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A Pairwise Difference Estimator for Partially Linear Spatial

Autoregressive Models
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Su and Jin (2010) develop for partially linear spatial autoregressive (PL-SAR) model a profile quasi-

maximum likelihood based estimation procedure. More recently, Su (2011) proposes for this model a

semiparametric GMM estimator. However, both of them can be computationally challenging for applied

researchers and are not easy to implement in practice. In this article, we propose a computationally

simple estimator for the PL-SAR model in the presence of either heteroscedastic or spatially correlated

error terms. This estimator blends the essential features of both the GMM estimator for linear SAR

model and the pairwise difference estimator for conventional partially linear model. Limiting distrib-

ution of the proposed estimator is established and consistent estimator for its asymptotic CV matrix

is provided. Monte Carlo studies indicate that our estimator is attractive particularly when one is

interested in estimating the finite-dimensional parameters in the model.

JEL Classification: C13; C14; C21;

Keywords: Spatial autoregression; Partially linear model; Pairwise difference;



1. INTRODUCTION

In this article, we consider semi-parametric estimation of a class of partially linear spatial
autoregressive (PL-SAR) models, specified as

yi = λ0

n∑

j=1

wijyj + x′1iβ0 + m(x2i) + ui, i = 1, · · · , n. (1)

In model (1), n is the number of total cross sectional units; yi is the outcome variable for i; λ0

is the SAR parameter; [wij ]i,j=1,··· ,n;i6=j ’s are termed as the spatial weights, which determine the
structure of neighborliness among cross sectional units; xli, l = 1, 2, is the pxl

-dimensional column
vector of exogenous regressors (excluding a constant term); β0 is a px1-dimensional vector of slope
coefficients; 1 m(·) is a unknown function mapping from Rpx2 to the real line; ui’s are zero mean
error terms that are not necessarily either identically or independently distributed and allowed to
exhibit a general form of spatial dependence or heteroscedasticity.2

In the case m(·) ≡ 0, model (1) is simplified to a conventional linear SAR model, which has
already found its widespread application in empirical analysis related to urban, environmental
economics, industrial organization and regional convergence. Meanwhile, a number of methods
have been proposed to estimate the parametrically specified SAR model, including the method of
moments by Kelejian and Prucha (1999, 2010), the method of quasi-maximum likelihood estimation
by Lee (2004), the method of two-stage least squares by Kelejian and Prucha (1998), Lee (2003),
Zhang and Zhu (2010) and the generalized method of moments by Lee (2007), Lin and Lee (2010),
and Liu et al. (2010). Although the SAR model and its various parametric forms have attracted
a great deal of attention both theoretically and empirically, until just recently, researchers have
started addressing the importance of nonparametric modeling in spatial econometrics (Baltagi and
Li 2001; Pace et al. 2004; Yang et al. 2006). Su and Jin (2010) provide a detailed discussion
on motivations for including both nonlinearity and nonparametric component in specifying a SAR
model. In comparison with its parametric version, PL-SAR model has a more flexible functional
form, thus effectively lessening the possibility of either inconsistent estimate or misleading statistical
inference due to mis-specification.3

Several estimation procedures have been developed for model (1). Su and Jin (2010) propose
a profiled quasi-maximum likelihood based estimator (PQMLE) and demonstrate that the rates of
consistency for the finite-dimensional parameters in the model depend on some general features of
the spatial weighting schemes. A major drawback for Su and Jin (2010)’s PQMLE seems to be
that the error term ui’s in their model are required to be both homoscedastic and independently
distributed. In the presence of heteroscedasticity, Lin and Lee (2010) have demonstrated that the

1Throughout the paper, any parameter with subscript zero represents the true parameter that generates the data.
2See Assumption 2 in Section 3.
3Other theoretical studies for regression models with partially linear structure include Robinson (1988), Chen and

Khan (2001), Lee (2003) and Sun (2005), to mention a few.
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QML-based estimator is usually inconsistent. More recently, Su (2011) proposes for this PL-SAR
model a semiparametric GMM estimator (SPGMME). His estimation strategy contains two stages.
The first stage treats the finite-dimensional parameters as given, and uses local instruments to esti-
mate m(·) locally as a function of these finite-dimensional parameters. In the second stage, he uses
global instruments to estimate the finite-dimensional parameters by profiling out the nonparametric
component, and then recovers the estimate of the nonparametric component. As emphasized by Su
(2011), SPGMME has several advantages relative to the earlier PQMLE: First, SPGMME achieves
usual

√
n consistency rate for the parametric component in the model whereas the consistency rate

of PQMLE depends on some general features of the spatial weight matrix. Second, SPGMME is
robust against both heteroscedasticity of unknown form and certain form of spatial dependence in
the error terms. Third, the procedure of SPGMME can be readily extended to semi-parametric
SAR panel data models or semiparametric models with endogeneity.

However, both estimators mentioned above seem to be computationally challenging for applied
researchers and are not easy to implement in practice. In this article, an alternative computationally
simple procedure is proposed for consistently estimating PL-SAR model (1), particularly, for simple
estimation of the finite-dimensional parameters in the model. We build our estimator on a type of
pairwise difference estimator (PDE) that involves pairwise differences of observations for which the
regressors in the nonparametric component of the regression function are approximately equal. See
Ahn and Powell (1993), Honore and Powell (2005, 2007) and Chen and Zhou (2005) for applications
of PDE in various nonlinear models and microeconometric models.

