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Abstract 

 

This paper examines broadacre farm performance in south-western Australia. This 
region has experienced pronounced climate variability and volatile commodity 
prices over the last decade or so.  Relationships between productivity and 
profitability are explored using panel data from 50 farms in the study region.  The 
data are analysed using non-parametric methods. Components of farm 
productivity and profitability are measured over the period 1998 to 2008.  
Economies of scale and scope are shown often to be positive contributors to 
productivity and profitability.  However, the main finding is that technical change, 
much more so than technical efficiency, has supplied over 68 percent of the 
improvement in total factor productivity for farms in the different climatic zones 
of the region from 1998 to 2008.  In addition, growth in total factor productivity is 
the main contributor to farm profitability. By implication, technical change, often 
accompanied by scale and mix efficiencies, is the main driver of farm 
profitability. These findings indicate a vital role for innovation and R,D&E to 
deliver technologies and practices that bolster farm profitability, as well as a 
continuing role for scale and scope economies.  The products and knowledge that 
come from innovation and R,D&E are the springboard for technical change. 
Through technical change and scale and scope efficiencies farmers in this study 
have achieved higher profits. 

 

Keywords: Productivity, Profitability, Technical change, Farm businesses  
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1. Introduction 

It is often argued that in order to remain internationally competitive Australian farming 
needs ongoing gains in productivity.  Given limitations to Australia’s agricultural resources of 
arable land and water, the future growth in agricultural production seems destined to depend 
largely on increases in productivity (Zhao et al. 2008; Nossal and Sheng 2010).  Of 
encouragement are empirical findings that Australia’s largest agricultural sector, known as 
broadacre agriculture, has achieved in recent decades reasonably high rates of productivity gain; 
with total factor productivity (TFP) growth averaging 1.4 percent per annum from 1977-8 to 
2007-8 (Nossal and Sheng 2010).  However, of some concern is the suggestion that this 
productivity growth has slowed recently. Nossal and Sheng (2010) report that between 1977-78 
and 2000-01, broadacre productivity grew at 2 per cent per annum, but since 2000-01 up until 
2007-8 growth averaged -1 per cent per annum.  This slowdown is largely attributed to drought 
effects (Sheng et al. 2010). 

Whether these drought conditions are part of underlying climate variability or a portent of 
unfolding climate change is not clear (CSIRO 2007). With some regional and seasonal variations, 
the annual average temperature across Australia has increased and average rainfall has decreased. 
There are however different opinions over whether these changes are weather variability rather 
than climate change (Nicholls et al. 2003; Van Ittersum et al. 2003). Either way, their impact on 
productivity and farm production has been large, further complicating the management of already 
complex broadacre farm businesses (Kingwell 2010) and exacerbating the risks associated with 
farming (Quiggin et al. 2010).  If projected climate change does unfold, then in some regions 
farm profitability and viability are likely to be threatened (John et al. 2005; Kingwell 2006; 
Garnaut 2010; Quiggin et al. 2010). 

To combat the adverse impacts of climate risk and other sources of business risk, 
productivity growth is vital.  In fact, as more broadly shown by Mullen (2007), much of the 
current value of agricultural production can be attributed to the gains over several decades in 
productivity improvement by Australian farmers. The gain in productivity over those decades 
principally has offset adverse movements in farmers’ terms of trade and enabled profits from 
farming to be much higher than otherwise would have occurred.  However, over much of the last 
decade only a weak decline in farmers’ terms of trade has been observed (ABARE 2009), so the 
benefits of productivity gain in recent years have served other risk aspects of farming. 

Although much effort has been devoted to measuring the productivity performance of 
different sectors and agricultural regions of Australia (Kopke et al. 2000; Mullen 2007; Nossal et 

al. 2009; Salim and Islam 2010; Sheng et al. 2010) the methods employed are not able to indicate 
causes behind measured trends or differences.  Nonetheless, most authors posit plausible 
explanations for the observed rates of productivity change and workshops have been held to 
discuss possible underlying causes of productivity changes (e.g. Jackson 2010).  Authors point to 
technological advances such as seed varieties, herbicides, tillage practices and improved 
machinery.  Mullen (2007) observes that the longer production cycles in livestock production 
could make the transition to better technologies and production methods slower in the livestock 
industries. 

