (b) of Figure 3 one can see
that for forecasts of 10 steps ahead or longer (ie., when k ≥ 10) no signs of nonlinearity
remain. One can also see in panel (b) that as the forecast horizon increases, E(∆qt|qt−k)
tends towards 0 for all values of the conditioning variable qt−k, which is in line with our
prior expectations.

How do long horizon forecasts from the nonlinear model compare to linear AR(1)
forecast? Figure 4 shows 24 step ahead forecasts for all four empirical real exchange rate
series that are considered by Rapach and Wohar. 24 step ahead forecasts were chosen here
as they show the highest level of statistical significance, together with the smallest relative
ESTAR/AR(1) root mean squared forecast error (RMSFE) (see the entries for France and
Germany in Table 3 in Rapach and Wohar, 2006). Note that the structure of the plots that
are shown in Figure 4 have the same format as the ones that were given earlier. However,
since the conditional mean of the ESTAR model had to be simulated, we also computed
the 24 step ahead forecasts using the recursive scheme of (4). These were evaluated at
the out-of-sample data points, using 10, 000 draws over which the arithmetic mean was
taken. These are marked by black circles in Figure 4.

Observe initially from Figure 4 how closely the forecasts generated from the recursive
scheme of (4) overlap with the NP estimate of E(∆qt|qt−24) on the simulated data. This
is shown here to provide confidence that the two approaches generate equivalent results.
Notice also from these plots that, as expected, there exist no visual signs of nonlinearity
in the conditional means, and therefore the forecasts. In fact, the conditional means of
the nonlinear ESTAR model overlap very closely with those generated from the linear
AR(1). Forecast gains, therefore, cannot be realised. For completeness, and again without
discussion, formal statistical test results are provided in Table 2. Only the unweighted
version of the DM test is reported due to the lack of nonlinearity in the TPS forecasts.

It should be mentioned here that an attempt was made to understand how the results
reported in Rapach and Wohar were arrived at. For that purpose, we obtained the code
that is provided on David Rapach’s website to compute multi step ahead forecasts with
the file Tps frap.prg for the French Franc real exchange rate series. The surprising result
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that came out of this exercise was that the RMSFE decreased as we increased the horizon of
the forecast. For example, setting hmax (the forecast horizon) on line 396 to 30, 40, 50, 60,
and 70 months resulted in RMSFE of 0.83, 0.82, 0.80, 0.77, and 0.67, respectively.10 For
any stable and covariance stationary time series model, this ratio should tend to unity. It
seems, therefore, that there is an error in the code that was utilised by Rapach and Wohar
(2006).

4. Conclusion

This note has reevaluated the out-of-sample forecast performance of the ESTAR model
as recently examined in Rapach and Wohar (2006). Contrary to the findings reported in
Rapach and Wohar (2006) that nonlinear models offer forecast gains over a simple linear
AR(1) specification when forecasting far ahead, we have shown that no such gains exist.
Moreover, we have illustrated with graphical methods that the nonlinearity in the fore-
casts of the ESTAR model dissipates as the forecast horizon increases. The nonlinearity in
the forecasts is strongest when forecasting one step-ahead. Forecasts of 10 steps ahead or
longer fail to show any visible signs of nonlinearity so that no potential exists whatsoever
for the ESTAR model to outperform a simple AR(1) model when forecasting far ahead.

Another interesting result that was presented in this note relates to the one step-ahead
forecasts. Although it was shown that the potential to generate superior forecasts is the
largest at the one step-ahead horizon as the nonlinearity is the strongest here, forecast fail-
ure still prevails due to the following two reasons. Firstly, for two out of the four empirical
real exchange rate series, all out-of-sample observations cluster around an area where the
forecasts from the two competing models are extremely hard to discriminate. Secondly, in
all four series the are considered the spread of the out-of-sample data around the condi-
tional means is relatively large, resulting in a substantial variance and hence small t-ratios
when computing the DM test statistic. Thus, not only is the difference between the fore-
casts of the competing models over the range of the out-of-sample data minuscule, but the
precision available to conduct statistical tests is also low. These are important empirical
findings that needed to be highlight.

10To gain speed, the section that computes the modified DM statistic from line 473 onwards until the start
of procedures was commented out. Also, the following commands were added to print the result to the
screen:
gnon 24=g non[.,hmax];glin 24=g lin[.,hmax];
"RMSE ESTAR/AR: "sqrt(meanc(gnon 24))/sqrt(meanc(glin 24));?;
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Tables and Figures

Table 1: Band-TAR and ESTAR Model Parameters.

