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Abstract

In this paper, we propose an instrumental variable approach to constructing con�-

dence sets (CS�s) for the true parameter in models de�ned by conditional moment in-

equalities/equalities. We show that by properly choosing instrument functions, one can

transform conditional moment inequalities/equalities into unconditional ones without

losing identi�cation power. Based on the unconditional moment inequalities/equalities,

we construct CS�s by inverting Cramér-von Mises-type or Kolmogorov-Smirnov-type

tests. Critical values are obtained using generalized moment selection (GMS) proce-

dures.

We show that the proposed CS�s have correct uniform asymptotic coverage probabili-

ties. New methods are required to establish these results because an in�nite-dimensional

nuisance parameter a¤ects the asymptotic distributions. We show that the tests con-

sidered are consistent against all �xed alternatives and have power against n�1=2-local

alternatives to some, but not all, sequences of distributions in the null hypothesis. Monte

Carlo simulations for four di¤erent models show that the methods perform well in �nite

samples.

Keywords: Asymptotic size, asymptotic power, conditional moment inequalities, con�-
dence set, Cramér-von Mises, generalized moment selection, Kolmogorov-Smirnov, mo-

ment inequalities.

JEL Classi�cation Numbers: C12, C15.



1 Introduction

This paper considers inference for parameters whose true values are restricted by con-

ditional moment inequalities and/or equalities. The parameters need not be identi�ed.

Much of the literature on partially-identi�ed parameters concerns unconditional moment

inequalities, see the references given below. However, in many moment inequality mod-

els, the inequalities that arise are conditional moments given a vector of covariates Xi:

In this case, the construction of a �xed number of unconditional moments requires an

arbitrary selection of a �nite number functions of Xi: In addition, the selection of such

functions leads to information loss that can be substantial. Speci�cally, the �identi�ed

set�based on a chosen set of unconditional moments can be noticeably larger than the

identi�ed set based on the conditional moments.1 ;2

This paper provides methods to construct CS�s for the true value of the parameter �

by converting conditional moment inequalities into an in�nite number of unconditional

moment inequalities. This is done using weighting functions g(Xi): We show how to

construct a class G of such functions such that there is no loss in information. We
construct Cramér-von Mises-type (CvM) and Kolmogorov-Smirnov-type (KS) test sta-

tistics using a function S of the weighted sample moments, which depend on g 2 G:
For example, the function S can be of the Sum, quasi-likelihood ratio (QLR), or Max

form. The KS statistic is given by a supremum over g 2 G: The CvM statistic is given

by an integral with respect to a probability measure Q on the space G of g functions.
Computation of the CvM test statistics can be carried out by truncation of an in�nite

sum or simulation of an integral. Asymptotic results are established for both exact and

truncated/simulated versions of the test statistic.

The choice of critical values is important for all moment inequality tests. Here we

consider critical values based on generalized moment selection (GMS), as in Andrews

and Soares (2010).3 The GMS critical values can be implemented using the asymptotic

1The �identi�ed set�is the set of parameter values that are consistent with the population moment
inequalities/equalities, either unconditional or conditional, given the true distribution of the data.

2There is a potential �rst-order loss in information when moving from conditional to unconditional
moments with moment inequalities because of partial identi�cation. In contrast, if point-identi�cation
holds, as with most moment equality models, there is only a second-order loss in information when
moving from conditional to unconditional moments� one increases the variance of an estimator and
decreases the noncentrality parameter of a test.

3For comparative purposes, we also provide results for subsampling critical values and �plug-in
asymptotic�(PA) critical values. However, for reasons of accuracy of size and magnitude of power, we
recommend GMS critical values over both subsampling and PA critical values.
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Gaussian distribution or the bootstrap.

Our results apply to multiple moment inequalities and/or equalities and vector-

valued parameters � with minimal regularity conditions on the conditional moment

functions and the distribution of Xi: For example, no smoothness conditions or even

continuity conditions are made on the conditional moment functions as functions of Xi

and no conditions are imposed on the distribution ofXi (beyond the boundedness of 2+�

moments of the moment functions). In consequence, the range of moment inequality

models for which the methods are applicable is very broad.

The main technical contribution of this paper is to introduce a new method of prov-

ing uniformity results that applies to cases in which an in�nite-dimensional nuisance

parameter appears in the problem. The method is to establish an approximation to the

sample size n distribution of the test statistic by a function of a Gaussian distribution

where the function depends on the true slackness functions for the given sample size

n and the approximation is uniform over all possible true slackness functions.4 Then,

one shows that the data-dependent critical value (the GMS critical value in the present

case) is less than or equal to the 1 � � quantile of the given function of the Gaussian

process with probability that goes to one uniformly over all potential true distributions

(with equality for some true distributions). See Section 5.1 for reasons why uniform

asymptotic results are crucial for conditional moment inequality models.

Compared to Andrews and Soares (2010), the present paper treats an in�nite number

of unconditional moments, rather than a �nite number. In consequence, the form of the

test statistics considered here is somewhat di¤erent and the method of establishing

uniform asymptotic results is quite di¤erent.

The results of the paper are summarized as follows. The paper (i) develops critical

values that take account of the issue of moment inequality slackness that arises in �nite

samples and uniform asymptotics, (ii) proves that the con�dence sizes of the CS�s are

correct asymptotically in a uniform sense, (iii) proves that the proposed CS�s yield no

information loss (i.e., that the coverage probability for any point outside the identi�ed set

converges to zero as n!1); (iv) establishes asymptotic local power results for a certain
class of n�1=2-local alternatives, (v) extends the results to allow for the preliminary

4Uniformity is obtained without any regularity conditions in terms of smoothness, uniform continuity,
or even continuity of the conditional moment functions as functions of Xi: This is important because the
slackness functions are normalized by an increasing function of n which typically would cause violation
of uniform continuity or uniform bounds on the derivatives of smooth functions even if the underlying
conditional moment inequality functions were smooth in Xi:
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estimation of parameters that are identi�ed given knowledge of the parameter of interest

�; as occurs in some game theory examples, and (vi) extends the results to allow for

time series observations.

The paper and Supplement provide Monte Carlo simulation results for a quantile

selection model, a binary entry-game model with multiple equilibria, a mean selection

model, and an interval-outcome linear regression model. In the entry game model, an

important feature of our approach is that nuisance parameters that are identi�ed given

the null value of the parameter of interest are concentrated out, which reduces the

dimensionality of the problem. No other approach in the literature does this.

Across the four models, the simulation results show that the CvM-based CS�s out-

perform the KS-based CS�s in terms of false coverage probabilities (FCP�s). The Sum,

QLR, and Max versions of the test statistics perform equally well in terms of FCP�s in

three of the models, while the Max version performs best in the entry game model. The

GMS critical values outperform the plug-in asymptotic and subsampling critical values

in terms of FCP�s in all cases considered. The asymptotic and bootstrap versions of the

GMS critical values perform similarly in all cases considered.5 Variations on the base

case show a relatively low degree of sensitivity of the coverage probabilities and FCP�s

in most cases.

In sum, in the four models considered, the CvM/Max statistic coupled with the

GMS/Asy critical value perform quite well in an absolute sense and best among the

CS�s considered. Computation of a test based on this statistic/critical value takes :20

seconds in the base case con�guration of the quantile selection model using GAUSS9.0

on a PC with 3:12 Ghz processor. For the entry game model it takes :55 seconds.

In the quantile selection model, we compare the �nite-sample performance of the CI

based on CvM/Max statistic and GMS/Asy critical value with the series and local linear-

based CI�s proposed in Chernozhukov, Lee, and Rosen (2008) (CLR) and the integrated

nonparametric kernel-based CI proposed in Lee, Song, and Whang (2011) (LSW). We

consider three di¤erent parameter bound functions: �at, kinked, and peaked and three

sample sizes n = 100; 250; and 500: The CI proposed in this paper exhibits the best

overall performance in the cases considered. For the quantile selection model, it has

good CP performance in all cases (i.e., � :95 for a nominal 95% CI) and the best FCP

performance in seven of nine cases. The CLR CI�s perform well in terms of CP�s only

5The bootstrap critical values are not computed in the entry game model because they are compu-
tationally expensive in this model.
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for n = 500: Their FCP performance is best in two of nine cases, both being peaked

cases. The LSW CI performs well in terms of CP�s in all cases, but its FCP�s are worse

than those of the CI proposed here in all nine cases considered. Analogous comparisons

are made for the mean selection model and the results are roughly similar.6

We expect the tests considered here to exhibit a curse of dimensionality (with respect

to the dimension, dX ; of the conditioning variable Xi) in terms of their power for local

alternatives for which the test does not have n�1=2-local power. In addition, computation

becomes more burdensome when the number of functions g considered increases. In such

cases, one needs to be less ambitious when specifying the functions g: We provide some

practical recommendations for doing so in Section 9.

In addition to reporting a CS or test, it often is useful to report an estimated set. A

CS accompanied by an estimated set reveals how much of the volume of the CS is due to

randomness and how much is due to a large identi�ed set. It is well-known that typical

set estimators su¤er from an inward-bias problem, e.g., see Haile and Tamer (2003) and

CLR. The reason is that an estimated boundary often behaves like the minimum or

maximum of multiple random variables.

A simple solution to the inward-bias problem is to exploit the method of constructing

median-unbiased estimators from con�dence bounds with con�dence level 1=2; e.g., see

Lehmann (1959, Sec. 3.5). The CS�s in this paper applied with con�dence level 1=2 are

half-median-unbiased estimated sets. That is, the probability of including a point or any

sequence of points in the identi�ed set is greater than or equal to 1=2 with probability

that converges to one. This property follows immediately from the uniform coverage

probability results for the CS�s. The level 1=2 CS, however, is not necessarily median-

unbiased in two directions.7 Nevertheless, this set is guaranteed not to be inward-median

biased. CLR also provide bias-reduction methods for set estimators.

The literature related to this paper includes numerous papers dealing with uncon-

ditional moment inequality models, such as Andrews, Berry, and Jia (2004), Imbens

6The tests proposed here take roughly the same time to compute as the LSW tests (:20 and :23
seconds, respectively, for n = 250; and :21 and :36 seconds for n = 500; with 5000 critical value
repetitions in the quantile selection model using a computer with a 3:12 Ghz processor). They are
substantially faster to compute than the CLR-series and CLR-local linear tests which rely on cross-
validation (16 and 69 seconds, respectively, for n = 250; and 39 seconds and 30:4 minutes for n = 500
with 5000 critical value repetitions in the same model), at least in models that are not separable between
the parameters and the observations.

7That is, the probability of including points outside the identi�ed set is not necessarily less than or
equal to 1=2 with probability that goes to one. This is because lower and upper con�dence bounds on
the boundary of an identi�ed set do not necessarily coincide.
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and Manski (2004), Moon and Schorfheide (2006, 2009), Otsu (2006), Pakes, Porter,

Ho, and Ishii (2006), Woutersen (2006), Bontemps, Magnac, and Maurin (2007), Canay

(2010), Chernozhukov, Hong, and Tamer (2007), Andrews and Jia (2008), Beresteanu

and Molinari (2008), Chiburis (2008), Guggenberger, Hahn, and Kim (2008), Romano

and Shaikh (2008, 2010), Rosen (2008), Andrews and Guggenberger (2009), Andrews

and Han (2009), Stoye (2009), Andrews and Soares (2010), Bugni (2010), and Canay

(2010).