Given the importance of productivity gain for Australian farming, and its key influence on 
farm profitability, it is worthwhile to understand more about the components of farm productivity 
and profitability.  Furthermore, given the uncertain environment of agriculture and the complex 
task of farm business management, it is important to know how farm business profitability and 
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productivity fare in this environment. A better understanding the components of farm 
productivity and profitability, for example, may help policy makers, innovation funders and 
product developers to be more effective in assisting farm businesses. 

Hence, this paper explores the profitability and productivity components of Australian 
farms, using the case study region of Australia’s south-west. This region is of particular interest 
since from the mid-1970s, it has displayed a warming and drying trend and has been 
characterised by marked climate variation, as well as having experienced significant commodity 
and input price volatility over the last decade.  The paper comprises three sections. Section 2 
describes the study’s methodology and data, and then Section 3 presents the results, discussion 
and conclusion.  

2. Methodology and data 

 

Method 

Farm productivity and efficiency gaps in agricultural productions exist as farms face 
different production opportunities due to differences in factors such as: (i) physical resource 
endowments (e.g. quality of soils and climate), (ii) technology, capital and infrastructure, (iii) 
management skill and social support, and (iv) levels of costs and prices (Hayami 1969; Hayami 
and Ruttan 1971; Lau and Yotopoulos 1989; Battese et al. 2004; O’Donnell et al. 2008). To 
measure farm productivity and efficiency, increasingly sophisticated methodologies have been 
developed to deal with a raft of issues surrounding data discrepancies, functional forms and 
behavioural assumption restrictions, inter alia.  Ozkan et al. (2009) have reviewed literature on 
the approaches for measuring efficiency in agricultural production. The existing approaches can 
be classified into two groups: parametric and non-parametric. The least-squares econometric 
production and stochastic frontier production function models are examples of the first category 
and the traditional Tornqvist-Theil or Christensen and Jorgenson total factor productivity index 
and data envelopment analysis are examples of the second group. An elaborate review of the 
productivity estimation methods can be found in Van Beveren (2010) and Van Biesebroeck 
(2007).  

Most of these studies deal with productivity and efficiency issues not with profitability to 
which farm business viability is closely linked (Lovell 2001). Productivity and profitability, 
however, are related in the sense that a more productive business typically is also more profitable, 
and a faster growth in productivity often translates into faster growth in profitability, ceteris 

paribus. In reality however, the relationship between productivity and profitability is not linear 
which makes it difficult to decompose variations in profitability into variations in productivity 
and efficiency. 

Economists have used numerous methods to demonstrate a relationship between 
profitability and productivity changes. Althin et al. (1996) show that the index of profitability is 
approximately equal to the efficiency change component of productivity change, which implies 
improvements in productivity are accompanied by improvements in profitability. Grifell-Tatjé 
and Lovell (1999) show that sources of profit change are driven by changes in quantities and 
prices. The changes in quantities can be further decomposed as illustrated in Figure 1 into five 
categories the affect quantities produced. Hadley and Irz (2008) have applied the hierarchy 
displayed in Figure 1 using farm-level production data for England and Wales.  
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Figure 1. Profit Decomposition 

 

Advancing this decomposition approach O’Donnell (2010a) distinguished a difference 
between ‘profitability change’ and ‘profit change’ and showed that the sources of profitability 
change are driven by the changes in term of trade (i.e. change in the output-input price ratio in 
place of an output-input price difference), productivity and various measures of efficiency 
indexes. The distinction he drew between profit and profitability considered profit as revenue less 
cost while profitability was defined as the ratio of revenue to cost. According to O’Donnell 
(2010a), the sources of profitability change can be decomposed into three stages provided that: 
(a) the output and input quantity aggregates are associated with input and output price aggregates; 
(b) the quantity and price aggregates are non-negative and linear homogeneous in prices; and (c) 
any quantity-price aggregator function pair satisfy the product rules. The formulae for 
decomposing these profitability and productivity drivers are presented in simplified forms in 
equations 1 – 6 below. 

Firstly, the profitability index change (dPROF) between firms or periods, o and t, can be 
decomposed into the indexes of changes in the terms of trade (dTT) and total factor productivity 
(dTFP):  

PROF TT* TFPd d d=    (1) 

Since O’Donnell (2010a) has used a multiplicatively complete index number, the change 
of index numbers used in equations (1) to (6), between firms or periods o to t, can be computed 
using firm or period o as a base. For example, the change in profitability (dPROF) can be 
computed as the ratio of profitability in time t over profitability in time o. This can be expressed 

as: P ROF P ROF / P ROFt od = . 

