Econometric issues in the analysis of linked cross-section employer-worker surveys*

Andrew Hildreth ${ }^{\dagger} \quad$ Stephen Pudney ${ }^{\ddagger}$
April 1998: Preliminary - please do not quote.

Abstract

We consider the statistical problems involved in the econometric analysis of data from linked surveys of workers and employers. The context is a simple model of the incidence and duration of unemployement spells occurring between two waves of the UK New Earnings Survey, which have been linked to unemployment benefit records via the National Insurance number, and to Census of Production respondent firms via the Inter-Departmental Business Register.

JEL Classification: C1, C8, J3, J6

1 Introduction

It is only comparatively recently that economists have started to consider seriously the role of employer behaviour in determining the employment and

[^0]remumeration of individuals, the rate of labour turnover, and worker selection. A move away from partial equilibrium models entails considering all agents in the labour market, and consequently requires a much richer data set for empirical research. The price to be paid for this is usually a much more complex data set design. If we are to avoid using a small case study approach to examine empirically equilibrium theories of the labour market, then matched worker-employer datasets provide the only way forward. The degree to which data are representative depends on the sampling structure, the success of the survey in obtaining sufficient response, and the variables available within the survey design. A natural avenue to explore in obtaining representative matched data lies in the use of Government surveys and administrative records. ${ }^{1}$

Models of the labour market provide the motivation for such work. The recent wage determination literature on rent-sharing or insider-effects shows that employer attributes can influence the pay received by workers (see Hildreth and Oswald, 1997 as an example). Such work usually uses longitudinal information from company accounts data bases where the dependent variable is an aggregated average wage for the average employee. No individual worker characteristics are considered. However, Abowd, Kramarz and Margolis (1997) analyse the wage determination process and find that employee characteristics make the largest contribution to the determination of observed pay differences.

Combining homogenous employers and workers in two-sided search models results in models that have wage differentials consistent with atomistic wage determination once the effects of matching frictions are recognised (Burdett and Mortensen, 1997; Coles, 1997). In such models a mixed strategy equilibrium is posited where employers post a wage and individuals search for jobs. Matching frictions exist in the form of lags in the arrival of information about the availability and form of job offers. As the matching frictions disappear, competitive wage determination prevails, but wage differentials still exist, even when workers are all equally productive. One-sided worker or employer heterogeneity can be introduced into the model without affecting the substantive conclusions. In particular, the equilibrium model offered

[^1]by Coles (1997) presents a number of testable propositions concerning wage determination, firm size and performance, and movement of individuals between jobs and unemployment. In equilibrium, wages, firm size and profits are positively correlated, but are negatively correlated with the quit rate. Small firms, in equilibrium, announce low wages to extract the search rents of their employees, and accept the higher quit rate. The observable consequences of such models are clear. It should be observed that large employers will lose few employees to other firms for higher wages, suffer essentially no quits into unemployment, have workers with a higher marginal product, and make greater profits. Small employers will have a greater number of employees leaving, either to larger employers, or to unemployment (if the wage offer falls below the reservation wage level), workers with a lower marginal product, and make lower profits. Linking workers and employers thus allows full modelling of the labour market, relating characteristics of both sides of the market. By including unemployment records it also becomes possible to trace individuals between employment opportunities. With the matched data we can examine the role of employer characterisitics on the individual worker's wage; we can model an individual's experience of job switching and unemployment and the type of employers that individuals either move to and from.

However, there are statistical problems to be faced in using these matched samples. There are three major problems here. One is the absence of certain variables that one would like to be able to use (typically individualand household-specific variables which are relevant to individual productivity (e.g. education and training) and to individual reservation wages (e.g. other sources of household income). There are a number of ways around such dilemmas if Government data are to be used for analysis. One possibility would be to link existing employer and worker surveys to household surveys, which are currently completely independent. For example, in the UK the New Earnings Survey (NES) sample of employees could in principle be linked to respondents to the Family Expenditure Survey (FES), if National Insurance Numbers were collected as FES data. This is impractical for the foreseeable future, so the problem of missing variables remains an important one.

A second potential difficulty, which is the main focus of the present paper, is the impact of non-standard sampling properties on econometric estimation procedures. At first glance, the use of administrative Government data would
appear to be ideal in this respect. Government agencies have access to very good sampling frames and (in the UK at least) they have legal powers to compel employers to cooperate with surveys like the NES and the Annual Census of Production (ACOP). However, even in cases where surveys are based on random sampling and linked to administrative records which are in principle complete, non-response still occurs, and merging difficulties can create a non-representative sample and inconsistency in estimated model parameters. ${ }^{2}$

In the next section we discuss the design of each survey, describe how the linkages between data sets are made and discuss the problems that this creates. We then consider sampling problems and their implications for models of labour market behaviour in the context of simple cross-section, rather than panel, estimation. In section 4, we present empirical models of wage determination, the probability of an unemployment spell in the 12 months after NES sampling, and labour demand by employers. We show that, when using matched data, the use of employer data in individual level equations does not give biased estimates, despite the non-uniform sampling scheme used in the ACOP, and we are able to establish the importance of employer-variables such as profitability and firm size. However, the size-related design of ACOP does give rise to potentially biased estimates of employment equations. Corrections are made using conditional and weighted maximum likelihood approaches, but biases appear to be small. We leave for future work the much more complex issue of the biases that may be introduced when two or more years' data are linked to form an endogenously-sampled panel.

2 The NES-JUVOS-ACOP matched survey

The possibility of constructing this matched UK dataset comes from the development of the IDBR (Inter-Departmental Business Register) at the Office for National Statistics (ONS). The register was developed to resolve inconsistencies that occurred between the maintenence of separate sampling frames between the ONS (formerly the Central Statistical Office) and the Employment Department. In particular, the maintenance of the Annual Census of Production (ACOP) by the ONS and the New Earnings Survey (NES) by

[^2]the Employment Department was done from two seperately maintained registers of businesses in the United Kingdom. Differences in classification and coverage between the two registers led to different estimates of key economic indicators, especially employment. The main administrative sources that contribute to the IDBR are the VAT (value added tax) and PAYE (pay as you earn) tax registers. The only sectors that are not covered are some parts of agriculture, and some other very small businesses, for example the selfemployed and some non-profit organisations. The statistical unit for both registers is an enterprise. An enterprise can be a single entity or a group of legal units. The IDBR has been used for sampling purposes for both the NES and ACOP since 1994. Our work concerns the two cross-sections for 1994 and 1995.