The literature on conditional moment inequalities is smaller and more recent. The

present paper and the following papers have been written over more or less the same

time period: CLR, Fan (2008), Kim (2008), and Menzel (2008). An earlier paper by

Khan and Tamer (2009) considers moment inequalities in a point-identi�ed model. An

earlier paper by Galichon and Henry (2009a) considers a related testing problem with

an in�nite number unconditional moment inequalities of a particular type. The test

statistic considered by Kim (2008) is the closest to that considered here. He considers

subsampling critical values. The test statistics considered by CLR are akin to Härdle and

Mammen (1993)-type model speci�cation statistics, which are based on nonparametric

regression estimators. In contrast, the test statistics considered here are akin to Bierens

(1982)-type statistics used for consistent model speci�cation tests. These approaches

have di¤erent strengths and weaknesses. Menzel (2008) investigates tests based on a

�nite number of moment inequalities in which the number of inequalities increases with

the sample size. None of the papers above that treat conditional moment inequalities

provide contributions (ii)-(vi) listed above.

More recent contributions to the literature on conditional moment inequalities in-

clude Beresteanu, Molchanov, and Molinari (2010), who provide sharp identi�cation

regions for a class of game theory models and corresponding CS�s using their support

function approach combined with the methods introduced in this paper; Aradillas-López,

Gandhi, and Quint (2010), who provide CI�s for parameters in an auction model; LSW,

who construct CS�s based on Lp integrated nonparametric kernel estimators; Pono-

mareva (2010), who uses nonparametric kernel estimators; Armstrong (2011), who pro-

vides rate of convergence results for estimators based on weighted KS-based tests; and

Hsu (2011), who provides tests for conditional treatment e¤ects using the methods in-

troduced in this paper.

For point-identi�ed models, papers that convert conditional moments into an in�nite

number of unconditional moments include Bierens (1982), Bierens and Ploberger (1997),
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Chen and Fan (1999), Dominguez and Lobato (2004), and Khan and Tamer (2009),

among others.

The CS�s constructed in the paper provide model speci�cation tests of the conditional

moment inequality model. One rejects the model if a nominal 1� � CS is empty. The

results of the paper for CS�s imply that this test has asymptotic size less than or equal

to � (with the inequality possibly being strict), e.g., see Andrews and Guggenberger

(2009) for details of the argument.

A companion paper, Andrews and Shi (2010a), generalizes the CS�s and extends

the asymptotic results to allow for an in�nite number of conditional or unconditional

moment inequalities, which makes the results applicable to tests of stochastic domi-

nance, conditional stochastic dominance, and conditional treatment e¤ects, see Lee and

Whang (2009). Andrews and Shi (2010b) extends the results to allow for nonparametric

parameters of interest, such as the value of a function at a point.

The remainder of the paper is organized as follows. Section 2 introduces the mo-

ment inequality/equality model. Section 3 speci�es the class of test statistics that is

considered. Section 4 de�nes GMS CS�s. Section 5 establishes the uniform asymptotic

coverage properties of GMS and PA CS�s. Section 6 establishes the consistency of GMS

and PA tests against all �xed alternatives. Section 7 shows that GMS and PA tests

have power against some n�1=2-local alternatives. Section 8 considers models in which

preliminary consistent estimators of identi�ed parameters are plugged into the moment

inequalities/equalities. It also considers time series observations. Section 9 gives a step-

by-step description of how to calculate the tests. Section 10 provides the Monte Carlo

simulation results.

Supplemental Appendix A provides proofs of the uniform asymptotic coverage prob-

ability results for GMS and PA CS�s. Supplemental Appendix B provides (i) results for

KS tests and CS�s, (ii) the extension of the results of the paper to truncated/simulated

CvM tests and CS�s, (iii) an illustration of the veri�cation of the assumptions used for

the local alternative results, (iv) an illustration of uniformity problems that arise with

the Kolmogorov-Smirnov test unless the critical value is chosen carefully, (v) an illustra-

tion of problems with pointwise asymptotics, and (vi) asymptotic coverage probability

results for subsampling CS�s under drifting sequences of distributions. Supplemental

Appendix C gives proofs of the results stated in the paper, but not given in Supple-

mental Appendix A. Supplemental Appendix D provides proofs of the results stated in

Supplemental Appendix B. Supplemental Appendix E provides a proof of some empirical
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process results that are used in Supplemental Appendices A, C, and D. Supplemental

Appendix F provides the simulation results for the mean selection and interval-outcome

regression models and some additional material concerning the Monte Carlo simulation

results of Section 10.

2 Conditional Moment Inequalities/Equalities

2.1 Model

The conditional moment inequality/equality model is de�ned as follows. We suppose

there exists a true parameter �0 2 � � Rd� that satis�es the moment conditions:

EF0(mj (Wi; �0) jXi) � 0 a.s. [FX;0] for j = 1; :::; p and

EF0(mj (Wi; �0) jXi) = 0 a.s. [FX;0] for j = p+ 1; :::; p+ v; (2.1)

where mj(�; �); j = 1; :::; p + v are (known) real-valued moment functions, fWi =

(Y 0
i ; X

0
i)
0 : i � ng are observed i.i.d. random vectors with distribution F0; FX;0 is

the marginal distribution of Xi; Xi 2 Rdx ; Yi 2 Rdy ; and Wi 2 Rdw (= Rdy+dx):

We are interested in constructing CS�s for the true parameter �0: However, we do not

assume that �0 is point identi�ed. Knowledge of EF0(mj (Wi; �) jXi) for all � 2 � does
not necessarily identify �0: Even knowledge of F0 does not necessarily point identify �0:8

The model, however, restricts the true parameter value to a set called the identi�ed set

(which could be a singleton). The identi�ed set is

�F0 = f� 2 � : (2.1) holds with � in place of �0g: (2.2)

Let (�; F ) denote generic values of the parameter and distribution. Let F denote the
8It makes sense to speak of a �true� parameter �0 in the present context because (i) there may

exist restrictions not included in the moment inequalities/equalities in (2.1) that point identify �0; but
for some reason are not available or are not utilized, and/or (ii) there may exist additional variables
not included in Wi which, if observed, would lead to point identi�cation of �0: Given such restrictions
and/or variables, the true parameter �0 is uniquely de�ned even if it is not point identi�ed by (2.1).
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parameter space for (�0; F0): By de�nition, F is a collection of (�; F ) such that

(i) � 2 �;
(ii) fWi : i � 1g are i.i.d. under F;
(iii) EF (mj (Wi; �) jXi) � 0 a.s. [FX ] for j = 1; :::; p;
(iv) EF (mj (Wi; �) jXi) = 0 a.s. [FX ] for j = p+ 1; :::; p+ v;

(v) 0 < V arF (mj(Wi; �)) <1 for j = 1; :::; p+ v; and

(vi) EF jmj(Wi; �)=�F;j(�)j2+� � B for j = 1; :::; p+ v; (2.3)

for some B < 1 and � > 0; where FX is the marginal distribution of Xi under F and

�2F;j(�) = V arF (mj(Wi; �)):
9 Let k = p+v: The k-vector of moment functions is denoted

m (Wi; �) = (m1(Wi; �); :::;mk(Wi; �))
0: (2.4)

2.2 Con�dence Sets

We are interested in CS�s that cover the true value �0 with probability greater than

or equal to 1�� for � 2 (0; 1): As is standard, we construct such CS�s by inverting tests
of the null hypothesis that � is the true value for each � 2 �: Let Tn(�) be a test statistic
and cn;1��(�) be a corresponding critical value for a test with nominal signi�cance level

�: Then, a nominal level 1� � CS for the true value �0 is

CSn = f� 2 � : Tn(�) � cn;1��(�)g: (2.5)

3 Test Statistics

3.1 General Form of the Test Statistic

Here we de�ne the test statistic Tn(�) that is used to construct a CS. We transform

the conditional moment inequalities/equalities into equivalent unconditional moment

inequalities/equalities by choosing appropriate weighting functions, i.e., instruments.

Then, we construct a test statistic based on the unconditional moment conditions.

9Additional restrictions can be placed on F and the results of the paper still hold. For example, one
could specify that the support of Xi is the same for all F for which (�; F ) 2 F :
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The unconditional moment conditions are of the form:

EF0mj (Wi; �0) gj (Xi) � 0 for j = 1; :::; p and

EF0mj (Wi; �0) gj (Xi) = 0 for j = p+ 1; :::; k; for all g = (g1; :::; gk)0 2 G; (3.1)

where g = (g1; :::; gk)0 are instruments that depend on the conditioning variables Xi and

G is a collection of instruments. Typically G contains an in�nite number of elements.
The identi�ed set �F0(G) of the model de�ned by (3.1) is

�F0(G) = f� 2 � : (3.1) holds with � in place of �0g: (3.2)

The collection G is chosen so that �F0(G) = �F0 ; de�ned in (2.2). Section 3.3 provides
conditions for this equality and gives examples of instrument sets G that satisfy the
conditions.

We construct test statistics based on (3.1). The sample moment functions are

mn(�; g) = n�1
nX
i=1

m(Wi; �; g) for g 2 G; where

m(Wi; �; g) =

0BBBB@
m1(Wi; �)g1(Xi)

m2(Wi; �)g2(Xi)
...

mk(Wi; �)gk(Xi)

1CCCCA for g 2 G: (3.3)

The sample variance-covariance matrix of n1=2mn(�; g) is

b�n(�; g) = n�1
nX
i=1

(m(Wi; �; g)�mn(�; g)) (m(Wi; �; g)�mn(�; g))
0 : (3.4)

The matrix b�n(�; g) may be singular or near singular with non-negligible probability for
some g 2 G. This is undesirable because the inverse of b�n(�; g) needs to be consistent
for its population counterpart uniformly over g 2 G for the test statistics considered
below. In consequence, we employ a modi�cation of b�n(�; g); denoted �n(�; g); such
that det(�n(�; g)) is bounded away from zero. Di¤erent choices of �n(�; g) are possible.

Here we use

�n(�; g) = b�n(�; g) + " �Diag(b�n(�; 1k)) for g 2 G (3.5)

9



for some �xed " > 0: See Section 9, for suitable choices of " and other tuning parameters

given below. By design, �n(�; g) is a linear combination of two scale equivariant functions

and thus is scale equivariant. (That is, multiplying the moment functions m(Wi; �) by

a diagonal matrix, D; changes �n(�; g) into D�n(�; g)D:) This yields a test statistic

that is invariant to rescaling of the moment functions m(Wi; �); which is an important

property.

The test statistic Tn(�) is either a Cramér-von Mises-type (CvM) or Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

Tn(�) =

Z
S(n1=2mn(�; g);�n(�; g))dQ(g); (3.6)

where S is a non-negative function, Q is a weight function (i.e., probability measure) on

G, and the integral is over G: The functions S and Q are discussed in Sections 3.2 and

3.4 below, respectively.

The Kolmogorov-Smirnov-type (KS) statistic is

Tn(�) = sup
g2G

S(n1=2mn(�; g);�n(�; g)): (3.7)

For brevity, in the text of the paper, the discussion focusses on CvM statistics and all

results stated concern CvM statistics. Supplemental Appendix B gives detailed results

for KS statistics.