Secondly, the total factor productivity change (dTFP) index can be further decomposed 
into the indexes of technical change (dTech) and technical efficiency change (dEff): 

Price 

Technical 
efficiency  

Technical 
change 

Scale 
efficiency 

Allocative 
input 
efficiency 

Allocative 
output 
efficiency 

Quantity 

Profit Change 
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TFP Tech* Effd d d=  (2) 

Finally, the index of efficiency change (dEff) can be decomposed into various indexes of 
efficiency change: 

Eff OTE* OME* ROSEd d d d=  (3) 

Eff TE* OSE* RMEd dO d d=  (4) 

Eff ITE* IME* RISEd d d d=  (5) 

Eff ITE* ISE* RMEd d d d=  (6) 

The detail about the definitions and graphic illustrations of the index numbers specified in 
equations (1) to (6) can be found in O’Donnell (2010a). To save space we provide a brief 
explanation of these index numbers below.  

• OTE (ITE) is output-oriented (input-oriented) technical efficiency capturing the 
potential change in TFP output (input) level by best practice use of existing technology. 
It is measured by the difference between observed TFP and the maximum TFP that is 
possible with an existing technology, while holding the output (input) mix fixed and the 
input (output) level fixed. 

• OSE (ISE) is output-oriented (input-oriented) scale efficiency that captures the potential 
change in TFP if output (input) level is changed to achieve the maximum TFP with an 
existing technology. It is measured by the difference between TFP at a technically-
efficient point and the maximum TFP based on the use of existing technology, while 
holding the input and output mixes fixed but allowing the levels to vary.   

• OME (IME) is output-oriented (input-oriented) mix efficiency that captures the 
potential change in TFP if output (input) level is changed by altering the mix of 
enterprises is such a way that output is increased for a given set of inputs (output). It is 
measured by the difference between TFP at a technically-efficient point on the existing 
technology or enterprise mix and the TFP that is possible holding the input (output) 
level fixed but allowing the output (input) level and mix to vary.  

• ROSE (RISE) is residual output-oriented (input-oriented) scale efficiency measuring the 
difference between TFP at a technically and mix efficient point and the maximum TFP 
that is possible through altering both input and output with the existing technology.  

• RME is residual mix efficiency measuring the difference between TFP at a technically 
and scale efficient point and the maximum TFP that is possible through altering input 
and output mixes with existing technology.  

 

Study region and farm data  

The data for this study was supplied by two farm management consulting firms whose 
clients are farmers in South Western Australia (see Figure 2). This study region comprises one 
million hectares and is considered to have experienced a changed climate since the mid-1970s 
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(IOCI 2005). These changes in climate are summarized as a 0.8ºC increase in average 
temperature since 1910 and a 10 to 15 percent drop in annual rainfall since the 1970s. 

 

 
Figure 2. The study shires of South Western Australia region 

 

The set of panel data came from 67 farms, many with complete data for the period 1998 to 
2008. The data comprise over 209 descriptors of each farm; including detailed information on 
physical inputs and outputs of crops grown; livestock types, their number, purchases and sales 
(including wool sales); financial items and aggregates such as expenditure on casual labour, 
fertilisers, fuel, chemicals, plant depreciation, repairs, income generated, assets, liabilities and 
equity. A summary of key aggregates is given in Table 1 and their derivation is described later. 

Figure 3 illustrates the variation in the panel dataset in on-farm growing season rainfall 
(see panel A) and farm income (panel B) for each year in the study period. The box-plot’s 
vertical bar shows the smallest observation, lower quartile (25th), median (50th), upper quartile 
(75th), and largest observation. In some years such as 2000, 2004 and 2006 average growing 
season rainfall was around 200 millimeters whereas in 2003 and 2005 average growing season 
rainfall was over 400 millimeters. 
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Panel B 

 

Figure 3. Variations in on-farm growing season rainfall and farm income 

 

The box-plots in Panel A indicate that the rainfall distributions across farms in each year 
were skewed.  Rainfall over the entire period also fluctuated greatly. On the other hand, farm 
income variations were remarkably less skewed and fluctuated less. This suggests that farm 
income variations caused by rainfall variation have been offset by other changes such as 
mollifying adaptive responses.  

