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Abstract

Dmitruk and Koshevoy [1991 JET] provided a complete characterization of the class

of technologies for which there exists an efficiency index satisfying the Färe-Lovell [1978

JET] axioms. The technologies implicit in the standard mathematical-programming

methods of measuring efficiency, data envelopment analysis (DEA) and free-disposal-hull

(FDH) analysis, belong to this class. We assess the ability of three well-known indexes,

the Debreu-Farrell index, the Färe-Lovell index, and the Zieschang index, to satisfy not

only the Färe-Lovell axioms but also continuity axioms (for technologies as well as input

quantities), on this restricted class of technologies. Our principal conclusions are that

(a) restriction to these data-based technologies adds continuity in input quantities to

the properties satisfied by the Färe-Lovell and the Zieschang indexes (thus eliminating a

salient advantage of the Debreu-Farrell index), but (b) none of the indexes satisfies all

Färe-Lovell axioms (nor all continuity axioms) on either DEA or FDH technologies, and

hence (c) trade-offs among the indexes remain. These findings provide motivation for the

search for an index that does satisfy these axioms on DEA and FDH technologies.

JEL classification: C43; C61; D24.

Keywords: Technical efficiency indexes; technical efficiency axioms
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I. Introduction.

The use of technical efficiency indexes to identify and quantify the (in)efficiency of

production units, introduced by Farrell [1957], has become a standard tool for studying

productivity and efficiency. Over the last two to three decades, a staggering number of

papers in economics and management science journals have used these methods to assess

the efficiency of a wide array of diverse organizations (e.g., school systems, hospitals,

insurance firms, banks, airports and seaports, professional sports leagues, and transit

systems1) and to study economic issues as diverse as environmental regulation, public vs.

private firms, and international macroeconomic convergence.2

Despite the widespread use of efficiency indexes, there have been comparatively few

studies of the properties of the different formulations. Axiomatization of (input) efficiency

measurement was introduced by Färe and Lovell [1978], who proposed three axioms:

indication of efficient bundles (the efficiency index equals one if and only if the input

vector is Koopmans [1951] efficient), monotonicity (increasing input quantities reduces

the value of the index), and homogeneity (proportionate changes of all input quantities

reduces the index proportionately). The attractiveness of each of these axioms is self-

evident.

The most extensively used efficiency index is the Debreu [1951] - Farrell [1957] in-

dex. Färe and Lovell [1978] pointed out that this index satisfies neither indication nor

monotonicity for the general class of technologies satisfying minimal regularity condi-

tions. They introduced the Färe-Lovell [1978] index3 to overcome these deficiencies, but,

as shown by Färe, Lovell, and Zieschang [1983] and Russell [1985], their measure does not

satisfy monotonicity or homogeneity. Zieschang [1984] proposed an index that satisfies

homogeneity and indication, but it fails to satisfy monotonicity (and, in fact, violates a

weaker monotonicity condition).

The search for an efficiency index satisfying the Färe-Lovell axioms was halted by an

impossibility result of Bol [1986] demonstrating that there exists no efficiency index sat-

isfying indication, monotonicity, and homogeneity for all technologies (satisfying minimal

regularity conditions). As indicated by Bol [1986], there exist two approaches to resolv-

ing this problem: (1) weakening the axioms and (2) restricting the set of technologies to

which the index is to be applied.

Russell [1985, 1987] suggested a weakening of monotonicity (increasing input quantities

does not increase the value of the index) and a modification of the indication condition

1 These studies are far too numerous to attempt to provide even prototypical examples. Suffice it to say

that the (nine-year-old) Berger and Humphrey [1997] survey of efficiency studies of banks alone, using

only mathematical-programming methods of calculating efficiency, encompassed some 67 papers.
2 Examples: Färe, Grosskopf, Noh, and Weber [2005], Pollitt [1996], Kumar and Russell [2002], and

Henderson and Russell [2005].
3 The Färe-Lovell index is often referred to as the “Russell measure,” but it was formulated (and

mischievously named) by Färe and Lovell [1978].
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(indication of weakly efficient input vectors)4 and showed that the Debreu-Farrell, Färe-

Lovell, and Zieschang indexes each satisfy various combinations of the weaker and stronger

axioms. None of these three indexes dominates any other in term of these axioms; hence,

the choice among these efficiency indexes depends upon the investigator’s opinion about

the relative attractiveness of the various axioms.

In a different direction, Russell [1990] introduced axioms of continuity in inputs and

technologies (or outputs). He argued that continuity is important because it provides

some assurance that “small” errors of measurement of output and input quantities do not

result in “large” errors in the calculation of the efficiency index. Only the Debreu-Farrell

index passes muster with respect to continuity, and this index encounters a problem with

continuity in technologies at the boundary. Russell [1990] also showed that continuity in

input quantities is incompatible with the indication property.