3.2 Function S

To permit comparisons, we establish results in this paper for a broad family of func-

tions S that satisfy certain conditions stated below. We now introduce three functions

that satisfy these conditions. The �rst is the modi�ed method of moments (MMM) or

Sum function:

S1 (m;�) =

pX
j=1

[mj=�j]
2
� +

p+vX
j=p+1

[mj=�j]
2 ; (3.8)

wheremj is the jth element of the vectorm; �2j is the jth diagonal element of the matrix

�; and [x]� = �x if x < 0 and [x]� = 0 if x � 0:

10



The second function S is the quasi-likelihood ratio (QLR) function:

S2 (m;�) = inf
t=(t01;0

0
v)
0:t12[0;1]p

(m� t)0��1 (m� t) : (3.9)

The third function S is a �maximum�(Max) function. Used in conjunction with the

KS form of the test statistic, this S function yields a pure KS-type test statistic:

S3(m;�) = maxf[m1=�1]
2
�; :::; [mp=�p]

2
�; (mp+1=�p+1)

2; :::; (mp+v=�p+v)
2g: (3.10)

The function S2 is more costly to compute than S1 and S3:

Let mI = (m1; :::;mp)
0 and mII = (mp+1; :::;mk)

0: Let � be the set of k� k positive-
de�nite diagonal matrices. Let W be the set of k � k positive-de�nite matrices. Let

S = f(m;�) : m 2 (�1;1]p �Rv; � 2 Wg:
We consider functions S that satisfy the following conditions.

Assumption S1. 8 (m;�) 2 S;
(a) S (Dm;D�D) = S (m;�) 8D 2 �;
(b) S (mI ;mII ;�) is non-increasing in each element of mI ;

(c) S (m;�) � 0;
(d) S is continuous, and

(e) S (m;� + �1) � S (m;�) for all k � k positive semi-de�nite matrices �1:

It is worth pointing out that Assumption S1(d) requires S to be continuous in m at

all points m in the extended vector space Rp[+1] �Rv; not only for points in Rp+v:

Assumption S2. S(m;�) is uniformly continuous in the sense that, for allm0 2 Rk and
all �0 2 W ; sup�2[0;1)p�f0gv jS(m+ �;�)� S(m0 + �;�0)j ! 0 as (m;�)! (m0;�0):

10

The following two assumptions are used only to establish the power properties of

tests.

Assumption S3. S(m;�) > 0 if and only if mj < 0 for some j = 1; :::; p or mj 6= 0 for
some j = p+ 1; :::; k; where m = (m1; :::;mk)

0 and � 2 W :

Assumption S4. For some � > 0; S(am;�) = a�S(m;�) for all scalars a > 0; m 2 Rk;
and � 2 W :

10It is important that the supremum is only over � vectors with non-negative elements �j for j � p:
Without this restriction on the � vectors, Assumption S2 would not hold for typical S functions of
interest.
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Assumptions S1-S4 allow for natural choices like S1; S2; and S3:

Lemma 1. The functions S1; S2; and S3 satisfy Assumptions S1-S4.

3.3 Instruments

When considering consistent speci�cation tests based on conditional moment equal-

ities, see Bierens (1982) and Bierens and Ploberger (1997), a wide variety of di¤erent

types of functions g can be employed without loss of information, see Stinchcombe and

White (1998). With conditional moment inequalities, however, it is much more di¢ cult

to distill the information in the moments because of the one-sided feature of the inequal-

ities. Here we show how this can be done and provide proofs that it can be without

loss of information. Kim (2008) and Khan and Tamer (2009) also provide methods for

converting conditional moment inequalities into unconditional ones. However, they do

not provide proofs that this can be done without loss of information.11

The collection of instruments G needs to satisfy the following condition in order for
the unconditional moments fEFm(Wi; �; g) : g 2 Gg to incorporate the same information
as the conditional moments fEF (m(Wi; �)jXi = x) : x 2 Rdxg:
For any � 2 � and any distribution F with EF jjm(Wi; �)jj <1; let

XF (�) = fx 2 Rdx : EF (mj (Wi; �) jXi = x) < 0 for some j � p or

EF (mj (Wi; �) jXi = x) 6= 0 for some j = p+ 1; :::; kg: (3.11)

Assumption CI. For any � 2 � and distribution F for which EF jjm(Wi; �)jj <1 and

PF (Xi 2 XF (�)) > 0; there exists some g 2 G such that

EFmj(Wi; �)gj(Xi) < 0 for some j � p or

EFmj(Wi; �)gj(Xi) 6= 0 for some j = p+ 1; :::; k:

Note that CI abbreviates �conditionally identi�ed.�The following simple Lemma indi-

11Kim (2009) references a result of Billingsley (1995, Thm. 11.3). Khan and Tamer (2009) reference
Fatou�s Lemma and the dominated convergence theorem in Shiryaev (1984, p. 185). Neither of these
results is su¢ cient to establish that there is no loss in information. For example, Billingsley�s result
yields existence, but not uniqueness, of a certain measure. See Lemma C1 and the proofs of Lemmas 3
and C1 in Supplemental Appendix C for the issues that arise.
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cates the importance of Assumption CI.

Lemma 2. Assumption CI implies that �F (G) = �F for all F with sup�2�EF jjm(Wi; �)jj
<1:

Collections G that satisfy Assumption CI contain non-negative functions whose sup-
ports are cubes, boxes, or bounded sets with other shapes whose supports are arbitrarily

small, see below.12

Next, we state a �manageability� condition that regulates the complexity of G: It
ensures that fn1=2(mn(�; g) � EFnmn(�; g)) : g 2 Gg satis�es a functional central limit
theorem under drifting sequences of distributions fFn : n � 1g: The latter is utilized in
the proof of the uniform coverage probability results for the CS�s. The manageability

condition is from Pollard (1990) and is de�ned and explained in Supplemental Appendix

E.

Assumption M. (a) 0 � gj(x) � G(x) 8x 2 Rdx ;8j � k;8g 2 G, for some envelope
function G(x);

(b) EFG�1(Xi) � C for all F such that (�; F ) 2 F for some � 2 �; for some C <1;

and for some �1 > 4=� + 2; where Wi = (Y
0
i ; X

0
i)
0 � F and � is as in the de�nition of F

in (2.3), and

(c) the processes fgj(Xn;i) : g 2 G; i � n; n � 1g are manageable with respect to the
envelope function G(Xn;i) for j = 1; :::; k; where fXn;i : i � n; n � 1g is a row-wise i.i.d.
triangular array with Xn;i � FX;n and FX;n is the distribution of Xn;i under Fn for some

(�n; Fn) 2 F for n � 1:13

Now we give two examples of collections of functions G that satisfy Assumptions CI
and M. Supplemental Appendix B gives three additional examples, one of which is based

on B-splines.

Example 1. (Countable Hypercubes). Suppose Xi is transformed via a one-to-one

mapping so that each of its elements lies in [0; 1]: There is no loss in information in doing

so. Section 9 and Supplemental Appendix B provide examples of how this can be done.

12Below we construct tests that use the unconditional moments based on G and that incorporate all
of the information in the conditional moments. To do so, we need to make sure that the tests do not
ignore some of the functions in G. Assumption Q, introduced below, plays this role.
13The asymptotic results given below hold with Assumption M replaced by any alternative assumption

that is su¢ cient to obtain the requisite empirical process results, see Assumption EP in Section 8.
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Consider the class of indicator functions of cubes with side lengths (2r)�1 for all

large positive integers r that partition [0; 1]dx for each r: This class is countable:

Gc-cube = fg(x) : g(x) = 1(x 2 C) � 1k for C 2 Cc-cubeg; where
Cc-cube =

�
Ca;r = �dxu=1((au � 1)=(2r); au=(2r)] 2 [0; 1]dx : a = (a1; :::; adx)0

au 2 f1; 2; :::; 2rg for u = 1; :::; dx and r = r0; r0 + 1; :::
o

(3.12)

for some positive integer r0:14 The terminology �c-cube�abbreviates countable cubes.

Note that Ca;r is a hypercube in [0; 1]dx with smallest vertex indexed by a and side

lengths equal to (2r)�1:

The class of countable cubes Gc-cube leads to a test statistic Tn(�) for which the
integral over G reduces to a sum.

Example 2 (Boxes). Let

Gbox = fg : g(x) = 1(x 2 C) � 1k for C 2 Cboxg; where (3.13)

Cbox =
�
Cx;r = �dxu=1(xu � ru; xu + ru] 2 Rdx : xu 2 R; ru 2 (0; �r) 8u � dx

	
;

x = (x1; :::; xdx)
0; r = (r1; :::; rdx)

0; �r 2 (0;1]; and 1k is a k-vector of ones. The set Cbox
contains boxes (i.e., hyper-rectangles or orthotopes) in Rdx with centers at x 2 Rdx and
side lengths less than 2�r:

When the support ofXi; denoted Supp(Xi); is a known subset of Rdx ; one can replace

xu 2 R 8u � dx in (3.13) by x 2 conv(Supp(Xi)); where conv(A) denotes the convex

hull of A: Sometimes, it is convenient to transform the elements of Xi into [0; 1] via

strictly increasing transformations as in Example 1 above. If the Xi�s are transformed

in this way, then R in (3.13) is replaced by [0; 1]:

Both of the sets G discussed above can be used with continuous and/or discrete
regressors.

The following result establishes Assumptions CI and M for Gc-cube and Gbox:

Lemma 3. For any moment function m(Wi; �); Assumptions CI and M hold with

G = Gc-cube and with G = Gbox:

The proof of Lemma 3 is given in Supplemental Appendix C.

14When au = 1; the left endpoint of the interval (0; 1=(2r)] is included in the interval.
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Moment Equalities. The sets G introduced above use the same functions for the
moment inequalities and equalities, i.e., g is of the form g� � 1k; where g� is a real-
valued function. It is possible to use di¤erent functions for the moment equalities than

for the inequalities. One can take g = (g(1)0; g(2)0)0 2 G(1) � G(2); where g(1) is an Rp-
valued function in some set G(1) and g(2) is an Rv-valued function in some set G(2): Any
�generically comprehensively revealing� class of functions G(2); see Stinchcombe and
White (1998), leads to a set G that satis�es Assumption CI provided one uses a suitable
class of functions G(1) (such as any of those de�ned above with 1k replaced by 1p): For
brevity, we do not provide further details.

3.4 Weight Function Q

The weight function Q can be any probability measure on G whose support is G: This
support condition is needed to ensure that no functions g 2 G; which might have set-
identifying power, are �ignored�by the test statistic Tn(�):Without such a condition, a

CS based on Tn(�) would not necessarily shrink to the identi�ed set as n!1: Section 6

below introduces the support condition formally and shows that the probability measures

Q considered here satisfy it.

We now specify two examples of weight functions Q: Three others are speci�ed in

Supplemental Appendix B.