 

 

 

 

 

 

 



 8 

 

 

 

 

Table 1. Key aggregates for farms in the dataset: 1998 to 2008   
 

    
Low Rainfall Environment                                                            

(<275mm GSR)  
Medium Rainfall Environment                                                     

(275mm to 325mm GSR)  
High Rainfall Environment                                                            

(>325mm GSR) 

Variable Unit Obs Mean Std. Dev. Min Max  Obs Mean Std. Dev. Min Max  Obs Mean Std. Dev. Min Max 

                   

Quantity of livestock capital (x3) DSEs 44 2,560 1,092 940 4,752  100 3,042 2,047 477 11,990  56 6,114 3,590 1,687 16,054 

Livestock output (q2) Quantity Index 44 103 40 35 245  100 114 49 34 292  56 120 53 51 297 

Crop output (q1) Tonnes 44 2,691 1,236 522 5,681  100 2,614 1,855 161 9,136  56 2,450 2,179 209 12,359 

Labour input (x1) Person-weeks 44 94 31 44 149  100 99 44 47 263  56 140 80 48 361 

Land input (x2) Hectares 44 2,670 903 1,278 4,750  100 2,311 1,361 740 7,931  56 2,308 1,501 635 6,525 

Quantity of variable input (x4) Quantity Index 44 100 28 20 179  100 100 24 37 168  56 112 52 21 295 

Total revenue (TR) $’000 44 786 440 114 2,000  100 832 645 111 3,300  56 1,101 930 168 5,300 

Total cost (TC) $’000 44 461 222 112 1,100  100 512 367 85 2,000  56 698 513 128 2,500 

Note: GSR is growing season rainfall and DSE is dry stock equivalent, 
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Index construction and model estimation 

The following steps were used to construct the indexes. Firstly, we clustered the data into 
three groups according to the level of growing season rainfall on each farm. The three categories 
of average growing season rainfall were (i) less than 275 mm (the low rainfall group), (ii) 
between 276 to 325 mm (the medium rainfall group), and (iii) more than 325 mm (the high 
rainfall group). Secondly, since the panel data were not balanced and some observations were 
missing, we used the complete data of only 50 farms for four intervals (i.e., 1st interval: 1998-
2000, 2nd interval: 2001-2003, 3rd interval: 2004-2006, and 4th interval: 2007-2008) to form a 
balanced panel data of which 11 farms were the low rainfall group, 25 farms were the medium 
rainfall group and 14 farms were the high rainfall group. Thirdly, we constructed data for the 
estimation of sources of productivity change by grouping the production data into two output and 
four input variables.  

The following approaches were used to form these input and output variables: 

Crop output is constructed as the sum of production (tonnes) of all cereal enterprises for 
each farm;  Cereal production was by far the dominant crop enterprise on all farms. 

Livestock Output is a Fisher index of the quantity of livestock sold and the quantity of 
wool sold (kg). The quantity of livestock sold is measured as dry sheep equivalents (DSE) for the 
various classes and sheep and a conversion factor of 12 DSE applied to cattle. Prices for 
constructing the Fisher index number were derived by dividing cattle, sheep and wool revenues 
by their quantities sold.   

Labour input is constructed as the annual sum of family, managerial and hired labour (in 
person-weeks); 

Land input is effective land area or area of land utilized for crop and livestock production 
(in hectares); 

Quantity of livestock capital is measured in DSE and was constructed as the sum of 
opening livestock numbers and live stock purchased minus the number of livestock sold. 

Quantity of variable inputs is an index number constructed by summing annual farm 
expenditures over five categories: depreciation, building and machinery maintenance, fertilisers, 
sprays, livestock, materials, and fuel, and dividing each item by the relevant price index from 
ABARE (2010). 

A summary statistics for these variables are presented in Table 1.  

