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The capacity of global agricultural production to meet increased demand for food from
population growth and wealth accumulation is threatened by extensive land degradation.
Nonetheless, previous research has focused primarily on the dynamic implications of input
management and ignored land-use choice. This paper extends this theory through an ex-
amination of the intertemporal management of agricultural land through the use of non-crop
inputs, such as fertilizer, and land uses that either degrade or restore productivity. The need to
consider the relative total asset value of alternative crops over time is demonstrated. More-
over, higher output prices for degrading crops are shown to increase their relative value,
motivating the later adoption of substitutes. An inability of land markets to reflect differences
in resource quality and low capital malleability promote greater degradation. However,
substitution of complementary effects through input use may help to sustain productivity.
These factors are discussed in the context of crop sequence management in Western Aus-
tralian cropping systems.
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Global agricultural production must increase

by around 40 per cent over the next 20 years

if increased demand due to population growth

and wealth accumulation is to be satisfied

(Organization for Economic Co-operation and

Development and the Food and Agriculture

Organization of the UN (OECD-FAO), 2009).

However, this is seriously constrained by exten-

sive land degradation, particularly in develop-

ing countries, that directly decreases primary

productivity (Bruinsma, 2009). An improved un-

derstanding of the efficient management of land-

use sequences can help to offset these constraints,

as rotation with crops and pastures that have a

beneficial impact on the inherent productivity of

a soil has been used for centuries to sustain or in-

crease the yields of agricultural plants (Doole and

Pannell, 2009).

The beneficial impacts of land-use sequences

can be classified as either direct or indirect.

Direct benefits are the lowering of risk and the

smoothing of input demand. Indirect benefits are

those that influence profit by increasing the pro-

duction of subsequent crops (Hennessy, 2006).

Examples are the interruption of pest and disease
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cycles, the reduction of soil erosion, nitrogen

fixation by legumes, enhanced soil structure,

management of crop residues, and weed man-

agement (Doole and Pannell, 2009). Aggrega-

tion of indirect benefits provides an indication

of the productivity of the land resource; this is

analogous to a form of capital stock that partly

determines crop production.

McConnell (1983) formalized the relationship

between capital theory and the base productivity

of agricultural land. In this model, conservation

reduced current production and degradation could

not be offset through the addition of non-soil in-

puts, such as fertilizer (Barrett, 1991; McConnell,

1983). Barbier (1990) extended this framework

to incorporate ‘‘productive’’ and ‘‘ameliorative’’

inputs. The first increased both output and soil

loss, for example deep cultivation. The second

decreased erosion but did not affect crop pro-

duction directly, for example the construction of

terraces. Determining the optimal usage of the

former is similar to renewable resource exploi-

tation, while the latter resembles traditional in-

vestment theory (Clarke, 1992; LaFrance, 1992).

Links to capital theory are even stronger when

ameliorative practices enter as stock variables

and investment therefore has a lasting impact on

conservation (Grepperud, 1997).

The single crop approach adopted in these

papers disregards complementary effects between

agricultural practices. However, these can often

be important in reality (Orazem and Miranowski,

1994). Indirect effects may be incorporated by

identifying the optimal allocation of a given area

of land among crop and non-crop land uses, such

as pasture, at each point in time (Goetz, 1997).

However, aggregation of the impacts of land use

on productivity across an entire farm provides

a coarse approximation of their value. A more

precise examination requires analysis at the field

level, particularly since spatial heterogeneity in

land quality is a characteristic of many agricultural

systems. In this case, it is appropriate to analyze

crops as discrete choices rather than proportions.

Conceptual analyses of the optimal rotation

between land uses that degrade or restore land

quality have been formulated. Hertzler (1990)

analyzed a multiple crop system through the in-

clusion of time as a state variable. However, non-

crop inputs and costs incurred at the transition

between individual crops (switching costs) were

not incorporated, and both are shown here to

be an important component of the switching

decision. Willassen (2004), in comparison, in-

cluded switching costs in an analysis of the fal-

low-cultivation cycle of traditional agriculture.

Nonetheless, non-crop inputs, such as fertilizer

or herbicide, were omitted. This paper extends

this literature through the inclusion of both

multiple land uses and non-crop inputs in a

model incorporating transition costs. Key find-

ings are discussed in relation to single crop

models and the management of crop sequences

in Western Australian agricultural systems.

The switching problem and necessary con-

ditions for an optimal solution are presented

in the next section. The model is based on the

general framework of Doole (2009). Implica-

tions for optimal land management under sin-

gle and multiple crops are outlined in the third

and fourth sections, respectively. Conclusions

are presented in the final section.

A Regime Switching Model of Agricultural

Land Management

This section contains a description of an opti-

mal switching model for the analysis of mul-

tiple crops and presents necessary conditions

for its solution. Assume that a producer must

determine the most profitable use of a field be-

tween t0 and t2. A given enterprise, I 5 1, is active

at the outset. However, the farmer may decide to

switch to a successive regime, I 5 2, at any time,

t1, between these endpoints. The moment before

the switch occurs is denoted t�1 and the moment

after the switch has occurred is t 1
1 . Regime

i is therefore active over the closed interval

t 5 t1i ,ti11

� �
where t0 £ t1 £ t2. The frame-

work could incorporate n switches but only one

is incorporated here for clarity of exposition.

