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Abstract 

This study evaluates the effectiveness of a pro-poor nation-wide health card program in 
Indonesia which provides free basic health care at public health facilities. To quantify the 
effect of the program, it departs from the traditional regression-based approach in the 
literature to employ propensity score matching to reduce the selection bias due to non-
random health card distribution. The setting of the program and the richness of the data 
set support this strategy in providing accurate estimates of the program’s effect on its 
recipients. The result finds that in general the health card program only has limited 
impact on the consumption of primary health care by its recipients. This finding suggests 
the presence of other factors that are counteracting the generous demand incentive.   
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I.  INTRODUCTION 

Inequalities in access to health care have become a prominent policy agenda in many 

countries worldwide. Interventions of various forms were introduced by governments and 

non-government institutions as an attempt to minimise these asymmetrical situation with 

targeted programs for the poor being the common theme. Some countries directly provide 

health goods (e.g., the United Kingdom) while others combine public provision with 

subsidised health insurance for the poor (e.g., Australia, Malaysia, Singapore). The 

common justification for subsidisation is that health care services are particularly costly 

for the poor yet they are more likely to face adverse health shocks (Wagstaff, 2005; 

Whitehead et al., 2001; Xu et al, 2003; Case et al., 2002). Further, it is believed that there 

are positive externalities from a healthy population.    

 

In Indonesia, health care payments are largely out-of-pocket and cash at the time of 

purchase or service provision. The health insurance market is underdeveloped with less 

than 20 percent of the population covered by at least one form if health insurance as at 

2000 (IFLS). As a result, sick individuals with subsistence or low income and without 

insurance may be unable to obtain the necessary medical treatment; 56 percent of the 

population lived on less than $2 per day. Health care utilisation rates are low and 

unchanged, despite marked increases in the incidences of both communicable and non-

communicable diseases. Restricted access to adequate health care has also been linked to 

critical health statistics, such as under-five mortality figure of 38 per 1,000 live births due 

to preventable factors (MoH) and the highest maternal mortality rate among Southeast 

Asian nations (WHO).  

 

The health card program of 1994 is one of the government’s major efforts to improve the 

nation’s health conditions by promoting equality in access to primary health care. It is a 

nation-wide project involving all public health facilities, including hospitals. The 

program targets poor households and provides full price subsidy to medical expenses at 

public health facilities by all members of the household. Health cards are distributed at 

the household level by the village heads as the program administrators, based on a list of 

criteria that reflects welfare. Substantial regional heterogeneity makes it implausible to 
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have a common eligible rule, and so eligibility determination is essentially decentralised 

and varies across communities. In principle, there is no limit on the frequency of health 

card use, but recipient households can lose the health card if income increases with the 

re-assessment typically is performed annually. 

  

The aim of this study is to measure the effectiveness of the health card program. To my 

knowledge, this is the program’s first formal evaluation at the microeconomic level. So 

far, assessments are based on aggregate statistics on the number of health card 

disseminated in one area and the recorded number of patients with health card received 

by public health facilities (Widianto, H. at MoH, 2007, pers. comm., 12 January). Results 

form aggregate analyses however are likely to be contaminated with other factors. 

Accurate evaluation of the program is necessary, particularly in the face of constrained 

resources, as policymakers must ensure that ongoing programs are not wasteful. The 

outcome of this study therefore will provide valuable feedback to policymakers, and 

suggest appropriate directions for future policy.  

  

This thesis also contributes to the general health and development literature in at least 

three significant ways. First, it may extend our knowledge about the interaction between 

demand incentives, which health cards are a form of it, and health care choice in 

developing countries which we know very little about. Most of the existing evidences in 

the literature are based on developed countries, which have distinct environmental 

settings to developing countries. For example, in developing countries, transport and time 

costs associated with the subsidised care are often non-negligible, and consumption of 

traditional medicines is prevalent. In addition, public health facilities are often inadequate 

and rated as having low quality by potential patients (see Filmer et al., 2000 for cross 

countries review). In the presence of these other costs and readily accessible alternatives, 

it is not clear whether a price subsidy as a demand inducement will result in recipient 

households increasing their consumption of formal health care. In the literature, there 

have been numerous studies focusing on targeted programs in relatively poor countries, 

especially African countries, which find mixed conclusions about households’ response 

(for example Newman et al., 2002; Castro-Leal et al., 2000; Pradhan et al., 1998). 
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However, evidence from middle-income developing countries like Indonesia is relatively 

thin.  

 

Second, as the evaluation method, this study employs the Propensity Score Matching and 

Difference-in-Differences (PSM-DID) estimator, which has gained popularity in labour 

economics to produce causal inference (Smith and Todd, 2000, 2005; Heckman et al., 

1997), but has not been widely used in the health literature. In non-experimental setting, 

it is well recognised that inferences drawn from comparing the outcomes of the program 

recipients and non-recipients are likely to be biased due to selection problems. The issue 

in evaluation studies therefore has centred on selection bias and the construction of the 

comparison group. Traditionally, health studies have relied on instrumental variable (IV) 

regressions to correct for sample selection bias, hypothesising that units are different in 

unobservable ways. However, it is known that valid instruments are rarely available, and 

IV regression’s results rely in strong assumptions for causal inference (Imbens and 

Angrist, 1994). PSM oppositely supposes that sample units are different by their observed 

characteristics, and does not require IV(s). In the case of the health card program, 

selection on observables may be more appropriate, as health card eligibility does not 

require households’ initiative to apply for the program, but is determined based on their 

state of economy that are observed by the program administrators. Further, the 

combination PSM and DID allows selection on unobservables, as long as they are time-

invariant. The reliability of PSM-DID to provide causal estimates, under reasonable 

conditions, has been found by many studies (see Smith and Todd, 2005; Heckman et al., 

1997, 1998; Augurzky and Schmidt, 2001).  

 

Third, this is a demand-side study that incorporates supply-side variations into the 

analysis. Commonly, supply variables are excluded from demand studies due to lack of 

data. Yet, it is known in the literature that supply influences demand either directly 

through additional arrangements or indirectly through increasing health awareness among 

potential patients. In fact, many data have supported this hypothesis by featuring positive 

correlation between health care utilisation rates and physician density (McGuire, 2000; 
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Dow et al., 2000). Analyses without supply side factors therefore may be invalid due to 

omitted variable bias.  

 

The data used in this study comes from the Indonesian Family Life Survey (IFLS) in 

1993 (IFLS1), 1997 (IFLS2) and 2000 (IFLS3). The IFLS may be the only large sample 

longitudinal study on Indonesian households. It is a very rich data source collected at the 

household and individual levels that supports the empirical strategy. Most studies in 

various literature on Indonesia use the national annual household survey (Susenas) by the 

Central Bureau of Statistics, which is an ongoing large sample study but only repeated 

cross-sections. Alternatively, the IFLS is also nationally representative as it uses the same 

sampling frame as those constructed for Susenas in selecting its enumeration areas. 

Furthermore, the household survey is accompanied by community and facility surveys, 

which provide information about health care supply conditions in communities where 

households lived. The reliability of the data set is formally documented in Thomas et al. 

(2001).  

 

The results show that the health card program has only limited impact on its recipients’ 

health care consumption. The presence of a health card increases the number of 

visitations to public facilities by the younger household members, especially to receive 

curative treatments, but has no significant positive effect on other household members. 

However, the initial levels of health care consumption by children are very low. The 

other effect of health card availability is increasing contraceptive enrolments among 

eligible females in the recipient households, but in this case, the demand incentive was 

paralleled by supply expansion of contraceptive services in public health facilities in the 

late 1990s. Considering the health card program is fairly generous in its design, this 

finding may suggest that either a subsidy (or price-based incentive in general) to general 

health care is ill-suited as a form of intervention to increase health care utilisation, or 

there are factors that are counteracting the demand inducement, or both. As policy 

implications, program redesign or redirection of resources therefore may yield a larger 

impact. 

 

 5



II.  BACKGROUND AND LITERATURE 

The health card program was designed to allow poor households to obtain at least basic 

health care services. Health cards are distributed at the household-level, and cover fully 

the costs of medical treatments of all household members at all public health facilities, 

including hospitals and village midwife. Covered services include basic outpatient and 

inpatient care, diagnostic testing, contraceptive treatments, and children and maternal 

care. In principle, there is no limit on the frequency of health card use, and neither the 

Ministry of Health nor the public facilities have a formal procedure in place to monitor 

the use of health card.  

 

Eligibility is determined using a list of criteria that reflects welfare, such as lack of 

permanent income source, failure to provide two basic meals per day and inability to 

purchase basic health care services. The village head in each community act as the 

program administrator and decides on the weights attached to each criterion. This 

procedure is used instead of the common fixed-income threshold rule because regional 

heterogeneity affects price and income levels, and accordingly poverty lines. Once 

household is identified as poor, health card is issued. No application by households is 

needed. Public health facilities are informed on the number of health card disseminated in 

the area, and are reimbursed based on user costs. Provision for this outlay is set according 

to historic records on the number of poor households in the area.1 

 

In the past, there are only a few large scale health projects in the country that had been 

formally assessed. Gertler and Molyneaux (2000) investigate the effects of public 

contraceptive subsidies organised by the National Family Planning and Coordinating 

Board on contraceptive use and fertility rates. They use IV regressions to correct for non-

random program placement, and argue that district-level variables such as eligible 

population, per capita subsidy level and their lagged values are valid IVs. Several data 

sources are combined to provide 36 quarterly data for the decade 1985-1994. The 

                                                 
1 Since 2000, the health card program is reformed to be contained within a social system (JPKM) managed 
by a state-own insurance company. Under the reformed system, fund-holding entities were set up at district 
level to replace the central government in managing resource allocation and service provision in their areas. 
Nonetheless, the design of the health card program is unchanged.  
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individual-level information is obtained from the contraception calendar of women in the 

1991 and 1994 annual Demographic and Health Survey while the remaining data sources 

are extracted from various unpublished Indonesian data sets. The study finds that the 

project has no impact on fertility rates (as measured by the proportion of women aged 15 

– 49 years old who gave birth in the district in that quarter), and only a small but 

significant impact on contraceptive prevalence in a district. For the latter, the study also 

finds that the effect of contraceptive subsidies is smaller than the effect of increased 

number of clinics.  