A major advance in our understanding of efficiency measures was made by Dmitruk

and Koshevoy [1991], who completely characterized the class of technologies for which

there exists an efficiency index satisfying indication, monotonicity, and homogeneity. Al-

though the characterization is indirect and does not provide a procedure for generating

the technologies, there are important special cases. Most important, Dmitruk and Ko-

shevoy indicate that their condition is satisfied if the efficient set is compact.

The primary objective of this paper is to investigate the ability of the three efficiency

indexes described above to satisfy the proposed axioms on data-generated technologies.5

In applications of efficiency measurement, a finite number of observations on the inputs

and outputs of production units is used to construct a reference technology. The most

common method of generating the technology is to use linear-programming or integer-

programming techniques to envelop the data in the tightest fitting set satisfying certain

criteria. If the technology is assumed to satisfy free-disposability and convexity, the tech-

nology is a convex polyhedral set. If the technology is assumed to satisfy free-disposability

but not convexity, the generated technology has a finite number of efficient points. In

each case, the efficient set is compact and the Dmitruk-Koshevoy theorem implies the ex-

4 Most would consider the Färe-Lovell indication property to be the appropriate axiom in the spirit

of Koopmans’ notion of efficiency. Nevertheless, one can argue that indication of weakly efficient input

vectors is appropriate for a measure of technical inefficiency (the consequence of being above the isoquant

in input space), as distinguished from allocative inefficiency (the consequence of being on an economically

inefficient point on the isoquant); after all, a Koopmans-inefficient point on the isoquant of a technology

satisfying free disposability is allocatively efficient at zero prices of the redundant inputs.
5 We use the phrase “data-generated technologies” to refer to technologies implicit in the mathematical-

programming approach to efficiency measurement (surveyed in Färe, Lovell, and Grosskopf [1995]).

These technologies are entirely data driven up to assumptions about convexity and returns to scale, in

contrast to the stochastic (econometric) approach to frontier analysis, which is highly parameterized

(see Kumbhakar and Lovell [2003] for a through description of these methods). The results on general

technologies (in this paper and elsewhere), however, are applicable to the technologies implicit in either

approach.
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istence of an efficiency index that satisfies the indication, monotonicity, and homogeneity

axioms.

The use of convex polyhedral sets to construct reference technologies was pioneered by

Farrell [1957] and extended by Charnes, Cooper, and Rhodes [1978]. Under the assump-

tion of constant returns to scale, the reference technology is the “smallest,” or “tightest

fitting,” convex (free disposal) cone that envelops the data; under the assumption of

nonincreasing returns, the reference technology is the tightest fitting convex set that en-

velops the data (the convex, free-disposal hull of the observed input-output combinations

and the origin).6 Charnes, Cooper, and Rhodes call this approach “data envelopment

analysis” (DEA).

The approach pioneered by Deprins, Simar, and Tulkens [1984] and promoted by

Tulkens [1993] eschews convexity and envelops the data in the tightest fitting free-disposal

set—the set of points that (weakly) vector dominate at least one observed point. This is

referred to as the free-disposal-hull (FDH) approach. Although it also entails envelopment

of the data, we stick to convention by reserving the appellation DEA for the convex-

programming approach.

We have three main results. First, restricting technologies to the DEA class does

improve the properties of two of the efficiency measures: both the Färe-Lovell and the

Zieschang index are continuous in input quantities on the DEA class but do not satisfy

this property for general technologies. Second, restricting technologies to the DEA class

does not enable any of the indexes to satisfy all of the proposed axioms. Even if we restrict

the axioms to those proposed by Färe and Lovell [1978] (indication, monotonicity, and

homogeneity), none of the efficiency indexes under study satisfies these axioms for this

restricted class of technologies. Third, restricting technologies to the FDH class does not

improve the properties of any of the efficiency measures.

Our results have three main implications. First, a researcher selecting one of the

existing efficiency indexes must decide which properties are most important: since none

of the indexes satisfies all the desirable properties, trade-offs remain. Second, the trade-

offs depend on the class of technologies to which the indexes are to be applied. Third,

for DEA and FDH technologies, there exist indexes superior to those currently known,

since the Dmitruk and Koshevoy results guarantee the existence of an index that satisfies

the Färe-Lovell axioms. Whether there exist indexes that satisfy the continuity axioms

as well for this restricted class of technologies is a topic for further study.7

6 Another possibility is to take the convex, free-disposal hull of the data excluding the origin, in which

case the technology is characterized by variable returns to scale. The resultant reference technology is

not convex, but level sets are. See Färe, Grosskopf, and Lovell [1995] for a thorough discussion of these

various constructions.
7 Another (perhaps more fundamental) axiom is independence of units of measurement (commensura-

bility), introduced by Russell [1987]; as all three indexes evaluated in this paper satisfy this property for

all technologies, we do not consider it.
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The paper unfolds as follows. Section II describes the general technologies, the DEA

technologies, and the FDH technologies. Section III describes the three efficiency indexes

studied in this paper, while Section IV describes the axioms. Section V summarizes the

known results and contributes some new results on the axioms satisfied by the indexes on

general technologies. Sections VI and VII prove our results on the satisfaction of the Färe-

Lovell and continuity axioms for efficiency measurement on DEA and FDH technologies,

respectively. Section VIII concludes by synthesizing the results from from the literature

and this paper.