2.1 The New Earnings Survey (NES)

The NES is an annual sample survey of earnings of employees in Great Britain of employees in employment. The survey is based on a one percent sample of employees who are members of the PAYE tax scheme. Questionnaires are sent to employers to be filled out on employees selected as part of the sample. Individuals are identified by means of their national insurance numbers (NINO), which are randomly allocated to individuals when they attain working age. All individuals whose NINO ends with the digits 14 are selected as the sample. Although national insurance numbers are individual-specific, and might be deemed to be a unique identifier, they are not in practice. A very small number of national insurance numbers are allocated to more than one individual through administrative re-using of the same number. Since 1975 the same last two digits have been used with each successive wave of the NES.

Employees are identified in the survey by one of two methods. About 90 percent of the sample is identified from lists supplied by the Inland Revenue containing the selected national insurance numbers and the names and addresses of their employers. To the employer is attached an enterprise reference number (ENTREF), taken directly from the IDBR. The remaining part of the NES sample is obtained directly from certain large employers, mainly in the public sector. Once again, these enterprises will carry an ENTREF.

The information collected in the NES concerns earnings for a particular pay period (determined and reported by the employer). Other information
is limited to hours worked per week (basic and overtime), age, occupation, industry, collective agreement coverage, and location. The gender of the respondents is not actually recorded as part of the NES, but gender records are provided by the Inland Revenue to the NES as part of the initial sample check list. The Inland Revenue provide a new list each year. Where there is a change in gender, or the record is missing, the record is checked against a DSS (Department of Social Security) file called 'Ledger 14'. Ledger 14 gives a complete listing of all NINO's ending in 14 together with the gender of the individual.

2.2 The Joint Unemployment and Vacancies Operating System (JUVOS)

As the same set of national insurance numbers have been used for the NES since 1975, the same set of individuals should normally be in the sample from one year to the next. However, non-response by an employer about an individual can occur for one of two principal reasons. Firstly, the individual may no longer be part of the labour force, owing to retirement, maternity leave, or other forms of absence. Secondly, the individual may be unemployed. If he or she registers as being unemployed, then this is recorded against the NINO, provided he or she claims unemployment benefit (or other unemploymentreleted benefit). These records are maintained by the Department of Trade and Industry (DTI). The unemployment benefit (UB) records provide information on a quarterly basis on whether a spell of registered unemployment occurred and how long (in days per quarter) it lasted. The computer records are up-dated on a monthly basis.

The UB records are taken from JUVOS (Joint Unemployment and Vacancies Operating System). The JUVOS dataset is a five percent sample of all computerised claims for unemployment benefit, initially in the first quarter of 1983, but updated continuously since then to take account of all new claimants. The sample chosen is based on the last two digits of the NINO with $14,24,44,64$, and 84 as the selected numbers. Individuals whose NINO ends in 14 are in principle the same as those individuals included in the NES sample. If an individual has claimed unemployment benefit since the computerised records began, then his or her history of registered unemployment is known. The one variable we use from the JUVOS records here is the
number of days within a quarter that an individual is unemployed, and this denotes both whether an unemployment spell occurred and the proportion of a year that an individual is unemployed.

2.3 The Annual Census of Production (ACOP)

The ACOP is not a true census, but rather a sample survey. Each year, the ACOP samples approximately 20000 establishments (reporting units) in the energy and utility, manufacturing, mining, and construction sectors. Reporting units are drawn from the IDBR via the ENTREF. As such, the enterprise unit from the IDBR is at a greater level of aggregation than the reporting unit. For each ENTREF, there are local units that have their own reporting reference (RUREF). The basis for sampling in the ACOP is done using the RUREF. The RUREF is a unique identifier for each reporting unit. The reporting unit is essentially the mailing address for the ACOP forms. A separate mailing address should be given for each type of activity at the enterprise. Information at the reporting unit level is collected on a number of variables, including employment, turnover, value added, stocks of goods or materials, wages and capital expenditure.

Unfortunately, the sampling structure of ACOP changed between the years 1994 and 1995 that we analyse here, and this is the source of some technical difficulty. In 1994, all firms in the target sectors with 100 employees or more were included in the sample with probability 1 . Below this size cut-off, establishments were sampled on a stratified basis with probabilities differing across size and industrial sector. In 1995, the threshold for exhaustive sampling was made sector-dependent, and raised to 200 employees for many sectors. The main effect of size stratification below the cut-off is to exclude very small firms. In particular, the ACOP samples contain virtually no reporting units with fewer than 10 employees.

2.4 Linking workers and employers

Linking individual records between NES and JUVOS is straightforward. Selecting only those individuals from JUVOS whose NINO ended in 14, the match is then simply obtained using the NINO as a key. Where individuals do not have an unemployment record, the number of days spent unemployed in any quarter of the year is assumed to be zero.

Although in principle it should be possible to create a known unique match from individual to establishment, linking across the NES and ACOP data sets is much more problematic. Firstly, the link between individual and establishment has to be made via the ENTREF, which refers to a whole enterprise, and is not unique for any individual/establishment pair. To create the unique match it has to be inferred from the IDBR records. As a reporting unit is supposed to be, by definition, an activity at a particular address, the combination of an enterprise reference and industrial sector, given by the five digit 1992 Standard Industrial Classification (SIC) code, should provide a unique identification of an establishment. This same identification is then available on each individual in the NES, provided we make the assumption that the SIC code as recorded in the NES and ACOP are the same. However, the allocation of establishments to SIC sectors is not always unambiguous, so there is scope here for matching failures.

In creating the match across the NES and ACOP a number of observations were lost from multiple entries for individuals by national insurance number, and from cases where the ENTREF and SIC code did not create a unique identification. Table 1 summarises the information loss from matching in this way. Information from non-unique national insurance numbers in each wave contributes to only a 1-2 percent loss of information. In the 1994 NES, a greater amount of information is lost from the ENTREF being missing for a number of NES respondents. The missing ENTREF was the result of some organisations (public authorities and national corporations) being contacted directly because of their prominence in the labour market, rather than through the IDBR. The 1995 NES does not suffer from this missing information problem. Without the ENTREF, no link can be made between NES respondents and ACOP establishments.

Table 1a: Observation Loss from the NES by National Insurance number (NINO).

Source	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
Sample issued	209900	213500
Response	166634	162068
Observations lost from repeat NINO	4021	2112
Observations available for matching to JUVOS	162613	159955
Observations lost from missing ENTREF	27309	1982
Observations remaining for match to ACOP	135304	157974

Table 1b: Observation Loss from the ACOP by Reporting Unit reference number (RUREF).