Weight Function Q for Gc-cube: There is a one-to-one mapping �c-cube : Gc-cube !
AR = f(a; r) : a 2 f1; :::; 2rgdx and r = r0; r0+1; :::g: Let QAR be a probability measure
on AR: One can take Q = ��1c-cubeQAR: A natural choice of measure QAR is uniform

on a 2 f1; :::; 2rgdx conditional on r combined with a distribution for r that has some
probability mass function fw(r) : r = r0; r0 + 1; :::g: This yields the test statistic to be

Tn(�) =

1X
r=r0

w(r)
X

a2f1;:::;2rgdx
(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (3.14)

where ga;r(x) = 1(x 2 Ca;r) � 1k for Ca;r 2 Cc-cube:

Weight Function Q for Gbox: There is a one-to-one mapping �box : Gbox ! XR =

f(x; r) 2 Rdx � (0; �r)dxg: Let QXR be a probability measure on XR: Then, ��1boxQXR is
a probability measure on Gbox: One can take Q = ��1boxQXR: Any probability measure on
Rdx � (0; �r)dx whose support contains Gbox is a valid candidate for QXR: If Supp(Xi) is
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known, Rdx can be replaced by the convex hull of Supp(Xi): One choice is to transform

each regressor to lie in [0; 1] and to take QXR to be the uniform distribution on [0; 1]dx�
(0; �r)dx ; i.e., Unif([0; 1]dx � (0; �r)dx): In this case, the test statistic becomes

Tn(�) =

Z
[0;1]dx

Z
(0;�r)dx

S(n1=2mn(�; gx;r);�n(�; gx;r))�r
�dxdrdx; (3.15)

where gx;r(y) = 1(y 2 Cx;r) � 1k and Cx;r denotes the box centered at x 2 [0; 1]dx with
side lengths 2r 2 (0; 2�r)dx :

3.5 Computation of Sums, Integrals, and Suprema

The test statistics Tn(�) given in (3.14) and (3.15) involve an in�nite sum and an in-

tegral with respect to Q: Analogous in�nite sums and integrals appear in the de�nitions

of the critical values given below. These in�nite sums and integrals can be approxi-

mated by truncation, simulation, or quasi-Monte Carlo methods. If G is countable, let
fg1; :::; gsng denote the �rst sn functions g that appear in the in�nite sum that de�nes

Tn(�): Alternatively, let fg1; :::; gsng be sn i.i.d. functions drawn from G according to
the distribution Q: Or, let fg1; :::; gsng be the �rst sn terms in a quasi-Monte Carlo
approximation of the integral wrt Q: Then, an approximate test statistic obtained by

truncation, simulation, or quasi-Monte Carlo methods is

T n;sn(�) =
snX
`=1

wQ;n(`)S(n
1=2mn(�; g`);�n(�; g`)); (3.16)

where wQ;n(`) = Q(fg`g) when an in�nite sum is truncated, wQ;n(`) = s�1n when

fg1; :::; gsng are i.i.d. draws from G according to Q; and wQ;n(`) is a suitable weight
when a quasi-Monte Carlo method is used. For example, in (3.14), the outer sum can be

truncated at r1;n; in which case, sn =
Pr1;n

r=r0
(2r)dX and wQ;n(`) = w(r)(2r)�dx for ` such

that g` corresponds to ga;r for some a: In (3.15), the integral over (x; r) can be replaced

by an average over ` = 1; :::; sn; the uniform density �r�dx deleted, and gx;r replaced by

gx`;r` ; where f(x`; r`) : ` = 1; :::; sng are i.i.d. with a Unif([0; 1]dx�(0; �r)dx) distribution.
In Supplemental Appendix B, we show that truncation at sn; simulation based on sn

simulation repetitions, or quasi-Monte Carlo approximation based on sn terms, where

sn ! 1 as n ! 1; is su¢ cient to maintain the asymptotic validity of the tests and

CS�s as well as the asymptotic power results under �xed alternatives and most of the
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results under n�1=2-local alternatives.

The KS form of the test statistic requires the computation of a supremum over g 2 G:
For computational ease, this can be replaced by a supremum over g 2 Gn; where Gn " G
as n!1; in the test statistic and in the de�nition of the critical value (de�ned below).

The asymptotic results for KS tests given in Supplemental Appendix B show that the

use of Gn in place of G does not a¤ect the asymptotic properties of the test.

4 GMS Con�dence Sets

4.1 GMS Critical Values

In this section, we de�ne GMS critical values and CS�s.

It is shown in Section 5 below that when � is in the identi�ed set the �uniform

asymptotic distribution� of Tn(�) is the distribution of T (hn); where hn = (h1;n; h2);

h1;n(�) is a function from G to [0;1]p � f0gv that depends on the slackness of the
moment inequalities and on n; and h2(�; �) is a k� k-matrix-valued covariance kernel on
G � G: For h = (h1; h2); de�ne

T (h) =

Z
S(�h2(g) + h1(g); h2(g; g) + "Ik)dQ(g); (4.1)

where

f�h2(g) : g 2 Gg (4.2)

is a mean zero Rk-valued Gaussian process with covariance kernel h2(�; �) on G � G; h1(�)
is a function from G to [0;1]p�f0gv; and " is as in the de�nition of �n(�; g) in (3.5).15

The de�nition of T (h) in (4.1) applies to CvM test statistics. For the KS test statistic,

one replaces
R
::: dQ(g) by supg2G ::: .

We are interested in tests of nominal level � and CS�s of nominal level 1� �: Let

c0(h; 1� �) (4.3)

denote the 1� � quantile of T (h): For notational simplicity, we often write c0(h; 1� �)

as c0(h1; h2; 1 � �) when h = (h1; h2): If hn = (h1;n; h2) was known, we would use

15The sample paths of �h2(�) are concentrated on the set Uk� (G) of bounded uniformly �-continuous
Rk-valued functions on G; where � is de�ned in Supplemental Appendix A.
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c0(hn; 1��) as the critical value for the test statistic Tn(�): However, hn is unknown and
h1;n cannot be consistently estimated. In consequence, we replace h2 in c0(h1;n; h2; 1��)
by a uniformly consistent estimator bh2;n(�) (= bh2;n(�; �; �)) of the covariance kernel h2
and we replace h1;n by a data-dependent GMS function 'n(�) (= 'n(�; �)) on G that is
constructed to be less than or equal to h1;n(g) for all g 2 G with probability that goes
to one as n!1: Because S(m;�) is non-increasing in mI by Assumption S1(b), where

m = (m0
I ;m

0
II)

0; the latter property yields a test whose asymptotic level is less than or

equal to the nominal level �: (It is arbitrarily close to � for certain (�; F ) 2 F :) The
quantities bh2;n(�) and 'n(�) are de�ned below.
The nominal 1� � GMS critical value is de�ned to be

c('n(�);
bh2;n(�); 1� �) = c0('n(�);

bh2;n(�); 1� �+ �) + �; (4.4)

where � > 0 is an arbitrarily small positive constant, e.g., .001. A nominal 1� � GMS

CS is given by (2.5) with the critical value cn;1��(�) equal to c('n(�);bh2;n(�); 1� �):

The constant � is an in�nitesimal uniformity factor that is employed to circumvent

problems that arise due to the presence of the in�nite-dimensional nuisance parameter

h1;n that a¤ects the distribution of the test statistic in both small and large samples. The

constant � obviates the need for complicated and di¢ cult-to-verify uniform continuity

and strictly-increasing conditions on the large sample distribution functions of the test

statistic.

The sample covariance kernel bh2;n(�) (= bh2;n(�; �; �)) is de�ned by:
bh2;n(�; g; g�) = bD�1=2

n (�)b�n(�; g; g�) bD�1=2
n (�); where

b�n(�; g; g�) = n�1
nX
i=1

(m(Wi; �; g)�mn(�; g)) (m(Wi; �; g
�)�mn(�; g

�))0 and

bDn(�) = Diag(b�n(�; 1k; 1k)): (4.5)

Note that b�n(�; g); de�ned in (3.4), equals b�n(�; g; g) and bDn(�) is the sample variance-

covariance matrix of n�1=2
Pn

i=1m(Wi; �):

The quantity 'n(�) is de�ned in Section 4.4 below.
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4.2 GMS Critical Values for Approximate Test Statistics

When the test statistic is approximated via a truncated sum, simulated integral, or

quasi-Monte Carlo quantity, as discussed in Section 3.5, the statistic T (h) in Section 4.1

is replaced by

T sn(h) =
snX
`=1

wQ;n(`)S(�h2(g`) + h1(g`); h2(g`; g`) + "Ik); (4.6)

where fg` : ` = 1; :::; sng are the same functions fg1; :::; gsng that appear in the approxi-
mate statistic T n;sn(�):We call the critical value obtained using T sn(h) an approximate

GMS (A-GMS) critical value.

Let c0;sn(h; 1 � �) denote the 1 � � quantile of T sn(h) for �xed fg1; :::; gsng: The
A-GMS critical value is de�ned to be

csn('n(�);
bh2;n(�); 1� �) = c0;sn('n(�);

bh2;n(�); 1� �+ �) + �: (4.7)

This critical value is a quantile that can be computed by simulation as follows. Let

fT sn;� (h) : � = 1; :::; � repsg be � reps i.i.d. random variables each with the same distri-

bution as T sn(h) and each with the same functions fg1; :::; gsng; where h = (h1; h2) is

evaluated at ('n(�);bh2;n(�)): Then, the A-GMS critical value, csn('n(�);bh2;n(�); 1� �);
is the 1��+� sample quantile of fT sn;� ('n(�);bh2;n(�)) : � = 1; :::; � repsg plus � for very
small � > 0 and large � reps:

When constructing a CS, one carries out multiple tests with a di¤erent � value

speci�ed in the null hypothesis for each test. When doing so, we recommend using the

same fg1; :::; gsng functions for each � value considered (although this is not necessary
for the asymptotic results to hold).

4.3 Bootstrap GMS Critical Values

Bootstrap versions of the GMS critical value in (4.4) and the A-GMS critical value

in (4.7) can be employed. The bootstrap GMS critical value is

c�('n(�);
bh�2;n(�); 1� �) = c�0('n(�);

bh�2;n(�); 1� �+ �) + �; (4.8)
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where c�0(h; 1 � �) is the 1 � � quantile of T �(h) and T �(h) is de�ned as in (4.1) but

with f�h2(g) : g 2 Gg and h2 replaced by the bootstrap empirical process f��n(g) :
g 2 Gg and the bootstrap covariance kernel bh�2;n(�); respectively. By de�nition, (i)
��n(g) =

bDn(�)
�1=2n�1=2

Pn
i=1(m(W

�
i ; �; g) � mn(�; g)); where fW �

i : i � ng is an
i.i.d. bootstrap sample drawn from the empirical distribution of fWi : i � ng; (ii)b��n(�; g; g�) are de�ned as in (4.5) with W �

i in place of Wi; and (iii) bh�2;n(�; g; g�) =bDn(�)
�1=2b��n(�; g; g�) bDn(�)

�1=2: Note that bh�2;n(�; g; g�) only enters c�('n(�);bh�2;n(�); 1�
�) via functions (g; g�) such that g = g�:

When the test statistic, T n;sn(�); is a truncated sum, simulated integral, or quasi-

Monte Carlo quantity, a bootstrap A-GMS critical value can be employed. It is de�ned

analogously to the bootstrap GMS critical value but with T �(h) replaced by T �sn(h);

where T �sn(h) has the same de�nition as T
�(h) except that a truncated sum, simulated

integral, or quasi-Monte Carlo quantity, appears in place of the integral with respect to

Q; as in Section 4.2. The same functions fg1; :::; gsng are used in all bootstrap critical
value calculations as in the test statistic T n;sn(�):

4.4 De�nition of 'n(�)

Next, we de�ne 'n(�): As discussed above, 'n(�) is constructed such that 'n(�; g) �
h1;n(g) 8g 2 G with probability that goes to one as n ! 1 uniformly over (�; F ) 2 F :
Let

�n(�; g) = ��1n n1=2D
�1=2
n (�; g)mn(�; g); where Dn(�; g) = Diag(�n(�; g)); (4.9)

�n(�; g) is de�ned in (3.5), and f�n : n � 1g is a sequence of constants that diverges to
in�nity as n!1: The jth element of �n(�; g); denoted �n;j(�; g); measures the slackness

of the moment inequality EFmj(Wi; �; g) � 0 for j = 1; :::; p:
De�ne 'n(�; g) = ('n;1(�; g); :::; 'n;p(�; g); 0; :::; 0)

0 2 Rk by

'n;j(�; g) = Bn1(�n;j(�; g) > 1) for j � p: (4.10)

Assumption GMS1. (a) 'n(�; g) satis�es (4.10) and fBn : n � 1g is a non-decreasing
sequence of positive constants, and

(b) �n !1 and Bn=�n ! 0 as n!1:

The constants fBn : n � 1g in Assumption GMS1 need not diverge to in�nity for
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the GMS CS to have asymptotic size greater than or equal to 1 � �: However, for the

GMS CS not to be asymptotically conservative, Bn must diverge to1; see Assumption

GMS2(b) below. See Section 9, for speci�c choices of �n and Bn that satisfy Assumption

GMS1.