 

Pradhan et al. (2007) analyse the immediate impact of a World Bank project in 1998 as a 

response to increased poverty level post the 1997 financial crisis. The Social Safety Net 

(SSN) program transfers lump-sum payments to targeted districts to be allocated to 

different sectors. The study is based on Susenas data set, appended with administrative 

district data. To tackle selection problems, it relies on cross-sectional PSM by island 

(Indonesia is an archipelagic state) to match households in 1999 to households in 1998. 

Least Square regression is then applied on the matched sample to estimate the program 

effect. By exploiting variations in funds across districts, the study finds that spending in 

the health sector significantly increases (decreases) households’ outpatient contact rate at 

public (private) facilities by 0.1% point in a month time. 

 

There are only a handful of health evaluation studies that involve non-parametric 

approach, in particular PSM-DID. Three recent studies from developing countries that 

use matching are Trujillo et al. (2005) in analysing the impact of a targeted subsidised 

health insurance on health care use in Columbia, Galiani et al. (2005) in estimating the 

effect of privatisation of water system on children’s mortality in Argentina, and Wagstaff 

and Yu (2007) in examining the performance of a World Bank’s investment in China. All 

studies reported some positive effects of the studied program. The China project (which 

is a combination of demand and supply expansion) for instance reduces households’ out-

of-pocket health expenses, particularly on drugs, thereby reducing the likelihood of 

catastrophic health expenditure to poor households. The project however has no or even 

negative impact on the number of doctor visits. The problem in the study is lack of 
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common support. Many observations have to be dropped to make the counterfactual and 

the program beneficiary samples comparable. Resultantly, the effect of the program is 

estimated tolerating observations that are just off-support. Hence, hitherto, there are very 

few convincing studies in the literature based on matching technique. One of the 

contributions of this thesis is to fill this gap by exploiting the availability of large rich 

data sets.  

  

III. METHODOLOGY 

The objective of this study is to accurately estimate the effect of health card availability 

on its recipients’ health care utilisation. Specifically, the interest is to compare outcomes 

of the recipients to the counterfactual, that is, their outcomes when health card is not 

available at the same point in time. The counterfactual however is never observed. If 

health cards are randomly distributed, its effect can be measured by comparing the 

outcomes of recipient and non-recipients. Let  denotes individual i ’s health care 

utilisation at time , where = 0 indicates pre-treatment period and t  = 1 indicates 

treatment period.  is the treatment indicator which takes a value of 1 if household is 

treated, and 0 otherwise. The average treatment effect of the treated (ATT) is given by: 

itY

t

D

t

)1|( =−= dYYEATT cd  .   (1) 

(1) is an unbiased estimator of the ATT as random allocation implies orthogonality of the 

outcome variable and the treatment status; ii DY ⊥1 . 

 

However, in non-experimental setting, there are at least two reasons to believe that 

treatment is not random. First, recipient and non-recipient households are different. For 

instance, it is suggested that poor households have low taste for formal medical care 

(Akin et al., 1998). If this is the case, then the ATT will be downwardly biased. Second, 

eligibility determination is decentralised and varies across communities. Selection by the 

program administrators may also relate to the outcome variables. In the absence of a 

controlled randomised experiment, the primary task therefore is to use estimation to 

create the counterfactual or control units under most reasonable conditions. The 

following discusses the matching technique in constructing these counterfactuals.  
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In the presence of longitudinal data, matching technique can be combined with DID 

ates 

   (2) 

where 

estimator, which has been extensively used in policy evaluation studies. Let 0t  indic

pre-treatment period and 1t  indicates treatment period. The first underlying assumption 

behind matching in a longitudinal data context is: 

XdYY c
t

c
t |

01
⊥− , 

X  is a vector of strictly exogenous var nt 

itional on 

iables that are unaffected by the treatme

or anticipation of the treatment (Heckman et al., 1998). Equation (2) states the 

conditional independence or ‘ignorability’ assumption which requires that cond

observables X , the outcome of the control units progresses in the same way as that of the 

treated units had they not been treated. Health card distribution may not be random, and 

this is not ignorable with respect to the outcome variables. However, health card 

allocation becomes ignorable if all factors that are influencing the allocation and a

related to health care utilisations are in 

re 

X . 

 

The second fundamental assumption is that it is possible to find the counterfactual of 

 tests for 

the fulfilment of thi rt 

hen there are many covariates to match however, matching can suffer from 

83) is to 

each treated unit in the control group. This is the common support condition; 

1)|1Pr(0 <=< XD . Unlike in regression-based methods, matching explicitly

s condition, thereby avoiding “off-support” inferences. By off-suppo

we mean, attempt to establish the treatment effect when the treated and non-treated units 

in the data are incomparable, leading to biased ATT estimates (Heckman et al., 1997; 

Cobb-Clark and Crossley, 2003). 

 

W

dimensionality problem. One solution suggested by Rosenbaum and Rubin (19

match on a propensity score )(XP  that summarises information given by X  A useful 

result is that under the above ssumptions, the conditional independence assumptio

also applies for )(XP : 

two a n 

 .   (3) 

(3) is a weak requirement in the sense that it conditions on fixed-effects and does not rule 

out selection on the basis of time-invariant variables. The first fundamental assumption 

)(|
01

XPdYY c
t

c
t ⊥−
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requires there is no “hidden bias” due to unobserved factors affecting both treatment 

status and health care choice. In observational data, this endogeneity of treatment status 

common, and cross-sectional PSM estimator is generally inconsistent in this case. 

However, one may think these unobservables to be taste or tradition, which is household-

specific and changes very slowly, or not at all, over time. If so, the combination DI

PSM generates a powerful estimator of ATT by first eliminating the effects of time-

invariant unobservables, which is difficult to deal with in traditional cross-section 

matching, and then uses matching technique to construct counterfactual for each trea

unit (Smith and Todd, 2000).  

 

To calculate the ATT though, w

is 

D and 

ted 

e only need mean conditional independence. The ATT 

ow can be written as: 

conditional difference-in-differences (DID) estimator. First-

differencing will eliminate effects of inherent or time-invariant hous onal 

ts, if 

 PSM method searches for a unit in the 

ntrol group with the closest propensity score to that treated unit. Treated units that are 

 

n

)0),(|()1),(|(
0101

=−−=−= dXPYYEdXPYYEATT i
c

t
c

ti
d

t
d

t , (4) 

which essentially is the 

eholds’ and regi

characteristics. Meanwhile, double-differencing will eliminate macroeconomic effec

they are homogenous across units, as well as potential bias arising from differences in 

survey questionnaires. Later, I will explore the validity of the assumption of universal 

macroeconomic effects assumption. Given the two fundamental assumptions, equation 

(4) writes the consistent estimator of the ATT.  

  

To find a matching-pair for each treated unit, the

co

unable to find a match lie outside the region of common support, thus they are excluded 

in calculating the ATT. Notice that unlike regression approach, matching makes minimal 

assumption about the functional form of the relationship between health card availability

and health care utilisation, which is implicitly assumed to be linear in the standard 

regression method. Given the common support restriction, the sample-counterpart for the 

ATT can be written as: 

[ ] iDi Cj jtjtijitit wYYWYYATT ∑ ∑∈ ∈
−−−= )()( 0101   (5) 
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where  is the weight placed on a control unit ijW j  for a treated qu ) states 

the

as 

 this study, the propensity scores are estimated using logit model – one may opt to use 

oes 

ates 

holds, 

The standard errors are found by bootstrapping with 200 replications.  

 

unit i . E ation (5

that the ATT is found by comparing the change in outcomes of the tr ated unit with that 

of the counterfactual, which is given by the weighted average of the change in outcomes 

of the untreated units, where the weights reflect the propensity score. The weighting 

function may vary according to the selected definition of a close neighbourhood and this 

depends on the researchers rather than being implicit in the estimator, as in the case of 

linear regression. This flexibility in aggregating the treatment effect makes matching 

more amenable to heterogenous treatment effect context. Several possible definitions for 

ijW  include the nearest neighbour which gives zero weights to all matched pairs except 

 one closest to the treated unit, several matched pairs within a specified distance, or 

the entire sample of matched-pairs with a weighting function that accounts for relative 

closeness. In general, studies have favoured the latter definition, which maximises the 

sample size, with weights given by kernel weights (Dehejia and Wahba, 1998; Heckman 

et al., 1997; Galiani et al., 2005). Another advantage of this method from the standard 

regression is that health care variables contain a lot of zeros, which is likely to create bi

in estimation of linear slopes.   