Compared with other applications of PDE, the setting of our SAR model complicates the
econometric analysis in two ways. First, for any SAR model, the spatially lagged variable yi =∑n

j 6=i wijyj is generally correlated with the error term, which precludes any OLS-based estimation
procedures. In this position, our suggested PDE for PL-SAR model should combine the essential
features of both the GMM estimator for linear SAR model and the pairwise difference estimator
for conventional partially linear model. Second, for many applications of PDE, say, in the field
of microeconometrics, observations are assumed to follow an i.i.d. sampling scheme. By contrast,
for SAR model the observed variables, due to the presence of spatial dependence, are unlikely to
be independently distributed across i, thus some technical modification is needed to adapt the
asymptotic analysis that was developed for conventional PDE to this spatial context.

It is also instructive to compare our PDE procedure with Su (2011)’s SPGMME. It can be
argued that our PDE shares all the above-mentioned advantages (closed form expression,

√
n-

convergence, robustness against heteroscedasticity and correlated error terms, extendibility) of Su
(2011)’s SPGMME relative to PQMLE. But while Su’s SPGMME “profiles” out the nonparametric
component as a function of the exogenous regressors before applying instrumental variables (IV) to
estimate the finite-dimensional parameters, our PDE “eliminates” the nonparametric component
by pairwise differencing, and then applies IV method to estimate the finite-dimensional parameters.
By “eliminating” instead of “profiling out” the nonparametric component, our estimator seems to
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be computationally simpler than SPGMME particularly when one is interested in estimating the
finite-dimensional parameters in the model.

The rest of the paper is organized as follows: Section 2 introduces the pairwise difference
estimator and its large sample properties are established in Section 3. Section 4 reports some
Monte Carlo results and Section 5 concludes. Technical details are collected in an Appendix.

2. THE ESTIMATOR

The pairwise difference estimator is based on a comparison of pairs of observations for which
the regressors in the nonparametric component of the regression function, i.e., x2, are close to
each other. In an ideal situation, for two indices i and j, satisfying x2i = x2j , differencing the
corresponding dependent variable yi and yj gives

∆y
ij = yi − yj = λ0(Wni −Wnj)Yn + (x1i − x1j)′β0 + ui − uj , (2)

where Yn = (y1, · · · , yn)′ and Wni is the i-th row of Wn. Observe that for (2), the spatial lag
term (Wni − Wnj)Yn is generally correlated with the error term ui − uj , which implies that any
OLS-based estimator will be inconsistent. Now consider GMM estimation based on orthogonality
of some instruments and the error terms. Let qij , i, j = 1, · · · , n, i < j, be a sequence of well chosen
pq(≥ px1 + 1)-dimensional non-stochastic instruments, such that we have the moment condition

E(qij(ui − uj)) = 0. (3)

Bearing the condition x2i = x2j in mind, the empirical analogue to the moment condition (3) for
the whole sample can be written as

1
n(n− 1)

n∑

i=1

n∑

j>i

1(x2i = x2j)E(qij∆u
ij(θ0)) = 0, (4)

where θ = (λ, β′)′, ∆u
ij(θ) = ∆y

ij − λ(Wni − Wnj)Yn − (x1i − x1j)′β. When x2i = x2j , ∆u
ij(θ0) =

∆u
ij = ui − uj . Then the GMM estimator of θ based on the moment condition (4) can be viewed

as the solution to the following minimization problem,

min
θ




n∑

i=1

n∑

j>i

1(x2i = x2j)qij∆u
ij(θ)



′

An




n∑

i=1

n∑

j>i

1(x2i = x2j)qij∆u
ij(θ)


 , (5)

where An is some kq × kq nonnegative definite matrix and is assumed to converge to a constant
matrix A. This design corresponds to Hansen (1982)’s GMM setting, which can be used to illustrate
the optimal weighting issue.

However, the estimation scheme (5) can not be directly implemented. When x2i is continuously
distributed, there are no two such indices i, j that x2i = x2j with probability one. A usual manner
to cope with this issue is to assign each pair with indices (i, j) a weight, which declines to zero as
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the magnitude of the difference ‖x2i−x2j‖ increases. This idea can be straightforwardly translated
into replacing the indicator function 1(·) in (5) with its smoothed counterpart, a symmetric kernel
function. To formally introduce our estimator, let k(·) be a univariate symmetric kernel satisfying∫

k(v)dv = 1 and k(v) = k(−v). hn = (h1n, · · · , hpx2n) is a vector of smoothing parameters.
For a px2-dimensional vector s = (s1, · · · , spx2

) with all its components being absolute continuous
with Lebesgue measure, define khl

(·) = h−1
ln k(·/hln), Kh(s) =

∏px2
l=1 khl

(sl) and Kx2
n to be the

[n(n − 1)/2] × [n(n − 1)/2] square matrix diag {Kh (x2i − x2j)}i,j=1,··· ,n,i<j . For example, when
n = 3, Kx2

n = diag {Kh (x21 − x22) ,Kh (x21 − x23) ,Kh (x22 − x23)}. Furthermore, denote ∆u
n(θ)

to be the n(n − 1)/2-dimensional column vector of ∆u
ij(θ)’s, i, j = 1, · · · , n, i < j. For example,

when n = 3, ∆u
n = (∆u

12(θ),∆
u
13(θ),∆

u
23(θ))