II. Technologies.

The theoretical literature on technical efficiency measurement has focused on a general

class of technologies satisfying only very weak regularity conditions. The input vector

x ∈ Rn
+ is constrained to lie in the input-requirement set L (the set of input vectors that

can produce a stipulated vector of outputs).8 Let L be the collection of non-empty, closed

input-requirement sets that exclude the origin of Rn
+ and satisfy the free-disposability

condition, L = L + Rn
+.9 To simplify the language in the results that follow, we refer to

“all technologies” when we mean “all input-requirement sets in L.”

Some properties of efficiency indexes hold on the interior of Rn
+ but not at the bound-

ary. On occasion, therefore, we consider the subclass of input-requirement sets in which

L ⊂ Rn
++; denote this class of (non-empty, closed) input requirement sets (excluding the

origin) by Lo.

An input vector x ∈ L is efficient (in the sense of Koopmans [1951]) if x > x̄ implies

x̄ /∈ L; it is weakly efficient if x ≫ x̄ implies x̄ /∈ L.10 Under the free-disposability

assumption, the set of weakly efficient input vectors is equivalent to the isoquant, defined

by

Isoq(L) = { x ∈ L | λx /∈ L ∀ λ ∈ [0, 1) } . (2.1)

The set of efficient points of L, which we denote by Eff(L), is a subset of Isoq(L).

8 A complete characterization of the technology would be a correspondence mapping output vectors into

subsets of input space. Since, however (in the tradition of axiomatic analysis of efficiency measurement),

we consider only input-based measures of efficiency for fixed output vectors, it is not necessary to

formally incorporate output into our analysis, at least for the analysis of the Färe-Lovell axiomatic

structure. When we analyze continuity of efficiency indexes, however, we implicitly allow output to vary

by considering sequences of input requirement sets in L.
9 Nonemptiness, closedness, and exclusion of the origin are necessary to guarantee that our efficiency

indexes are well defined, but the free disposability assumption could be dispensed with (theoretically).

The only change that would be needed in what follows would be to redefine the Debreu-Farrell index on

the free-disposal hull of L rather than on L itself (as in Russell [1987]).
10 Vector notation: x̄ ≥ x if x̄i ≥ xi for all i; x̄ > x if x̄i ≥ xi for all i and x̄ 6= x; and x̄ ≫ x if x̄i > xi

for all i.
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Data envelopment analysis (DEA), the most common mathematical-programming,

data-based method of measuring efficiency, constructs input-requirement sets that are

convex, free-disposal polyhedrons—that is, intersections of a finite number of closed half

spaces with semi-positive normals. Let P denote the set of convex polyhedral technologies

in L and let Po denote the set of convex polyhedral technologies in Lo. Figure 2 below

contains an example of a convex polyhedral input-requirement set.

The free-disposal-hull (FDH) method of measuring efficiency adds no explicit techno-

logical restrictions to the general case, but this data-driven method implicitly restricts

the technologies to be unions of empirically dominated input sets—that is, finite unions

of affine transformations of non-negative orthants. See, e.g., Tulkens [1993] for a descrip-

tion of these methods. We refer to these sets as “FDH technologies.” Let F denote the

set of free-disposal-hull technologies in L and let Fo denote the set of free-disposal-hull

technologies in Lo. An example of an FDH input-requirement set is shown in Figure 6

below.

III. Efficiency Indexes.

An (input) efficiency index is a mapping, E : Ξ → (0, 1], with image E(x, L), where

Ξ =
{

〈x, L〉 ∈ L × L | x ∈ L
}

; it is intended to measure the inefficiency of an input

vector x ∈ L (given a technology and an output vector). The general idea underlying

existing efficiency indexes is to measure the maximal “distance” an input vector may

be contracted while remaining feasible. The alternative indexes differ in the method of

contraction and the notion of distance.

The Debreu [1951] - Farrell [1957] index, defined by

EDF (x, L) = min{ λ | λx ∈ L}, (3.1)

measures the maximal radial contraction of the input vector consistent with production

feasibility.