 

e

In

non-parametric technique, but it would just bring back the dimensionality problem –, and 

the Kernel weights is assumed to be Gaussian. Since analytical formula to compute the 

standard error of the ATT estimates is not available, I follow the common practice to 

compute the standard errors using bootstrap method. With kernel weight, because it d

not run into the discontinuity that arises in other method, particularly in nearest neighbour 

matching, the reservations that have been forwarded about bootstrapping do not apply 

(see for example Abadie and Imbens, 2006). Further, bootstrapping has additional 

advantages as it takes into account both sampling errors in the propensity score estim

and errors due to multiple matches for a single treated unit. This is because each 

bootstrap repetition selects a sample (with replacement) from the sample of house

within the common support, and, in each replication, re-estimates the propensity score. 
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IV. DATA AND VARIABLES 

The data used in this study are derived from the Indonesian Family Life Survey (IFLS) in 

993 (IFLS1), 1997 (IFLS2) and 2000 (IFLS3) by RAND in collaboration with several 

nally representative data set covering 13 out of 27 

itial conditions. This is because only a 

all number of households were treated by IFLS2; most of the treated households in 

 are 

n-

 

 

lth and health care need vary 

reatly over time as they grow up (e.g., intensity of regular check-up naturally falls as the 

 

 

 

in mind 

se to 

-

n 

1

local universities. The IFLS is a natio

Indonesian provinces where 83% of the population resides. It is a very rich data source 

collected at the individual, household and community levels, and its reliability had been 

formally documented (Thomas et al., 2001). 

 

In this study, I focus on treated households in IFLS3 and use their characteristics in 

IFLS1 (Sample 1) and IFLS2 (Sample 2) as in

sm

IFLS3 obtained the concession after 1997. I drop a minority of households (2%) that

treated in both IFLS2 and IFLS3 to make IFLS2 a valid control sample. Also, only no

split households are included in the samples as conditions at the origin households may

be a poor representation of conditions after the separation.  

 

The units of study are both household and individual. For the individual-level analysis, I

focus on adults (age ≥15 years old), as young children’s hea

g

child gets older). Matching is performed at household-level because members of one 

household have the same treatment status, and individual characteristics, except those of 

the household heads, do not influence health card’s availability. The ATT is then 

calculated at the individual-level, with all members of one household having identical

propensity score of being treated. To incorporate individual-specific variables, 

individuals are categorised according to their relation to the household head in the

treatment year: the household heads, the spouse of the household heads, children of the

household head and a pool of other household members. It is important to keep 

that ‘children’ does not imply young age. Indeed, the average age of children is clo

22 years in the treatment year. Meanwhile, other household members include parents, in

laws, step children, grandparents, nieces/spouses, uncles/aunts and servants. This divisio

is chosen because household hierarchy may convey extra information about intra-
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household information sharing and resource allocation; there is only 1 health card per 

household to cover all household members. Further, it may be a nifty way to group 

individuals based on common characteristics. For example, spouses tend to be 30–

years old females who are not working in the formal (taxed) labour market. The final 

samples consist of 5,262 households in Sample 1 and 4,580 households in Sample 2

 

Dependent variables 

Information about health card availability is obtained from the household heads. Abou

50 

.  

t 

0% of households in each sample are treated households. To measure health care 

 the number of inpatient and outpatient care received by individuals 

, 

nd 

of 

are, averaging the two samples, about 80 percent of members in treated 

ouseholds are non-users of public health care, and 93 percent are non-users of private 

ghtly 

 

alth 

2

utilisations, I consider

at public and private facilities. Public facilities include health centers and its subsidiaries

hospitals and village midwives. Meanwhile, private facilities are private hospitals a

physicians. Traditional practitioners (e.g., religious healers) are excluded. For inpatient 

care, the reference period is 12 months to the survey, and for outpatient care, this period 

is 4 weeks. Outpatient care are further categorised according to their purpose, namely 

curative-type and preventative-type services. From the list of purposes in the survey, 

visitation for “treatment” and “medication” only are classified as curative-type service 

where as for other purposes such as medical check-ups, vaccination and an assortment 

treatments are classified as preventative-type care. As suggested by equation (4), the 

dependent variables are the first-difference of each of these health care consumption 

measures.  

 

In the samples, the proportions of non-user of formal health care are very large. For 

outpatient c

h

health care. In comparison between health care utilisation by household members of 

treated and non-treated households, members of non-treated households consume sli

less public services, which is not unexpected as services at public facilities are typically

cheaper than those at private clinics, and more private services. This picture of low he

care utilisation confirms observations from Susenas data set (Lanjouw et al., 2000). 

Meanwhile, inpatient cases are very rare for both groups in both samples (1–3 percent). 
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Beside the common agreement that hospitalisation is an unpleasant experience, this rarity 

may be explained by high opportunity cost of inpatient days, as compensation payments 

for sick days are not available for most workers.  

 

Table 1A and 1B present health care consumption pattern in the treatment year by 

household hierarchy for Sample 1 and 2 respectively. These are data a typical cross-

ctional evaluation study would analyse. The absolute t-statistics for differences in 

erage 

es 

nt 

 it 

s 

ainly due to preventative-type services. Meanwhile, treated children visit public 

r, and 

1. It 

 

s 

f 

se

means for two samples are reported in parentheses. In general, as anticipated, on av

members of treated households (treated individuals) pay more visits to public faciliti

than members of non-treated households (non-treated individuals) to receive outpatie

care. Because the initial utilisation levels are considerably low, the magnitudes of the 

differences according to treatment status are quite marked. Based on this snap-shot thus

appears that the health card program has some success in achieving its objective.  

 

Treated household heads and spouses tend to use more public facilities and less of private 

facilities for outpatient care than non-treated heads and spouses. For spouses, this i

m

facilities more frequently than non-treated children to treat illness or obtain medication 

and this difference is significant in Sample 2. It is worth noting that the children sub-

samples are quite different for Sample 1 and 2. The children sample is much smalle

children are older in Sample 1 because many young adults in 2000 (i.e., the 15–21 year 

olds) are not in the 1993 (adult) survey – they answered children booklets in the IFLS

is tempting to track down these young adults’ health care consumption to the children 

booklet. However, this is not pursued because the assumption of constant evolution of 

time-invariant individual heterogeneity made by the empirical strategy may be too strong 

(see Section III). In particular, in seven years time, 8–14 years-olds are likely to engage

in different activities than schooling, and their immune system are likely to strengthen a

they grow up to adulthood. For other household members in different households, there is 

no significant difference in health care consumption, although in general the directions o

differences are consistent with those experienced by the core household members. Like 

the children samples, other members in Sample 1 and Sample 2 are quite different, and 
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by comparing the age figures, it appears that non-core household members who remain in 

the house throughout the surveys tend to be elderly.  

 

Table 1A:  Post-treatment health care consumption (Sample 1)  

 
Head 
 (D=0) 

Head  
(D=1) 

Spouse 
(D=0) 

Spouse 
(D=1) 

Chil
(D=

d 
0) 

Child  
(D=1) 

Other 
(D=0) 

Other  
(D=1) 

Outpatient care         
Public 0.141 0.172 0.201 0.225 0.069 0.130 0.166 0.210 
  (1.647)*  (0.872)  (1.128)  
Private 0.097 0.070 0.096 0.065 0.085 0.196 0.07

(0.746) 
6 0.056 

  (1.812)*  (1.831)*  (1.369)  (0.567) 
Curative - public 0.055 0.079 0.091 0.110 0.032 0.065 0.094 0.161 
  (2.032)**  (1.139)  (0.868)  (1.439) 
Curative - private 0.037 0.027 0.039 0.033 0.068 0.0434 0.034 0.008 
  (1.127)  (0.509)  (0.086)  (1.438) 
Preventative – public 0.086 0.092 0.110 0.114 0.037 0.065 0.072 0.048 
  (0.384)  (0.201)  (0.704)  (0.635) 
Preventative – private 0.060 0.043 0.057 0.031 0.037 0.152 0.043 0.048 
  (1.424)  (1.967)**  (1.862)  (0.185) 
Inpatient care          
Public 0.013 0.012 0.014 0.017 0.011 0.000 0.009 0.008 
  (0.253)  (0.384)  (0.700)  (0.097) 
Private 0.007 0.013 0.009 0.003 0.016 0.043 0.007 0.008 
  (1.696)*  (1.536)  (1.155)  (0.127) 
         
Average age (in 2000) 50.61 50.74 43.56 43.06 27.31 28.13 58.98 60.90 
N 3526 929 2769 726 188 46 445 124 

  
 

Table 1B:  Post-treatment health care consumption (Sample 2) 

 
Head 
(D=0) 

Head 
(D=1) 

Spouse 
(D=0) 

Spouse 
(D=1) 

Child 
(D=0) 

Child  
(D=1) 

Other 
(D=0) 

Other  
(D=1) 

Outpatient care         
Public 0.135 0.148 0.189 0.232 0.071 0.122 0.124 0.155 
  (0.751)  (1.761)*  (3.542)***  
Private 0.084 0.061 0.092 0.054 0.057 0.039 0

(1.114) 
.069 0.044 

  (1.770)*  (2.373)***  (1.524)  (1.291) 
Curative - public 0.055 0.061 0.087 0.113 0.031 0.065 0.069 0.087 
  (0.576)  (1.653)*  (3.349)***  (0.877) 
Curative - private 0.035 0.028 0.035 0.029 0.025 0.018 0.034 0.014 
  (0.922)  (0.573)  (0.923)  (1.521) 
Preventative - public 0.080 0.087 0.102 0.119 0.040 0.057 0.055 0.068 
  (0.480)  (0.919)  (1.625)  (0.690) 
Preventative - private 0.049 0.034 0.057 0.025 0.032 0.022 0.035 0.030 
  (1.567)  (2.539)***  (1.232)  (0.346) 
Inpatient care          
Public 0.012 0.012 0.012 0.020 0.010 0.011 0.015 0.005 
  (0.030)  (1.770)*  (0.320)  (1.340) 
Private 0.006 0.006 0.010 0.005 0.003 0.011 0.007 0.003 
  (0.200)  (1.177)  (0.356)  (0.914) 
         
Average age (in 2000) 48.50 48.89 41.69 41.51 22.01 21.47 38.46 40.05 
N 3642 933 3026 759 2079 464 1029 269 

Note: absolute t-statistics are in parentheses. *, ** and *** denotes statistical significance at 10, 5 and 1% level respectively. 