′. Similarly, let Qn be the (n(n− 1)/2)× pq matrix by
stacking the row vector q′ij ’s. With these notations, our pairwise difference estimator is the solution
to the following minimization problem,

θ̂n = arg min
θ

[
Q′

nK
x2
n ∆u

n(θ)
]′

An

[
Q′

nK
x2
n ∆u

n(θ)
]
. (6)

Given ∆u
n(θ) being linear in θ, θ̂n has the explicit representation,

θ̂n =
[
Z′nK

x2
n QnAnQ′

nK
x2
n Zn

]−1

Z′nK
x2
n QnAnQ′

nK
x2
n ∆y

n, (7)

where ∆y
n is the n(n − 1)/2-dimensional column vector of yi − yj ’s, i, j = 1, · · · , n, i < j, Zn =

[∆w
n · Yn,∆x1

n ], ∆w
n is the (n(n − 1)/2) × n matrix by stacking the row vector (Wni −Wnj)’s and

∆x1
n is the (n(n − 1)/2) × px1 matrix by stacking the row vector (x1i − x1j)′’s. Note that in the

case pq = px1 + 1, X′
nK

x2
n Qn is a square matrix and we get a simpler expression for θ̂,

θ̂n =
[
Z′nK

x2
n Qn

]−1

Q′
nK

x2
n ∆y

n, (8)

which does not depend on An.
For the moment, no specific form of the IV matrix Qn has been given. As choice of such Qn is

not unique, in Section 3, we develop a general asymptotic theory for this PDE as long as Qn meets
some regularity conditions.4 According to our experience in the Monte Carlo experiment, one may
set qij = (Wni − Wnj)Q1n, where the n × pq matrix Q1n is composed of linearly independent pq

columns chosen from [X1n,WnX1n,WnX2n,W 2
nX1n,W 2

nX2n, · · · ], Xln = (xl1, · · · , xln)′ for l = 1, 2.5

It should be noted that here our strategy of choosing the instrument qij ’s, is essentially similar to
Su (2011) and other prior literature on choosing IV for a parametrically specified SAR model (e.g.,
Kelejian and Prucha 1998; Lin and Lee 2010). We will study the optimal choice of An for the given
choice of Qn, while the optimal choice of instruments is beyond the scope of this paper.6

4See Assumption 3-(ii) in Section 3.
5For identification, qij ’s should also be chosen to meet some rank conditions, as summarized by Assumption 6 in

Section 3.
6Like Su (2011), the best selection of instruments qij ’s is not readily available partly because both heteroscedasticity

and spatial autocorrelation of unknown form is allowed in the error terms.
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3. LARGE SAMPLE PROPERTIES

To analyze the asymptotic properties of our estimator, let’s introduce the following regularity
conditions. It should be emphasized that among these assumptions, most are also maintained by
Su and Jin (2010) and Su (2011) (except Assumption 3-(ii) and 6).

Assumption 1. (i) The spatial weights matrix Wn = [wij ]i,j=1,··· ,n has zero diagonals. (ii) The ma-
trix Sn = In − λ0Wn is nonsingular. (iii) The row and column sums of S−1

n and Wn are uniformly
bounded in absolute value. 7

Assumption 1 concerns the essential features of spatial weights matrix. Assumption 1-(i) implies
that each unit is not a neighbor of itself. Assumption 1-(ii) implies that the model considered here is
well defined, that is, the dependent variable Yn is uniquely determined in terms of the disturbances
conditional on the regressors. The uniform boundedness condition on Wn and S−1

n is originated in
a series of papers by Kelejian and Prucha, see, e.g., Kelejian and Prucha (1998, 1999), in order to
limit the spatial dependence across units to a manageable degree.

Assumption 2. Un = Rnεn, where the components of εn = (ε1, · · · , εn)′ are i.i.d. with zero
mean, unit variance and some finite absolute moment of order three. Rn is a n×n constant matrix
whose row and column sums are uniformly bounded.

Existence of the absolute moment of order three for εi’s is assumed so that some central limit
theorem of simple form can be applied. This assumption can be relaxed to the existence of some
absolute moment of order higher than two. Assumption 2 allows for not only heteroscedasticity but
also spatial dependence across ui’s. When Rn is a scalar matrix or a diagonal matrix, we have either
i.i.d. ui’s or independently distributed but heteroscedastic ui’s. For a general Rn, it allows the error
term ui’s to exhibit various scenarios of spatial dependence. For example, when Rn = In + ρ0Mn,
Un is assumed to follow a spatial moving average process; when Rn = (In − ρ0Mn)−1, then Un

follows a SAR process. Note that here Mn is not necessarily required to be the same as Wn, as
long as the row and column sums of Mn or (In − ρ0Mn)−1 are uniformly bounded, as paralleling
Assumption 1 for Wn and (In − λ0Wn)−1.