Finally, following O’Donnell (2008 & 2010), the Hicks-Moorsteen  indexing method was 
used and the DPIN v.1 software developed by O’Donnell (2010b) was applied to measure and 
decompose profitability and productivity indexes and to estimate the sources of productivity 
change as specified in equations (2) to (6) for each group. In the software settings we have 
allowed both technical regress and progress over time and farms operating under variable returns 
to scale. We then estimated the sources of profitability, drawing on total farm income and total 
operating expenditure aggregates recorded in the dataset. Once productivity and profitability 
indices were estimated, the terms of trade index was estimated as a residual using equation (1).  
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3. Results and discussion 

 

Profitability and productivity decomposition 

Panel A in Figure 4 shows the changes in profitability (dPROF) and the components, 
terms of trade (dTT) and total factor productivity (dTFP).  These measures are recorded for farms 
in each rainfall group and for each data period, using the 1998-2000 period as the base. Overall, 
profitability growth in all farm groups relative to the period 1998-2000 was more or less 
unchanged. The profitability index varied from 1.02 to 1.08.  However, the sources of 
profitability were dominated by dTFP, with the dTT effect on dPROF being moderated by 
compensating changes in TFP. For example, the dTT for farms in the three rainfall groups 
improved for 2004-06 when dTFP decreased. As explained by O’Donnell (2010, p.550), 
“improvements in the terms of trade encourage technically efficient optimizing firms to expand 
their operations (further) into the region of decreasing returns to scale (and scope), with the result 
that increases in profitability are associated with falls in productivity”. The opposite movement of 
dTT and dTFP change was also observed for 2001-03 and 2007-08, when the dTT decline was 
associated with an increase in dTFP.   
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Figure 4. Changes in profitability and productivity of farms in the three rainfall groups 
 

Panel B in Figure 4 decomposes the total factor productivity changes (dTFP) relative to 
the period 1998-2000 into technical change (dTech) and efficiency change (dEff). Overall, TFP 
growth, relative to the 1998-2000 period, were high in 2001-03 and 2007-08. The TFP growth of 
farms in the low rainfall region was low in 2001-03 but caught up with the other groups in 2007-
08. Importantly, in all groups and periods, technology change (dTech) was the main source of 
TFP growth. Whilst technical efficiency (dEff) also contributed to TFP growth, the differences in 
technical efficiency performance among farms in the three regions and across the three time 
periods were small.   
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  Efficiency changes and scores 
The output and input oriented measures for the changes in efficiency categories 

(technical, scale, mix and residual) for the three farm groups in the three periods are presented in 
Panels A and B respectively in Figure 5 and the efficiency scores are displayed in Figure 6.  

0
.5

1
1

.5
In

d
e

x
 n

u
m

b
e

r 
b

a
se

 1
9

9
8

-0
0

=
1

Low Medium High

2001-03 2004-06 2007-08 2001-03 2004-06 2007-08 2001-03 2004-06 2007-08

Technical-Efficiency(dOTE)

Scale-Efficiency (dOSE)

Mix-Efficiency(dOME)

Residual-Scale Efficiency (dROSE)

 
A. Output-oriented 

0
.5

1
1

.5
In

d
e

x 
n

u
m

b
e

r 
b

a
s
e

 1
9

9
8

-0
0

=
1

Low Medium High

2001-03 2004-06 2007-08 2001-03 2004-06 2007-08 2001-03 2004-06 2007-08

Technical-Efficiency(dITE)

Scale-Efficiency (dISE)

Mix-Efficiency(dIME)

Residual-Scale Efficiency (dRISE)
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Figure 5. Output- and input-oriented efficiency changes of farms in the three rainfall groups. 
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Figure 6. Output- and input-oriented efficiency scores of farms in the three rainfall groups. 

 
As seen from Figure 5, the output- and input-oriented efficiency changes of farms in three 

groups are slightly different and mostly invariant over the periods. However, the estimated mix 
and scale efficiency changes for farms in the high rainfall group are higher than other groups. 
This result suggests that farms in high rainfall region were more efficient in selecting 
combinations of inputs and outputs that achieved maximum productivity.   

Figure 6 displays the output- and input-oriented efficiency scores of farms in the three 
groups.  These scores are close to unity and invariant over the three periods. However, the output-
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oriented efficiency scores are greater than their input-oriented counterparts, especially the mix-
efficiency scores.  This finding is similar to that reported by O’Donnell (2010a).   