D=0 refers to non-treated individuals and D=1 refers to treated individuals. Figures are means in year 2000 in each sample. 

‘Child’ refers to son/ daughter of the household head who answered adult booklets (15 years or older) in both sample years.    
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Lastly, with regard to inpatient care, the two samples provide different pictures. This may 

be explained by the very few hospitalisation cases in each year. Hence, although 

important, extra caution should be taken when dealing with inpatient care variables.  

 

Nonetheless, it is still to be determined whether these differences in health care utilisation 

pattern are due to the health card program. Before doing the formal evaluation, Table 2A 

and B report the simple DID estimates for Sample 1 and 2 respectively. It can be seen 

that double-differencing eliminates almost all the previously observed differences in 

health care consumption between treated and non-treated individuals. This suggests that 

treated individuals have already used more public facilities, which generally provides 

cheaper services, than private facilities even without health card holding. Analyses that 

miss pre-treatment information therefore may provide misleading conclusion.     

 

In Sample 1, it can be seen that there is almost no significant difference in health care 

ples (7 

t 

that the program has no effect. The picture is more 

consumption between treated and non-treated individuals. A possible explanation for this 

result is the relatively long time elapse between the control and the treatment sam

years), which allow individuals’ health conditions to change perhaps substantially. Bu

another reason could well be 

promising in Sample 2, which involves much shorter time gap between samples, with 

treated children having significantly higher consumption of public health care to treat 

illness than non-treated children. Most of the increase in health care consumption 

occurred after the treatment as there were no significant differences between children’s 

health care consumption pre-intervention. The table also shows that in general treated 

individuals rely less on private providers especially to perform preventative-type 

treatments. 
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Table 2A:  DID of Health Care Consumption by Treatment Status (Sample 1) 
 Head  Spouse Child Other 
 DID |t-stat| DID |t-stat| DID |t-stat| DID |t-stat| 
Outpatient care      
Public 0.030 1.196 0.030 0.822 0.006 0.054 -0.065 0.897 
Private -0.008 0.411 -0.003 0.126 0.044 0.447 -0.028 0.6511 
Curative - public 0.021 1.475 0.024 1.112 0.006 0.126 0.022 0.424 
Curative - private 0.010 0.905 0.002 0.141 -0.086 1.517 -0.027 1.358 
Preventative - public 0.005 0.236 0.004 0.130 -0.012 0.122 -0.098 1.652* 
Preventative -
Inpatient care

 private 0.002 0.132 -0.006 0.322 -0.049 0.944 -0.001 0.032 
       

Public 0.002 0.388 0.016 1.908* 0.016 0.560 -0.009 0.612 
Private 0.006 1.182 -0.004 0.570 0.044 1.279 0.000 0.000 
      
N 4455 3495 234 569 

  
able 2B:  DID of Health Care Consumption by Treatment Status (Sample 2) 

 

T
 Head  Spouse Child Other
 DID |t-stat| DID |t-stat| DID |t-stat| DID |t-stat| 
Outpatient care      
Public -0.012 0.507 0.007 0.236 0.067 2.893*** 0.072 1.612 
Private -0.021 1.228 -0.024 1.169 -0.054 2.253** -0.006 0.187 
Curative - public -0.017 1.204 0.031 1.461 0.053 2.931*** 0.051 1.504 
Curative - private 0.000 0.006 0.011 0.891 -0.006 0.380 -0.015 0.675 
Preventative - public 0.004 0.202 -0.015 0.551 0.023 1.126 0.020 0.591 
Preventative - private -0.021 1.714* -0.037 2.217** -0.048 2.623*** 0.008 0.302 
Inpatient care       
Public 0.000 0.005 0.010 1.486 0.003 0.439 -0.007 0.553 
Private 0.000 0.060 -0.001 0.170 0.003 0.391 -0.005 0.722 
         
N 4575 3787 2543 1298 

Note: *, ** and *** denotes 10, 5 and 1% significance level respectively.    
  

Explanatory variables  

Conditions that explain both eligibility and health care demand are relevant covariates. 

influenced by demographics, socioeconomic status, health care supply and environmental 

conditions. Fortunately, the IFLS data set is sufficiently rich to capture almost all of these 

variables.  

 

The first set of variables consists of measures of household’s welfare that determine both 

eligibility and health conditions. These variables include household compositions, value 

of asset, weekly expenditure, the proportion of household members who regard their 

Eligibility is determined by household’s welfare condition while health care demand is 
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general health as unhealthy, residential status (renting or not), source of drinking water, 

flooring materials and ownership of at least one form of health insurance. In addition, I 

include household's head characteristics such as age, gender, dialect, education and 

employment. Head’s characteristics are observed by the program administrators, and so 

they influenced health card eligibility. For example, unemployment of the household 

head is listed as one of the eligibility criteria.  

 

The second set of variables measure the extent of household’s knowledge on health care 

facilities. Knowledge is important because it reflects the accessibility of a certain type of 

health facility and consideration to receive treatment at this facility. Furtherm s 

ain way social relationships influence health care demand is 

 

rs 

ith social network – which is hard to quantify – by including health 

nowledge as covariates. In the IFLS, spouses were asked whether or not they know the 

r 

ealth 

 

nown in the literature that supply 

fluences demand through induced-demand or by altering people’s behaviour towards 

s 

ore, it ha

been suggested that the m

through their effect on health knowledge (Andersen, 1995). Social networks disseminate

references and updates on new products, and help locate appropriate health care provide

(Weerdt and Dercon, 2006). As such, households with strong social network tend to be 

knowledgeable. This link suggests that we may reduce omitted variable problem 

associated w

k

whereabouts of public hospitals, private hospitals, health centers, private practices, nurses 

or midwives and traditional practitioners that the family could go to. They respond on 

behalf of the entire household as the knowledge questions were not forwarded to othe

household members. 

 

The final set of control variables deal with variations in the quantity and quality of h

care providers. The availability of community-level data and facility surveys in the IFLS

makes this study one of the few demand-side analyses that can jointly account for 

variations in the supply-side factors. It is well-k

in

illness. Information about the quantity of health facilities are obtained from the 

community data, while quality variables are obtained from the facility survey. To 

measure quality, I consider the availability of full-time health workers (e.g., GPs, dentist

and nurses), birth services, laboratories and check-up equipment in facilities in the 
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community. Furthermore, both demand and supply of health care may be affected by 

exogenous health shocks to the community. To control for this, two indicator variables 

for minor and major health shocks in the last three years are created. A minor (major) 

health shock refers to any health-related epidemics such as outbreak of diseases o

which affected less than (at least) 50% of the local population. In Sample 1, 31 ou

IFLS communities (10 percent) experienced at least one major shock in the past 3 years 

and 132 communities (49 percent) experienced at least one minor shock in the same 

period. In Sample 2, the corresponding numbers are 41 (13 percent) and 100 (32 percen

communities.         

 

r flood 

t of 312 

t) 

 addition to these covariates, a dummy variable for urban area and 12 provincial 

 

. As a 

are 

ich all 

ount 

0 

er observation however is somewhat disappointing as it suggests that 

donesian’s health knowledge has not improved over time. On the other hand, housing 

conditions were better in 1997. Meanwhile, comparing between treated and non-treated 

In

dummy variables are included to control for regional heterogeneity. This is essential 

because Indonesia's population is very unevenly distributed. About 70% of the population

lives in Java Island which has a land area of only 7% of the country's total dry land

result, development stages vary substantially across regions, and health resources 

unevenly distributed (Lanjouw et al., 2000). Regional differences also carry exogenous 

variations such as differences in staple food, soil fertility and rainfall activity, wh

affect local health conditions. Finally, sampling weights are used that take into acc

attrition in the survey (IFLS). 

 

Table 3 reports selected summary statistics by treatment status. The full summary 

statistics are provided in Appendix A. All variables are characteristics as at pre-treatment 

period to ensure satisfaction of the exogeneity assumption (Caliendo and Kopeinig, 

2005). Comparison between the two base years reveals high similarity between the two 

base samples. This is expected because most the IFLS3 households have complete 

information in the earlier two waves. Both years provide similar household head’s 

characteristics, household compositions, initial level of health status with about 1 in 1

household members reported themselves generally unhealthy, and similar levels of health 

knowledge. The latt

In
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households, the table reveals that treated households tend to be headed by lowly ed

heads, consist of more elderly members and fewer working-age adult members, have 

lower value of asset and expenditure, are less likely to have health insurance and live in 

relatively sub-standard quality houses with non-tile flooring and limited access to direct 

piped water for drinking and cooking. Treated households also tend not to be renters 

which may indicate long-term residents. Hence, although accompanied with considerabl

variations, average figures hint that the program have successfully reached its target. 

Using 1998 Susenas data set and benefit-incidence analysis, Lanjouw et al. (2000) 

support this conjecture that the

ucated 

e 

 poor does benefit from subsidised primary health care.  

 

Table 3: Selected descriptive statistics 
 Sample 1 Sample 2 
 Non-treated  Treated Non-treated Treated
 Mean  Std. Dev. Mean  Std. Dev. Mean  Std. Dev. Mean  Std

 
. Dev.