Assumption 3. (i) Xn = [X1n, X2n] is a non-stochastic, n × (px1 + px2) regressor matrix whose
elements are uniformly bounded. (ii) There exists a sequence of pq-dimensional non-stochastic qi’s,
i = 1, · · · , n, such that qij = qi−qj, where the elements of qi’s are uniformly bounded by a constant.

7The row and column sums of an n × n matrix Pn are said to be uniformly bounded if we have for all n, there

exists a positive constant c independent of n with maxi

Pn
j=1 |Pn,ij | < c and maxj

Pn
i=1 |Pn,ij | < c. This notion of

uniform boundedness can be defined in terms of some matrix norms. The maximum column sum matrix norm ‖ · ‖1
of an n × n matrix Pn is defined as ‖Pn‖1 = maxj

P
i |Pn,ij |, and the maximum row sum matrix norm ‖ · ‖∞ is

defined as ‖Pn‖∞ = maxi

P
j |Pn,ij |. Thus the uniform boundedness of {Pn} in column or row sums is equivalent to

the sequence {‖Pn‖1} or {‖Pn‖∞} being bounded.
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The non-stochastic design assumption of Xn is made for several reasons. First, it parallels
that of Kelejian and Prucha (1998, 1999, 2001, 2010), Lee (2004, 2007) and Lin and Lee (2010).
Second, it allows us to avoid the use of trimming factors (e.g. Robinson 1988). As noted by Lee
(2007), non-stochastic regressor design and its uniform boundedness condition are made for tech-
nical convenience. If the elements of Xn are stochastic and have unbounded ranges, conditions in
Assumption 3-(i) can be replaced by some finite moment conditions. Assumption 3-(ii) provides
the regularity conditions for a general Qn to meet. Given the uniform boundedness condition of Xn

and Wn by Assumption 1 and 3-(i), it is reasonable to construct qi’s based on some combinations
of Xn and Wn. As an example, one may easily verify that the qij = (Wni −Wnj)Q1n defined in
Section 2 satisfies these conditions, with qi = WniQ1n.

Assumption 4. Suppose that x2i ∈ X2 ⊂ Rpx2 , for i = 1, · · · , n. (i) There exists a scalar
function f(·) and a pq-dimensional vector valued function ϕ(·) = (ϕ1(·), · · · , ϕpq(·))′, both of which
are defined on X2, such that

lim
n→∞

1
n

n∑

i=1

qi,lν(x2i) =
∫

s∈X 2

ν(s)ϕl(s)f(s)ds (9)

for any bounded and continuous function ν(·) defined on X2, where qil is the l-element of qi. Fur-
thermore, if qil = c for some l and for all i = 1, · · · , n, ϕl(·) ≡ c. Both f(·) and ϕ(·) are bounded,
continuous and have bounded first order derivatives on X2. (ii) The function m(x) is bounded,
continuous and has bounded second order derivatives.

Assumption 4-(i) parallels Assumption 3 in Su (2011). Eqn. (9) is frequently seen in spatial
econometrics literature involving nonparametric techniques (Su and Jin, 2010; Su, 2011), or more
generally, in nonparametric regression literature with fixed regressor design (Linton 1995). Essen-
tially, Eqn. (9) relates the fixed design to an implicit random generation mechanism. For stationary
random observations, f(·) can be interpreted as the underlying probability density function that
generates x2i, i = 1, · · · , n and ϕ(·) can be regarded as the conditional expectation of qi given x2i.
Consider three important special cases implied by this assumption . First, if qil = c for some l and
for all i = 1, · · · , n, one may regard qil being generated from a degenerate distribution with all the
probability concentrated on a single point c. In this case, the expectation of qil conditional on any
random variables will be c, which has been explicitly assumed above. Second, letting qil ≡ 1, we
have for any bounded and continuous function ν(·),

lim
n→∞

1
n

n∑

i=1

ν(x2i) =
∫

s∈X 2

ν(s)f(s)ds, (10)

which is consistent with the general law of large numbers. Third, if one further lets ν ≡ 1, Eqn.
(10) is reduced to the fact that f(·) integrates to one over X 2. In Assumption 4, the components
of x2i’s are required to be absolute continuous with respect to Lebesgue measure. Like other lit-
erature on pairwise difference estimation (e.g., Ahn and Powell 1993; Honore and Powell 2007),
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this condition can be relaxed to permit discrete components of x2i’s, requiring that at least one
component is continuously distributed. Finally, it should be argued that even though we focus on
the fixed regressor case, our analysis holds with probability one if x2i’s are generated randomly,
and in this case, we can interpret our analysis as being conditional on x2i’s.

Assumption 5. (i) The kernel function k(·) is continuous, satisfying k(v) = k(−v),
∫

k(v)dv = 1,∫ |k(v)vl|dv < ∞ for l = 1, 2 and supv |k(v)| < ck. (ii) As n → ∞, max1≤l≤px2
hln → 0,

nhn1 · · ·hnpx2
→∞, n

∑px2
l=1 h4

ln → 0.
This assumption parallels Assumption 4 in Su (2011). Assumption 5-(i) concerns the choice of

kernel function and Assumptions 5-(ii) concerns the choice of smoothing parameters. In the Monte
Carlo simulation, we use the Gaussian kernel throughout and this kernel can be shown to meet As-
sumption 5-(i) automatically. Like Su (2011), the conditions in Assumption 5-(ii) imply implicitly
that px2 ≤ 3. This is not too restrictive given the “curse of dimensionality” in the nonparametric
literature. In the case where px2 ≥ 4, one can apply a kernel of higher order.