Source	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
ACOP sample issued: total	16035	15458
Sample issued: <100 employees	8496	9140
Sample issued: $100+$ employees	7539	6318
Response: total	12684	12051
Response: <100 employees	6368	6638
Response: $100+$ employees	6316	5413
Number of enterprises matched to NES	3861	3591
Number of establishments matched to NES	4438	4052
\quad < 100 employees	1140	1021
100+ employees	3298	3031
NES subjects in matched establishments	14548	15664

Once the NES and ACOP are matched, it gives individuals at establishments where we knew that the match is unique. There are however a few sampling anaomalies in this match because of differences in survey dates, since the NES is carried out in the first quarter of the year, while the ACOP draws the sample from the IDBR and carries out the survey in the final quarter of the year. The final two rows of Table 1 b show that about 66 er ce $\mathrm{t} o$ es ab is me ts nt e A OP espondents could be matched to NES respondents. In approximately 30 percent of the cases there was more than one sampled worker per establishment.

Figures 1 and 2 illustrate the distribution of firm size in terms of workers per establishment for 1994 and 1995. They compare the distribution of firm sizes as recorded on IDBR with the distribution in the achieved ACOP sample and the NES-matched ACOP subsample. They show very clearly the enormous impact of differential sampling rates and the consequent scope for bias introduced by sampling distortions. The number of workers per establishment in the actual population has a distribution that is fairly close to exponential form, while the sample distribution is very strongly skewed in the opposite direction, and much closer to lognormal form. The major change in the ACOP sampling scheme between 1994 and 1995 is also evident.

A striking feature of table 1 and figures 1-2 is the way that the sample becomes still more skewed towards large establishments when we restrict selection to establishments containing at least one NES subject. It may be useful to do this, since some variables (such as location) are available from NES and not from ACOP. Also one might want to use the personal characteristics of NES subjects to construct summary measures of the firm's workforce. The problem with this is that large establishments are more likely to yield a NES subject, and thus large establishments dominate the matched sample.This type of sample distortion may be very important for some analytical purposes, and we return to this issue below.

3 A model of the sampling / linking process

3.1 The cross-section sample distribution

Define the following notation, relating to a single survey year. We have three sources of information:
(i) NES information on individuals who are in employment, denoted w;
(ii) JUVOS information on individuals' current and past experience of unemployment, denoted u;
(iii) ACOP information on the characteristics of the employer, denoted (f, S), where S is firm size measured by employment and f is a vector containing all other firm characteristics.

Our task is now to derive the sample distribution of the observations from a single year's data on employees and their employers, to provide a basis for

Figure 1: Size distributions for establishments in IDBR population and full sample and NES-linked subsample of ACOP for 1994

Figure 2: Size distributions for establishments in IDBR population and full sample and NES-linked subsample of ACOP for 1995
drawing inferences about the processes of pay determination, job loss and unemployment. From the viewpoint of the theoretical statistician, there is a serious problem to be overcome in analysing the dataset that results from the firm-worker matching process described in section 2. The techniques customarily used to model survey data are based on the assumption of an underlying continuous distribution. For example, probit or Tobit analysis requires that behavioural disturbances are drawings from a normal distribution; logit analysis is based on the logistic distribution. But a distribution can only be continuous if the population it describes is infinite. Since the total number of firms and workers in existence at any time is very large, one usually feels safe in using these infinite-population methods for analysing company or worker cross-sections. However, with matched data, this is more problematic. If there are infinite numbers of firms and workers, then the probability of observing even a single firm-worker match is essentially zero in any finite sample, unless there exist firms of infinite size. There is a further problem in the case of the ACOP, since the survey design requires that every firm in the target production sectors is sampled with probability 1 if its workforce exceeds a pre-specified threshold size. In an infinite population of firms, this would generally imply an infinite sample of large firms.

Fortunately, a suitable theoretical framework is available for situations like this. Superpopulation theory (Cassel et. al., 1977; Pudney, 1989) allows us to work with a finite population, by postulating the existence of an underlying infinite superpopulation from which the actual finite population is assumed to have been drawn at random by "nature". Essentially, the superpopulation describes the set of possible forms the actual finite population might have taken. The objective of our statistical analysis is then to estimate fundamental relationships present in the superpopulation - in other words the (random) processes that govern the nature of the actual population we see around us. Since the superpopulation is infinite, it is admissible to estimate these statistical relationships using techniques which assume continuous distributions. However, in doing so, it is necessary to take proper account of the fact that the process generating our data has two stages - a draw (made by "nature") from the superpopulation, followed by a second draw (made by the survey designer) from the finite population.

At any particular time, the superpopulation consists of an infinite set of elements, each corresponding to a manufacturing firm and its workforce. The size of the firm's workforce is s, and the information set describing the firm
and its S workers is denoted $X=\left\{S, f, w^{1} \ldots w^{s}\right\}^{3}$ I the up rp pu at on th di tr bu io of he efi m/ or fo ce lu te si de cr be by pr ba il ty en it $/ \mathrm{m}$ ss unct on ($\mathrm{df} g()$. ur am le falsito se of st at. E ch tr tu r i de ne by si e r nge C_{r} fr mw ic th su ve sa ples at a rate ρ_{r}. F r the top stratum, an exh us iv s mpei ta en, implying $\rho_{R}=1$. For the sake of simplicity, we assume that sampling within the lower strata is random. The total sample size is n and the number f bservations fr m each stratum is $n_{r}=\left[\rho_{r} n\right]$ where [.] denotes the nearest integer. No e that n_{r} is random with respect to the super-population. Henceforth, we use the symbol $g($.$) as generic notation for any distribution that describes the$ superpopulation; the symbol $h($.$) is used to represent sample distributions.$

Largest firms

Let the size of the actual population be N firms, and let $P_{R}=\operatorname{Pr}(S \in$ $\left.C_{R}\right)=1-G_{S}\left(\underline{C}_{R}\right)$ be the frequency of large firms in the superpo
n the superpopul -

$$
\begin{equation*}
\left.{ }_{R}\right)=\binom{n_{R}}{N} P^{n_{R}}(1-P)^{N-n_{R}} \prod_{j=1}^{n^{*}} g\left(X_{j} \mid S_{j} \geq \underline{C}_{R}\right) \tag{1}
\end{equation*}
$$

However, in general the collection of variables X is not fully observable, since the NES is a 1 in (approximately) 100 random sample of NI numbers. Thus, any particular worker has a known probability $\lambda \approx 0.01$ of being observed in the NES. Conditional on the size of the firm, S, the number of workers captured by the NES (q) therefore has a binomial (S, λ) distribution. Letting the symbol \widetilde{X} denote the part of X that is observed, the joint sample distribution for large firms is therefore:

