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Abstract

This paper examines the finite sample properties of estimators for approximate factor
models when N is small via simulation study. Although the “rule-of-thumb” for factor
models does not support using approximate factor models when N is small, we find that
the principal component analysis estimator and quasi-maximum likelihood estimator
proposed by Doz et al. (2008) perform very well even in this case. Our findings provide
an opportunity for applying approximate factor models to low-dimensional data, which
was thought to have been inappropriate for a long time.
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1. Introduction

Let us consider the following N dimensional r static factor model;

xt = ΛFt + εt, t = 1, 2, . . . , T, (1)

where εt is an N × 1 idiosyncratic error vector with mean zero and variance Ω, Λ is an

N × r factor loading matrix, and Ft is an unobservable r × 1 factor respectively. It is well

known that there are two types of models, depending on the assumptions on idiosyncratic

1Corresponding Author, Graduate School of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi,
Tokyo, 186-8601, Japan, E-mail: stanaka@wd5.so-net.ne.jp.

2E-mail: kurozumi@stat.hit-u.ac.jp
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errors: one is the “exact factor model,” (hereafter, EFM) in which εt is cross-sectionally

independent so that Ω is diagonal, the other is the “approximate factor model,” (hereafter,

AFM) in which the limited cross-sectional correlation on εt is allowed.

Since factor models are frequently used to extract the co-movements of macroeconomic

time series in economic analysis, it appears that AFM is preferable because there exists

cross-sectional dependence among the time series in general. However, as Stock and Watson

(2002), Bai (2003) and others show, in theory, AFM requires both T and N to go to infinity

whereas EFM requires only T → ∞ for estimating Λ and Ft. Then, consider the following

question: Is it not possible to employ AFM in practice when we only have low-dimensional

data in hand?

In this paper, we examine the finite sample properties of estimators for AFM when N

is small via Monte Carlo experiment. Specifically, we investigate the properties of princi-

pal component analysis (PCA) estimator, quasi-maximum likelihood (QML) estimator and

state-space subspace (SSS) estimator. Our results suggest that PCA and QML estimators

perform very well so that AFM is applicable even if N is small in practice. Furthermore,

we see that the PCA estimator is robust to the degree of cross-sectional dependence while

the QML estimator is suitable for weak-dependence AFM.

2. Monte Carlo Experiment

2.1. Data Genarating Process

We set the basic structure of our DGP to be based on Doz et al. (2008): for i = 1, 2, . . . , N, t =

1, 2, . . . , T,

xit = λ′
iFt + εit, (2)

Φ(L)Ft = ut, with ut ∼ i.i.d. N(0, D), (3)

Γ(L)εt = vt, with vt ∼ i.i.d. N(0,Σ), (4)

where λi ∼ i.i.d. N(0, Ir), Φ(L) = diag(1 − ϕL, · · · , 1 − ϕL), Γ(L) = diag(1 − γL, · · · , 1 −

γL), D = diag(1 − ϕ2, · · · , 1 − ϕ2) and Σ = {σij} (i, j = 1, 2, . . . , N). Then we assume

AR(1) orthogonal r factors with mean zero and unit variance and AR(1) cross-correlated

idiosyncratic errors with mean zero. Furthermore, to satisfy the cross-sectional dependence
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assumptions on εt
3, we specify Σ as follows:

σij = τ |i−j| (1− γ2
)√

αiαj , 0 ≤ τ < 1

αi =
κi

1− κi
λ′
iλi.

Notice that τ determines the degree of cross-sectional dependence of the idiosyncratic errors

while κi is idiosyncratic to the total variance ratio of series i [= var(εit) / var(xit) ] . Hence,

the larger values of τ and κ produce higher cross-sectional dependent and “noisy” series.

In our experiment, we set ϕ = 0.5, 0.9, γ = 0, 0.5, τ = 0, 0.2, 0.5, 0.8, r = 1 and κi ∼

U [0.1, 0.5] where U [a, b] signifies a uniform distribution ranging from a to b. Moreover, we

divide the series by their sample standard deviation before estimation because the estimators

of factors and factor loadings are not scale invariant4. It should be mentioned that we assume

a much narrower range of κi than Doz et al. (2008) that set κi ∼ U [0.1, 0.9]. Because their

assumption of E(κi) = 0.5 means that we try to extract co-movement from the set of series

that consists of 50% of noisy variations on average, it appears to be inappropriate for the

small data sets.