4.5 �Plug-in Asymptotic�Con�dence Sets

Next, for comparative purposes, we de�ne plug-in asymptotic (PA) critical values.

Subsampling critical values are de�ned and analyzed in Supplemental Appendix B. We

strongly recommend GMS critical values over PA and subsampling critical values because

(i) GMS tests are shown to be more powerful than PA tests asymptotically, see Comment

2 to Theorem 4 below, (ii) it should be possible to show that GMS tests have higher power

than subsampling tests asymptotically and smaller errors in null rejection probabilities

asymptotically by using arguments similar to those in Andrews and Soares (2010) and

Bugni (2010), respectively, and (iii) the �nite-sample simulations in Section 10 show

better performance by GMS critical values than PA and subsampling critical values.

PA critical values are obtained from the asymptotic null distribution that arises when

all conditional moment inequalities hold as equalities a.s. The PA critical value is

c(0G;bh2;n(�); 1� �) = c0(0G;bh2;n(�); 1� �+ �) + �; (4.11)

where � is an arbitrarily small positive constant, 0G denotes the Rk-valued function on

G that is identically (0; :::; 0)0 2 Rk; and bh2;n(�) is de�ned in (4.5). The nominal 1 � �

PA CS is given by (2.5) with the critical value cn;1��(�) equal to c(0G;bh2;n (�) ; 1� �):

Bootstrap PA, A-PA, and bootstrap A-PA critical values are de�ned analogously to

their GMS counterparts in Sections 4.2 and 4.3.

5 Uniform Asymptotic Coverage Probabilities

In this section, we show that GMS and PA CS�s have correct uniform asymptotic

coverage probabilities. The results of this section and those in Sections 6-8 below are

for CvM statistics based on integrals with respect to Q: Extensions of these results to

approximate CvM statistics and critical values, de�ned in Section 3.5, are provided in

Supplemental Appendix B. Supplemental Appendix B also gives results for KS tests.
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5.1 Motivation for Uniform Asymptotics

The choice of critical values is important for moment inequality tests because the null

distribution of a test statistic depends greatly on the slackness, or lack thereof, of the

di¤erent moment inequalities. The slackness represents a nuisance parameter that ap-

pears under the null hypothesis, e.g., see Andrews and Soares (2010, Sections 1 and 4.1).

With conditional moment inequalities, slackness comes in the form of a function, which

is an in�nite-dimensional parameter, whereas with unconditional moment inequalities it

is a �nite-dimensional parameter.

Potential slackness in the moment inequalities causes a discontinuity in the pointwise

asymptotic distribution of typical test statistics. With conditional moment inequalities,

one obtains an extreme form of discontinuity of the pointwise asymptotic distribution

because two moment inequalities can be arbitrarily close to one another but pointwise

asymptotics say that one inequality is irrelevant� because it is in�nitessimally slack, but

the other is not� because it is binding. In �nite samples there is no discontinuity in

the distribution of the test statistic. Hence, pointwise asymptotics do not provide good

approximations to the �nite-sample properties of test statistics in moment inequality

models, especially conditional models.

Uniform asymptotics are required. Methods for establishing uniform asymptotics

given in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger

(2009) only apply to �nite-dimensional nuisance parameters, and hence, are not ap-

plicable to conditional moment inequality models.16 Linton, Song, and Whang (2010)

establish uniform asymptotic results in a model where the nuisance parameter is in�-

nite dimensional. However, their results rely on a complicated condition that is hard

to verify. For issues concerning uniformity of asymptotics in other econometric models,

see Kabaila (1995), Leeb and Pötscher (2005), Mikusheva (2007), and Andrews and

Guggenberger (2010).

5.2 Notation

In order to establish uniform asymptotic coverage probability results, we now intro-

duce notation for the population analogues of the sample quantities that appear in (4.5).

16The same is true of the method in Mikusheva (2007), which is used for autoregressive models. Her
method also requires that the data generated by di¤erent values of the unknown parameter can be
constructed from a single function of the data that does not depend on parameters, which limits its
applicability to other models.
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De�ne

h2;F (�; g; g
�) = D

�1=2
F (�)�F (�; g; g

�)D
�1=2
F (�)

= CovF

�
D
�1=2
F (�)m(Wi; �; g); D

�1=2
F (�)m(Wi; �; g

�)
�
;

�F (�; g; g
�) = CovF (m(Wi; �; g);m(Wi; �; g

�)); and

DF (�) = Diag(�F (�; 1k; 1k)) (= Diag(V arF (m(Wi; �)))): (5.1)

To determine the asymptotic distribution of Tn(�); we write Tn(�) as a function of the

following quantities:

h1;n;F (�; g) = n1=2D
�1=2
F (�)EFm(Wi; �; g);

hn;F (�; g; g
�) = (h1;n;F (�; g); h2;F (�; g; g

�));bh2;n;F (�; g; g�) = D
�1=2
F (�)b�n(�; g; g�)D�1=2

F (�);

h2;n;F (�; g) = bh2;n;F (�; g; g) + "bh2;n;F (�; 1k; 1k) (= D
�1=2
F (�)�n(�; g)D

�1=2
F (�)); and

�n;F (�; g) = n�1=2
nX
i=1

D
�1=2
F (�)[m(Wi; �; g)� EFm(Wi; �; g)]: (5.2)

As de�ned, (i) h1;n;F (�; g) is a k-vector of normalized means of the moment functions

m(Wi; �; g) for g 2 G; which measure the slackness of the population moment conditions
under (�; F ); (ii) hn;F (�; g; g�) contains the normalized means ofD

�1=2
F (�)m(Wi; �; g) and

the covariances of D�1=2
F (�)m(Wi; �; g) and D

�1=2
F (�)m(Wi; �; g

�); (iii) bh2;n;F (�; g; g�) and
h2;n;F (�; g) are hybrid quantities� part population, part sample� based on b�n(�; g; g�)
and�n(�; g); respectively, and (iv) �n;F (�; g) is the sample average ofD

�1=2
F (�)m(Wi; �; g)

normalized to have mean zero and variance that does not depend on n:

Note that �n;F (�; �) is an empirical process indexed by g 2 G with covariance kernel
given by h2;F (�; g; g�):

The normalized sample moments n1=2mn(�; g) can be written as

n1=2mn(�; g) = D
1=2
F (�)(�n;F (�; g) + h1;n;F (�; g)): (5.3)

The test statistic Tn(�); de�ned in (3.6), can be written as

Tn(�) =

Z
S(�n;F (�; g) + h1;n;F (�; g); h2;n;F (�; g))dQ(g): (5.4)
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Note the close resemblance between Tn(�) and T (h) (de�ned in (4.1)).

Let H1 denote the set of all functions from G to [0;1]p � f0gv: Let

H2 = fh2;F (�; �; �) : (�; F ) 2 Fg and
H = H1 �H2: (5.5)

On the space of k� k-matrix-valued covariance kernels on G � G; which is a superset of
H2; we use the metric d de�ned by

d(h
(1)
2 ; h

(2)
2 ) = sup

g;g�2G
jjh(1)2 (g; g�)� h

(2)
2 (g; g

�)jj: (5.6)

For notational simplicity, for any function of the form bF (�; g) for g 2 G; let bF (�) de-
note the function bF (�; �) on G: Correspondingly, for any function of the form bF (�; g; g

�)

for g; g� 2 G; let bF (�) denote the function bF (�; �; �) on G2:

5.3 Uniform Asymptotic Distribution of the Test Statistic

The following Theorem provides a uniform asymptotic distributional result for the

test statistic Tn(�): It is used to establish uniform asymptotic coverage probability results

for GMS and PA CS�s.

Theorem 1. Suppose Assumptions M, S1, and S2 hold. Then, for every compact subset
H2;cpt of H2; all constants xhn;F (�) 2 R that may depend on (�; F ) and n through hn;F (�);
and all � > 0; we have

(a) lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

�
PF (Tn(�) > xhn;F (�))� P (T (hn;F (�)) + � > xhn;F (�))

�
� 0;

(b) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

�
PF (Tn(�) > xhn;F (�))� P (T (hn;F (�))� � > xhn;F (�))

�
� 0;

where T (h) =
Z
S(�h2(g) + h1(g); h2(g) + "Ik)dQ(g) and �h2(�) is the Gaussian

process de�ned in (4.2).

Comments. 1. Theorem 1 gives a uniform asymptotic approximation to the distri-

bution function of Tn(�): Uniformity holds without any restrictions on the normalized
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mean (i.e., moment inequality slackness) functions fh1;n;Fn(�n) : n � 1g: In particular,
Theorem 1 does not require fh1;n;Fn(�n) : n � 1g to converge as n ! 1 or to belong

to a compact set. The Theorem does not require that Tn(�) has a unique asymptotic

distribution under any sequence f(�n; Fn) 2 F : n � 1g: These are novel features of
Theorem 1.

2. The supremum and in�mum in Theorem 1 are over compact sets of covariance

kernels H2;cpt; rather than the parameter space H2: This is not particularly problematic

because the potential asymptotic size problems that arise in moment inequality models

are due to the pointwise discontinuity of the asymptotic distribution of the test statistic

as a function of the means of the moment inequality functions, not as a function of the

covariances between di¤erent moment inequalities.

3. Theorem 1 is proved using an almost sure representation argument and the

bounded convergence theorem. The continuous mapping theorem does not apply because

(i) Tn(�) does not converge in distribution uniformly over (�; F ) 2 F and (ii) h1;n;F (�; g)
typically does not converge uniformly over g 2 G even in cases where it has a pointwise
limit for all g 2 G:

5.4 Uniform Asymptotic Coverage Probability Results

The Theorem below gives uniform asymptotic coverage probability results for GMS

and PA CS�s.