[^3]\[

$$
\begin{align*}
& h\left(n_{R}, \widetilde{X}_{1} \ldots \widetilde{X}_{n_{R}}\right)=\binom{n_{R}}{N} P_{R}^{n_{R}}\left(1-P_{R}\right)^{N-n_{R}} \\
& \times \prod_{j=1}^{n_{R}} g\left(f_{j}, S_{j} \mid S_{j} \geq \underline{C}_{R}\right)\binom{q_{j}}{S_{j}} \lambda^{q_{j}}(1-\lambda)^{S_{j}-q_{j}} \prod_{i=1}^{q_{j}} g\left(w_{j}^{i} \mid f_{j}, S_{j}\right) \\
& \quad=\binom{n_{R}}{N}\left(1-P_{R}\right)^{N-n_{R}} \\
& \quad \times \prod_{j=1}^{n_{R}} g\left(f_{j}, S_{j}\right)\binom{q_{j}}{S_{j}} \lambda^{q_{j}}(1-\lambda)^{S_{j}-q_{j}} \prod_{i=1}^{q_{j}} g\left(w_{j}^{i} \mid f_{j}, S_{j}\right) \tag{2}
\end{align*}
$$
\]

where we have used the relationship $g\left(f, S \mid S \geq \underline{C}_{R}\right)=g(f, S) / P_{R}$ Smaller firms

The remainder of the sample is a set of strata samples of smaller firms. Consider the r th stratum defined as the size class $C_{r}=\left(\underline{C}_{r}, \bar{C}_{r}\right)$. Under the superpopulation approach, observations on firms in this stratum are viewed as being generated as a random sample (without replacement) drawn from a random sample drawn from the relevant part of an underlying infinite population. But a random sample of a random sample is itself a random sample, so the joint distribution of information relating to sampled small firms in stratum r is the binomial probability of the stratum size N_{r} in the actual population, multiplied by the joint distribution of the sample observations conditional on the implied sample size:

$$
\begin{align*}
h\left(n_{r}, X_{1} \ldots X_{n_{r}}\right)= & \binom{N_{r}}{N}\left(1-P_{r}\right)^{N-N_{r}} P_{r}^{N_{r}-n_{r}} \\
& \times \prod_{j=1}^{n_{R}} g\left(f_{j}, S_{j}\right)\binom{q_{j}}{S_{j}} \lambda^{q_{j}}(1-\lambda)^{S_{j}-q_{j}} \prod_{i=1}^{q_{j}} g\left(w_{j}^{i} \mid f_{j}, S_{j}\right) \tag{3}
\end{align*}
$$

All firms
Thus, putting together the full sample:

$$
\begin{align*}
h\left(N_{1} \ldots N_{R}, \widetilde{X}_{1} \ldots \widetilde{X}_{n}\right)= & \prod_{r=1}^{R}\binom{N_{r}}{N}\left(1-P_{r}\right)^{N-N_{r}} P_{r}^{N_{r}-n_{r}} \\
& \times \prod_{j=1}^{n} g\left(f_{j}, S_{j}\right)\binom{q_{j}}{S_{j}} \lambda^{q_{j}}(1-\lambda)^{S_{j}-q_{j}} \prod_{i=1}^{q_{j}} g\left(w_{j}^{i} \mid f_{j}, S_{j}\right) \tag{4}
\end{align*}
$$

Note that $N_{r}-n_{r}$ is identically zero for $r=R$.

4 Cross-section estimation

We now consider the implications of the sample distribution (4) for some simple estimation purposes.

4.1 Estimating a cross-section earnings equation

For some practical purposes, we may be interested in the distribution of one or more worker variables conditional on the characteristics of the firm and remaining characteristics of the worker. This is so, for example, if we use the data to estimate an earnings regression. To find this conditional distribution, we divide the worker variables w into an endogenous variable w^{*} (earnings) and the remaining conditioning variables $w^{* *}$ (age, gender, unemployment history, etc.). We then need to integrate out the endogenous worker variable w^{*} to derive the marginal distribution of the conditioning variables $\left\{f, s, w^{* *}, q, n^{*}\right\}$, and then divide the full sample distribution by this marginal. When this is done, many terms in the sample distribution (4) cancel, and the result is the following conditional sample distribution:

$$
\begin{align*}
h\left(w^{*} \mid f, s, q, n^{*}, w^{* *}\right) & =\prod_{j=1}^{n} \prod_{i=1}^{q_{j}} \frac{g\left(w_{j}^{i} \mid f_{j}, s_{j}\right)}{g\left(w_{j}^{* i} \mid f_{j}, s_{j}\right)} \\
& =\prod_{j=1}^{n} \prod_{i=1}^{q_{j}} g\left(w_{j}^{* i} \mid f_{j}, s_{j}, w_{j}^{* * i}\right) \tag{5}
\end{align*}
$$

The important result here is that this is essentially identical to the distribution of w^{*} conditional on $\left\{f, s, w^{* *}\right\}$ in the superpopulation. Thus, the usual
type of sample analysis of earnings conditional on firm and worker characteristics will give valid inferences about the underlying (super)population.

Tables 2 and 3 give the results of estimating semi-log wage equations separately for 1994 and 1995 for males and females, using a conventional set of explanatory covariates from the NES and JUVOS datasets, supplemented by ACOP firm characteristics. The basic estimating equation which corresponds to the sample likelihood above is

$$
\ln w_{j}^{* i}=w_{j}^{* * i} \beta+f_{j} \gamma+\varepsilon_{j}^{i}
$$

where $w_{j}^{* i}$ is the wage for individual i at firm $j, j=1 \ldots n$ and $i=1 \ldots q_{j} ; w_{j}^{* * i}$ is a vector of individual characteristics from the NES and JUVOS datasets; f_{j} is a vector of establishment characterisitics from the ACOP; ε_{j}^{i} is the random error term. ${ }^{4}$ The earnings equation is standard apart from the inclusion of the employer variables and the before- and after-unemployment probabilities. The results from Tables 2 and 3 provide results consistent with others in the literature. The age-earnings profile is unusual as third and fourth power terms are significant for men and women (although only for 1994 for women). Coverage by a collective bargaining agreement has a positive and significant effect for men, but an insignificant effect (at normal levels) for women. All two digit occupation and industry dummy variables are significant, as are the 17 location dummies.