Although an abstraction, the number of switch-

ing moments must be determined ex ante since

the endogenous determination of total switching

moments in multiple-phase control problems in-

corporating switching costs has proven intractable.

It is assumed that the quality of a fixed area

of land in terms of agricultural production may

be described by a composite index denoted by

a single state variable, x(t). Investment in land
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capital is represented by an increase in this in-

dex, while disinvestment causes a decline.

Productivity may be manipulated through

the intensity of management inputs, the control

variable denoted as ui(t). Controls are defined

as continuous functions for generality but in

most contexts are likely to be discrete practices.

Subscription by regime index permits the set of

management inputs (Ui, where ui(t) 2 Ui) to

differ for each land use. For example, a herbi-

cide may control weeds effectively in crop 1

but harm crop 2 significantly. In this case, U1

may contain this herbicide but U2 would not.

Productivity is also influenced through crop

choice. Rates of degradation and renewal for

each land use i are described through motion

functions, fi(x(t),ui(t)). The units of measure-

ment for the motion functions will depend on

the definition of the state variable. A regime

may be either degrading (fdeg (�) < 0) or re-

storing (fres (�) > 0) of land quality. Examples

are wheat crops that degrade soil structure and

pasture legumes that restore soil nitrogen and

organic matter. The case where land is not af-

fected through crop choice is ignored to focus

on situations of practical relevance.

It is assumed that the use of an input has a

net increasing impact on crop yield. Application

increases base productivity, therefore [ fi (�)]u > 0,

where [�]u denotes the derivative of the function

in square brackets with respect to (w.r.t) the sub-

scripted term. An increase in productivity fol-

lowing input use will augment crop yield, yi(x(t)),

through the intuitive assumption, [yi (�)]x > 0. An

example is nitrogen fertilizer that increases crop

yield through increasing soil nitrogen. Other

types of input may be more applicable to certain

problems. For example, ‘‘productive’’ inputs may

be used to investigate the management of sys-

tems where practices, such as deep cultivation,

increase output but degrade base productivity.

These may be easily incorporated in this frame-

work with adjustment of the relevant relation-

ships. The critical difference between productive

inputs and those analyzed in this paper is that

the latter allow intensification to occur with-

out degradation.

A state vector could represent base productivity

in place of a composite index. This vector would

contain a number of individual determinants of

production, each with its own motion equation

and associated control set. For example, state-

transition equations representing a weed pop-

ulation and total soil nitrogen could be included.

The control set for the former could incorporate

different intensities of herbicide, while that for

the latter could involve alternative levels of ni-

trogen fertilizer. The use of a composite index

is retained for broader relevance and to avoid

problems associated with dimensionality.

The initial level of land quality is denoted

x(t0) 5 x0. The state trajectory is determined

by:

(1) _xðtÞ 5 f iðxðtÞ,uiðtÞÞ,

for I 5 {1,2}. This is continuous but non-

differentiable at the switching time, t1.

A continuous profit function pi(x(t),ui(t),t)

is defined for each regime i:

(2)

piðxðtÞ,uiðtÞ,tÞ

5

ðt�i

t 1
i�1

e�dt piyiðxðtÞÞ � ciðxðtÞ,uiðtÞÞð Þdt,

where e2dt is a discount factor with d as the

discount rate, pi is the price per unit of output,

yi(x(t)) is output, and ci(x(t)), ui(t)) is the cost of

inputs. As defined earlier, [yi (�)]x > 0. Costs are

assumed to increase as land quality declines

due to decreases in the effectiveness of inputs.

For example, more expensive cultural treatments

are required when a herbicide-resistant weed

population develops (Doole and Weetman, 2009).

Therefore, [ci (�)]x < 0. However, this assumption

may be relaxed with little effect on the follow-

ing discussion. In addition, inputs are costly, so

[ci (�)]u > 0.

Land has a salvage value defined through

the function e�dt�2 hðxðt�2 ÞÞ. This is assumed to

increase with the productivity of land, so

½e�dt�2 hðxðt�2 ÞÞ�x > 0. Moving from one land use

to another incurs a switching cost, e�dt�1 sðxðt�1 ÞÞ.
This increases with declining land quality,

therefore ½e�dt�1 sðxðt�1 ÞÞ�x < 0. An example is

pasture establishment for which costs increase

as weed populations burgeon (Doole, 2009). The

latter assumption may not be relevant for certain

problems, in which case it may be disregarded

with little implication for the main argument.
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The producer’s problem for I 5 {1,2} is:

(3)

max
ui,ti

J 5

ðt�1

t 1
0

p1ðxðtÞ,u1ðtÞ,tÞdt � e�dt�1 sðxðt�1 ÞÞ

1

ðt�2

t 1
1

p2ðxðtÞ,u2ðtÞ,tÞdt

1 e�dt�2 hðxðt�2 ÞÞ,

subject to,

(4) _xðtÞ5 f iðxðtÞ,uiðtÞÞ, and,

(5) xðt0Þ5 x0.