Household head's Characteristics       
Male 0.85 0.36 0.85 0.36 0.84 0.36 0.83 0.38 
Primary school 0.50 0.50 0.58 0.49 0.55 0.50 0.61 
Junior high school 0.13 0.33 0.10 0.30 0.11 0.31 0.10 
Senior high school 0.15 0.35 0.10 0.29 0.12 0.33 0.11 
College / higher 0.05 0.22 0.02 0.15 0.04 0.19 0.02 0.13 
Household's Characteristics        
# under 6 years 0.59 0.77 0.61 0.77 0.49 0.72 0.52 0.70 
# 6 – 14 years olds  1.05 1.12 1.00 1.10 1.05 1.08 1.04 1.05 
# 15 - 49 years olds 2.46 1.44 2.22 1.29 2.94 1.73 2.70 1.57 
# elderly (50+ years) 0.63 0.80 0.65 0.81 0.85 0.88 0.87 0.91 
Not renting 0.80 0.40 0.84 0.37 0.85 0.36 0.88 0.32 
Piped water 0.16 0.37 0.09 0.29 0.24 0.43 0.17 0.37 

0.50 
0.29 
0.26 

5 
4 

 

0.42 
0.42 

N 4,588  1,037  3,689  891  

Ceramic floor 0.26 0.44 0.17 0.38 0.30 0.46 0.21 0.41 
Cement floor 0.38 0.49 0.33 0.47 0.37 0.48 0.37 0.48 
Bamboo floor 0.16 0.37 0.14 0.35 0.16 0.37 0.14 0.3
Insurance 0.19 0.39 0.14 0.35 0.20 0.40 0.13 0.3
% unhealthy 0.12 0.27 0.12 0.27 0.12 0.24 0.13 0.25 
Log Asset 14.83 1.89 14.41 1.76 15.60 1.68 15.18 1.59 
Log expenditure 10.73 1.21 10.43 1.14 10.94 0.96 10.76 0.85 
Knowledge (spouse)        
Public hospital 0.68 0.47 0.62 0.49 0.59 0.49 0.57 0.50 
Private hospital 0.37 0.48 0.29 0.46 0.34 0.47 0.29 0.45 
Health centers 0.91 0.28 0.94 0.24 0.90 0.30 0.94 0.23 
Private doctor 0.54 0.50 0.48 0.50 0.40 0.49 0.36 0.48 
Midwife 0.66 0.47 0.66 0.48 0.77 0.42 0.78 
Traditional healer 0.63 0.48 0.67 0.47 0.69 0.46 0.78 
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V. RESULT  

As discussed in Section III, to obtain unbiased estimates of the ATT, attention must be 

restricted to samples within the region of common support. In this case, imposing this 

condition only requires exclusion of a small number of households (less than 3 percent in 

both samples). This is encouraging as with large number of households within the 

common support, it is likely that the estimated ATTs are free of bias due to observables. 

Both samples readily pass the balancing tests as described by Becker and Ichino (2002) 

which ensures that the observed characteristics of matched-pairs are comparable.   

 

Figure 1 and 2: PSM in full sample 

 
 Note: the left-side graph is for Sample 1 and the right-side is for Sample 2. The kernel density 
of the estimated propensity scores is calculated assuming Gaussian weight. 
 

summarised in the above figures. It can be seen that both samples 

on 

 

 

ense, 

specially since the health card program is targeted to the poor.   

The quality of match is 

featured considerable overlapped regions, especially for Sample 2, suggesting that for 

many treated households there are many non-treated households with the same realisati

of propensity score. They however are not perfect mapping. In fact, matching technique 

requires that every household constitutes a possible health card holder; the common

support condition fails if households with certain characteristic are either always or never

receive treatment (P( iX ) =0 or P( iX ) =1). So, the finding that no household in either 

sample has 0 or 1 realisation of its propensity score is actually encouraging in this s

e
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Nonetheless, statistical significance of covariates in the matching equation means that 

households with health card have different characteristics than those without health card. 

Consequently, simple comparison between average outcomes of the treated and non-

treated individuals (Tables 1A–2B) is unlikely to yield the true causal effects of health 

card availability. In general, it is found that health card holding is significantly more 

likely for households with inferior housing conditions, and have few assets and low 

income. The coefficients of household composition variables and household head’s 

characteristics have the expected signs but are not significant. Rubin and Thomas (1996) 

however advise not to remove insignificant variables from the matching equation unless 

riables, the likelihood 

f health card holding increases with knowledge about the locations of public health 

 

les 

ffect one household’s 

elfare state, which in turn determines its eligibility for health card. With regards to the 

 

st 

there is a strong reason to do so. With regard to the knowledge va

o

centres and decreases with knowledge of private hospitals. This result may be explained 

by the tendency of private hospitals to be located in better-off neighbourhoods – with a

few poor households – where there is demand for them.   

 

Meanwhile, the relationship between household’s health card status and supply variab

is less clear. This makes sense because the inclusion of supply variables as covariates in 

the matching equation is justified on the basis that they influence health care utilisation, 

rather than because they influence one household’s eligibility for a health card. It seems 

unreasonable to expect that changes in supply variables directly a

w

quantity of public health facilities in the community, the finding of lacking statistical 

insignificance is also consistent with the commitment of the primary health system in the 

country to provide at least one form of public provider within a defined distance or to

arrange regular visitation by medical professionals if physical form of facility is not 

available. For the quality variables, in both samples, households with health card are 

more likely to reside in areas where birth services were initially limited, which is 

consistent with incidences of the family planning program in the late 1990s, but almo

all of the health personnel variables are not statistically significant. Nevertheless, the 

direction of the coefficients of most personnel variables is negative. Unlike the supply-

expansion part of the family planning program though, to my knowledge, there is no 
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similar expansion in health personnel in the country. While, negative coefficients sug

that many treated households reside in areas with limited health personnel in the pre-

intervention year. Thus, if excess capacity is unlikely, restricted supply conditions may 

inhibit the induced demand (due to health card availability

gest 

) to be realised. This issue 

ust be kept in mind by policymakers.  

 

 

 

us 

mple 1 

s on 

e 

ting 

d’s 

m

 

Compared to all samples, control households in the matched samples have relatively low 

income, more knowledge about public facilities and traditional healers and less 

knowledge about private facilities, indicating increased compatibility with treated 

households. Unlike in the case of matching by covariate however, the PSM method does

not generally yield identical means of covariates for matched pairs because the propensity

score is a summary measure that takes into account influences from all variables in the

matching equation on the health card holding status. The PSM method instead places a 

larger emphasis on balancing covariates that are the key predictors of the treatment stat

as found in the logit regression. 

 

Table 4A and 4B reports the ATT estimates for different household members in Sa

and 2, respectively. These are the main results. Differences between estimates in these 

tables with those in Table 2A–B reflect the confounding effects of observed covariate

health care consumption pattern. In general, the conditional estimates in Table 4A–B ar

smaller in absolute magnitude than the unconditional estimates in Table 2A–B sugges

that the overall effect of observables on the treatment status is positive. This direction is 

consistent with the fact that village heads disseminate health cards based on househol

observed characteristics. 
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Table 4A:  ATT Estimates by Household Hierarchy (Sample 1)  
 Head Spouse Child Other 

 
Mean 
(C) 

Mean  
(D) 

ATT 
(s.e.)B 

Mean 
(C) 

Mean  
(D) 

ATT 
(s.e.)B 

Mean 
(C) 

Mean  
(D) 

ATT 
(s.e.)B 

Mean 
(C) 

Mean  
(D) 

ATT 
(s.e.)B 

Outpatient care             
Public -0.010 0.029 0.039 -0.035 -0.011 0.025 -0.030 -0.023 0.007 -0.046 -0.107 -0.061 
   (0.027)   (0.042)   (0.124)   (0.090) 
Private 0.024 0.015 -0.009 
   (0.019) 

0.019 0.003 -0.016 -0.004 0.070 0.073 0.014 0.000 -0.014 
  (0.020)   (0.161)   (0.047) 

Curative - public 0.018 0.037 0.019 0.036 0.045 0.009 0.011 0.023 0.012 0.067 0.054 -0.013 
   (0.017)   (0.024)   (0.070)   (0.078) 

2 
9) 

Curative - private 0.018 0.005 -0.013 0.022 0.015 -0.006 0.036 -0.047 -0.082 0.025 0.000 -0.025 
   (0.010)   (0.012)   (0.064)   (0.016) 
Preventative - public -0.026 -0.011 0.015 -0.067 -0.054 0.013 -0.041 -0.047 -0.005 -0.098 -0.161 -0.06
   (0.025)   (0.033)   (0.107)   (0.08
Preventative - 
private 0.006 0.011 0.005 -0.002 -0.012 -0.010 -0.039 0.116 0.156 -0.012 0.000 0.012 
   (0.017)   (0.017)   (0.142)   (0.052) 
Inpatient care              
Public 0.003 0.004 0.000 -0.010 0.003 0.013 -0.006 0.000 0.006 -0.014 -0.018 -0.004 
   (0.006)   (0.009)   (0.009)   (0.021) 
Private -0.001 0.007 0.008 -0.003 -0.009 -0.006 -0.008 0.047 0.054 0.009 0.000 -0.009 
   (0.006)   (0.005)   (0.039)   (0.019) 
             
N 3047 842  2425 661  149 43  360 112  

 

 
 

able 4B:  ATT Estimates by Household Hierarchy (Sample 2) T
 Head Spouse Child Other 

 
Mean 

(C) 
Mean  
(D) 

ATT 
(s.e.)B 

Mean 
(C) 

Mean  
(D) 

ATT 
(s.e.)B 

Mean 
(C) 

Mean  
(D) 

ATT 
(s.e.)B 

Mean 
(C) 

Mean  
(D) 