The following assumption is not needed for GMS CS�s to have uniform asymptotic

coverage probability greater than or equal to 1 � �: It is used, however, to show that

GMS CS�s are not asymptotically conservative. (Note that typically GMS and PA CS�s

are asymptotically non-similar.) For (�; F ) 2 F and j = 1; :::; k; de�ne h1;1;F (�) to

have jth element equal to 1 if EFmj(Wi; �; g) > 0 and j � p and 0 otherwise. Let

h1;F (�) = (h1;1;F (�); h2;F (�)):

Assumption GMS2. (a) For some (�c; Fc)2F ; the distribution function of T(h1;Fc(�c))
is continuous and strictly increasing at its 1 � � quantile plus �; viz., c0(h1;Fc(�c); 1 �
�) + �; for all � > 0 su¢ ciently small and � = 0;

(b) Bn !1 as n!1; and

(c) n1=2=�n !1 as n!1:

Assumption GMS2(a) is not restrictive. For example, it holds for typical choices of

S and Q for any (�c; Fc) for which Q(fg 2 G : h1;1;Fc(�c; g) = 0g) > 0: Assumption
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GMS2(c) is satis�ed by typical choices of �n; such as �n = (0:3 lnn)1=2:

Theorem 2. Suppose Assumptions M, S1, and S2 hold and Assumption GMS1 also
holds when considering GMS CS�s. Then, for every compact subset H2;cpt of H2; GMS

and PA con�dence sets CSn satisfy

(a) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) � 1� � and

(b) if Assumption GMS2 also holds and h2;Fc(�c) 2 H2;cpt (for (�c; Fc) 2 F as in

Assumption GMS2), then the GMS con�dence set satis�es

lim
�!0

lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) = 1� �;

where � is as in the de�nition of c(h; 1� �):

Comments. 1. Theorem 2(a) shows that GMS and PA CS�s have correct uniform

asymptotic size over compact sets of covariance kernels. Theorem 2(b) shows that GMS

CS�s are at most in�nitesimally conservative asymptotically. The uniformity results hold

whether the moment conditions involve �weak�or �strong�instrumental variables.

2. An analogue of Theorem 2(b) holds for PA CS�s if Assumption GMS2(a) holds

and EFc(mj(Wi; �c)jXi) = 0 a.s. for j � p (i.e., if the conditional moment inequalities

hold as equalities a.s.) under some (�c; Fc) 2 F .17 However, the latter condition is

restrictive� it fails in many applications.

3. Theorem 2 applies to CvM tests based on integrals with respect to a probability

measure Q: Extensions to approximate CvM and KS tests are given in Supplemental

Appendix B.

4. Theorem 2 is stated for the case where the parameter of interest, �; is �nite-

dimensional. However, Theorem 2 and all of the results below except the local power

results also hold for in�nite-dimensional parameters �: However, computation of a CS is

noticeably more di¢ cult in the in�nite-dimensional case.

5. Comments 1 and 2 to Theorem 1 also apply to Theorem 2.

17The proof follows easily from results given in the proof of Theorem 2(b).
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6 Power Against Fixed Alternatives

We now show that the power of GMS and PA tests converges to one as n ! 1 for

all �xed alternatives (for which the moment functions have 2+ � moments �nite). Thus,

both tests are consistent tests. This implies that for any �xed distribution F0 and any

parameter value �� not in the identi�ed set �F0 ; the GMS and PA CS�s do not include

�� with probability approaching one. In this sense, GMS and PA CS�s based on Tn(�)

fully exploit the conditional moment inequalities and equalities. CS�s based on a �nite

number of unconditional moment inequalities and equalities do not have this property.

The null hypothesis is

H0 : EF0(mj(Wi; ��)jXi) � 0 a.s. [FX;0] for j = 1; :::; p and

EF0(mj(Wi; ��)jXi) = 0 a.s. [FX;0] for j = p+ 1; :::; k; (6.1)

where �� denotes the null parameter value and F0 denotes the �xed true distribution of

the data. The alternative is H1 : H0 does not hold. The following assumption speci�es

the properties of �xed alternatives (FA).

Assumption FA. The value �� 2 � and the true distribution F0 satisfy: (a) PF0(Xi 2
XF0(��)) > 0; where XF0(��) is de�ned in (3.11), (b) fWi : i � 1g are i.i.d. under F0; (c)
V arF0(mj (Wi; ��))> 0 for j = 1; :::; k; (d) EF0jjm(Wi; ��)jj2+� <1 for some � > 0; and

(e) Assumption M holds with F0 in place of F and Fn in Assumptions M(b) and M(c),

respectively.

Assumption FA(a) states that violations of the conditional moment inequalities or equal-

ities occur for the null parameter �� for Xi values in some set with positive probability

under F0: Thus, under Assumption FA(a), the moment conditions speci�ed in (6.1)

do not hold. Assumptions FA(b)-(d) are standard i.i.d. and moment assumptions. As-

sumption FA(e) holds for Gc-cube and Gbox because Cc-cube and Cbox are Vapnik-Cervonenkis
classes of sets.

For g 2 G; de�ne

m�
j(g) = EF0mj(Wi; ��)gj(Xi)=�F0;j(��) and

�(g) = maxf�m�
1(g); :::;�m�

p(g); jm�
p+1(g)j; :::; jm�

k(g)jg: (6.2)

Under Assumptions FA(a) and CI, �(g0) > 0 for some g0 2 G:

27



For a test based on Tn(�) to have power against all �xed alternatives, the weight-

ing function Q cannot �ignore�any elements g 2 G; because such elements may have
identifying power for the identi�ed set. This requirement is captured in the following

assumption, which is shown in Lemma 4 to hold for the two probability measures Q

considered in Section 3.4.

Let FX;0 denote the distribution of Xi under F0: De�ne the pseudo-metric �X on G
by

�X(g; g
�) = (EFX;0jjg(Xi)� g�(Xi)jj2)1=2 for g; g� 2 G: (6.3)

Let B�X (g; �) denote an open �X-ball in G centered at g with radius �:

Assumption Q. The support of Q under the pseudo-metric �X is G: That is, for all
� > 0; Q(B�X (g; �)) > 0 for all g 2 G:

The next result establishes Assumption Q for the probability measures Q on Gc-cube
and Gbox discussed in Section 3.4 above. Supplemental Appendix B provides analogous
results for three other choices of Q and G:

Lemma 4. Assumption Q holds for the weight functions:
(a) Qa = ��1c-cubeQAR on Gc-cube; where QAR is uniform on a 2 f1; :::; 2rgdx conditional

on r and r has some probability mass function fw(r) : r = r0; r0 + 1; :::g with w(r) > 0
for all r and

(b) Qb = ��1boxUnif([0; 1]
dx� (0; �r)dx) on Gbox with the centers of the boxes in [0; 1]dx :

Comment. The uniform distribution that appears in both speci�cations of Q in the

Lemma could be replaced by another distribution and the results of the Lemma still

hold provided the other distribution has the same support.

The following Theorem shows that GMS and PA tests are consistent against all �xed

alternatives.

Theorem 3. Under Assumptions FA, CI, Q, S1, S3, and S4,
(a) limn!1 PF0(Tn(��) > c('n(��);bh2;n(��); 1� �)) = 1 and

(b) limn!1 PF0(Tn(��) > c(0G;bh2;n(��); 1� �)) = 1:

Comment. Theorem 3 implies the following for GMS and PA CS�s: Suppose (�0; F0) 2
F for some �0 2 �; �� (2 �) is not in the identi�ed set �F0 (de�ned in (2.2)), and
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Assumptions FA(c), FA(d), CI, M, S1, S3, and S4 hold, then for GMS and PA CS�s we

have18

lim
n!1

PF0(�� 2 CSn) = 0: (6.4)

7 Power Against Some n�1=2-Local Alternatives

In this section, we show that GMS and PA tests have power against certain, but

not all, n�1=2-local alternatives. This holds even though these tests fully exploit the

information in the conditional moment restrictions, which is of an in�nite-dimensional

nature. These testing results have immediate implications for the volume of CS�s, see

Pratt (1961).

We show that a GMS test has asymptotic power that is greater than or equal to

that of a PA test (based on the same test statistic) under all alternatives with strict

inequality in certain scenarios. Although we do not do so here, arguments analogous to

those in Andrews and Soares (2010) could be used to show that a GMS test�s power is

greater than or equal to that of a subsampling test with strictly greater power in certain

scenarios.

For given �n;� 2 � for n � 1; we consider tests of

H0 : EFnmj(Wi; �n;�) � 0 for j = 1; :::; p;

EFnmj(Wi; �n;�) = 0 for j = p+ 1; :::; k; (7.1)

and (�n;�; Fn) 2 F ; where Fn denotes the true distribution of the data. The null values
�n;� are allowed to drift with n or be �xed for all n: Drifting �n;� values are of interest

because they allow one to consider the case of a �xed identi�ed set, say �0; and to derive

the asymptotic probability that parameter values �n;� that are not in the identi�ed set,

but drift toward it at rate n�1=2; are excluded from a GMS or PA CS. In this scenario,

the sequence of true distributions are ones that yield �0 to be the identi�ed set, i.e.,

Fn 2 F0 = fF : �F = �0g:
The true parameters and distributions are denoted (�n; Fn):We consider the Kolmog-

orov-Smirnov metric on the space of distributions F:

The n�1=2-local alternatives are de�ned as follows.
18This holds because �� =2 �F0 implies Assumption FA(a) holds, (�0; F0) 2 F implies Assumption

FA(b) holds, and Assumption M with F = Fn = F0 implies Assumption FA(e) holds.
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Assumption LA1. The true parameters and distributions f(�n; Fn) 2 F : n � 1g and
the null parameters f�n;� : n � 1g satisfy:
(a) �n;� = �n + �n

�1=2(1 + o(1)) for some � 2 Rd� ; �n;� 2 �; �n;� ! �0; and Fn ! F0

for some (�0; F0) 2 F ,
(b) n1=2EFnmj(Wi; �n; g)=�Fn;j(�n)! h1;j(g) for some h1;j(g) 2 [0;1] for j = 1; :::; p

and all g 2 G;
(c) d(h2;Fn(�n); h2;F0(�0)) ! 0 and d(h2;Fn(�n;�); h2;F0(�0)) ! 0 as n ! 1 (where d

is de�ned in (5.6)),

(d) V arFn(mj(Wi; �n;�)) > 0 for j = 1; :::; k; for n � 1; and
(e) supn�1EFnjmj(Wi; �n;�)=�Fn;j(�n;�)j2+� <1 for j = 1; :::; k for some � > 0:

Assumption LA2. The k�d matrix �F (�; g) = (@=@�0)[D�1=2
F (�)EFm(Wi; �; g)] exists

and is continuous in (�; F ) for all (�; F ) in a neighborhood of (�0; F0) for all g 2 G:

For notational simplicity, we let h2 abbreviate h2;F0(�0) throughout this section.

Assumption LA1(a) states that the true values f�n : n � 1g are n�1=2-local to the
null values f�n;� : n � 1g: Assumption LA1(b) speci�es the asymptotic behavior of
the (normalized) moment inequality functions when evaluated at the true values f�n :
n � 1g: Under the true values, these (normalized) moment inequality functions are non-
negative. Assumption LA1(c) speci�es the asymptotic behavior of the covariance kernels

fh2;Fn(�n; �; �) : n � 1g and fh2;Fn(�n;�; �; �) : n � 1g: Assumptions LA1(d) and LA1(e)
are standard. Assumption LA2 is a smoothness condition on the normalized expected

moment functions. Given the smoothing properties of the expectation operator, this

condition is not restrictive.