This problem incorporates two standard free-

time optimal control problems with terminal

value functions. Solution is complicated be-

cause the management of the first regime in-

fluences the second through the state variable

and the optimal switching time must be endog-

enously determined. Necessary conditions for

the solution of a similar model have been derived

(Amit, 1986). However, that formulation does

not include a terminal value function. Solution

therefore requires Theorem 1.

Theorem 1 (Doole, 2009). Let (x*(t),ui*(t),

ti*) for I 5 {1,2} denote the trajectory that

maximizes J in Equation (3) subject to the

constraints in Equation (4) and Equation (5).

This is the optimal trajectory. A Hamiltonian

function for each regime i is defined as:

(6)
HiðxðtÞ,uiðtÞ,liðtÞ,tÞ 5 piðxðtÞ,uiðtÞ,tÞ

1 liðtÞf iðxðtÞ,uiðtÞ,tÞ.

Under the optimal trajectory there exists a vec-

tor of piecewise continuous adjoint functions,

l 5 [l1(t), l2(t)], that each satisfies, over the

relevant closed interval t 5 t 1
i�1,t�i
� �

:

(7) _liðtÞ 5 � @HiðxðtÞ,uiðtÞ,liðtÞ,tÞ
@xðtÞ .

The optimal control function within each land

use i must obey:

(8)
@HiðxðtÞ,uiðtÞ,liðtÞ,tÞ

@uiðtÞ
5 0.

The following conditions must be satisfied at

the final time:

(9)

H2ðxðtÞ,u2ðtÞ,l2ðtÞ,tÞ t�2

���
1
@e�dt�2 hðxðt�2 ÞÞ

@t�2
5 0, and,

(10) l2ðt�2 Þ 5
@e�dt�2 hðxðt�2 ÞÞ

@xðt�2 Þ
.

The adjoint variables must satisfy, at the switch-

ing time t1:

(11) l1ðt�1 Þ 1
@e�dt�1 sðxðt�1 ÞÞ

@xðt�1 Þ
5 l2ðt 1

1 Þ.

The Hamiltonian functions for each regime, at

switching time t1, must obey:

(12)

H1ðxðtÞ,u1ðtÞ,l1ðtÞ,tÞ t�
1

��� � @sðxðt�1 Þ,t�1 Þ
@t1

5 H2ðxðtÞ,u2ðtÞ,l2ðtÞ,tÞ t 1
2

��� ,

for t�0 < t�1 < t�2 .

In addition:

(13)

H1ðxðtÞ,u1ðtÞ,l1ðtÞ,tÞ t�
1

��� .� @sðxðt�1 Þ,t�1 Þ
@t1

£ H2ðxðtÞ,u2ðtÞ,l2ðtÞ,tÞ t 1
2

��� ,

for t�0 5 t�1 < t�2 , and,

(14)

H1ðxðtÞ,u1ðtÞ,l1ðtÞ,tÞ t�
1

��� � @sðxðt�1 Þ,t�1 Þ
@t1

³ H2ðxðtÞ,u2ðtÞ,l2ðtÞ,tÞ t 1
2

��� ,

for t�0 < t�1 5 t�2 .

Conditions in Equation (6) to Equation (10) are

consistent with the solution of a standard free-

time optimal control problem with a salvage

value. Equations (11)–(14) are not. These collec-

tively specify the relationships that must hold at

the switching time. Equation (11) states that it is

optimal to switch from one agricultural practice

to another when the marginal value of renewal or

degradation matches that within the next regime.

(The level of base productivity at which this oc-

curs in this paper is referred to as the ‘‘switching

state’’ throughout.) Similarly, Equation (12) out-

lines that it is beneficial to switch to the successive

regime when it is more profitable to do so and

incur switching costs than remain in the active

land use. The expression in Equation (13) states

that the first regime should never be active if its

dynamic value is dominated by the successive
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enterprise at all potential switching moments.

In a similar vein, Equation (14) describes that

the second enterprise should not be utilized if

its capital value never matches that within the

first regime.

Optimal Management of Individual Crops

This section examines the optimal management

of agricultural land within individual regimes.

This outlines the implications of salvage value

for effective stewardship and provides a foun-

dation for the discussion of switching dynamics

that follows.

The Hamiltonian function for each regime

i is:

(15)
HiðxðtÞ,uiðtÞ,liðtÞ,tÞ ¼ e�dt piyiðxðtÞÞð
�ciðxðtÞ,uiðtÞÞÞ þ liðtÞf iðxðtÞ,uiðtÞÞ.

The Hamiltonian function (Hi(�)) represents

the total capital value of regime i and consists

of two terms. The first is discounted profit. The

second is the user benefit or user cost associ-

ated with current management, li(t) fi(�). This

is the total gain or loss in future profit from

time t to the end of the regime following an

increase or decrease in base productivity. User

benefit/cost involves two terms. The shadow

price of renewal or degradation (li(t)) reflects

the value of a unit change in base productivity

at time t in terms of profit earned over the re-

mainder of the regime’s duration. The second

term is the unit change in land quality, as de-

fined by the motion function.