The unemployment variables show a varied pattern across time and across gender. Unemployment incidence in the 12 months before the NES date has a negative effect for men in 1994, as does the proportion of the year spent in unemployment. For women, these effects are also negative, but not significant.

Three employer variables were included in the wage equations: the log number of employees, profit per employee, and capital expenditure per employee. All coefficients are positive, well determined (apart from capital expenditure per employee for females in 1995), and show that the employer's economic characteristics have significant effects on an individual's wage. Separate equations with only one employer term were also estimated. The

[^4]result showed that the sign, size, and significance of the employer terms did not change substantially, nor did the coefficients on the individual-specific components. Employer effects on the wage appear to be important and independent of, and supplemental to, individual characteristics.

Table 2: Estimated log wage equations for Males:
(t-ratios in parentheses)

Covariate	$\mathbf{1 9 9 4}$		$\mathbf{1 9 9 5}$	
age $/ 10$	4.437	(6.456)	4.110	(7.713)
$(\text { age } / 10)^{2}$	-1.453	(5.265)	-1.360	(6.453)
$(\text { age } / 10)^{3}$	0.212	(4.518)	0.202	(5.692)
${\text { age } / 10)^{4}}^{\text {collective bargaining agreement }}$	-0.012	(4.082)	-0.011	(5.285)
proportion of last year unemployed	0.032	(3.105)	0.032	(2.306)
unemployment during last year	-0.300	(3.447)	-0.627	(3.344)
profit per employee	-0.072	(2.446)	-0.027	(0.625)
capital expenditure per employee	1.115	(8.598)	1.155	(10.168)
log number of employees	1.851	(3.531)	0.968	(2.401)
F test on occupational dummies $[\mathrm{p}$-value]	403.47	$[0.000]$	144.20	$[0.000]$
F test on industry dummies [p-value]	14.09	$[0.000]$	9.54	$[0.000]$
F test on location dummies [p-value]	12.28	$[0.000]$	7.57	$[0.000]$
R^{2}	0.4223	0.364		
n	10461	11505		

Table 3: Estimated log wage equations for Females:
(t-ratios in parentheses)

Covariate	$\mathbf{1 9 9 4}$		$\mathbf{1 9 9 5}$	
age $/ 10$	1.589	(2.022)	0.954	(1.430)
$(\text { age } / 10)^{2}$	-0.568	(1.842)	-0.282	(1.120)
$(\text { age } / 10)^{3}$	0.095	(1.834)	0.040	(0.979)
$(\text { age } / 10)^{4}$	-0.006	(1.978)	-0.002	(0.992)
collective bargaining agreement	0.017	(0.681)	0.081	(2.569)
proportion of last year unemployed	-0.288	(0.976)	-0.448	(2.441)
unemployment during last year	-0.024	(0.327)	-0.068	(1.087)
profit per employee	1.927	(6.487)	2.273	(7.277)
capital expenditure per employee	2.281	(2.064)	0.181	(0.227)
log number of employees	0.050	(7.434)	0.042	(5.708)
F test on occupational dummies [p-value]	45.12	$[0.000]$	38.15	$[0.000]$
F test on industry dummies [p-value]	6.11	$[0.000]$	4.77	$[0.000]$
F test on location dummies [p-value]	6.18	$[0.000]$	5.35	$[0.000]$
R	0.350	0.300		
n	3957	4023		

4.2 Estimating the probability of a transition to unemployment

The JUVOS dataset gives details of any spells of registered unemployment in the period surrounding the NES/ACOP surveys. This allows us to estimate a model of the probability of a separation from the firm with a period of unemployment. Since JUVOS information is available in principle for each of our NES subjects, this entails no further sampling complications. We use here a simple probit model of the probability that there is at least one spell of registered unemployment in the year following the NES (specifically 1994q31995q2 and 1995q3-1996q2 for the 1994 and 1995 samples respectively). In each case we use the base year's ACOP as the source for our firm-specific data, thus avoiding the need to link successive years'ACOP samples.

The estimating equation was a simple probit where the dependent variable is 1 if an unemployment spell occurs, and 0 otherwise. The same individual and establishment characterisitics were included in the probits as in the wage
equation. The coefficients in Tables 4 and 5 are the marginal effects evaluated at the point of means, so that they can be read directly as the effect of a unit change in the variable of interest on the probability of an unemployment spell occurring. ${ }^{5}$

Tables 4 and 5 show that for men, the wage earned and a previous history of unemployment have a significant effect on the probability of being unemployed in the year following inclusion in the NES. The higher the weekly wage, the less likely a male worker is to experience unemployment. The existence and duration of a previous spell has a positive effect. In general, no workplace variables were significant, although the industry dummies were significant, indicating that there are important sectoral differences in the probability of job loss. For 1995, capital expenditure per employee by an employer has a negative and well determined effect on the probability that a male worker will be unemployed in the succeeding year. Although capital expenditure is not necessarily tied to technology, this result does not seem consistent with the idea of large scale technological unemployment.

The pattern of coefficients for females indicates that only the incidence of unemployment in the previous year has a significant and positive effect on the probability of a succeeding unemployment spell. Unionisation (i.e. collective bargaining) helps female workers retain employment, and employer size has a negative effect on the probability of unemployment.

[^5]Table 4: Estimated probits for Males for unemployment in the succeeding year:
(marginal effects; t-ratios in parentheses; sector and location variables included)

Covariate	$\mathbf{1 9 9 4}$		$\mathbf{1 9 9 5}$	
age/10	0.002	(1.14)	0.002	(0.45)
collective bargaining agreement	-0.000	(0.03)	-0.005	(1.35)
log weekly wage	-0.037	(8.28)	-0.015	(6.60)
proportion of last year unemployed	0.092	(3.23)	0.063	(3.89)
unemployment during last year	0.084	(5.12)	0.095	(7.23)
profit per employee	0.035	(0.52)	-0.020	(0.45)
capital expenditure per employee	-0.124	(0.58)	-0.267	(1.38)
log number of employees	0.001	(0.79)	0.000	(0.26)
χ^{2} test on occupational dummies [p-value]	14.21	$[0.510]$	7.19	$[0.845]$
χ^{2} test on industry dummies [p-value]	47.76	$[0.002]$	52.66	$[0.000]$
χ^{2} test on location dummies [p-value]	27.97	$[0.032]$	10.98	$[0.811]$
pseudo R^{2}	0.091	0.148		
n	0461		11505	

Table 5: Estimated probits for Females for unemployment in the succeeding year:
(marginal effects; t-ratios in parentheses; sector and location variables included)