Under Assumptions LA1 and LA2, we show that the moment inequality functions

evaluated at the null values f�n;� : n � 1g satisfy:

lim
n!1

n1=2D
�1=2
Fn

(�n;�)EFnm(Wi; �n;�; g) = h1(g) + �0(g)� 2 Rk; where

h1(g) = (h1;1(g); :::; h1;p(g); 0; :::; 0)
0 2 Rk and �0(g) = �F0(�0; g): (7.2)

If h1;j(g) = 1; then by de�nition h1;j(g) + y = 1 for any y 2 R: We have h1(g) +

�0(g)� 2 (�1;1]p � Rv: Let �0;j(g) denote the jth row of �0(g) written as a column

d�-vector for j = 1; :::; k:

The null hypothesis, de�ned in (7.1), does not hold (at least for n large) when the

following assumption holds.
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Assumption LA3. For some g 2 G; h1;j(g) + �0;j(g)0� < 0 for some j = 1; :::; p or

�0;j(g)
0� 6= 0 for some j = p+ 1; :::; k:

Under the following assumption, if � = ��0 for some � > 0 and some �0 2 Rd� ; then

the power of GMS and PA tests against the perturbation � is arbitrarily close to one

for � arbitrarily large:

Assumption LA3 0. Q(fg 2 G : h1;j(g) < 1 and �0;j(g)0�0 < 0 for some j = 1; :::; p

or �0;j(g)0�0 6= 0 for some j = p+ 1; :::; kg) > 0:

Assumption LA3 0 requires that either (i) the moment equalities detect violations of the

null hypothesis for g functions in a set with positive Q measure or (ii) the moment

inequalities are not too far from being binding, i.e., h1;j(g) < 1; and the perturbation

�0 occurs in a direction that yields moment inequality violations for g functions in a set

with positive Q measure.

Assumption LA3 is employed with the KS test. It is weaker than Assumption LA3 0:

It is shown in Supplemental Appendix B that if Assumption LA3 holds with � = ��0

(and some other assumptions), then the power of KS-GMS and KS-PA tests against the

perturbation � is arbitrarily close to one for � arbitrarily large.

In Supplemental Appendix B we illustrate the veri�cation of Assumptions LA1-LA3

and LA3 0 in a simple example. In this example, v = 0; h1;j(g) < 1 8g 2 G, and
�0;j(g) = �Eg(Xi) 8g 2 G, so �0;j(g)0�0 < 0 in Assumption LA3 0 8g 2 G with

Eg(Xi) > 0 for all �0 > 0:

Assumptions LA3 and LA3 0 can fail to hold even when the null hypothesis is violated.

This typically happens if the true parameter/true distribution is �xed, i.e., (�n; Fn) =

(�0; F0) 2 F for all n in Assumption LA1(a), the null hypothesis parameter �n;� drifts

with n as in Assumption LA1(a), and PF0(Xi 2 Xzero) = 0; where Xzero = fx 2 Rdx :

EF0(m(Wi; �0)jXi = x) = 0g: In such cases, typically h1;j(g) = 1 8g 2 G (because the
conditional moment inequalities are non-binding with probability one), Assumptions

LA3 and LA3 0 fail, and Theorem 4 below shows that GMS and PA tests have trivial

asymptotic power against such n�1=2-local alternatives. For example, this occurs in the

example of Section 13.5 in Supplemental Appendix B when PF0(Xi 2 Xzero) = 0:
As discussed in Section 13.5, asymptotic results based on a �xed true distribution

provide poor approximations when PF0(Xi 2 Xzero) = 0: Hence, one can argue that it
makes sense to consider local alternatives for sequences of true distributions fFn : n �
1g for which h1;j(g) < 1 for a non-negligible set of g 2 G; as in Assumption LA3 0;
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because such sequences are the ones for which the asymptotics provide good �nite-

sample approximations. For such sequences, GMS and PA tests have non-trivial power

against n�1=2-local alternatives, as shown in Theorem 4 below.

Nevertheless, local-alternative power results can be used for multiple purposes and

for some purposes, one may want to consider local-alternatives other than those that

satisfy Assumptions LA3 and LA3 0:

The asymptotic distribution of Tn(�n;�) under n�1=2-local alternatives is shown to be

Jh;�: By de�nition, Jh;� is the distribution of

T (h1 +�0�; h2) =

Z
S(�h2(g) + h1(g) + �0(g)�; h2(g) + "Ik)dQ(g); (7.3)

where h = (h1; h2); �0 denotes �0(�); and �h2(�) is a mean zero Gaussian process with
covariance kernel h2 = h2;F0(�0): For notational simplicity, the dependence of Jh;� on �0
is suppressed.

Next, we introduce two assumptions, viz., Assumptions LA4 and LA5, that are used

only for GMS tests in the context of local alternatives. The population analogues of

�n(�; g) and its diagonal matrix are

�F (�; g) = �F (�; g; g) + "�F (�; 1k; 1k) and DF (�; g) = Diag(�F (�; g)); (7.4)

where �F (�; g; g) is de�ned in (5.1). Let �F;j(�; g) denote the square-root of the (j; j)

element of �F (�; g):

Assumption LA4. ��1n n1=2EFnmj(Wi; �n; g)=�Fn;j(�n; g) ! �1;j(g) for some �1;j(g)

2 [0;1] for j = 1; :::; p and g 2 G:

In Assumption LA4 the functions are evaluated at the true value �n; not at the null

value �n;�; and (�n; Fn) 2 F : In consequence, the moment functions in Assumption LA4
satisfy the moment inequalities and �1;j(g) � 0 for all j = 1; :::; p and g 2 G: Note that
0 � �1;j(g) � h1;j(g) for all j = 1; :::; p and all g 2 G (by Assumption LA1(b) and
�n !1:)

Let �1(g) = (�1;1(g); :::; �1;p(g); 0; :::; 0)
0 2 [0;1]p � f0gv: Let c0('(�1); h2; 1 � �)
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denote the 1� � quantile of

T ('(�1); h2) =

Z
S(�h2(g) + '(�1(g)); h2(g) + "Ik)dQ(g); where

'(�1(g)) = ('(�1;1(g)); :::; '(�1;p(g)); 0; :::; 0)
0 2 Rk and

'(x) = 0 if x � 1 and '(x) =1 if x > 1: (7.5)

Let '(�1) denote '(�1(�)): The probability limit of the GMS critical value c('n(�);bh2;n(�);
1� �) is shown below to be c('(�1); h2; 1� �) = c0('(�1); h2; 1� �+ �) + �:

Assumption LA5. (a) Q(G') = 1; where G' = fg 2 G : �1;j(g) 6= 1 for j = 1; :::; pg;
and

(b) the distribution function of T ('(�1); h2) is continuous and strictly increasing at

x = c('(�1); h2; 1� �); where h2 = h2;F0(�0):

The value 1 that appears in G' in Assumption LA5(a) is the discontinuity point of
': Assumption LA5(a) implies that the n�1=2-local power formulae given below do not

apply to certain �discontinuity vectors��1(�); but this is not particularly restrictive.19

Assumption LA5(b) typically holds because of the absolute continuity of the Gaussian

random variables �h2(g) that enter T ('(�1); h2):
20

The following assumption is used only for PA tests.

Assumption LA6. The distribution function of T (0G; h2) is continuous and strictly
increasing at x = c(0G; h2; 1� �); where h2 = h2;F0(�0):

The probability limit of the PA critical value is shown to be c(0G; h2; 1 � �) =

c0(0G; h2; 1��+ �) + �; where c0(0G; h2; 1��) denotes the 1�� quantile of J(0G ;h2);0d� :

Theorem 4. Under Assumptions M, S1, S2, and LA1-LA2,
(a) limn!1 PFn(Tn(�n;�) > c('n(�n;�);

bh2;n(�n;�); 1��)) = 1�Jh;�(c('(�1); h2; 1��))
provided Assumptions GMS1, LA4, and LA5 also hold,

19Assumption LA5(a) is not particularly restrictive because in cases where it fails, one can obtain
lower and upper bounds on the local asymptotic power of GMS tests by replacing c('(�1); h2; 1��) by
c('(�1�); h2; 1� �) and c('(�1+); h2; 1� �); respectively, in Theorem 4(a). By de�nition, '(�1�) =
'(�1(�)�) and '(�1(g)�) is the limit from the left of '(x) at x = �1(g): Likewise '(�1+) = '(�1(�)+)
and '(�1(g)+) is the limit from the right of '(x) at x = �1(g):
20If Assumption LA5(b) fails, one can obtain lower and upper bounds on the local asymptotic power

of GMS tests by replacing Jh;�(c('(�1); h2; 1 � �)) by Jh;�(c('(�1); h2; 1 � �)+) and Jh;�(c('(�1);
h2; 1 � �)�); respectively, in Theorem 4(a), where the latter are the limits from the left and right,
respectively, of Jh;�(x) at x = c('(�1); h2; 1� �):
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(b) limn!1 PFn(Tn(�n;�) > c(0G;bh2;n(�n;�); 1��)) = 1�Jh;�(c(0G; h2; 1��)) provided
Assumption LA6 also holds, and

(c) lim�!1[1� Jh;��0(c('(�1); h2; 1� �))] = lim�!1[1� Jh;��0(c(0G; h2; 1� �))] = 1
provided Assumptions LA3 0, S3, and S4 hold.

Comments. 1. Theorem 4(a) and 4(b) provide the n�1=2-local alternative power

function of the GMS and PA tests, respectively. Theorem 4(c) shows that the asymptotic

power of GMS and PA tests is arbitrarily close to one if the n�1=2-local alternative

parameter � = ��0 is su¢ ciently large in the sense that its scale � is large.

2. We have c('(�1); h2; 1��) � c(0G; h2; 1��) (because '(�1(g)) � 0 for all g 2 G
and S(m;�) is non-increasing in mI by Assumption S1(b), where m = (m0

I ;m
0
II)

0):

Hence, the asymptotic local power of a GMS test is greater than or equal to that of a PA

test. Strict inequality holds whenever �1(�) is such that Q(fg 2 G : '(�1(g)) > 0g) > 0:
The latter typically occurs whenever the conditional moment inequalityEFn(mj(Wi; �n;�)

jXi) for some j = 1; :::; p is bounded away from zero as n ! 1 with positive Xi

probability.

3. The results of Theorem 4 hold under the null hypothesis as well as under the

alternative. The results under the null quantify the degree of asymptotic non-similarity

of the GMS and PA tests.

4. Suppose the assumptions of Theorem 4 hold and each distribution Fn generates

the same identi�ed set, call it �0 = �Fn 8n � 1: Then, Theorem 4(a) implies that the

asymptotic probability that a GMS CS includes, �n;�; which lies within O(n�1=2) of the

identi�ed set, is Jh;�(c('(�1); h2; 1 � �)): If � = ��0 and Assumptions LA3 0, S3, and

S4 also hold, then �n;� is not in �0 (at least for � large) and the asymptotic probability

that a GMS or PA CS includes �n;� is arbitrarily close to zero for � arbitrarily large by

Theorem 4(c). Analogous results hold for PA CS�s.

8 Preliminary Consistent Estimation of

Identi�ed Parameters and Time Series

In this section, we consider the case in which the moment functions in (2.4) depend

on a parameter � as well as � and a preliminary consistent estimator, b�n(�); of � is
available when � is the true value. (This requires that � is identi�ed given the true value

�:) For example, this situation often arises with game theory models, as in the third
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model considered in Section 10 below. The parameter � may be �nite dimensional or

in�nite dimensional. As pointed out to us by A. Aradillas-López, in�nite-dimensional

parameters arise as expectation functions in some game theory models. Later in the

section, we also consider the case where fWi : i � ng are time series observations.
Suppose the moment functions are of the form mj(Wi; �; �) and the model speci�es

that (2.1) holds with mj(Wi; �; �F (�)) in place of mj(Wi; �) for j � k for some �F (�)

that may depend on � and F:

The normalized sample moment functions are of the form

n1=2mn(�; g) = n�1=2
nX
i=1

m(Wi; �;b�n(�); g): (8.1)

In the in�nite-dimensional case, m(Wi; �;b�n(�); g) can be of the formm�(Wi; �;b�n(Wi; �)

; g); where b�n(Wi; �) : R
dw ��! Rd� for some d� <1:

Given (8.1), the quantity �F (�; g; g�) in (5.1) denotes the asymptotic covariance of

n1=2mn(�;b�n(�); g) and n1=2mn(�;b�n(�); g�) under (�; F ); rather than CovF (m(Wi; �; g);

m(Wi; �; g
�)): Correspondingly, b�n(�; g; g�) is not de�ned by (4.5) but is taken to be

an estimator of �F (�; g; g�) that is consistent under (�; F ): With these adjusted de�ni-

tions of mn(�; g) and b�n(�; g; g�); the test statistic Tn(�) and GMS or PA critical value
cn;1��(�) are de�ned in the same way as above.21

For example, when � is �nite dimensional, the preliminary estimator b�n(�) is chosen
to satisfy:

n1=2(b�n(�)� �F (�))!d ZF as n!1 under (�; F ) 2 F ; (8.2)

for some normally distributed random vector ZF with mean zero.