Together with the state Equation (4) and the

initial condition Equation (5), optimal trajec-

tories within a given land use must satisfy:

(16)

@Hið�Þ
@uiðtÞ

5� e�dt½cðxðtÞ,uiðtÞÞ�u

1 liðtÞ½ f iðxðtÞ,uiðtÞÞ�u 5 0, and,

(17)
_liðtÞ5�

@Hið�Þ
@xðtÞ 5� e�dt pi½yiðxðtÞÞ�x

�

�½ciðxðtÞ,uiðtÞÞ�x
�
� liðtÞ½ f ið�Þ�x.

The first equation, Equation (16), identifies that

inputs will be used up to the point where their

marginal cost (c(�)]u) is equal to their marginal

benefit (li(t)[fi(�)]u). Marginal benefit consists

of the physical relationship between input

application and the rate of degradation/renewal

([fi(�)]u) multiplied by the marginal value of this

change in base productivity (li(t)). This specifi-

cation contrasts that presented with the inclusion

of ‘‘productive’’ inputs that enter the production

function of crops directly (Barbier, 1990; Clarke,

1992; LaFrance, 1992). In that case, the marginal

benefit of input use is marginal value product

(pi[yi(x(t), ui(t))]u, where [yi(�)]u > 0), the value of

marginal output accruing to input application.

The second equation, Equation 17, identifies

that the rate of depreciation/appreciation of land

capital is the total of its marginal contribution to

direct profits and capital investment under opti-

mal management. Greater insight can be gained

through focusing on the dynamics of the second

regime. Integration of Equation (15) for this

land-use yields:

(18)
l2ðtÞ 5 e�ds

ðt2

§

e�a p2ð�Þ½y2ð�Þ�x � ½c2ð�Þ�x
� �

dt

1 e�a½hðxðt2ÞÞ�x,

where a 5 (d 1 [ f2(�)]x)(t 2 §). Equation (18)

identifies that the shadow price of a change in

base productivity at time § (§ > t1) is the present

value of the marginal profit earned between the

present and the terminal time. Marginal profit

is discounted by d. In addition, it is discounted or

compounded by the rate, [ fi(�)]x, at which deg-

radation or renewal change with land quality.

The rate of degradation under a given crop

may increase as land quality declines. For in-

stance, soil loss accelerates at increased depth

because low organic matter reduces the binding of

aggregates (Goetz, 1997). This implies [ fi(�)]x < 0

and is analogous to a greater discount rate. More-

over, the rate of renewal is likely to decrease as

land quality improves because of diminishing

marginal returns. Counter-examples do exist. For

example, it is generally easier for crop or pasture

plants to compete with lower weed populations.

However, diminishing marginal returns to re-

newal are likely to effectively bound improve-

ments in yield (and consequently profit) at some

threshold. Therefore, [ fi(�)]x < 0 is a more re-

alistic assumption.

Degradation _xðtÞ<0ð Þ reduces profit in the sec-

ond regime through decreasing yield ([y2(�)]x > 0),

increasing input costs ([c2(�)]x > 0), and
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imposing user costs (l2(t)f2(�) < 0). A lower

shadow price implies a decrease in the future

profitability of this regime. This reduces user

cost and thus encourages more intensive resource

use. The causes of such a reduction are apparent

from Equation (18). The discount rate represents

the opportunity cost of capital. Higher returns

elsewhere in the economy therefore motivate

degradation (McConnell, 1983). As noted earlier,

degradation rates may increase as land quality

declines. This will promote exploitation so that

discounting has a lesser effect on the profits ac-

cruing to degradation. Declines in marginal profit,

such as those brought about by lower prices, will

also decrease the shadow price.

If the terminal regime restores agricultural

productivity _xðtÞ > 0ð Þ then l2(t)f2(�) instead rep-

resents a user benefit. A lower shadow price

(l2(t)) will decrease the magnitude of user benefit

and therefore decrease the incentive to retain this

land use. In line with the results for a phase that

degrades the resource base, this also occurs with

a higher discount rate, a rate of renewal that de-

clines with increased productivity, and lower

marginal profit. However, there is greater in-

centive to retain such an enterprise if rates of

renewal are augmented with increasing land

quality, i.e., [ fi(�)]x > 0.

The producer will sell the land at the point

where continuing farming of the last regime is

unprofitable. Here the following relationship,

consistent with Equation (9), holds:

(19)
H2ð�Þ t�

2

��� � de�dt�2 hðxðt�2 ÞÞ

1 e�dt�2 ½hðxðt�2 ÞÞ�x _xðtÞ 5 0.

The first term (the Hamiltonian function for the

second regime evaluated at t2) represents the

marginal value of extending the length of the final

regime. The second and third terms are the rate at

which the discounted salvage value of the farm

changes with adjustment of the terminal time.

The sum of these three terms must be zero at the

optimal time of sale; otherwise it is profitable to

continue management.

Prolonging the planning horizon will have

two effects on the resale value of the farm. These

are reflected in the second and third terms in

Equation (19). First, salvage value will decrease

through discounting. Second, it will decrease

(increase) with retention of the last regime if

this regime degrades (restores) land quality.

However, the last factor declines in importance

with decreases in the degree to which land

markets reflect differences in productivity.

The price of agricultural land should reflect

its expected long-term profitability under per-

fect information (Just and Miranowski, 1993).