Covariate	$\mathbf{1 9 9 4}$		$\mathbf{1 9 9 5}$	
age/10	-0.011	(4.58)	-0.002	(1.39)
collective bargaining agreement	0.023	(2.31)	-0.001	(0.29)
log weekly wage	-0.007	(1.30)	-0.006	(2.92)
proportion of last year unemployed	0.044	(0.94)	0.026	(1.56)
unemployment during last year	0.107	(4.00)	0.087	(5.52)
profit per employee	0.048	(0.44)	-0.177	(2.56)
capital expenditure per employee	0.066	(0.19)	0.143	(1.49)
log number of employees	-0.005	(2.10)	0.001	(0.49)
χ^{2} test on occupational dummies [p-value]	13.14	$[0.516]$	11.89	$[0.537]$
χ^{2} test on industry dummies [p-value]	28.15	$[0.171]$	143.03	$[0.000]$
χ^{2} test on location dummies [p-value]	20.86	$[0.184]$	16.01	$[0.452]$
pseudo R^{2}	0.105	0.156		
n	3957	4023		

4.3 Estimating a model with endogenous employment

In general, any use of the ACOP data to analyse firm size, either unconditionally or conditional on other firm characteristics will produce biased results unless we make some allowance for the non-uniform ACOP sampling rates and possibly also the distortions produced by matching. One area in which this sampling issue will be important is the demand for labour by firms. In particular, the literature (reviewed by Hamermesh, 1993) shows a number of estimates for the output elasticity for homogeneous labour. Even ignoring the basic problems outlined by Hamermesh (1993) in estimating a cross-section labour demand equation, conventional uncorrected estimates will be biased, as a consequence of the stratified sampling design used in ACOP. This bias may in turn be affected by the further stage of sample selection if we restrict the sample further to the set of firms for which a link to the NES is possible. Table 1c and figure 1 provide clear evidence on the sample distortions, and lead one to suspect that there may be great scope for bias from this source.

Using the full ACOP sample, the distribution of S_{j} conditional on other firm attributes f_{j} is:

$$
\begin{align*}
h\left(S_{1} \ldots S_{n} \mid f_{1} \ldots f_{n}, N_{1} \ldots N_{R}\right) & =\prod_{j=1}^{n} g\left(S_{j} \mid f_{j}\right) \prod_{r=1}^{R}\left[G_{S \mid f}\left(\bar{C}_{r} \mid f_{j}\right)-G_{S \mid f}\left(\underline{C}_{r} \mid f_{j}\right)\right]^{-\xi_{j r}} \\
& \neq \prod_{j=1}^{n} g\left(S_{j} \mid f_{j}\right) \tag{6}
\end{align*}
$$

where $\xi_{j r}=1$ if $S_{j} \in C_{r}$ and $\xi_{j r}=0$ otherwise. Thus, conventional uncorrected sample-based models of firm size would in general give biased inferences about the (super)population distribution $g\left(S_{j} \mid f_{j}\right)$, and bias-corrected methods such as weighted ML or conditional ML based on (6) are appropriate.

However, if we use the ACOP subsample which contains at least one NES match, a more complex distribution results, since we must condition also on the event that there is a positive number of NES subjects supplied by the establishment $\left(q_{j}>0\right)$. The conditional probability of this latter event is $1-(1-\lambda)^{S_{j}}$, so the matched-sample distribution is:

$$
\begin{align*}
h\left(S_{1} \ldots S_{n} \mid f_{1} \ldots f_{n}, q_{1}>\right. & \left.0 \ldots q_{n}>0\right)=\prod_{j=1}^{n} g\left(S_{j} \mid f_{j}\right)\left[1-(1-\lambda)^{S_{j}}\right] \\
& \times \prod_{r=1}^{R}\left[\int_{\underline{C}_{r}}^{\bar{C}_{r}} g\left(S \mid f_{j}\right)\left[1-(1-\lambda)^{S}\right] d S\right]^{-\xi_{j r}} \tag{7}
\end{align*}
$$

In general, evaluation of this as a likelihood function would require numerical integration. The use of weighted maximum likelihood is simpler, but does not offer a consistent estimator in this case, because reweighting the log-likelihood function between size classes does not correct the size-related distortion within classes, caused by the factor $1-(1-\lambda)^{S_{j}}$. Nevertheless, reweighting is likely to ameliorate the effects of sample distortion to some extent, and we now explore its use.

The cross-section labour demand model used here is intended as a vehicle for our analysis of the impact of sampling bias, rather than as a proper structural model. Nevertheless, similar regression models have appeared in
the published literature. The basic form includes a fourth-order polynomial in the \log of value-added as the output measure, together with the log average annual wage and 23 sectoral and 17 location dummies. We have estimated this relationship in two alternative ways: multiple regression (OLS); and weighted maximum likelihood (WML). For the 1994 ACOP sample, the latter is computed by maximising the following weighted log-likelihood function:

$$
\begin{equation*}
L^{W}=\sum_{j=1}^{n} \varpi_{j} \ln \left[\frac{g\left(\ln S_{j} \mid f_{j}\right)}{1-G_{S \mid f}\left(10 \mid f_{j}\right)}\right] \tag{8}
\end{equation*}
$$

where ϖ_{j} is a weighting factor equal to the known population frequency of the size/sector group to which firm j belongs, divided by the corresponding sample frequency. The denominator of the ratio in (8) is included to reflect the fact that firms with under 10 employees are excluded from the ACOP sampling process. For the 1995 sample, the whole size range is sampled, so the denominator in (8) is excluded.

Conventional estimation approaches are based on a lognormal specification for the conditional employment distribution $g\left(S_{j} \mid f_{j}\right)$, implying a loglinear population regression, with normally distributed disturbances. However, figure 1 suggests very strongly that the true firm size distribution is closer to the exponential form. As a step towards improving the specification, we also estimate a model using the Burr distribution, which nests within it the exponential and Weibull distributions, and which, like the lognormal specification, entails a linear population regression of log employment on the expanatory variables. The Burr model is as follows:

$$
\begin{equation*}
g(\ln S \mid f)=\frac{\mu(f) \alpha S^{\alpha}}{\left[1+\sigma^{2} \mu(f) S^{\alpha}\right]^{\left(1+\sigma^{2}\right) / \sigma^{2}}} \tag{9}
\end{equation*}
$$

where:

$$
\mu(f)=\exp [-\alpha f \beta]
$$

and the linear form $f \beta$ is the regression function $E(\ln S \mid f)$. The Weibull form corresponds to the special case $\sigma^{2}=0$ and the exponential form is generated if we make the further restriction $\alpha=1$. The Burr model is estimated by WML, through the maximisation of (8), with (9) substituted for $g(\ln S \mid f)$.