The Färe-Lovell [1978] index is based on coordinatewise contractions of the input

vector. The index is defined by

EFL(x, L) = min
κ

{

∑

i

κi

/

∑

i

δi(xi)
∣

∣

∣
Kx ∈ L ∧ κi ∈ [0, 1] ∀i

}

(3.2)

where δ(x) = 1 if xi > 0, δ(xi) = 0 if xi = 0, and K is the diagonal matrix with

〈κ1, . . . , κn〉 on the diagonal.11 This index measures the maximal average of coordinate-

wise contractions.

11 The correction entailing the indicator function δ is needed for the case in which one coordinate value

of an efficient bundle vanishes, in which case the corresponding shrinkage factor could be set at zero,

thus rendering the efficiency index less than one. If the input requirement set is contained in the interior

of R
n

+, the denominator in the objective function is just n.
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The Zieschang [1984] index combines the radial contraction of the Debreu-Farrell index

with the coordinatewise contraction of the Färe-Lovell index. It is defined by

EZ(x, L) = EDF (x, L)EFL

(

EDF (x, L)x, L). (3.3)

This index measures the multiple of the maximal radial contraction to the isoquant

and the average of coordinatewise contractions along the isoquant.12

IV. Axioms.

The three axioms proposed by Färe and Lovell [1978]13 are as follows:

Indication of Efficient Input Bundles (I): For all x ∈ L, E(x, L) = 1 ⇐⇒ x ∈

Eff(L).

Monotonicity (M): For all 〈x, x̄〉 ∈ L × L, x > x̄ =⇒ E(x, L) < E(x̄, L).

Homogeneity (H): For all x ∈ L, E(κx, L) = κ−1E(x, L) ∀ κ > 0.

Russell [1985, 1987] proposed alternatives to the indication and monotonicity axioms:

Indication of Weakly Efficient Input Bundles (IW): For all x ∈ L, E(x, L) = 1 if

and only if x ∈ Isoq(L) (i.e., x is “weakly efficient”).

Weak Monotonicity (WM): For all 〈x, x̄〉 ∈ L×L, x ≥ x̄ =⇒ E(x, L) ≤ E(x̄, L).

Russell [1990] extended the Färe-Lovell axiomatic structure by adding three continuity

axioms.

Continuity in x (C–x): E is continuous in x.

Continuity in L (C–L): E is continuous in L.

Joint continuity (C–〈x, L〉): E is jointly continuous in x and L.

As noted earlier, Russell [1990] argued (page 256) that continuity is a compelling

property, “for it provides assurance that ‘small’ errors of measurement (of, e.g., input

or output quantities) result only in ‘small’ errors of efficiency measurement.” If the

technology is constructed from data on input-output vectors, the argument for continuity

in the technology is even more compelling.

12 A more recent candidate for measuring efficiency is the (input based) directional distance function,

adapted from the benefit function of Luenberger [1992] to the measurement of efficiency by Chung,

Färe, and Grosskopf [1997]. This concept, however, is qualitatively different from the three traditional

efficiency indexes: it is parameterized by the directional vector and maps into the real line instead of the

(0,1] interval. As a result, it is not amenable to straightforward application of the Färe-Lovell axioms. A

separate axiomatic analysis of the directional distance function as a measure of efficiency is under way.
13 More precisely, Färe and Lovell proposed a fourth axiom: that the input bundle is “compared to”

an efficient bundle. Russell [1985], however, argued that the compared-to axiom was ill-defined (not

a formal mathematical construct). He formalized the concept but then showed that the compared-to

axiom is implied by the other three axioms.
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V. Results for General Technologies.

The search for an efficiency index satisfying the Färe-Lovell axioms was halted by the

following impossibility result of Bol [1986]:14

Fact 1: There does not exist an efficiency index satisfying (H), (M), and (I) for all

technologies L ∈ L.15

Further results by Russell [1990] demonstrate the incompatibility of certain continuity

conditions with some of the Färe-Lovell conditions.

Fact 2:

• There does not exist an efficiency index satisfying (I) and (C–x) for all technologies
L ∈ L.

• There does not exist an efficiency index satisfying (I) and (C–L) for all technologies
L ∈ L.

The known results on the compatibility of the three indexes with all of the axioms are

encapsulated in the following:

Fact 3 (Färe and Lovell [1978], Färe, Lovell, and Zieschang [1983], Zieschang [1984], and

Russell [1985, 1987, 1990]):

• EDF satisfies (IW), (WM), and (H) for all L ∈ L and (C–〈x, L〉) for all L ∈ Lo and
fails to satisfy (I), (M) and (C–〈x, L〉) for all L ∈ L;

• EFL satisfies (I) and (WM) and fails to satisfy (M), (H), (C–x), and (C–L) for all
L ∈ L; and

• EZ satisfies (I) and (H) and fails to satisfy (WM), (C–x), and (C–L) for all L ∈ L.