Optimal management consequently requires

explicit consideration of current actions on the

resale value of the farm (see Equation (18) and

Equation (19)). However, this may not occur if

there are information failures, notions of be-

quest are weak, or capital markets do not clear

(McConnell, 1983). Incentives for conservation

will be reduced if land markets do not properly

account for differences in productivity (Clarke,

1992; Goetz, 1997). Suboptimal levels of ex-

ploitation will consequently be utilized, the de-

gree of disinvestment in land capital depending

on the extent to which the salvage value term is

sensitive to degradation of the base resource. This

will be highest in the extreme case where h(x(t2))

is independent of land quality as producers will

have no incentive to conserve the land resource in

order to obtain a higher terminal value.

Optimal Management of Multiple Crops

This section focuses on the analysis of crop

sequences utilizing the framework described in

the second section. Determining the optimal rate

of exploitation or investment across the relevant

planning horizon is the sole consideration if a

single crop exists. However, intertemporal plan-

ning requires simultaneous consideration of the

relative (potential) profitability of the successive

regime if a planting alternative is available.

Standard Switching Behavior under

Degradation and Renewal

Suppose that the optimal switching time is

freely variable t�i�1 < t�i < t�i11

� �
and although it

is presently more profitable to remain in the first

enterprise, it will be optimal to switch to

the successive regime at some stage. Prior to

switching, the Left Hand Sides (LHSs) of the

switching conditions in Equation 11 and Equation

12 will be greater than the Right Hand Sides.
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Over time, any change in the level of the state

variable under the active regime will modify

both its own marginal value and that of the next

regime. Adjustment will continue until the

switching conditions hold with equality, beyond

which it is more profitable to switch than remain

in the first regime.

Detailed analysis is possible from manipu-

lation of system equations and boundary condi-

tions from Theorem 1. Current values are used

here in order to simplify discussion. The neces-

sary conditions for the first stage are:

(20) _x 5 f 1ðx,uiÞ and xðt0Þ5 x0,

(21)
@Hið�Þ
@u1

5 � ½c1ðx,u1Þ�u 1 f1½ f 1ðx,u1Þ�u 5 0,

(22)
_f1ðtÞ 5 df� @H1ð�Þ

@x
5 f1ðd � ½ f 1ðx,u1Þ�xÞ

� p1½y1ðxÞ�x 1 ½c1ðx,u1Þ�x,

where Hi(�) 5 piyi(x) 2 ci(x, u) 1 uifi(x, ui) and

ui(t) is the current value costate where ui (t) 5

edtli(t). The switching conditions that hold

prior to the switching time, assuming that switch-

ing does occur, are:

(23) l1ð�Þ1
@e�dtsð�Þ

@x
6¼ l2ð�Þ, and

(24) H1ð�Þ �
@sð�Þ
@t1

>H2ð�Þ.

The first switching condition, stated in Equa-

tion (23), specifies that the rate at which opti-

mal profit changes with a change in the state

variable is not equivalent between stages out-

side of the switching time. The LHS of this

equation may approach the switching condition

(l1(�) 1 [e2dt s(�)]x 5 l2(�)) from above (l1(�) 1

[e2dt s(�)]x > l2(�) in Equation (23)) or from be-

low (l1(�) 1 [e2dt s(�)]x < l2(�) in Equation (23)),

depending on the parameters and functional forms

in the problem.

The second switching condition, stated in

Equation (24), specifies that the value of the first

regime is greater than that of the second regime.

Otherwise, it is profitable to switch into the next

phase. Insights into optimal switching behavior

can be gained through manipulation of Equation

(24). Substitute the definition of the Hamiltonian

function into this function to obtain:

(25)
p1y1ðxÞ � c1ðx,uÞ1 f1 f 1ðx,uiÞ � ½sð�Þ�t

> p2y2ðxÞ � c2ðx,uÞ1 f2 f 2ðx,uiÞ.
The Hamiltonian function for each stage rep-

resents its marginal value at time t. The first

two terms on the LHS of Equation (25) (p1y1(x) 2

c1(x, u)) represent current profit: total revenue

minus total cost. The next term (u1 f1(x,ui))

represents the change in future profit associated

with a change in the resource stock. The key term

here is u1, which represents the marginal value

of a change in the state variable (land quality) at

time t. The state variable may decrease or in-

crease through f1(x,ui), depending on whether a

land use degrades or restores base productivity

and how this is modified by input management.

The last term on the LHS of (Equation 25)

([s(�)]t) represents how time impacts the switch-

ing cost.

The LHS of Equation (25) will decline over

time if this regime degrades the base resource

and input management does not counteract this

effect. This occurs since fdeg(�) < 0 in this case

and the marginal value of the first regime falls

through yield decreases and increasing costs.

Alternatively, the LHS of Equation (25) will

increase over time through fres(�) > 0 if the first

regime restores land quality or the degrading

impact of an enterprise is subsumed by the

positive impacts of input application (e.g., soil

infertility is overcome through use of fertilizer).

In contrast to the degrading case, increases in

productivity will increase yield and decrease

costs.

A hypothetical trajectory for dynamic profit

within a net degrading enterprise (i.e., one in

which input application does not offset inherent

degradation) is labelled H1 in Figure 1. This

trajectory is understood to be defined by all

terms on the LHS of Equation (20), including

those concerning switching costs. A rise in the

dynamic value of a regime through investment

in land quality is demonstrated for the second

enterprise (curve H2) in Figure 1.