Assumption 6. The limit of Jn = 1
n

∑n
i=1 f(x2i)zi(qi − ϕ(x2i))′ exists and has full column

rank, where zi = [WniS
−1
n (X1nβ0 + m(X2n)), x′1i]

′, Xln = [xl1, · · · , xln]′ for l = 1, 2, m(X2n) =
(m(x21), · · · ,m(x2n))′, f(·) and ϕ(·) has been defined in Assumption 4.

Essentially, Assumption 6 provides a sufficient condition that allows us to identify θ uniquely.
Given the expression of θ̂n in (7), it is straightforward to show that θ is identifiable as long as the
limit of 1

n(n−1)E(Zn)′Kx2
n Qn exists and has full column rank. In the Appendix, we show that

1
n(n− 1)

E(Zn)′Kx2
n Qn − Jn = o(1). (11)

Furthermore, Assumption 1, 3-4, together with Lemma 1 imply that Jn is O(1).
To establish the limiting distribution of our estimator, let’s introduce more notations. De-

fine Fn = diag{f(x21), · · · , f(x2n)}, Qc
n = [q1 − ϕ(x21), · · · , qn − ϕ(x2n)]′, Jn in Assumption 6

then can be equivalently expressed as 1
nZ

′
nFnQc

n. Similar arguments can be applied to show that
Ωn = 1

nQc′
nFnRnR′

nFnQc
n is also O(1). The following proposition provides the asymptotic distrib-

ution of PDE.

Proposition 1.Suppose that Assumption 1-6 hold, then the estimator (7) has the limiting dis-
tribution

√
n(θ̂n − θ0) →d N (0,Σ) where

Σ = lim
n→∞

(
JnAnJ ′n

)−1
JnAnΩnAnJ ′n

(
JnAnJ ′n

)
(12)

provided that the limits of Ωn and An exist and have full column rank.
For purposes of inference, we propose a consistent estimator for the limiting covariance matrices

above. By (12), it suffices to focus on estimate of Jn and Ωn. A consistent estimate of Jn is
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straightforward. Actually, in the Appendix we have shown that in proving Proposition 1, Ĵn =
1

n(n−1)ZnKx2
n Qn →p limn→∞ Jn. Similarly, Ωn can be consistently estimated by

Ω̂n =
1

n(n− 1)
Q′

nK
x2
n [∆y

n − Znθ̂n][∆y
n − Znθ̂n]′Kx2

n Qn. (13)

When pq = px1 + 1, Jn is invertible, that is, the CV matrix Σ in (12) has a simpler form
Σ = limn→∞(JnΩ−1

n J ′n)−1, which is independent of An. For a general case pq > px1 + 1, given
the instruments qij ’s, the optimal choice of a weighting matrix An will be Ω−1

n by the generalized
Schwartz inequality, yielding Σ = limn→∞(JnΩ−1

n J ′n)−1 once again.
Finally, given

√
n-consistent estimate of the parametric components, a consistent estimate of

the nonparametric component seems to be like a usual exercise, that is, m(·) can be estimated by,

m̂n(x) =

∑n
i=1

(
yi − λ̂n

∑
j 6=i wijyj − x′1iβ̂n

)
Kh(x− x2i)∑n

i=1 Kh(x− x2i)
.8 (14)

4. MONTE CARLO SIMULATION

In this section, we conduct a small scale Monte Carlo experiment to evaluate the finite sample
performance of the suggested PDE for PL-SAR model. A larger Monte Carlo study relating to a
wider set of experiments than those described below is left for future research. The DGP is given
by

yi = λ0

n∑

j=1

wijyj + x1iβ10 + x2iβ20 + m(zi) + ui, i = 1, · · · , n, (15)

where zi is a scalar variable, i.i.d. drawn from the uniform distribution on [−2, 2], x2i = 0.2z2
i −

zi + ηi, where ηi is i.i.d. drawn from a standard normal distribution, and x1i is a 0-1 dummy
variable with P(x1i = 1) = P(x1i = 0) = 0.5. We set β10 = β20 = 1, λ0 = 0.5 and consider two
cases for m(·): (i) m1(z) = exp(z)/(1 + exp(z)) and (ii) m2(z) = 1 + 0.5 sin(0.5πz), two cases

for Un: (i) ui =
√

1 + z2
i · εi (heteroscedastic error terms) and (ii) Un = (In − 0.3 ·Wn)−1εn (er-

rors that are both heteroscedastic and spatially correlated), two cases for the distribution of εi’s:
(i) εi ∼ N (0, 1) and (ii) εi ∼ χ2(1)/

√
2, and two choices of instruments: (i) (q(1)

1 , · · · , q
(1)
n )′ = Q

(1)
n =

[X1n, X2n,WnX1n,WnX2n,WnZn] and (ii) Q
(2)
n = [X1n, X2n,WnX1n,WnX2n,WnZn,W 2

nX1n,W 2
nX2n,W 2

nZn].
Like Su and Yang (2011) and Su (2010), we generate the spatial weight matrix Wn according

to the principle of Rook contiguity, by randomly allocating the n spatial units on a lattice of√
n × √n squares, finding the neighbors for each unit, and then row normalizing. To implement

the estimator, we need to choose a kernel function k(·) and a bandwidth sequence hn. Throughout,
we will choose a Gaussian kernel. As it is difficult to specify the optimal bandwidth sequence, we