Tables 8 and 9 summarise the wage and output responses implied by the estimated models. Four powers of \log output proved significant, and thus
the output elasticity is not constant; we present estimates of the elasticity evaluated at multiples $0.25,1.0$ and 2.0 of the sample average output level. No higher-order terms, or interactions with output, were significant for the log average wage, so the wage elasticity is simply the estimated coefficient. The three estimators are applied to three datasets: the linked ACOP/NES sample, with location dummies included as explanatory variables; the full ACOP sample (for which location is not observable); and the intermediate case of the linked sample with location effects excluded. Separate estimates are computed for 1994 and 1995.

Despite the sampling-induced biases that exist in theory, the differences between the alternative estimates are not large in general. Relative to the weighted ML estimates of either the lognormal or Burr model, OLS output and wage elasticities differ by no more than 0.1 or so. The Burr and lognormal estimates show no major differences. Perhaps the most striking feature of the results is the difference between the 1994 and 1995 estimates, which casts doubt on the structural stability of the model

Table 8: Estimates of output and wage elasticities of employment (ACOP94)
(standard errors in parentheses)

Elasticity	OLS	Lognormal WML	$\begin{gathered} \text { Burr } \\ \text { WML } \end{gathered}$
output ${ }^{\text {a }}$	0.296 (0.022)	$0.385 \quad(0.032)$	$0.406 \quad(0.017)$
output ${ }^{\text {b }}$	0.591 (0.013)	$0.684 \quad(0.029)$	$0.701 \quad(0.015)$
output ${ }^{\text {c }}$	0.693 (0.010)	$0.784 \quad(0.025)$	$0.799 \quad$ (0.015)
av wage	$-0.900 \quad(0.008)$	-1.021 (0.098)	-1.063 (0.088)
NES-ACOP subsample; no location dummies			
Elasticity	OLS	Lognormal WML	$\begin{gathered} \text { Burr } \\ \text { WML } \end{gathered}$
output ${ }^{\text {a }}$	0.297 (0.022)	$0.394 \quad(0.016)$	$0.411 \quad(0.017)$
output ${ }^{\text {b }}$	0.593 (0.013)	0.696 (0.015)	$0.711 \quad(0.016)$
output ${ }^{\text {c }}$	0.695 (0.010)	$0.794 \quad(0.014)$	$0.808 \quad(0.015)$
av wage	-0.904 (0.008)	-1.023 (0.084)	$-1.077 \quad(0.092)$

Elasticity	OLS		Lognormal WML		$\begin{gathered} \hline \text { Burr } \\ \text { WML } \end{gathered}$	
output ${ }^{\text {a }}$	0.312	(0.010)	0.427	(0.009)	0.582	(0.036)
output ${ }^{\text {b }}$	0.586	(0.007)	0.686	(0.008)	0.781	(0.020)
output ${ }^{\text {c }}$	0.690	(0.005)	0.782	(0.007)	0.845	(0.014)
av wage	-0.759	(0.005)	-0.757	(0.027)	-0.871	(0.032)
	${ }^{a}$ Evaluated at $0.25 \times$ sample mean output level ${ }^{b}$ Evaluated at sample mean output level ${ }^{c}$ Evaluated at $2 \times$ sample mean output level					

Table 9: Estimates of output and wage elasticities of employment (ACOP95)
(standard errors in parentheses)

Elasticity	OLS	Lognormal WML	$\begin{gathered} \hline \text { Burr } \\ \text { WML } \end{gathered}$
output ${ }^{\text {a }}$	0.449 (0.032)	0.594 (0.078)	$0.775 \quad(0.017)$
output ${ }^{\text {b }}$	$0.754 \quad(0.014)$	$0.825 \quad(0.027)$	$0.816 \quad(0.014)$
output ${ }^{\text {c }}$	0.824 (0.012)	$0.865 \quad(0.025)$	$0.836 \quad(0.013)$
av wage	-0.849 (0.009)	-0.523 (0.090)	-0.579 (0.051)
NES-ACOP subsample; no location dummies			
Elasticity	OLS	Lognormal WML	$\begin{gathered} \hline \text { Burr } \\ \text { WML } \end{gathered}$
output ${ }^{\text {a }}$	0.447 (0.022)	0.577 (0.088)	$0.737 \quad(0.084)$
output ${ }^{\text {b }}$	$0.754 \quad(0.013)$	0.843 (0.028)	$0.849 \quad(0.032)$
output ${ }^{\text {c }}$	$0.824 \quad(0.010)$	$0.884 \quad(0.027)$	$0.871 \quad(0.035)$
av wage	-0.854 $\quad(0.008)$	-0.480 (0.105)	-0.537 (0.076)
Full ACOP sample; no location dummies ($n=11199$)			
Elasticity	OLS	$\begin{aligned} & \hline \text { Lognormal } \\ & \text { WML } \end{aligned}$	$\begin{gathered} \hline \text { Burr } \\ \text { WML } \end{gathered}$
output ${ }^{a}$	0.313 (0.011)	$0.231 \quad(0.023)$	$0.241 \quad(0.007)$
output ${ }^{\text {b }}$	0.612 (0.008)	$0.514 \quad(0.009)$	$0.535 \quad(0.006)$
output ${ }^{\text {c }}$	0.719 (0.006)	$0.647 \quad(0.006)$	$0.673 \quad(0.005)$
av wage	-0.758 (0.006)	$-0.584 \quad(0.028)$	-0.612 (0.023)
	${ }^{a}$ Evaluated at $0.25 \times$ sample mean output level ${ }^{b}$ Evaluated at sample mean output level ${ }^{c}$ Evaluated at $2 \times$ sample mean output level		

We next compare the sample fit of these four estimates. To do so, define the size class indicator $y_{j}=r$ iff $S_{j} \in C_{r}$. The conditional sample distribution of $y \mid f$ is $h(y \mid f)$, and this can be used to make a consistent prediction of the sample frequency of size class y as follows:

$$
\begin{equation*}
\widehat{h}(y)=\frac{1}{n} \sum_{j=1}^{n} h\left(y_{j} \mid f_{j}\right) \tag{10}
\end{equation*}
$$