Dynamic profit decreases along the curve

H1 in Figure 1. This is consistent, for example,

with declines in profit with continuous cereal

cropping because of decreases in soil organic

matter. Dynamic profit will continue to decrease

until the switching conditions in Equation (11)
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and Equation (12) are satisfied with equality, at

which point it is optimal to switch to the next

regime. The optimal switching time occurs at

point A at time t1 in Figure 1. In the specific case

illustrated here, it is optimal to switch given that

remaining in the first enterprise will drive dynamic

profitability below that which can be earned

within the second enterprise. This is demon-

strated in that remaining on H1 past the point

of intersection (point A) leads to a position where

H2(�) > H1(�) 2 @s(�)/@t1.

The curve for the renewing enterprise (H2)

is concave in Figure 1 to reflect diminishing

marginal returns to renewal. It is optimal to re-

main within enterprises that renew land quality

across the entire planning horizon if there is only

one state variable representing base productivity.

For example, suppose that a producer has adopted

a regime that renews land quality. Its dynamic

profit could follow a path such as H1 in Figure 2.

It would be profitable to switch to another re-

newing enterprise (H2) at t1 in Figure 2 if dy-

namic profit were higher within this regime.

However, it will never be profitable to switch to

a degrading enterprise, such as H29 at t19 in Figure

2, if production functions are continuous—see

later text for a discussion of the implications

of discontinuous production functions—because

a higher return is earned by not switching. This

is evident in that dynamic profit along the tra-

jectory H1 is always higher than that on H29 past

switching time t19. This is a graphical illustration

of the necessary condition defined in Equation 14

that describes that the successive regime should

never be adopted if its value never matches that of

the active enterprise.

This discussion has two important impli-

cations. First, it reinforces the importance of

considering the relative profitability of the al-

ternative crop. Second, it highlights the critical

need to incorporate multidimensional relation-

ships between enterprise use and base produc-

tivity if realistic optimal switching schedules are

to be obtained. In reality, enterprises that renew

base productivity are also likely to degrade

one or more determinants of production. In this

case, it may be optimal to switch to a degrading

enterprise at some time. An example is where

continued grazing of a legume pasture leads to

soil compaction and eventually to declines in

productivity.

Impacts of a Change in Output Price

on Switching Time and State

Modification of optimal management following

a change in output price for the active regime

may be identified through taking the partial dif-

ferential of the necessary conditions from Equa-

tions (20)–(25) with respect to p1. Using Equation

22, the costate variable for the first phase is equal

to:

(26)
f1ðtÞ5 edðt�sÞ

ðt1

§

e�a p1ð�Þ½y1ð�Þ�x
�

�½c1ð�Þ�x
�
dt,

where a 5 (d 1 [ f2(�)]x)(t 2 §). Substitution

of this expression into Equation (21) and de-

riving the partial differential with respect to p1

yields:

Figure 1. Dynamics of regime value following

a price decrease for a degrading regime.
Figure 2. Dynamics of optimal switching when

the active regime renews the quality of land.
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(27)

Dp1

@½Hið�Þ�u
@p1

5 Dp1½ f 1ð�Þ�uedðt�sÞ
ðt1

§

e�a½y1ð�Þ�xdt.

The term Dp1 represents the change in output

price, whereas [ f1(�)]u is the (positive) relation-

ship between input application and land quality.

These benefits of input application are expressed

in farm profit through the relationship connect-

ing base productivity and crop yield ([y1(�)]x)

between the time of application and the terminal

time.

The differential of the necessary condition

that determines the optimal switching time (Equa-

tion (25)) at time § (where § < t1) yields:

(28)

Dp1

@Eð�Þ
@p1

5 Dp1 y1ðxÞ1 edðt�sÞ
ðt1

§

e�a½y1ð�Þ�x dt

2
4

3
5,

where E(�) denotes the LHS of Equation (25).

The first term in the square brackets describes

a change in the value of yield at time t. The

second term in the square brackets represents the

current value of changes in marginal product

occurring across the remainder of the horizon.

This expression is positive (negative) for a price

increase (decrease). Nevertheless, its relationship

with the optimal switching time is indeterminate,

depending on the characteristics of the subse-

quent regime.

Assume the first phase is a degrading regime,

it is followed by one that restores land quality,

and input application does not overcome the

degradation caused by the first crop. In this case,

dynamic profit declines over time with degra-

dation according to the trajectory H1 in Figure 3.

The optimal path of degradation and renewal

across the two enterprises is ABD. However,

regime value is promoted through the price in-

crease according to Equation (28). Hence, the

Hamiltonian trajectory shifts from H1 to H19 and

the optimal path is ACD. This causes an increase

in profit and an increase in the switching time,

ceteris paribus. By similar reasoning, it can be

established that a price decrease for product from

the first regime should encourage switching to

occur sooner. Moreover, these relationships will

hold regardless of whether the following enter-

prise degrades or renews land quality.