ATT 
(s.e.)B 

Outpatient care             
Public -0.008 -0.008 0.000 0.009 0.022 0.013 0.023 0.066 0.044 0.027 0.055 0.028 
   (0.020)   (0.040)   (0.021)**   (0.045
Private 0.014 0.006 -0.008 0.019 -0.020 -0.039 0.016 -0.010 -0.027 0.027 -0.004 -0.031 
   (0.016)   (0.021)*   (0.017)   (0.025
Curative - public 0.008 -0.001 -0.010 0.017 0.053 0.036 0.011 0.044 0.033 0.024 0.063 0.039 
   (0.020)   (0.026)   (0.016)**   (0.038
Curative - private 0.004 0.000 -0.004 0.008 0.011 0.003 0.008 0.006 -0.002 0.017 0.000 -0.017 
   (0.014)   (0.013)   (0.008)   (0.015

) 

) 

) 

) 
blic 0 0.003 -0.008 -0.011 

14)   (0.031) 
Preventative - private 0.011 0.006 -0.005 0.012 -0.031 -0.043 0.009 -0.016 -0.025 0.010 -0.004 -0.014 
   (0.014)   (0.017)***   (0.015)   (0.020) 
Inpatient care              
Public 0.001 0.000 -0.001 -0.003 0.006 0.009 0.002 0.007 0.005 0.005 -0.004 -0.009 
   (0.006)   (0.008)   (0.005)   (0.011) 
Private 0.002 -0.001 -0.003 -0.001 -0.002 -0.001 0.006 0.006 0.000 -0.002 -0.004 -0.002 
   (0.005)   (0.004)   (0.000)   (0.010) 
             
N 3044 790  2442 638  2876 680  981 254  
Note: (s.e.)B denotes bootstrapped standard error with 200 replications. *, ** and *** denotes statistical significance at 10, 5 and 1% level 

respectively. C refers to control units and D is treated units. ATT are estimated for matched treated individuals in the region of common support. 

Preventative - pu  -0.014 -0.006 0.008 -0.008 -0.022 -0.014 0.012 0.022 0.01
   (0.023)   (0.032)   (0.0

  
 

For outpatient care, in Sample 1, none of the ATTs are statistically significant at any 

conventional significance levels. For household heads and spouses, the direction of the 
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treatment effects for all types of care at public facilities though is positive. For children 

and other household members, some of the estimates have unexpected sign, but they may 

be unreliable due to small sample sizes. Zhao (2004), using Monte Carlo experiment, 

finds that the PSM method does not perform well in small sample, which is set at 500 in 

the study, compared to other method of matching (e.g., covariate matching) as the 

variance of the estimated treatment effect is too large. In this case, the sizes of both the 

children and other member samples in Sample 1 are less than 500 observations.   

 

In Sample 2, the results persistently find that health card availability has no significant 

effect on treated heads’ health care consumption. The ATT for every type of health care 

is very small. On the other hand, health card significantly lowers treated spouses’ 

visitations to private providers to receive preventative-type treatments. Further 

vestigation reveals that this result is largely driven by the spouses’ demand for 

 large expansion of 

contraceptive services in public facilities, which is part of the national family planning 

program in the late 1990s, that can be covered by health card. The consumption of 

preventative-type care at public facilities however is stable on average. A possible 

explanation for this is the much fewer occurrences of spouses’ visits to private clinics 

compared to visits to public facilities (Table 1A–B). Given so, their visitations to private 

providers tend to be for a specific cause(s), such as to obtain contraception, while they 

visit public health providers for other services too. I will explore the effect of health card 

on contraceptive take-up next. On the other hand, treated spouses’ visitations to public 

providers for curative-type treatments are higher after health card holding and this result 

is statistically significant for a positive alternative.  

 

Health card availability especially benefited the son/daughters of the household head. In 

particular, it allows the children to pay more frequent visits to public health facilities to 

ure illness and receive medications. Because the initial consumption level is so low, the 

re-

ts 

in

contraception. As have been mentioned previously, there had been a

c

magnitude of the ATT is actually quite substantial when compared to the mean level p

intervention; the availability of health card increases treated children’s health care 

consumption by more than 80 percent. Their consumption of preventative-type treatmen
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at public facilities also increases but is not statistically significant. Meanwhile, health 

card availability is associated with fewer visitations to private providers, but to a small

magnitude than the overall increase in consumption of public health care, and it is not 

statistically significant for a causal relationship. For other household members, con

with the results from Sample 1, health card has no meaningful effect on their health care

consumption.  

er 

sistent 

 

o 

 

ily 

ieve 

 

 I 

ere is only one eligible female in the 

ousehold who is the spouse of the household head. There are about 3,799 eligible 

 

Meanwhile, Sample 1 and 2 provide consistent results with regard to inpatient care: in n

case health card availability increases treated members’ consumption of inpatient care. 

This is not unexpected given that inpatient treatment is a rarity for Indonesian 

households. 

 

Contraceptive enrolment  

The effect of health card on fertility decisions is also important as health card can cover

both maternal care and contraceptive treatments; the former encourages a larger fam

size while the latter delays or prevents pregnancy. There are however reasons to bel

that the effect of health card on encouraging larger family is small. These include 

uncertainty in continuous availability of health card and intensifying government’s family

planning campaign (which encourage 2 children per family). To investigate this matter,

consider contraceptive take-up during the study period and future plan to use 

contraceptive device for females who do not use contraception in the treatment year. In 

the IFLS, contraceptive booklets are forwarded to all females aged 15–54 year olds 

(eligible females). For the majority of households, th

h

females in Sample 1 and 3,518 females in Sample 2. Table 5 reports the ATT estimates 

for eligible females in the two samples. 20 percent of them are members of treated 

households.  
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Table 5: ATT estimates on contraceptive take-up 

 Sample 1 Sample 2 

 
Mean 
(C) 

Mean 
(D) 

ATT 
(s.e.)B 

Mean  
(C)  

Mean 
(D) 

ATT 
(s.e.)B 

       
Enrollment at public facilities  0.141 0.208 0.067 0.104 0.137 0.033 
   (0.016)***   (0.015)** 
Plan to use (if not using) 0.145 0.128 -0.017 0.141 0.142 0.002 
   (0.012)   (0.020) 
       
N 2981 795  2788 725  

 

Figures unde
 

r the (D) columns reveal the average proportions of new contraceptive 

nrolments by treated eligible females in matched households within 7 and 3 years time 

ively. Figures under the (C) columns are similarly defined for 

pply 

nds that 

ive-

 that 

n 

de towards contraception among eligible females who, for various reasons 

.g., religious), choose not to use contraception.  

obustness Check  

his section concerns with sensitivity of the results to assumptions made in producing 

lead to biased results.  

e

for Sample 1 and 2 respect

eligible females in the matched non-treated households. The mean for Sample 2 is lower 

due to enrolments prior to 1997.  

 

The results are not surprising given the reinforcement to enroll is heightened by su

expansion in public facilities mentioned earlier. The ATT estimates suggest that treated 

eligible females take advantage of both health card coverage and the supply expansion to 

start using contraception. This result is consistent with Jensen (1996) which fi

Indonesian women’s contraceptive behaviour is highly sensitive to the presence of 

subsidised facilities. Results from the RAND HIE have also suggested that preventat

type services are particularly price-sensitive due to reasons such as preventative-care as a 

luxury good as opposed to a normal good, and its high substitutability. Note though

enrollment does not guarantee continuity of use; females may fail to meet their next 

treatment if health card is not available then. Meanwhile, health card has no effect i

altering attitu

(e

 

R

T

them. The following explore several problems that may 
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First, treatment effects may be heterogeneous and classification by household hierarchy 

does not sufficiently capture individual heterogeneity. For example, the age range for 

household heads is a wide 80 years. Other ways to slice the data hence is considered: by 

age group and by gender. The ATTs are re-calculated, and overall the results by age 

groups reflect the previous results with positive effects found among the younger cohorts 

– who are likely to be in the children sample in the earlier division by household 

hierarchy –, and negative effects on preventative care at private facilities for 30-49 years-

olds, which is the age range of most spouses. While, the ATTs based on gender group are 

ads 

g 

ic 

 

. One 

estriction is made on the treated 

ouseholds because health card can be used at any public health facilities in the country. 

tion eliminates exclusive neighbourhoods consisting of only rich 

ins of 

about 72 percent and 77 percent of all households in Sample 1 and Sample 2, 

also calculated, and the results for males and females closely reflect the results for he

and spouses. One may also be tempted to slice the data by education levels, hypothesisin

that educated individuals have different health care consumption pattern than less 

educated individuals, but the sample sizes of the treated group for the higher education 

level sample get very small.   

 

Second, the estimated ATTs may be confounded by the effect of relevant macroeconom

changes. So far, it is assumed that macroeconomic effects are homogenous across units –

and so they are differenced away. The implication of this assumption is that all non-

treated households are a potential comparison group. Nevertheless, it is often the case 

that macroeconomic movements affect different groups of the population differently

way to investigate this possibility is to restrict the comparison group to households that 

share more similar characteristics with the treated households. Income level is commonly 

used to guide this division. However, in the face of substantial regional heterogeneity, 

this separation is complex (see Lanjouw et al., 2000; Booth, 1993 for discussion).  

 

An alternative way may be to restrict the comparison group to households who reside in 

communities that issued a health card in 2000; no r

h

In effect, this restric

households. Arguably, macroeconomic changes affect households in these communities 

more uniformly (compared to all sample). The resulting restricted sample conta
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respectively. The propensity scores are recalculated, and households are re-matched. The

matching results are summarised in Figure 3 and 4.  