2.2. Estimation Methods

We now compare the finite sample properties of the three types of estimators in this study:

(i) principal component analysis estimator, (ii) quasi-maximum likelihood estimator, and

(iii) state-space subspace estimator.

(i) Principal Component Analysis (PCA) Estimator

The PCA estimator is the most widely used for AFM and its asymptotic properties are

investigated rigorously by Stock and Watson (2002), Bai (2003) and many others5. The

PCA estimators of λi and Ft, denoted by λ̃i, F̃t, minimize the following objective function

V subject to r factors being orthogonal to each other:

V =
1

NT

N∑
i=1

T∑
t=1

(
xit − λ′

iFt

)2
. (5)

3See, e.g., Stock and Watson (2002) or Bai(2003) for details.
4That is, we define x̃it = xit/si and use x̃it for estimation where s2i =

1

T

∑
t x

2
it.

5Forni et.al. (2000) and others study the dynamic principal component (DPCA) estimator for dynamic
approximate factor models. However, we consider the static AFM so that DPCA is not treated in this paper.
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Obviously, if Ft is known, λ̃i is obtained by:

λ̃i =
1

T
F ′xi, (6)

where xi = [xi1, xi2, . . . , xiT ]
′ and F = [F1, F2, . . . , FT ]

′. Furthermore, substituting (6) into

(5), it can be shown that F̃ is obtained by multiplying
√
T by the eigenvectors corresponding

to the r largest eigenvalues of XX ′ where X = [x1, x2, . . . , xN ]. Then, the PCA estimator

is much easier to compute. However, it requires N and T going to infinity for consistency

in theory.

(ii) Quasi-Maximum Likelihood (QML) Estimator

Although maximum likelihood (ML) estimation with a Kalman smoother is well known as a

standard tool for EFM with fixed N6, it seems that ML estimation is not suitable for AFM

because AFM requires to estimate N(N − 1)/2 additional parameters compared to EFM.

However, Doz et.al. (2008) proposes the QML estimators for factors and factor loadings that

are still valid for AFM under similar assumptions to the PCA estimator with N,T → ∞.

The word “quasi” comes from the fact that we intentionally misspecify the model as EFM

and construct a maximum likelihood function with unautocorrelated idiosyncratic errors.

The estimation procedure for QML is the same as standard ML estimation: we first

estimate the parameters in the misspecified model, then we estimate the factors using a

Kalman smoother. Since the selection of the initial parameter values plays a crucial role in

ML estimation, we consider three types of initial values to achieve a global maximum: (i)

the true parameter values, (ii) the PCA estimates of parameters, and (iii) the initial values

of ϕ (≡ ϕ(ini)) ranging from 0 to 0.90 in increments of 0.1, and we define:

λ
(ini)
i = λi + ϕ(ini),

σ
(ini)
ii = σii + ϕ(ini).

(iii) State-Space Subspace (SSS) Estimator

The SSS estimator is an alternative estimator for AFM proposed by Kapetanios and Mar-

cellino (2009), which takes a different approach to the PCA estimator. Let Xp =
[
Xp

ℓ+1, X
p
ℓ+2, . . . , X

p
T−(s−1)

]′
6See Anderson (2003) for time-independent factors and idiosyncratic errors, and Kim and Nelson (1999)

for auto-correlated ones, for example.
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and Xf =
[
Xf

ℓ+1, X
f
ℓ+2, . . . , X

f
T−(s−1)

]′
, whereXp

t = [xt−1, xt−2, . . . , xt−ℓ]
′ andXf

t = [xt, xt+1, . . . , xt−s+1]
′.

Furthermore, we denote the singular value decomposition ofXfXp(Xp′Xp)+ by USV ′ where

A+ represents the Moore–Penrose generalized inverse matrix of A. The SSS estimator of Ft

is obtained by:

FSSS
t = K Xp

t ,

where K = S
1/2
k V ′

k, Sk is the leading k×k submatrix of S, Vk is the first k columns of V and

k is the number of factors. We must specify the lead and lag truncation parameters s and ℓ

in the estimation; therefore we employ s = 1 and p = (log(T ))1.25 following Kapetanios and

Marcellino(2009).