8The consistency and limiting distribution of bmn(x) can be investigated by similar arguments to Theorem 3.2

in Su (2011). However, since this paper is mainly concerned with computationally easy estimation of the model’s

finite-dimensional parameters, the rigorous proof of the asymptotic results about bm(·) is omitted.
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choose the bandwidth by a rule-of-thumb method: hn = σzn
−1/3.5, where σz is the sample standard

deviation of zi’s. In practice, it is recommended that we use this bandwidth as the initial smoothing
parameter to obtain a preliminary consistent estimator while in the second step, we conduct the
least squares cross validation method to choose the bandwidth. We have applied both methods to
compute the estimators but found their performances are similar for the DGP under study. So we
only report the simulation results for the former case. We have experimented with n = 100, 196
and 400. For each case, there are 1000 repetitions.

Table 1 summarizes the simulation results, empirical bias and empirical standard deviation of
the estimators when ui’s are heteroscedastic but independent from each other. There are several
main observations:
1. In the presence of heteroscedasticity, the estimators perform fairly well even in small sample
n = 100, that is, they are computationally easy, only slightly biased while give acceptable precision.
2. Standard deviation of these estimators declines with the sample size. The magnitude of such
decline is generally consistent to

√
n-asymptotics, which is consistent with the theoretical predic-

tions.
3. The estimators are only slightly biased and the magnitude of such bias, if any, declines with the
growing sample size. When n = 400, these estimators are essentially unbiased.
3. The estimators seem quite robust with respect to the distribution of the error terms, functional
form of nonparametric components and choice of instruments. Their performance, in terms of
either bias or standard deviation, does not seem to change much for different distributions of the
error terms, functional forms of nonparametric components and choices of instruments.

Table 2 summarizes the simulation results of the estimators when ui’s are both heteroscedastic
and spatially correlated. Overall, the resulting estimators perform similarly to those in Table 1.

5. CONCLUSION

In this paper we propose a semi-parametric pairwise difference estimator of partially linear SAR
models where the error term may exhibit either heteroscedasticity or spatial dependence. We derive
the limiting distribution of the proposed estimator and suggest a simple way to consistently estimate
the asymptotic CV matrix. In comparison with other existing estimation procedures (Su and Jin
2010; Su 2011), our estimator is computationally simpler in obtaining the consistent estimate of the
finite-dimensional parameters in the model. For the applied researchers who are mainly interested
in estimating the parametric component of the model, our estimator seems to be more attractive.
Simulation results indicate that our estimator is promising even in small samples.

APPENDIX

Lemma 1. For any two n×n matrices B1n and B2n whose row and column sums are bounded uni-
formly bounded by a constant, (i) the row and column sums of B1nB2n are also uniformly bounded
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by a constant. (ii) For some n×p matrices C1n and C2n whose elements are bounded by a constant,
the elements of B1nC1n, 1

nC ′
1nC2n and 1

nC ′
1nB1nC2n are uniformly bounded by a constant.

Proof. Trivial. ¥
Lemma 2. Suppose that Bn is a n × n matrix with its column sums being uniformly bounded in
absolute value, elements of the n×k matrix Cn are uniformly bounded, and the components of Un =
(u1, · · · , un)′ are i.i.d. with zero mean, variance σ2

0 and finite third order absolute moment. Then,
1/
√

nC ′
nBnUn = Op(1), 1/nC ′

nBnUn = op(1) and 1/
√

nC ′
nBnUn →d N (

0, σ2
0 limn→∞ 1

nC ′
nBnB′

nCn

)

if the limit of 1
nC ′

nBnB′
nCn exists and is positive definite.

Proof. See Lemma A.4 in Lin an Lee (2010). ¥
Proof of Eqn (11). For ease of notation, let px2 = 1 without loss of generality. Let Zn = E(Zn) =
[∆w

n S−1
n (X1nβ0 + m(X2n)),∆x1

n ]. We have by symmetric kernel k(·) and qij = qi − qj that

1
n(n− 1)

Z′nK
x2
n Qn =

1
n(n− 1)

n∑

i=1

n∑

j>i

zijq
′
ijh

−1
n k

(
x2i − x2j

hn

)

=
1

n(n− 1)

n∑

i=1

n∑

j>i

(zi − zj)q′ijh
−1
n k

(
x2i − x2j

hn

)
=

1
n(n− 1)

n∑

i=1

∑

j 6=i

ziq
′
ijh

−1
n k

(
x2i − x2j

hn

)

=
1

n(n− 1)

n∑

i=1

n∑

j=1

zi(qi − qj)′h−1
n k

(
x2i − x2j

hn

)

=
1

n(n− 1)

n∑

i=1

n∑

j=1

ziq
′
ih
−1
n k

(
x2i − x2j

hn

)
− 1

n(n− 1)

n∑

i=1

n∑

j=1

ziq
′
jh
−1
n k

(
x2i − x2j

hn

)