It is possible to further decompose the data in Figure 4 (Panel B) to indicate the relative 
importance of differences in technical change (dTech), output-oriented technical efficiency 
change (dOTE), output-oriented mix efficiency change (dOME) and output-oriented residual scale 
efficiency change (dROSE).  The importance of these factors in affecting change in total factor 
productivity (dTFP) is shown in Table 2. As stated earlier, in all groups and in all periods, 
technology change (dTech) is the main influence upon TFP growth. Between 68 to 100 percent of 
the positive change in TFP is attributable to technical change (dTech).  Less frequent an influence 
on the change in TFP, and ranging from 8 to 28 percent is the residual scale efficiency change 
(dROSE).  A relatively minor yet positive influence on the change in TFP, and often only at 
around 4 percent, is output-oriented mix efficiency change (dOME).   Hence, led strongly by 
technical change, this set of factors (technical change, scale efficiency and mix efficiency) have 
driven the change in TFP observed across the sample of farms. 

 
Table 2. Contributions to the change in TFP from technical change and efficiency components 
 

    Low rainfall group  Medium rainfall group  High rainfall group 

    2001-3 2004-6 2007-8  2001-3 2004-6 2007-8  2001-3 2004-6 2007-8 

dTFP Rate 1.4 1.14 1.63  1.66 1.25 1.56  1.68 1.4 1.64 
dTECH % 87.2 95.5 85.9  98.8 100.0 97.2  75.3 68.1 85.7 
dOTE % 5.1    0.0       
dOME %  4.5   1.2 0.0 2.8  4.1 4.3 4.3 
dROSE % 7.7  14.1      20.5 27.7 10.0 

 

 

What might this mean in practice?  It suggests a hugely important and beneficial role for 
new technologies, products and innovations that are the lifeblood of technical change.  It 
identifies that scale efficiencies remain an important source of productivity gain for farm 
businesses.  Results also suggests a minor beneficial role for the farm management task of 
selecting the mix of outputs and enterprises that underpin a farming system and that draw on a 
farm’s set of inputs.  However, the principal finding is importance of technical change in 
positively affecting TFP, and subsequently farm profitability. 

 
 

Conclusion 
 

This paper explores farm businesses’ profitability and productivity in south-western 
Australia.  The decomposition method of O’Donnell (2010a) was applied to farms in low, 
medium and high rainfall parts of the study region.  The method allows the examination of how 
changes in farm input and output levels and their combination affect farms’ profitability and 
productivity. 

Farm business profitability remained more or less unchanged regardless of the 
investigation period or climate grouping due to the improvement in TFP being offset by recorded 
adverse changes in the terms of trade.   
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While improvements in technical efficiency contributed to total factor productivity 
growth, the differences in technical efficiency among farms in the three regions and across the 
three periods were small; except perhaps for farms in the high rainfall group. 

The main finding was that technical change, rather than technical efficiency, was the main 
source of growth in total factor productivity.  This finding applied to farms in all three time 
periods and in all three climate groupings.  Moreover, growth in total factor productivity was 
found to be the major contributor to farm business profitability.  It offset the adverse effect of 
changes in the terms of trade.  

Between 68 to 100 percent of the positive change in TFP was found to be attributable to 
technical change.  Less frequently, residual scale efficiencies and mix efficiencies (or scope 
economies) supplied 8 to 28 percent and 4 percent respectively of the improvement in TFP.   So, 
largely technical change, followed then by scale efficiency and mix efficiency delivered the 
beneficial change in the TFP observed across the sample of farms. 

The findings support the well-established view regarding the efficacy of scale economies. 
To a far lesser degree mix efficiencies also were revealed to be slightly important.  However, the 
key finding was the major influence of technical change, rather than technical efficiency, in 
lifting farm profitability through improving farm TFP. 

Farmers’ ability to select and adopt best practices and innovations that lift their 
production possibilities is a main ingredient for technical efficiency. In other words, when 
farmers adopt best practice and innovations they move closer to the frontier. Education and 
training (including extension) can assist farmers in becoming more technically efficient.  On the 
other hand technical progress is achieved through R,D&E expenditure which shifts the frontier.   
The results suggest that technical progress has been the main driver for farm profitability. This in 
turn highlights an important role for agricultural R,D&E, to create the innovations and 
knowledge from which technical change can spring.  Because farm profitability is underpinned 
by technical change then generating innovations and information from which farmers can profit is 
clearly a sensible priority for all concerned.  How to most cost-effectively identify and develop 
those innovations is an important but separate issue.   
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