 

Figure 3 and 4: PSM in restricted sample 

 

 
 Note: the left-side graph is for Sample 1 and the right-side is for Sample 2. The kernel density 

f the estimated propensity scores is calculated assuming Gaussian weight. 

fects the rich. This is consistent with the finding that income elasticity of health care is 

ited 

distribution between treated and non-treated households. It however assumes that bias 

o
 

Similar to the previous matching results, there are considerable overlapped regions. But 

in these samples, the upper bounds of the estimated propensity score is closer to one 

compared to those obtained from the unrestricted samples. There are also fewer matched 

households with propensity score less than 0.2 in these samples than there are in the 

unrestricted samples. All of these results may reflect improved compatibility of matched 

pairs. In general, the estimated health card effects are larger in these samples as the 

means for the new control samples are smaller. This trend may suggest that 

macroeconomic crisis affects health care consumption pattern of the poor more than it 

af

larger for poorer households than it is for poorer households (IRMS). However, the main 

thrust of the previous results is maintained that the health card program only have lim

effects on health care consumption of its beneficiaries.  

 

The last test but perhaps the most important of all is with regard to the first fundamental 

assumption in the PSM method that there is no selection on unobservables. Matching and 

the balancing tests adjust for biases due to non-overlapping support and differences in the 
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from the third source, that is, selection on unobservables, is zero. The above results 

therefore may be changed by factors that are not in the data. This possibility is rarely 

hecked by researchers. Recently, Becker and Caliendo (2007) suggest an indirect check 

e the effect of the unobservables or 

“hidden bias” needs to be in order to reverse the results found by the PSM method. The 

test is based on non-parametric Mantel and Haenszel (MH) test statistic (1959) for binary 

outcomes with the null hypothesis that, given random sampling, the outcome variables 

are not affected by treatment status – otherwise, the outcomes may be positively or 

negatively affected by the treatment and the estimated treatment effect is said to be 

significant if the test statistic crosses a given critical value. As demonstrated in Aakvik 

(2001), the test involves comparing the number of treated individuals who are affected by 

the treatment and its expected number if the treatment has no effect. When the outcome 

  

c

for this condition by asking the question how larg

variables are not binary in nature, Becker and Caliendo (2005) suggest transforming the 

variables so that an intended outcome is coded 1 and 0 otherwise.

 
To provide some underlying behind the test, consider a matched pair i and j, and let iP  

and jP  be the probability that each individual receives treatment. The odds ratio that 

individuals are treated is: 
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)1(
)1(

)1/(
)1/(

jj

ii

ij

ji

jj

ii

ux
ux

PP
PP

PP
PP

γβ
γβ

+
+

=
−

−
=

−
−

,   (6) 

which becomes )](exp[ ji uu −γ  if a matched pair has comparable observable

In other words, theoretically, matched-pairs differ only by a factor 

 covariates. 

γ  and their 

unobservables u. The ignorability assumption requires that either 0=γ  or 0)( =− ji uu . 

An important result from Rosenbaum (2002) is that suppose the null hypothesis is false, 

the odds ratio that one of the matched pair receives treatment can be bounded by the 

following bounds: 

)exp(
)1()exp(

γ
γ

≤
−

)1(1 −
≤

ij

ji

PP
.    (7) 

The MH test statistic MHQ  follows the standard normal distribution in large sample and is 

given by: 

PP

 30



∑
∑

=

=
−−

=
S

s
D
s

S

s
D
s

D

MH
Y

YEY
Q

1 1

1 11

)var(

5.0|)(|
,   (8) 

where D
sY1  )/( 1 ssDs NYN=  is the number of positive outcome for the treated sample (i

the number of treated individuals who use more health care post-treatment than they do 

pre-treatment) in stratum s of the sample, sCsDs NNN

.e., 

=+ , and s
C
s

D
s YYY 111 =+ , where sY1  

is the total number of positive outcome in stratum s. Under the null hypothesis, there is 

no treatment effect and positive outcome is equally likely for treated and non-treated

units. In this case, the strata are given by the estimated propensity score (Aavik, 200

 

Let )exp(

 

1). 

γ=Γ . Rosenbaum (2002) shows that for a given Γ  and }1,0{∈u , the MH test 

statistic is bounded by two known distributions, which move apart from each other 

reflecting increased uncertainty about the test statistics in the presence of hidden bias. If 

1=Γ , there is no hidden bias, and i and j have the same probability of being treated. The 

hidden bias. The details about the MH test statistic and its bounds can be found in Aakvik 

 

d their respectiv , the upper 

bounds adjust the MH test statistics downwards when the ATTs a

the lower bounds adjust them upwards when the ATTs are underestimated.  

g d 

by observables, which we have explored so far and found to be in a positive direction. 

l 

ed 

ect. Here, given that most of the ATTs at public facilities have 

positive sign, which indicate benefit from health card avail

somewhat less concerning than overestimation. In other words, if individuals with low 

nd even more significant than what have been estimated – and this is not 

size of Γ  hence reflects the extent matching results depart from the assumption of no 

(2001) and Becker and Caliendo (2005), which also offers a routine that calculates the

upper and lower bounds an e probability values. For a given Γ

re overestimated and 

In the case of the health card program, the direction of the hidden bias is not obvious. In 

the PSM-DID method, the hidden bias must come from time-varyin  unobserve

heterogeneity. Note that selection on unobservables must not be confused with selection 

The former needs not follow the same pattern as the latter. Indeed, if there is a substantia

selection by unobservables in the opposite direction, the true effect may be the revers

of the estimated eff

ability, underestimation is 

value of unobservables are overrepresented in the treatment samples, the true effects will 

be larger a
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undesirable. We hence shall focus on the upper bounds which assume the estimated 

ATTs overestimate the true treatment effects. The test is perfo

specifying  at 0.05 interval from 1 to 2 (double the odds of being treated).  is 

rably large given th

 

s matching with radius 0.01 (simila

on

 

rmed for each sub-sample, 

Γ 2=Γ

conside at the matching equation has included extensive background 

covariates. The outcome variables are transformed to binary variables (from count data),

and the weighting functions are given radiu r to the 

e used to produce results in Table 9); this test may be unsuitable for kernel matching 

which uses the entire sample (within the common support) as the matching pair (Becker

and Caliendo, 2005).   

 

The results from the tests suggest that already at small levels of Γ , health card 

availability no longer has significant effect on spouses and children in treated households 

(Sample 2). Under 1=Γ , the MH test statistic suggests significant treatment effects for 

1.1=Γ , the ATT for curative treatment at public facilities is 

alue for the upper bounds is 0.136). This 

means that the positive results might be reversed if spouses in treated and non-treated 

households are allowed to differ by just 10 percent in terms of unobserved characteristics. 

Meanwhile, the positive effect on treated children is more robust to influence from 

unobservables with 3.1=Γ  before the confidence interval of this effect includes 0. It is 

noteworthy though that 1.1=Γ  or 3.1

spouses. But with a value of 

no longer significant at 10 percent level (p-v

=Γ  does not imply that unobserved heterogeneity 

exists and that there is no positive effect from health card availability. This test is not 

designed to directly justify or invalidate the ignorability assumption. Rather, it suggests 

extra caution must be taken when concluding positive effect of health card, because the 

confidence interval for this effect would include 0 if unobservables cause the odds ratio 

of treatment status to differ between the treatment and the control groups by small 

magnitudes.   

 

In other cases where the treatment effects at 1=Γ  are insignificant, the bounds inform

us the degree of hidden bias, positive and negative, the ATTs would become significant. 

Assuming 5 percent significance level, for household heads, the conclusion that health 

card has no effect on health care consumption in general is robust to a hidden bias that 

s 
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would increases Γ  to 1.1 in Sample 1 and 1.4–1.55 in Sample 2. Meanwhile, for othe

members, the conclusion of no effect is robust to a hidden bias that would increase the 

odds of receiving treatment up to 1.8 (Sample 2). In short, these checks sugge at it 

highly unlikely that the result of no positive effect is reversed.   

 

Overall, the results are pointing to the same direction, independent of the chosen 

comparison group or estimation technique: there is lacking evidence of positive impact o

the health card program.  

 

r 

st th is 

f 

iscussions 

ountries, 

s in d

m 

ues tha vernm

e 

 

-

r cts also a small change in quantity for a given price change when 

ema

f 

D

Reconciling these results with prior expectation and evidences from developed c

the limited effect of health card is counterintuitive; by design, health card offers generous 

subsidy to those who were formerly restricted in access to formal health care. For 

instance, many public program eveloped countries, especially generous ones, are 

equipped with mechanism that discourages excessive usage or other rent-seeking 

behaviours (Manning et al., 1987; Riphan et al., 2003 provide contrasting evidence fro

developed countries). However, there are several explanations that may rationalise this 

result.  