=
1

n− 1

n∑

i=1

ziq
′
i

1
n

n∑

j=1

h−1
n k

(
x2i − x2j

hn

)
− 1

n− 1

n∑

i=1

zi
1
n

n∑

j=1

q′jh
−1
n k

(
x2i − x2j

hn

)

=
1

n− 1

n∑

i=1

ziq
′
ih
−1
n

∫
k

(
x2i − s

hn

)
f(s)ds− 1

n− 1

n∑

i=1

h−1
n zi

∫
ϕ′(s)k

(
x2i − s

hn

)
f(s)ds + o(1)

=
1

n− 1

n∑

i=1

ziq
′
i

∫
k (t) f(hnt + x2i)dt− 1

n− 1

n∑

i=1

zi

∫
ϕ′(hnt + x2i)k (t) f(hnt + x2i)dt + o(1)

=
1

n− 1

n∑

i=1

ziq
′
i

∫
k (t)

(
f(x2i) + hntf (1)(x2i)

)
dt

− 1
n− 1

n∑

i=1

zi

∫ (
ϕ(x2i) + hntϕ(1)(x̃2i)

)′
k (t)

(
f(x2i) + hntf (1)(x2i)

)
dt + o(1)

=
1
n

n∑

i=1

f(x2i)zi(qi − ϕ(x2i))′ + o(1) = Jn + o(1),

where f (1)(·) and ϕ(1)(·) are the first derivatives of f and ϕ respectively, both x2i and x̃2i lie between
x2i and x2i + hnt. ¥
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Proof of Proposition 1. For ease of notation, let px2 = 1 without loss of generality. We have

√
n(θ̂n − θ0) =

[
1

n(n− 1)
Z′nK

x2
n QnAn

1
n(n− 1)

Q′
nK

x2
n Zn

]−1

1
n(n− 1)

Z′nK
x2
n QnAn

√
n

n(n− 1)
Q′

nK
x2
n [∆m

n + ∆u
n] ,

where ∆m
n is the n(n − 1)/2-dimensional vector of ∆m

ij ’s, with ∆m
ij = m(x2i) −m(x2j), for i, j =

1, · · · , n, i < j. Then the desired limiting distribution of θ̂n follows if one can establish the following
results, that is, (i) 1

n(n−1)Z
′
nK

x2
n Qn − Jn →p 0; (ii)

√
n

n(n−1)Q
′
nK

x2
n ∆u

n →d N (0, limn→∞Ωn); and

(iii)
√

n
n(n−1)Q

′
nK

x2
n ∆m

n →p 0.
For (i), write Zn = E(Zn) + [∆w

n S−1
n Un, 0]. Observing Eqn.(11), it remains to verify that

1
n(n−1)(∆

w
n S−1

n Un)′Kx2
n Qn = op(1). This follows from Lemma 2, since by similar argument to

the proof Eqn.(11) we have 1
n(n−1)(∆

w
n S−1

n Un)′Kx2
n Qn = 1

n

∑n
i=1 f(x2i)ũi(qi − ϕ(x2i))′ + op(1) =

1
n(WnS−1

n Un)′FnQc
n + op(1), where ũi = WniS

−1
n Un.

For (ii), similar arguments to the proof of Eqn. (11) give that
√

n

n(n− 1)
Q′

nK
x2
n ∆u

n =
√

n

n(n− 1)

n∑

i=1

n∑

j>i

h−1
n k

(
x2i − x2j

hn

)
(ui − uj)qij

=
1√
n

n∑

i=1

(qi − φ(x2i))f(x2i)ui + op(1) =
1√
n

Qc′
nFnRnεn + op(1) →d N (0, lim

n→∞Ωn)

by Lemma 2.
For (iii),

√
n

n(n− 1)
Q′

nK
x2
n ∆m

n =
√

n

n(n− 1)

n∑

i=1

n∑

j>i

qij(m(x2i)−m(x2j))h−1
n k

(
x2i − x2j

hn

)

=
√

n

n(n− 1)

n∑

i=1

∑

j 6=i

qijm(x2i)h−1
n k

(
x2i − x2j

hn

)

=
√

n

n(n− 1)

n∑

i=1

n∑

j=1

qim(x2i)h−1
n k

(
x2i − x2j

hn

)
−

√
n

n(n− 1)

n∑

i=1

n∑

j=1

qjm(x2i)h−1
n k

(
x2i − x2j

hn

)

=
√

n

n(n− 1)

n∑

i=1

n∑

j=1

qim(x2i)h−1
n k

(
x2i − x2j

hn

)
−

√
n

n(n− 1)

n∑

i=1

n∑

j=1

qim(x2j)h−1
n k

(
x2i − x2j

hn

)

=
√

n

n− 1

n∑

i=1

qi

(
m(x2i)

∫
k(t)f(hnt + x2i)dt−

∫
m(hnt + x2i)k(t)f(hnt + x2i)dt

)
+ o(1)

=
−√n

n− 1

n∑

i=1

qi

(∫ (
m(1)(x2i)hnt +

1
2
h2

nt2m(2)(x2i)
)

k(t)
(
f(x2i) + hntf (1)(x̃2i)

)
dt

)
+ o(1)