The (Russell [1985]) counterexample showing that EFL violates (M) relies critically

on the input requirement set intersecting the boundary of Rn
+, as demonstrated by the

following result:

Theorem 1: EFL satisfies (M) on Lo.

14 In the facts and results that follow, we refer to, e.g., “all L ∈ L” or “all L ∈ P” when we more formally

mean “all 〈x, L〉 ∈ Ξ” or “all 〈x, L〉 ∈ ΞP ,” where ΞP =
{

〈x, L〉 | L ∈ P ∧ x ∈ L
}

.
15 Bol’s three-dimensional example purporting to show that convexity is not relevant contains a minor

error: his input-requirement set,

L =
{

〈x1, x2, x3〉 | x1 = 1 ∧ x2 = 2 ∧ x3 = e−(x1−1)(x2−1)
}

, (5.1)

is not convex. A minor change to

L =
{

〈x1, x2, x3〉 | x1 = 1 ∧ x2 = 2 ∧ x3 = e−(x1−1)1/2(x2−1)1/2
}

, (5.2)

however, results in an input-requirement set that establishes his point.
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Proof: With L restricted to the interior of Rn
+, the Färe-Lovell index can be written as

EFL(x, L) = min
y

{

∑

i

yi

xi

∣

∣

∣
y ≤ x ∧ y ∈ L

}

. (5.3)

Suppose that

∗
y = argmin

y

{

∑

i

yi

xi

∣

∣

∣
y ≤ x ∧ y ∈ L

}

(5.4)

and x̄ > x. Since
∗
y < x and x < x̄,

∗
y is a feasible solution in the problem,

EFL(x̄, L) = min
y

{

∑

i

yi

x̄i

∣

∣

∣
y ≤ x̄ ∧ y ∈ L

}

, (5.5)

and
∑

i

∗
y i

x̄i
<

∑

i

∗
y i

xi
. (5.6)

Thus, EFL(x̄, L) < EFL(x, L).

The positive result on continuity in x for the Debreu-Farrell index (Russell [1990]) can

be extended to the boundary:

Theorem 2: The EDF satisfies (C–x) on L.

Proof: The Debreu-Farrell index can be written as

EDF (x, L) = min
{

λ | λ ∈ Λ(x, L)
}

, (5.7)

where

Λ(x, L) =
{

λ ∈ Rn
+ | λx ∈ L

}

. (5.8)

By the maximum theorem, EDF is continuous in x if Λ is continuous (upper and lower

hemi-continuous) in x given L.

We first show that Λ is upper hemi-continuous. Consider a sequence {xν} ⊂ L satis-

fying xν → xo and xν ∈ L for all ν and an associated sequence {λν} satisfying λν → λo

and λν ∈ Λ(xν , L) for all ν. Thus, λνxν ∈ L for all ν and λνxν → λoxo. By closedness

of L, λoxo ∈ L. Hence, λo ∈ Λ(xo, L).

To show lower hemi-continuity of Λ, consider a sequence {xν} satisfying xν → xo and

λo ∈ Λ(xo, L). We need to show that there exists a sequence {λν} satisfying λν ∈ Λ(xν , L)

for all ν and λν → λo. Let yo = λoxo and define, for all ν,

λν = min
{

λ | λxν ∈ yo + Rn
+

}

. (5.9)

9



x1

x2

L

y0 = λ0x0

x0

xν

yν = λνxν

Figure 1.

Because yo ∈ L and L satisfies free disposability, λν ∈ Λ(xν , L) for all ν. The sequence

{yν} defined by yν = λνxν for all ν clearly converges to yo (see Figure 1), so that λν → λo.

Fact 3 and Theorems 1–2 indicate that none of the three indexes dominates any other,

in terms of the axioms introduced in Section IV, on general technologies (for all L ∈ L).

The results thus underscore the trade-offs among the three efficiency indexes. The choice

between EDF and EFL reflects the trade-off between homogeneity and continuity of EDF

and the strong-efficiency form of the indication condition (and strict monotonicity on the

interior of input space) of EFL. The choice between EDF and EZ reflects the trade-off

between weak monotonicity and continuity of EDF and the strong-efficiency form of the

indication condition satisfied by EZ . Choosing between EFL and EZ reflects the trade-off

between monotonicity and homogeneity.

VI. Results for Convex Polyhedral Technologies.

Our next theorem examines the possibility of obtaining stronger results when the

technologies are restricted to those generated by DEA methods of measuring efficiency

and, pari passu, generating reference technologies. In the theorem, we only state results

that are not immediately implied by the results for general technologies (Fact 3 and

Theorems 1–2).

Theorem 3:

• EDF fails to satisfy (C–L) for all L ∈ P and fails to satisfy (I) and (M) for all

10



L ∈ Po.16

• EFL satisfies (C–x) and fails to satisfy (M) for all L ∈ P; EFL fails to satisfy (H)
and (C–L) for all L ∈ Po.