Band-TAR United Kingdom Germany France Japan

λ −0.084469 −0.051648 −0.047584 −0.057013

c 0.163408 0.111319 0.107238 0.254211

σout 0.044440 0.037765 0.037590 0.029530

σ in 0.032755 0.031245 0.030720 0.035618

ESTAR United Kingdom Germany France Japan

α −0.449111 −0.263792 −0.289013 −0.164703

η 0.149670 −0.006640 0.048919 0.514759

σ 0.033375 0.034507 0.033061 0.033393

Notes: Band-TAR and ESTAR model parameter estimates as contained in the GAUSS files available on David
Rapach’s website: http://pages.slu.edu/faculty/rapachde/Research.htm.

Table 2: Unweighted and weighted DM test results for one step-ahead forecast.

Estimates United Kingdom Germany France Japan

d
(se.)

[t−statistic]

−6.63× 10−6

(4.63×10−6)
[−1.4334]

2.11× 10−5

(3.13×10−5)
[0.6724]

2.57× 10−5

(2.99×10−5)
[0.8599]

−7.81× 10−6

(1.04×10−5)
[−0.7498]

ωd
(se.)

[t−statistic]

−3.68× 10−6

(1.15×10−6)
[−3.1954]

8.76× 10−6

(1.87×10−5)
[0.4694]

1.48× 10−5

(2.01×10−5)
[0.7382]

−3.06× 10−6

(2.89×10−6)
[−1.0578]

Notes: Unweighted (d) and weighted (ωd) Diebold and Mariano (1995, DM) test statistics. Standard errors
(se.) are of the Newey and West (1987, NW) type, with a truncation lag of 10. d was calculated as the arithmetic
mean of dt = (εAR

t|t−1)
2 − (εTPS

t|t−1)
2 over the out-of-sample period, with εAR

t|t−1 and εTPS
t|t−1 being the one step ahead

forecast errors from the AR(1) and TPS models, respectively. The small sample correction factor of Harvey,
Leybourne and Newbold (1997) was used in the construction of both unweighted and weighted test statistics.
ωd was computed as the arithmetic mean ofωtdt, whereωt = 1− f̂ (qt)/max[ f̂ (qt)] and f̂ (qt) is an estimate of
the density function of qt, evaluated at the out-of-sample data points.

Table 3: Unweighted DM test results for 24 step-ahead forecast.

Estimates United Kingdom Germany France Japan

d
(se.)

[t−statistic]

−2.48× 10−8

(1.54×10−7)
[−0.1607]

1.89× 10−7

(7.48×10−7)
[0.2531]

6.50× 10−8

(5.94×10−7)
[0.1095]

2.26× 10−7

(4.76×10−6)
[0.4757]

Notes: The unweighted DM test statistic d and its standard error (se.) were computed as in Table 2.
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Figure 1: Plots of the implied conditional means. The thick green line and the thin red line show respectively
the implied conditional means of the Band-TAR model of Obstfeld and Taylor (1997, OT) and the ESTAR
model of Taylor et al. (2001, TPS). The dashed blue line corresponds to the implied conditional mean of an
AR(1).
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Figure 2: One step-ahead conditional forecasts. The thick green and thin blue lines show the one step-ahead
conditional forecasts of the TPS and AR(1) models, respectively. Red circles are the non-parametric conditional
means, with 95% confidence intervals drawn as blue shading. Grey crosses mark the in-sample data. Vertical
dotted lines are drawn at the 15th and 85th percentiles of qt−1. Black asterisks denote the out-of-sample data.
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(a) k = 1, 2, 3, 5.
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(b) k = 10, 15, 20, 25.

Figure 3: Conditional means corresponding to k step ahead forecast. These were obtained as non-parametric
estimates of the conditional mean E(∆qt|qt−k) from 4 million simulated pseudo observations from the ESTAR
model of TPS under the parameter setting of the UK series. The conditional mean E(∆qt|qt−k) was computed
at 100 equally spaced points over the interval [min (qt), max (qt)].
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Figure 4: 24 step-ahead conditional forecasts. The content of these plots is the same as in Figure 2. Black
circles are superimposed to denote the 24 step-ahead conditional forecast computed from the recursive scheme
outlined in (4). The conditional forecasts were averaged over 10, 000 draws.
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