≤∗ −h2
n

√
n ·

∫
|k(t)t2|dt · c2 · 1

n

n∑

i=1

|qi|+ o(h2
n

√
n) = o(1),
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where m(1)(·), m(2)(·) and f (1)(·) are the first derivative, second derivative of m(·) and the first
derivative of f(·), respectively, both x2i and x̃2i lie between x2i and x2i + hnt. The inequality (*)
follows from the uniform boundness of m(1)(·), m(2)(·), f (1)(·) and f(·), e.g., by a positive constant
c and Assumption 4-5. ¥
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Table 1.
PDE of Parametric Components: ui =

√
1 + z2

i · εi

n = 100

εi ∼ N (0, 1) εi ∼ χ2(1)/
√

2

m1(z) m2(z) m1(z) m2(z)

Q
(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n

λ Bias 0.005 0.004 0.017 0.011 0.003 0.023 0.017 0.006

Std 0.181 0.166 0.182 0.163 0.191 0.153 0.175 0.170

β1 Bias −0.011 −0.010 −0.011 −0.005 −0.014 −0.013 −0.002 −0.021

Std 0.299 0.302 0.298 0.319 0.300 0.308 0.317 0.296

β2 Bias −0.029 −0.023 −0.023 −0.011 −0.023 −0.001 −0.010 −0.004

Std 0.142 0.160 0.145 0.166 0.151 0.172 0.141 0.152

n = 196

εi ∼ N (0, 1) εi ∼ χ2(1)/
√

2

m1(z) m2(z) m1(z) m2(z)

Q
(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n

λ Bias 0.002 0.011 0.012 0.012 0.007 0.013 0.002 0.004

Std 0.125 0.122 0.128 0.114 0.121 0.111 0.120 0.115

β1 Bias −0.003 −0.006 −0.008 −0.001 −0.012 −0.002 −0.022 −0.016

Std 0.216 0.206 0.201 0.209 0.210 0.217 0.223 0.212

β2 Bias −0.021 −0.012 −0.017 −0.008 −0.003 −0.005 −0.007 −0.003

Std 0.099 0.114 0.101 0.117 0.099 0.117 0.106 0.121

n = 400

εi ∼ N (0, 1) εi ∼ χ2(1)/
√

2

m1(z) m2(z) m1(z) m2(z)

Q
(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n

λ Bias 0.002 0.001 0.007 0.003 0.004 0.004 0.003 0.004

Std 0.082 0.083 0.086 0.084 0.084 0.076 0.085 0.078

β1 Bias −0.003 −0.008 −0.003 −0.004 −0.007 −0.007 −0.004 −0.007

Std 0.149 0.148 0.146 0.147 0.150 0.147 0.151 0.147

β2 Bias −0.017 −0.007 −0.008 −0.005 −0.008 −0.003 −0.003 −0.005

Std 0.072 0.079 0.070 0.083 0.071 0.082 0.074 0.082
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Table 2.
PDE of Parametric Components: Un = (In − 0.3 ·Wn)−1εn

n = 100

εi ∼ N (0, 1) εi ∼ χ2(1)/
√

2

m1(z) m2(z) m1(z) m2(z)

Q
(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n

λ Bias 0.005 0.030 0.021 0.026 0.013 0.018 0.010 0.025

Std 0.139 0.135 0.135 0.129 0.135 0.131 0.133 0.130

β1 Bias −0.008 −0.009 −0.006 −0.004 −0.010 −0.003 −0.013 −0.008

Std 0.209 0.211 0.220 0.222 0.210 0.216 0.204 0.218

β2 Bias −0.029 −0.018 −0.018 −0.014 −0.025 −0.020 −0.027 −0.019

Std 0.101 0.116 0.101 0.117 0.103 0.114 0.102 0.117

n = 196

εi ∼ N (0, 1) εi ∼ χ2(1)/
√

2

m1(z) m2(z) m1(z) m2(z)

Q
(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n

λ Bias 0.001 0.016 0.004 0.015 0.008 0.010 0.002 0.010

Std 0.093 0.097 0.097 0.089 0.091 0.091 0.097 0.091

β1 Bias −0.003 −0.006 −0.006 −0.003 −0.006 −0.001 −0.002 −0.005

Std 0.154 0.147 0.148 0.148 0.142 0.146 0.149 0.147

β2 Bias −0.019 −0.011 −0.012 −0.012 −0.014 −0.011 −0.011 −0.012

Std 0.068 0.083 0.071 0.082 0.072 0.079 0.070 0.085

n = 400

εi ∼ N (0, 1) εi ∼ χ2(1)/
√

2

m1(z) m2(z) m1(z) m2(z)

Q
(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n Q

(1)
n Q

(2)
n

λ Bias 0.001 0.003 0.003 0.003 0.005 0.007 0.004 0.004

Std 0.065 0.067 0.064 0.066 0.063 0.065 0.067 0.068

β1 Bias −0.002 −0.003 −0.002 −0.005 −0.006 −0.001 −0.004 −0.001

Std 0.100 0.103 0.103 0.104 0.103 0.106 0.105 0.105

β2 Bias −0.010 −0.006 −0.007 −0.001 −0.011 −0.008 −0.006 −0.003

Std 0.048 0.059 0.047 0.057 0.049 0.059 0.051 0.058

16


	复件 张征宇cv_2011.pdf
	pairwise_sar.pdf