• EZ satisfies (C–x) and fails to satisfy (WM) and (C–L) for all L ∈ Po.

Proof: The counterexample showing that EDF index fails to satisfy continuity in L on

P is illustrated in Figure 2.17 In this example, Lν → Lo as the cusp zν → zo and

EDF (x, Lν) = 1 for all ν, but EDF (x, Lo) < 1.

x1

x2

Lν

x

z0

zν

L0

Figure 2.

A similar counterexample shows that the EFL and EZ indexes fail to satisfy continuity

in L on Po. In Figure 3, Lν → Lo as the cusp zν → zo and EFL(x, Lν) = EZ(x, Lν) = 1

for all ν, but EFL(x, Lo) < 1 and EZ(x, Lo) < 1.

Violation of (I) and (M) on Po by EDF is immediately apparent by taking any convex

polyhedral set and two points with positive slack on the same facet. To see that EFL

violates (M) on P, consider a Leontief input requirement set with facet xo satisfying

xo
i = 0 and xo

j > 0 for all j 6= i, an input bundle x satisfying xi > 0 and xj = xo
j for all

16 And fails, a fortiori, to satisfy (I) and (M) on P .
17 This counterexample is reproduced from Russell [1990], who attributed it to Rolf Färe. Throughout

the paper, we provide counterexamples in 2-space (except for the violation of (WM) by EZ , which does

not hold in 2-space). Each could be explicitly extended to n-space, but only at the cost of tedious

calculations that do not enhance the clarity of the counterexample.

11



x1

x2

Lν

x

z0

zν

L0

Figure 3.

j 6= i, and another input bundle x̄ satisfying x̄i > xi and x̄j = xj for all j 6= i. Since

x̄ > x and EFL(x, L) = (n − 1)/n = EFL(x̄, L), EFL violates (M).

To show that EFL does not satisfy (H) on Po, consider the two-dimensional, closed,

convex, polyhedral input-requirement set in Figure 4. EFL(λx̄, L) < λ−1EFL(x̄, L) = λ−1

if 1 < (α + 1)/2 < λ−1 (e.g., λ = 1.5 and α = .25).

To show that EFL satisfies (C–x), first re-write this index as follows:

EFL(x, L) = min
y

{
∑

i∈Io yi/xi

|Io|

∣

∣

∣
y ≤ x ∧ y ∈ L

}

= min
y

{

∑

i∈Io yi/xi

|Io|

∣

∣

∣
y ∈ D(x, L) ∩ L =: Γ(x, L)

}

,

(6.1)

where D(x, L) = {y | y ≤ x}, Io is the set of coordinates for which xi 6= 0, and |Io| is the

cardinality of this set. To employ the maximum theorem, we will show that the mapping

Γ is continuous in x. To prove upper hemi-continuity of Γ in x, consider a sequence

{xν} converging to xo and a sequence {yν} converging to yo and satisfying yν ∈ Γ(xν , L)

for all ν. Suppose that yo /∈ Γ(xo, L). As L is closed, it must be that yo /∈ D(xo, L).

Consequently, for some i and some ν′, yν
i − xo

i > ǫ for all ν > ν′. As xν → xo, there

exists a ν′′ such that xν ∈ Nǫ/2(x
o) for all ν > ν′′. This implies that yν

i > xν
i , and hence

yν /∈ D(xν , L), for all ν > max{ν′, ν′′}, a contradiction. To prove lower hemi-continuity

12
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of Γ in x, consider a sequence {xν} converging to xo and yo ∈ Γ(xo, L). For all ν take

any zν ∈ D(xν , L) and define

αν = min
{

α | αzν + (1 − α)yo ≤ xν ∧ α ∈ [0, 1]
}

. (6.2)

The sequence {yν} defined by yν = ανzν +(1−αν)yo for all ν clearly converges to yo (see

Figure 5). Moreover, convexity of L, together with yo ∈ L and zν ∈ L for all ν, implies

that yν ∈ Γ(xν , L) for all ν. Thus, Γ is continuous and, by the maximum theorem, EFL

is continuous in x.