 

First, Poterba (1994) arg t go ent intervention through price subsidy is ill-

suited when the price elasticity of demand for the subsidised good is low, or when ther

is large uncertainty and divergence in this elasticity across units. From Indonesia’s own 

health experiment study (the IRMS), Gertler (1995 in Lanjouw et al., 2000) finds that the

demand for health services in general at Indonesian public health facilities fit this 

condition; it is inelastic and varies greatly with income. Standard economic demand

supply theory p edi

nd schedule is inelastic.   d

 

Second, a relatively stable health care consumption may be due to the fact that 

households are not selected exclusively on the basis of their health conditions; healthy 

individuals – by his/her own standard – need very little medical care in a given period o
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time. Meanwhile, health card availability does not mandate (higher) health care 

consumption; like other households, households with health card can choose whether or

not to seek medical treatment, from whom they wish to receive medical treatment, and 

the level of treatments to be consumed. Of course, increased visi

 

tations to health facilities 

re not necessarily a good outcome. However, the serious problem of underutilisation of 

 poor 

similar condition do. Consequently, this so-called adaptation 

ias sets the tolerance level for sickness before concluding a need for medical care higher 

ouseholds than other households in general.  

rd 

he 

ferent 

erstand that health card can be used in the event of illness but are uncertain about 

s use in other circumstances, such as preventative-type services and non-emergency 

 

 

e there 

he third explanation relates to the adequacy of the public health system. It has been 

g 

a

health care particularly by the poor is well-known. It is commonly argued that the

have adapted to certain adverse health conditions that they do not consider themselves 

sick when others facing a 

b

among poor h

 

A related issue is the variation in the extent of information given out by the village heads 

when distributing health cards. Because of the decentralised nature of the health ca

program (and the absence of official public information such as brochures explaining t

program at least in the first few years of the program), households may receive dif

levels of information about the objective of the program and the functioning of health 

card, such as with regard to the scope of coverage. For instance, recipient households 

may und

it

procedures. There is in fact a body of literature arguing that recipient households are 

unlikely to misuse public sympathy (Miguel and Gugerty, 2005; Fehr and Gachter, 2000;

Besley et al., 1993). These studies argue that the fear of social sanctions, such as isolation

and shame, discourages recipient households from economising health card availability. 

The credibility of this theory has been highly praised in developing countries wher

is great physical proximity between neighbours and households tend to be long-term and 

less mobile residents.  

 

T

widely recognised that public health facilities are often inadequate in developin

countries. A survey study by Filmer et al. (2000) for instance note the possibility of 

subsidised patients choosing full-price providers if they are of higher quality. Given that 
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the IFLS data contains data on the supply side, future research should examine th

conditions available to different households.  

 

To sum up, limitedness of the effect of a public program is not a new result in the 

developing countries’ context. In the case of the health card program, this result is 

somewhat expected as the demand schedule for general health care in public facilities is

not price-sensitive to begin with. In addition, the demand incentive created by the 

program may also be counteracted by other costs associated with the subsidised care suc

as time costs and limited supply conditions. For the government, this finding has 

important implications, particularly with respect to resource

e supply 

 

h 

 allocation and designs for 

ture policies. The above discussions suggest that to encourage health care use, at least 

t 

y 

s. 

ies in the late 1990s. Meanwhile, health care utilisation by 

ousehold heads and other household members are unaffected by the presence of health 

l 

fu

in the short-run, the priority should be on expanding the public health system.       

 

VI.  CONCLUSION  

It has been suggested that poor households have low health because they lack access to 

adequate health care. The intention of the 1994 health card program has been to protec

the health status of Indonesian poor by allowing them access to adequate health care. B

design, the program is fairly generous providing full coverage for a wide range of 

primary health care services at public health facilities and allowing for unlimited claim

However, the findings in this thesis show that in general recipient households do not 

exploit the presence of health card and increase health care utilisation. There is some 

indication that younger members in the household made more visits to treat illness, but 

this result is not robust. There is also evidence that health card availability encourages 

contraceptive take-up by eligible females in the recipient households, but in this case, the 

demand reinforcement was paralleled with the expansion of family planning services in 

the public health facilit

h

card.   

 

In coming to this conclusion, PSM-DID estimator is applied on two large longitudina

samples with different base year. This estimator has not been extensively used in the 
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health literature, but has been shown to be powerful in providing causal estimates in 

labour applications. More specifically, important advantages of the matching technique 

ver the standard regression methods include flexibility with regard to functional forms, 

ported 

ffects 

. First, 

ds 

 

bserved characteristics suggests that the assumption about selection on observables may 

re plausible than assuming selection on unobservables made by the standard 

t a 

ss 

 

 

, the results provide yet another reason that results from developed countries might 

ot be generalised to programs applied in developing countries. For example, moral 

d 

care 

o

involvement of an explicit test to ensure that the estimated program effects are sup

by the data, and the combination between PSM and DID techniques eliminates the e

of time-specific heterogeneity and common macroeconomic effects. Further, matching 

technique is particularly suited for the current setting for the following two reasons

the richness of the data set allows matching technique to deal with selection biases due to 

observables considerably well. The availability of data on health care providers ad

credit to this study, as it manages to jointly account for variations in demand and supply

factors faced by different households that are often neglected in demand-sided studies. 

Second, the feature of the health card program that determines eligibility based on 

o

be mo

selection equation model.  

 

This study has several important implications. First, the health card program, in spite of 

its well intention, is not well designed. Although more studies are needed to sugges

suitable program design, there are suggestions that households may be more responsive 

to incentives in specific health care services as opposed to a general coverage or to 

programs that are targeted to individuals as opposed to households. Second, limitedne

of the effect of the health card program highlights the role of other factors in influencing

the performance of the program. A major problem in developing countries is inadequate

supply of health care. Policymakers should ensure that there is no mismatch between 

demand and supply in the sense that the program attempts to expand demand in areas 

where supply conditions could not deliver.  

 

Finally

n

hazard behaviour associated with generous programs is a common concern in develope

countries. In contrast, in developing countries, the cost of risky behaviour or reduced 
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is increasingly high in the absence of compensation payments and insurance. The resu

find no evidence of household members in recipient households reducing their 

consumption of preventative-type health care, as predicted by the moral hazard theory, as

health card becomes available. In addition, in developing countries the role of informal 

health care, such as traditional healers and home-grown remedies is prevalent, and 

households consider them as acceptable substitutes for formal health care. In most cases

they are cheap and highly accessible. Future design for program aiming to encourage use 

of formal health care therefore may be accompanied with educational material to alter 

preferences. Implementing public programs may be more challenging for government

developing countries in the face of constrained resources, lack of knowledge and market 

imperfections.     
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Appendix  
Results for the matching equation   
 
 
 Sample 1 Sample 2 
 Coeff. |t-stat| Coeff. |t-stat| 
Household head's Characteristics   
Age -0.005 1.25 -0.007 1.53 
Male 0.141 1.22 -0.045 0.38 

ary  Prim 0.126 1.18 0.197 1.71* 

-0.044 0.33 

years old  0.052 0.76 0.113 1.80* 

-0.407 3.86*** -0.296 2.51** 
boo floor -0.180 1.20 -0.355 2.02** 

0.64 

hospital -0.083 0.94 0.047 0.49 

0.174 1.97** -0.045 0.46 
Know midwife 0.101 1.22 0.083 0.82 
Know traditional healer -0.037 0.44 0.219 2.09** 

Junior school -0.118 0.73 0.225 1.28 
Senior school -0.218 1.28 -0.148 0.76 
College/ higher -0.444 1.68 -0.224 0.70 
Working -0.085 0.76 
Muslim 0.043 0.25 0.346 2.01** 
# acute problem 0.011 0.39 0.001 0.07 

tics    Household's Characteris
# < 6 years old 0.058 1.13 0.099 1.7* 
# 6 -14 years old 0.036 1.00 0.065 1.60 
# 15 - 49 years old 0.009 0.29 -0.002 0.07 
# > 49 
Speak Dialects 0.078 0.87 0.042 0.45 
House self-owned 0.141 1.21 0.310 2.27** 
Piped water -0.347 2.7*** -0.247 2.19** 
Ceramic floor -0.549 4.19*** -0.571 4.19*** 
Cement floor 
Bam
Health cover 0.103 0.88 -0.179 1.45 
Average unhealthy 0.099 0.66 0.114 
Log asset -0.073 2.99*** -0.131 4.29*** 
Log expenditure -0.084 2.29** 0.010 0.16 
Knowledge     
Know public 
Know private hospital -0.201 2.06** -0.134 1.27 
Know health centers 0.312 2.05** 0.562 3.44*** 
Know private doctor 
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Sample 1 Sample 2 

Appendix (Continued) 
 
 
 Coeff. |t-stat| Coeff. |t-stat| 

   Supply  
Average full-time doctor -0.214 1.77* 0.116 1.06 
Average full-time dentist 0.258 2.14** -0.131 1.23 

verage full-time nurse -0.0  -0.0 *** 
verage full-time midwives 

034 1.51 0.055 .70* 
ratories 

  
** 
** 
** ** 

t care ** 
inor surgery 

check-up  
vices  ** 

0.066 .93 0.038 .03 
l 

ristics 
** ** 

 

  

A 31 0.96 87 2.66
A 0.022 0.54 -0.027 0.55 
Average full-time paramedics -0. 1
Labo 0.173 1.29 0.195 1.18 
# beds -0.003 0.67 0.014 1.92*
Inpatient care 0.709 2.87* 0.461 1.84* 
Check-up 0.502 2.94* -0.426 0.68 
Birth services -0.666 3.41* -0.492 2.61*
Private - inpatien 0.195 0.63 0.804 2.62*
Private - m -0.179 1.01 na - 
Private - 0.040 0.40 -0.181 0.71 
Private - birth ser -0.212 0.84 -0.825 3.60*
# private hospital^ 0 1
# public hospita 0.081 1.45   
Village Characte     
Urban area 0.351 3.18* 0.426 3.65*
Minor shock -0.006 0.08 0.081 0.86 
Major shock 0.097 0.83 -0.256 1.92*
     
Constant 0.621 1.06 0.836 0.85 
     
N 5262  4580  
Log Likelihood -2390.6  -2065.9  
R squared 0.085  0.085  

 
N public and pri sp re com o make total number of hospitals. 
I o these variables, 12 r u ab a ight are included in 
t imates are logit coefficients, and *, ** no gnificance at 10, 5 and 
1 .  
 
 

ote: ^ in Sample 2, vate ho itals a bined t
n addition t egional d mmy vari les and s mpling we
he estimation. Est , *** de tes si
% level respectively
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