Another instance is possible where the first

regime renews soil quality. In this situation, the

relationship between the optimal switching time

and the output price depends on the nature of the

successive enterprise. A price increase should

delay switching if profit increases at a greater rate

in the consecutive regime. (In contrast, switching

will not occur if profit increases at a slower rate in

the next stage, consistent with Equation (14).) For

example, a price increase for the active regime in

Figure 4 shifts the optimal switching time from t1
to t19 following a shift in trajectory from H1 to

H19. This occurs as the active enterprise is now

more profitable and switching earlier has a higher

opportunity cost. In line with above discussion,

a producer will only switch to a degrading en-

terprise from a renewing regime if the latter starts

to degrade land quality at some time. In this case,

Figure 3. Dynamics of regime value following

a price increase for a degrading regime.

Figure 4. The effect of a price change for the

active regime when the successive regime re-

news land quality at a greater rate.

Doole and Hertzler: Optimal Dynamic Management of Agricultural Land-Uses 51



the optimal response to a price change will mirror

that within a degrading enterprise.

A number of previous studies highlight an

inverse relationship between the optimal length

of a degrading phase and a change in its output

price (e.g., Goetz, 1997; Willassen, 2004). This

result is dependent on problem structure and

the nature of functions incorporated. It occurs

since returns to degradation are higher follow-

ing a price change and restorative enterprises are

required to offset this damage. The positive as-

sociation between output price and the length of

a degrading regime found here is in accordance

with the law of supply and typical agricultural

practice. For instance, the higher profitability

of cereal crops, relative to livestock enterprises,

motivated extended cropping phases in Western

Australia throughout the 1990s (Doole and

Weetman, 2009). Increasing the area of land plan-

ted to degrading crops following an increase in

output price is also consistent with recommen-

dations from applications of equilibrium whole-

farm optimization models, even those explicitly

including degradation and renewal (e.g., Bathgate,

Revell, and Kingwell, 2009; Doole et al., 2009).

The differential of the necessary condition

that determines the optimal switching state

(Equation (23)) at time § (where § < t1) yields:

(29) Dp1

@Fð�Þ
@p1

5 Dp1edðt�sÞ
ðt1

§

e�a½y1ð�Þ�x dt,

where F(�) denotes the LHS of Equation (23).

Equation (23) determines the optimal level of

the state variable at the switching time based

on the relative value of the costate variables. A

price increase (Dp1 > 0) promotes the value of

marginal product across the remainder of the

horizon. This increases the magnitude of u1 for

a given value of x.

This will have different implications on the

optimal switching state, depending on the rela-

tive shapes of the costate trajectories. The cur-

vature and orientation of the adjoint profiles will

depend on the functions and parameters present

within a problem. An adjoint trajectory (e.g., l1

in Figure 5a) is an increasing function of the

state variable because investment in soil quality

improves yield, decreases input costs, and re-

duces the need for inputs. However, the relative

slopes of these functions will typically differ

between stages, reflecting differences in mar-

ginal returns to investment in soil quality.

Two cases exist in the two-stage problem.

First, assume that marginal returns to land in-

vestment are steeper in the first phase than the

second (Figure 5a). An increase in output price for

the first stage promotes the value of land quality,

shifting the costate profile upwards from l1 to l19.

The optimal switching state therefore decreases

from x1 to x2, as l19 > l2 at x1 denoting that there

is a marginal benefit accruing to reducing x in

the first stage following a price increase. Sec-

ond, alternatively, assume that marginal returns

to land investment are steeper in the second

phase than the first (Figure 5b). The condition

l19 > l2 again holds at x1; however, the optimal

switching state is higher after the price increase

due to the relative curvature of the costate

trajectories.

Many single-crop analyses identify an indeter-

minate relationship between price and land

Figure 5. Changes in the switching state following a price increase in the first regime assuming no

switching cost function is defined. Costate trajectories are denoted l1 and l2 for stage 1 and 2,

respectively, with l19 indicating the adjoint trajectory for the first regime after the price increase.
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degradation. A higher price may promote deg-

radation through motivating greater use of inputs

that improve yield and degrade or encourage

conservation through increasing the marginal

benefit of soil conservation (Clarke, 1992;

Grepperud, 1997; LaFrance, 1992). The optimal

response of management decisions to output

price in this paper depends on relative returns to

investment. A higher output price will promote

greater investment in the soil resource through

increasing the marginal benefit of input ap-

plication (see Equation (27)). Moreover, it is

worthwhile to invest in soil quality following

a price increase in the first stage if the rate at

which marginal returns to this investment change

(i.e., the slope of the adjoint profile) is higher in

the second stage.

Impacts of a Change in the Switching Cost

Switching costs impact optimal management

through the necessary conditions in Equation (11)

and Equation (12). Assume two stages exist, it is

not yet optimal to switch, and use current-value

terms for simplicity. This yields: f1(t) 1 [s(x)]x 6¼
f2(t) and H1 � ½sðxÞ�x _x >H2.

Improving land quality decreases transition

costs (thus [s(x)]x < 0). This is captured in the

second term of f1(t) 1 [s(x)]x 6¼ f2(t). The net

effect of transition costs on the switching state

depends on the relative shapes of the costate

profiles, as discussed in the previous section

with reference to the output price. Increasing or

including marginal transition costs increases

the switching state if the slope of l1 dominates

that of l2, as there are greater relative returns

accruing to investment in stage 1 (Figure 6a).