To show that the Zieschang index satisfies (C–x), note that it can be re-written as

EZ(x, L) = EDF (x, L) min
y

{
∑

i∈Io yi/EDF (x, L) xi

|Io|

∣

∣

∣
y ≤ EDF (x, L)x ∧ y ∈ L

}

= min
y

{

∑

i∈Io yi/xi

|Io|

∣

∣

∣
y ∈ D(x, L) ∩ L =: Γ(x, L)

}

,

(6.3)

where D(x, L) = {y | y ≤ EDF (x, L)x}. To prove upper hemi-continuity of Γ, consider

a sequence {xν} converging to xo and a sequence {yν} converging to yo and satisfying

yν ∈ Γ(xν , L) for all ν. From Theorem 2 above, EDF is continuous in x; hence, xν →

xo implies that EDF (xν , L) xν → EDF (xo, L) xo. Suppose that yo /∈ Γ(xo, L). As

L is closed, it must be that yo /∈ D(xo, L). Consequently, for some i and some ν′,

13
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yν
i − EDF (xν , L) xo

i > ǫ for all ν > ν′. As EDF (xν , L) xν → EDF (xo, L) xo, there

exists a ν′′ such that EDF (xν , L) xν ∈ Nǫ/2(x
o) for all ν > ν′′. This implies that

yν
i > EDF (xν , L) xν

i , and hence yν /∈ D(xν , L), for all ν > max{ν′, ν′′}, a contradiction.

Apart from the alternative definition of the mapping D, and hence the mapping Γ, the

proof of lower hemi-continuity of Γ is exactly the same as that in the proof of continuity

of EFL above. Thus, EZ is continuous in x.

Proof that EZ violates (WM) on on Po, requires an explicit three-dimensional coun-

terexample, since EZ appears to satisfy (WM) in two-space. To facilitate understanding

of the reason for the non-monotonicity, we begin with an illustrative counter-example

in P. Consider a convex polyhedral technology L with three efficient vertices given by

z1 = 〈2, 10, 3〉, z2 = 〈1, 30, 0〉, and z3 = 〈1, 0, 6〉. Let x = 〈2, 12, 12〉 and note that

EDF (x, L) = 1/2 and EDF (x, L)x = 〈1, 6, 6〉, which is an inefficient point in the flat

containing z2 and z3. Let x′ = 〈2.4, 12, 12〉, so that x′ > x, EDF (x′, L) = 5/12, and

EDF (x′, L)x′ = 〈1, 5, 5〉, which, as a convex combination of z2 and z3, is efficient. The

Färe-Lovell index contracts 〈1, 6, 6〉 to 〈1, 0, 6〉 so that EFL(EDF (x, L)x, L) = 2/3. Since

EDF (x′, L)x′ is efficient, EFL(EDF (x′, L)x′, L) = 1. We then have

EZ(x, L) = EDF (x, L)EFL(EDF (x, L)x, L) =
1

2
×

2

3
=

1

3

EZ(x′, L) = EDF (x′, L)EFL(EDF (x′, L)x′, L) =
5

12
× 1 =

5

12
,

(6.4)

so that EZ(x, L) < EZ(x′, L), a contradiction of weak monotonicity.
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To show that EZ violates (WM) on Po, let z1 = 〈2, 10, 3〉, z2 = 〈1, 30, 1〉, and z3 =

〈1, 1, 6〉. Following the same steps as above, we obtain EZ(x, L) = 0.36 and EZ(x′, L) =

0.42, so that weak monotonicity is violated.

There are two interesting implications of Theorem 3. First, restricting the technologies

to the DEA class enables the Färe-Lovell and Zieschang indexes to satisfy continuity in x.

Second, one cannot escape the trade-off between indexes by restricting the technologies to

the DEA class. While the choices are different, since all three indexes satisfy continuity

in x on P, there remain conflicts among indication, monotonicity, and homogeneity.

VII. Results for Free-Disposal-Hull Technologies.

In this section, we restrict the technologies to be free-disposal-hull technologies: L ∈ F .

In the following theorem, we again state only those results that are not immediately

implied by the results for general technologies.

Theorem 4:

• EDF fails to satisfy (C–L) for all L ∈ F and fails to satisfy (I) and (M) for all

L ∈ Fo.18

• EFL fails to satisfy (M) for all L ∈ F and fails to satisfy (H), (C–x), and (C–L)
for all L ∈ Fo.

• EZ fails to satisfy (WM), (C–x), and (C–L) for all L ∈ Fo.

Proof: Violation of (I) and (M) by EDF on Fo and of (M) by EFL on F are immediately

established as in the proof of Theorem 3.

Consider the FDH level set in Figure 6 in which xν → xo and xµ → xo Simple

calculations reveal that EFL(λx̄, L) < λ−1 if (αλ−1 + 1)/2 < λ−1 < 1, which holds

for a range of values of α < 1 and λ < 1; e.g., λ = 1.5 and α = .25 imply that

E(λx̄, L) = 7/12 < 2/3 = λ−1. Thus, EFL violates (H) on Fo.

Next note that EFL(xν , L) → (λ−1 + 1)/2 > (α + 1)/2 = EFL(xo, L) as xν → xo if

λ−1 > α; e.g., α = .25 and λ = 2 imply EFL(xo, L) = 5/8 < limν→∞ EFL(xν , L) = 3/4.

Thus, EFL violates (C–x) on Fo. In fact, since EZ coincides with EFL on the isoquant,

this construction also shows that EZ violates (C–x) on Fo.