The SSS estimator is a clever tool for estimating the factors because the estimation

procedure is straightforward and easy to implement. Moreover, Kapetanios and Marcellino

(2009) prove the consistency of the SSS estimator assuming that N and T tend to infinity

with N = o(T 1/6). Although this divergence rate of N is somewhat restrictive for standard

AFM in which both N and T are large, it would be appropriate for our study in which N

is much smaller than T .

2.3. Criteria for Goodness of Fit

To evaluate the finite sample properties of the estimators, we employ the following two

criteria:

AMSE =
1

I

I∑
q=1

MSE(q), (7)

AR2
F =

1

I

I∑
q=1

R
2 (q)
F , (8)

where I is the total number of replications, MSE(q) and R
2 (q)
F are qth realizations of

MSE =
1

NT

N∑
i=1

T∑
t=1

(
λ′
iFt − λ̂′

iF̂t

)2
and R2

F =
Tr

[
F ′F̂(F̂ ′F̂)

−1
F̂ ′F

]
Tr[F ′F ] , and λ̂i, F̂t, F̂ denote

the estimators of λi, Ft, F , respectively. AMSE measures a goodness of fit of the common

component (= λ′
iFt) while AR2

F is a criterion for the fitness of the unobserved factor Ft
7.

7R2
F is analogous to the coefficient of determination in a standard linear regression model. Boivin and

Ng (2006) and Doz et.al. (2008) also use R2
F for evaluation. It should be mentioned that λi and Ft are

not separately identifiable in general unless we impose additional restrictions on the model such as those
proposed by Bai and Ng (2010). Then, we cannot compare directly F̂t with Ft for evaluation.
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Note that a smaller value of AMSE means a better fit of the common component while a

larger value of AR2
F indicates a better estimate of the unobserved factor.

2.4. Simulation Results

We investigate the finite sample performance of the PCA, QML and SSS estimators when

N = 5, 10, T = 100, 200, with I = 500. All results are obtained by using GAUSS and

CML routine for ML estimation. The results are given in Tables 1 and 2. The values in

parentheses are relative values scaled to that of the PCA estimator.

To begin with, let us consider the case of N = 5 and T = 100. The simulation result

for this case is summarized in (i) of Table 1. Here we obtain the following findings. First,

the PCA and QML estimators dominate the SSS estimator as a whole and perform quite

well, whereas their availabilities are justified when N is so large in theory. This implies

that AFM would be applicable even when only low dimensional data are available. Second,

the QML estimator dominates the PCA estimator when τ = 0 and 0.2, while the PCA

estimator outperforms the QML estimator when τ = 0.5 and 0.8. These findings tell us

that the PCA estimator is suitable for strongly dependent AFM while the QML estimator

is appropriate for EFM or weakly dependent AFM. Then, we cannot conclude which is the

better estimator from our results. However, PCA would be useful when we have no firm

beliefs about the dependence among series in hand because our result provides evidence that

the PCA estimator is robust to the value of τ .

Next, we consider the other cases. We can confirm that the findings obtained above

hold in these cases. Note that although the efficiency gains with respect to N and T boost

the performance of the estimators as we expected, it appears that there are no drastic

improvements on performances especially in the factor estimates. As a whole, we conclude

that the PCA and QML estimators perform very well even when N is very small.

3. Concluding Remarks

In this paper, we have investigated the finite sample properties of estimators for approximate

factor models when N is small via Monte Carlo experiment. We obtained the following

findings from our study. First, the PCA and QML estimators perform very well even

when N is small, which overturns the “rule-of-thumb” for factor analysis. Second, the
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PCA estimator is suitable for strongly dependent approximate factor models while the

QML estimator is appropriate for exact or weakly dependent approximate factor models.

Moreover, we also found that the PCA estimator is more robust to the degree of cross

sectional dependence of the series than the QML estimator. We expect that our results will

provide an opportunity for applying approximate factor models to low-dimensional data,

which was previously thought to be inappropriate.
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