In contrast, increasing or including marginal

transition costs lowers the switching state if the

slope of l1 dominates that of l1, as there are

lower relative returns accruing to investment in

stage 1 (Figure 6b). Suppose nitrogen fertilizer

is applied in both phases and the switching cost

is dependent on soil nitrogen. Inclusion of the

switching cost function reduces one component

of the benefit of fertilizer application in the first

phase. However, it may be optimal to invest

further in soil quality if greater returns accrue

to this activity in the first stage.

The temporal value of switching costs is cap-

tured in H1 � ½sðxÞ�x _x > H2 where _x 5 f iðx,uiÞ.
The impact of increasing or including switching

Figure 6. Influence of marginal switching costs on the adjoint trajectories (a and b) and Ham-

iltonian trajectories (c and d) in a two-stage problem. Trajectories without switching costs are

denoted l1, l2, H1, and H2. Trajectories l19 and H19 are the adjoint and Hamiltonian profiles with

marginal switching costs.
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costs depends on the types of regime involved.

Increasing or including transition costs decreases

the optimal switching time if a degrading regime

is followed by a restorative stage (Figure 6c). This

occurs because degradation ( fi < 0) increases

switching costs through [s(x)]x < 0. In contrast,

increasing or including transition costs further

promotes the value of a restorative enterprise.

This shifts its Hamiltonian function upwards,

promoting a later switching time (Figure 6d).

Switching Behavior with Discontinuous

Production Functions

Production functions yi(x) may be discontinu-

ous in some cases. Here, yi 5 0 for x < �x and

yi > 0 for x ³ �x, where �x is a threshold value

indicating a certain level of soil quality required

for crop growth. One example is that a saline

water table should be maintained at least two

metres below the soil surface to maintain growth

of agricultural crops and pastures (Clarke et al.,

2002).

This has interesting implications for switch-

ing behavior. The costate trajectory for the sec-

ond stage is not defined for all levels of the state

variable, just for x ³ �x. However, it may be

shallower (Figure 7a) or steeper (Figure 7b) than

the adjoint trajectory for the first stage. Thus, the

impact of changes in the output price and switching

cost on the optimal switching state remains in-

determinate in the case of discontinuous pro-

duction functions.

Suppose a discontinuous production func-

tion is defined for a degrading phase. Point e in

Figure 7c denotes where it is profitable to begin

producing in the (degrading) second regime

that possesses the discontinuous yield function.

The threshold of soil quality where this occurs

may be defined x̂, where x̂ ³ �x. In contrast,

point f in Figure 7c indicates where production

finishes under degradation as x 5 �x. (Although,

converse to this illustrative example, it may

be profitable to terminate production at x > �x.)

Switching occurs at t1 as H1 2 [s(x)]t < H2 holds

over ½t 1
1 ,t2�, observable in Figure 7c as place-

ment of the trajectory H2 above H1. Equation

(13) describes that H1 2 [s(x)]t < H2 typically

infers that t�0 5 t�1 < t�2 . However, its inter-

pretation is different with a discontinuous yi(x)

because H2 is not defined over ½t0,t�1 �.
Suppose a discontinuous production func-

tion is defined for a restorative phase. Point g in

Figure 7d denotes where it is profitable to begin

producing in the (restorative) second regime

that possesses the discontinuous yield function.

This may occur at any x ³ �x. Regime value

increases from here to its termination at point h

Figure 7. Influence of a discontinuous production function for the second regime on the adjoint

trajectories (a and b) and Hamiltonian trajectories (c and d) in a two-stage problem. State �x is

a threshold value indicating a certain level of soil quality required for crop growth.
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due to the renewal occurring under the phase.

Switching occurs at t1 as H1 2 [s(x)]t < H2

holds over ½t 1
1 ,t2�.

Parameter perturbation will alter the opti-

mal switching time in many circumstances, as

the shape and location of both H1 and H2 in (H, t)

space will usually change in response. Suppose

that price increases in the second stage. This

decreases the threshold x̂ at which the degrading

phase becomes profitable; thus, less renewal is

required in the first phase. This manifests itself

as an extension of H2 to H29 in Figure 7c. More-

over, regime value across the phase is promoted

through the price increase, resulting in an up-

ward shift of H2 to H29 (Figure 7c). The net effect

of these changes is that profit increases in the

degrading phase and the switching time occurs

earlier when a discontinuous production function

is present.

Conclusions

Dual consideration of non-crop inputs and

complementary effects between land uses in

this analysis resolves a significant shortcoming

in the analysis of land degradation. This addi-

tion brings such models closer to representing

modern agricultural systems in which both non-

crop inputs and indirect effects play important

roles in maintaining farm profitability. A key re-

sult is that it is optimal to increase the use of a

degrading crop with an increase in its output price,

converse to the findings of several earlier studies.

A second lesson is that an inability of land mar-

kets to reflect differences in resource quality re-

duces incentives for greater conservation. A third

implication is that low capital malleability may

promote degradation through increasing the cost

of switching between alternative land uses. Over-

all, these factors identify an explicit need to con-

sider dynamic factors in models of agricultural

decision-making, particularly those involving land

allocations among multiple land-uses.

[Received February 2010; Accepted August 2010.]
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