To show that EZ violates (WM) on Fo, note that, as xµ → xo, EZ(xµ, L) → 1. But,

since E(xo, L) < 1, there exist xµ (closed enough to xo) such that E(xo, L) < E(xµ, L),

a violation of (WM).

Discontinuity of EDF in L on F is demonstrated in Figure 7 and discontinuity of EFL

and EZ in L on Fo are demonstrated in Figure 8. In each case, the cusp zν converges to

zo, the input requirement set Lν converges to Lo, and EFL(x, Lν) = EZ(x, Lν) = 1 for

all ν, but EFL(x, Lo) = EZ(x, Lo) < 1.

18 And fails, a fortiori, to satisfy (I) and (M) on F .
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The main implication of this theorem is that restricting technologies to the FDH class
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does not improve their properties. This is quite surprising, since the FDH class is such a

“small” subset of the general class of technologies.

VIII. Concluding Remarks.

To conclude, we collect the results from the literature and from this paper and present

a summary of the properties of the indexes. Table 1 displays for each index the largest

sets on which a particular property holds. For example, weak monotonicity holds for EDF

on L and, therefore, on Lo, P, Po, F , and Fo. A blank space indicates that a property

does not hold for either Po or Fo and, therefore, not for any of their supersets.19 For

example, EZ is not weakly monotonic on any of these sets of technologies.

Table 1. Properties of Efficiency Indexes.

Indexes I IW M WM H C–x C–L C–< x, L >

EDF L L L L Lo Lo

EFL L L Lo L P

EZ L L L P

19 Of course, F and P are not nested, so that it is possible, in principle, for there to be two largest sets

for which a particular index would satisfy a particular property; but this does not happen.
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Quite surprisingly, the restriction to the set F of free-disposal-hull technologies has

no effect on the results. The properties of the three indexes are the same on L (and Lo)

as on F (and Fo). Therefore, the trade-offs among these indexes (summarized for all

technologies at the end of Section V) persist even when the class of technologies is severely

restricted to the FDH class.

The major effect of restricting technologies to convex polyhedral technologies generated

by DEA methods is to ensure that the Färe-Lovell and Zieschang indexes are continuous

in input quantities. A principal advantage of the Debreu-Farrell index on L is therefore

eliminated when technologies are restricted to P.

Serious trade-offs in the choice of indexes remain, however, in the convex polyhedral

case. If continuity in technologies, homogeneity, and weak monotonicity are most im-

portant, one should choose the Debreu-Farrell index. If homogeneity and indication are

most important, choose the Zieschang index. If indication and weak monotonicity are

most important, then use of the Färe-Lovell index is appropriate.

Our view is that weak monotonicity is critical for an efficiency index and that the

failure to satisfy this property on both DEA and FDH technologies should eliminate

the Zieschang index from consideration. The choice between the Debreu-Farrell and

Färe-Lovell indexes for DEA technologies depends on the importance of indication and

monotonicity versus homogeneity and continuity in technologies.

While we have shown that the most commonly used efficiency indexes do not satisfy

one or more of the desirable axioms, the Dmitruk-Koshevoy [1991] results imply that, for

DEA and FDH technologies, there exists an index that satisfies indication, monotonicity,

and homogeneity. Whether or not continuity in inputs and technologies can be added to

this list is an open question.

The proof of Dmitruk and Koshevoy [1991] is constructive, defining a class of indexes

that satisfy the Färe-Lovell conditions, but, as stated, implementation would require an

infinite number of (programming) steps. This construction nevertheless might provide

the basis for formulating a calculable index satisfying at least the Färe-Lovell axioms.

18



References

Berge, C. [1963], Topological Spaces, New York: MacMillan.

Berger, A. N., and D. B. Humphrey [1997], “Efficiency of Financial Institutions: Interna-

tional Survey and Directions for Future Research,” European Journal of Operational

Research, 98: 175–212.

Bol, G [1986], “On Technical Efficiency Measures,” Journal of Economic Theory, 38:

380–385.

Charnes, A., W. W. Cooper, and E. Rhodes [1978], “Measuring the Efficiency of Decision-

Making Units,” European Journal of Operational Research, 3: 429–444.

Deprins, D., L. Simar, and H. Tulkens [1984], “Measuring Labor Efficiency in Post

Offices,” in The Performance of Public Enterprises: Concepts and Measurement

(M. Marchand, P. Pestieau, and H. Tulkens, eds.), Amsterdam: North Holland,

243–267.

Debreu, G. [1951], “The Coefficient of Resource Utilization,” Econometrica, 19: 273–292.

Dmitruk, V., and G. A. Koshevoy [1991], “On the Existence of a Technical Efficiency

Criterion,” Journal of Economic Theory , 55: 121–144.
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