However, the sample distribution $h(y \mid f)$ can be written as follows:

$$
\begin{align*}
h(y \mid f) & =h(y, f) / h(f) \\
& =g(f \mid y) h(y) / h(f) \\
& =\frac{g(f \mid y) h(y)}{\sum_{r=1}^{R} g(f \mid y=r) h(y=r)} \tag{11}
\end{align*}
$$

where $h(y)$ is the sample frequency of size class y, determined as part of the survey design. The fact that the sample distribution $h(f \mid y)$ can be written as the corresponding population distribution $g(f \mid y)$ is an implication of the random sampling that is used within size classes. But $g(f \mid y)$ can be written as $g(y \mid f) g(f) / g(y)$, and substitution of this in (11) and then (10) gives:

$$
\begin{equation*}
\widehat{h}(y)=\frac{1}{n} \sum_{j=1}^{n} \frac{g\left(y \mid f_{j}\right) h(y) / g(y)}{\left[\sum_{y=1}^{R} g\left(y \mid f_{j}\right) h(y) / g(y)\right]} \tag{12}
\end{equation*}
$$

The term $g\left(y \mid f_{j}\right)$ in (12) can be computed from our estimated model, and the sampling rates $h(y) / g(y)$ are known. Thus the predicted frequency (12) can be evaluated and compared with actual sample frequencies as an indication of goodness-of-fit. The results are given in table 10 .

Table 10: Goodness of fit for alternative labour demand models (full ACOP samples, WML estimator)

	Actual	Predicted frequency	
Size group	frequency	lognormal model	Burr model
$A C O P$ 1994			
$10-19$	13.22	9.41	12.70
$20-49$	20.00	19.29	20.94
$50-99$	19.26	19.47	18.97
$100+$	47.46	51.83	46.67
mean log-likelihood	-	-0.20228	-0.18539
$A C O P$			
$0-9$	6.41	1995	0.26
$10-19$	14.53	0.23	9.32
$20-49$	20.46	8.90	23.73
$50-99$	16.29	23.98	18.78
$100-199$	15.97	19.59	16.55
$200+$	27.34	16.91	31.36
mean log-likelihood	-	30.39	-0.219959

The poor fit of the usual lognormal specification is striking, in comparison to the Burr model. In a conventional sampling framework, if this poor fit arises only from misspecification of distributional form, it may not matter very much, since least-squares regression retains its consistency property with non-normal errors, provided the true distribution is not too fat-tailed. This robustness property appears to carry over well to the weighted ML estimators used here.

5 Conclusions

This paper has three objectives. Firstly, we have described the construction of a new dataset formed from the British New Earnings Survey (NES) of employees, the Annual Census of Production (ACOP), covering manufacturing firms, with national insurance records (JUVOS) used to provide additional information on periods of registered unemployment. This linked dataset is in effect a panel, with two waves in the years 1994 and 1995, but we have restricted attention here to its use for cross-section analysis. The properties of the linked panel are the subject of further research

Secondly, using a theoretical foundation in superpopulation sampling theory, we have considered the methodological problems raised by the linking process and the non-uniform sampling design of the ACOP. We have established that, for the purpose of estimating a cross-section relationship such as an earnings equation relating the level of pay to firm and worker characteristics, conventional methods such as multiple regression should not be biased by the NES/ACOP sampling scheme, provided the estimated relationship is interpreted as holding only for jobs in the industrial sectors covered by ACOP. However, any model with firm size (employment) as an endogenous variable will in general be affected by sample selection bias as a result of the non-uniform ACOP sampling rate.

Thirdly, we have presented some estimation results for simple models of earnings, job separations and employment. In the first two cases, these demonstrate the importance of including in the analysis variables that can typically only be supplied by this sort of linked dataset. Preliminary estimates of the employment model suggest that, although serious bias can result from ignoring the employment-related nature of the ACOP sampling scheme, the actual impact may be of minor practical importance.

References

[1] Cahuc, P. and Kramarz, F. (1997) Voice and loyalty as a delegation of authority: a model and a test on matched worker-firm panels, Journal of Labor Economics, 15.
[2] Cassel, C., Särndal, C. E. and Wretman, J. H. (1977). Foundations of Inference in Survey Sampling. New York: Wiley.
[3] Gregory, M. and Jukes, R. (1997). The effects of unemployment on subsequent earnings: a study of British men 1984-94, mimeo.
[4] Hamermesh, D. S. (1993). Labor Demand. Princeton: Princeton University Press.
[5] Hildreth, A. K. G. (1996) Rent-Sharing and Wages: Product Demand or Technology Driven Premia? Paper given at the STEP Conference, National Academy of Sciences, Washington, 1995.
[6] Hildreth, A. K. G. and Pudney, S. E. (1996). Employers, workers and unions: an analysis of a firm-worker panel with endogenous sampling, attrition and missing data. University of Leicester Discussion Paper in Economics no. 96/15.
[7] Pudney, S. E. (1989). Modelling Individual Choice. The Econometrics of Corners, Kinks and Holes. Oxford: Blackwell.

[^0]: *'Econometric issues in the analysis of linked worker-employer cross-section surveys'. We are grateful to the Office for National Statistics for access to respondent-level data from the New Earnings Survey and Annual Census Of Production, and for their efforts in implementing the linking process. All the views in this paper are our own and not necessarily those of the ONS. This research was supported by the Economic and Social Research Council through grant no. R000222231, and the Leverhulme Trust through the Institute of Labour Research at the University of Essex.
 ${ }^{\dagger}$ Department of Economics and Institute for Labour Research, University of Essex
 ${ }^{\ddagger}$ Public Sector Economics Research Centre, Department of Economics, Leicester University

[^1]: ${ }^{1}$ Work along such lines has already been carried out in France and the USA. For France see work by Abowd, Kramarz, and Margolis (1996), Entorf and Kramarz (1997), and Margolis (1996). For the US, see work by Troske (1996).

[^2]: ${ }^{2}$ See Hildreth (1996) and Hildreth and Pudney (1996).

[^3]: ${ }^{3}$ For the purposes of cross-section analysis, the unemployment information u can be treated in exactly the same way as the NES information w, so there is no loss of generality if we omit u for the sake of notational simplicity.

[^4]: ${ }^{4}$ Given that there are approximately 50 percent of the observations in either crosssection that have employers where more than 1 individual is observed at that establishment, it would be possible to recover an estimate of employer fixed effects. Hildreth (1996) provides an example of such an estimation. Such an exercise is not undertaken here.

[^5]: ${ }^{5}$ In other words, if the probit model is defined as $\operatorname{Pr}[y \neq 0 \mid X]=\Phi(X \beta)$ then the change in the probability for a given change in one element in X is: $\frac{\partial \Phi}{\partial X}=\phi(\bar{X} \beta) \beta$. Finite differences are used instead for dummy covariates.