The normalized sample moments can be written as

n1=2mn(�; g) = D
1=2
F (�)(�n;F (�; g) + h1;n;F (�; g)); where

�n;F (�; g) = n�1=2
nX
i=1

D
�1=2
F (�)[m(Wi; �;b�n(�); g)� EFm(Wi; �; �F (�); g)];

h1;n;F (�; g) = n1=2D
�1=2
F (�)EFm(Wi; �; �F (�); g): (8.3)

In place of Assumption M, we use the following empirical process (EP) assumption.

21When computing bootstrap critical values, one needs to bootstrap the estimator b�n(�) as well as
the observations fWi : i � ng:
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Let ) denote weak convergence. Let fan : n � 1g denote a subsequence of fng:

Assumption EP. (a) For some speci�cation of the parameter space F that imposes the
conditional moment inequalities and equalities and all (�; F ) 2 F ; �n;F (�; �)) �h2;F (�)(�)
as n ! 1 under (�; F ); for some mean zero Gaussian process �h2;F (�)(�) on G with
covariance kernel h2;F (�) on G � G and bounded uniformly �-continuous sample paths
a.s. for some pseudo-metric � on G:
(b) For any subsequence f(�an ; Fan) 2 F : n � 1g for which limn!1 supg;g�2G

jjh2;Fan (�an ; g; g�) � h2(g; g
�)jj = 0 for some k � k matrix-valued covariance kernel

on G � G; we have (i) �an;Fan (�an ; �) ) �h2(�) and (ii) supg;g�2G jjbh2;an;Fan (�an ; g; g�) �
h2(g; g

�)jj !p 0 as n!1:

The quantity bh2;an;Fan (�an ; g; g�) is de�ned as in previous sections but with b�n(�; g; g�)
and �F (�; g; g�) de�ned as in this section.

With Assumption EP in place of Assumption M, the results of Theorem 2 hold when

the GMS or PA CS depends on a preliminary estimator b�n(�):22 (The proof is the same
as that given for Theorem 2 in Supplemental Appendices A and C with Assumption EP

replacing the results of Lemma A1.)

Next, we consider time series observations fWi : i � ng: Let the moment conditions
and sample moments be de�ned as in (2.3) and (3.3), but do not impose the de�nitions

of F and b�n(�; g) in (2.3) and (3.4). Instead, de�ne b�n(�; g) in a way that is suitable
for the temporal dependence properties of fm(Wi; �; g) : i � ng: For example, b�n(�; g)
might need to be de�ned to be a heteroskedasticity and autocorrelation consistent (HAC)

variance estimator. Or, if fm(Wi; �) : i � ng have zero autocorrelations under (�; F );
de�ne b�n(�; g) as in (3.4). Given these de�nitions of mn(�; g) and b�n(�; g); de�ne the
test statistic Tn(�) and GMS or PA critical value cn;1��(�) as in previous sections.23

De�ne �n;F (�; g) as in (5.2). Now, with Assumption EP in place of Assumption M,

the results of Theorem 2 hold with time series observations.

Note that Assumption EP also can be used when the observations are independent

but not identically distributed.

22Equation (8.2) is only needed for this result in order to verify Assumption EP(a) in the �nite-
dimensional � case.
23With bootstrap critical values, the bootstrap employed needs to take account of the time series

structure of the observations. For example, a block bootstrap does so.
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9 Computation

In this section, we describe how the tests introduced in this paper are computed. For

speci�city, we focus on tests based on countable cubes and approximate GMS critical

values in an i.i.d. context. We describe both the asymptotic distribution and bootstrap

implementations of the critical values.

Step 1. Compute the test statistic:
(a) Transform each regressor to lie in [0; 1]: Let Xy

i 2 RdX denote the untransformed
regressor vector. In the simulations reported below, we transform Xy

i via a shift and ro-

tation and then an application of the standard normal distribution function. Speci�cally,

�rst compute b�X;n = n�1�ni=1(X
y
i �X

y
n)(X

y
i �X

y
n)
0; where X

y
n = n�1�ni=1X

y
i : Then, let

Xi = �(b��1=2X;n (X
y
i �X

y
n)); where �(x) = (�(x1); :::;�(xdX ))

0 for x = (x1; :::; xdX )
0 2 RdX

and �(xj) is the standard normal distribution function at xj for xj 2 R:
(b) Specify the functions g: For countable cubes, the functions are ga;r(x) = 1(x 2

Ca;r)1k for Ca;r 2 Cc-cube; where Ca;r and Cc-cube are de�ned in (3.12).
(c) Specify the weight function QAR: In the simulations, we take it to be uniform

on a 2 f1; :::; 2rgdx given r; combined with w(r) = (r2 + 100)�1 for r = 1; :::; r1;n: (See
below regarding the choice of r1;n:)

(d) Compute the CvM test statistic, which is de�ned by

T n;r1;n(�) =

r1;nX
r=1

(r2 + 100)�1
X

a2f1;:::;2rgdX

(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (9.4)

where S = S1; S2; or S3; as de�ned in (3.8)-(3.10), and mn(�; ga;r) and �n(�; ga;r) are

de�ned in (3.3)-(3.5) with " = :05: Alternatively, compute the KS statistic, which is

supga;r2Gc-cube S(n
1=2mn(�; ga;r);�n(�; ga;r)):

Step 2. Compute the GMS critical value based on the asymptotic distribution:
(a) Compute 'n(�; ga;r); as de�ned in (4.10), for (a; r) 2 AR:We recommend taking

�n = (0:3 ln(n))
1=2 and Bn = (0:4 ln(n)= ln ln(n))1=2:

(b) Simulate a (kNg)� � reps matrix Z of standard normal random variables, where

k is the dimension of m(Wi; �); Ng =
Pr1;n

r=1(2r)
dX is the number of g functions employed

in Step 1(d), and � reps is the number of simulation repetitions used to simulate the

asymptotic Gaussian process.

(c) Compute the (kNg)�(kNg) covariance matrix bh2;n;mat(�) whose elements are the
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covariances bh2;n(�; ga;r; g�a;r) de�ned in (4.5) for functions ga;r; g�a;r as in Step 1(b), where
a 2 f1; :::; 2rgdX and r = 1; :::; r1;n:
(d) Compute the (kNg)� � reps matrix b�n(�) = bh1=22;n;mat(�)Z: Let b�n;j(�; ga;r) denote

the element of b�n that corresponds to the row indexed by ga;r and column j for j =
1; :::; � reps:

(e) For j = 1; :::; � reps; compute the test statistic T n;r1;n;j(�) just as T n;r1;n(�) is

computed in Step 1(d) but with n1=2mn(�; ga;r) replaced by b�n;j(�; ga;r) + 'n(�; ga;r):

(f) Take the critical value to be the 1� �+ � sample quantile of the simulated test

statistics fT n;r1;n;j(�) : j = 1; :::; � repsg plus �; where � is a very small positive constant,
such as 10�6: In the simulations, we obtain the same results with � = 0 as with 10�6:

For the bootstrap version of the critical value, Steps 2(b)-2(e) are replaced by the

following steps:

Step 2boot: (b) Generate B bootstrap samples fW �
i;b : i = 1; :::; ng for b = 1; :::; B using

the standard nonparametric i.i.d. bootstrap. That is, draw W �
i;b from the empirical

distribution of fW` : ` = 1; :::; ng independently across i and b:
(c) For each bootstrap sample, transform the regressors as in Step 1(a) and compute

m�
n;b(�; ga;r) and �

�
n;b(�; ga;r) just as mn(�; ga;r) and �n(�; ga;r) are computed, but with

the bootstrap sample in place of the original sample.

(d) For each bootstrap sample, compute the bootstrap test statistic T
�
n;r1;n;b

(�)

as T n;r1;n(�) is computed in Step 1(d) but with n
1=2mn(�; ga;r) replaced by bDn(�)

�1=2

n1=2(m�
n;b(�; ga;r) �mn(�; ga;r)) + 'n(�; ga;r) and with �n(�; ga;r) replaced by bDn(�)

�1=2

�
�
n;b(�; ga;r) bDn(�)

�1=2; where bDn(�) = Diag(b�n(�; 1k; 1k)):
(e) Take the critical value to be the 1� �+ � sample quantile of the bootstrap test

statistics fT �n;r1;n;b(�) : b = 1; :::; Bg plus �; where � is a very small positive constant,
such as 10�6: In the simulations, we obtain the same results with � = 0 as with 10�6:

The choices of "; �n; and Bn above are based on some experimentation.24 Smaller

values of "; such as " = :01; do not perform as well if the expected number of observations

per cube (for some cubes) is small, say 15 or less.

For the quantile selection and interval-outcome models, in which Xi is a scalar, we

take r1;n = 7 when n = 250 and obtain quite similar results for r1;n = 5; 9; and 11: For

the entry game model, in which bivariate regressor indices appear, we take r1;n = 3 when

n = 500 and obtain similar results for r1;n = 2 and 4: Based on the simulation results,

24These values are the base case values used in the simulations reported below.
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we recommend taking r1;n so that the expected number of observations in the smallest

cubes is between 10 and 20 (when " = :05): For example, with (n; dX ; r1;n) = (250; 1; 7);

(500; 2; 3); and (1000; 3; 2); the expected number of observations in the smallest cells are

17:9; 13:9; and 15:6; respectively.

Note that the number of cubes with side-edge length indexed by r is (2r)dX ; where

dX denotes the dimension of the covariate Xi: The computation time is approximately

linear in the number of cubes. Hence, it is linear in
Pr1;n

r=1(2r)
dX :

In Step 1(a), when there are discrete variables in Xi; the sets Ca;r can be formed

by taking interactions of each value of the discrete variable(s) with cubes based on the

other variable(s).25

When the dimension, dX ; of Xi is greater than three (or equal to three with n

small, say less than 750); the number of cubes is too large to be practical and the

expected number of observations per cube is too small, even if r1;n is small. In such

cases, we suggest replacing the sets Ca;r above with sets that are rectangles with sub-

intervals of [0; 1] in 2 dimensions (equal to the two-dimensional cubes in Cc-cubewhen
dX = 2) and [0; 1] in the other dimensions, and constructing such sets using all possible

combinations of 2 dimensions out of dX dimensions. For example, if dX = 6; then there

are 6!=(4!2!) = 15 combinations of 2 dimensions out of 6: For each choice of 2 dimensions

there are 20 cubes if (r0; r1;n) = (1; 2) and 56 cubes if (r0; r1;n) = (1; 3); which yields

totals of 300 and 840 cubes, respectively, when dX = 6:26 If the dimension 2 above is

increased to 3; 4; ::: as n!1; then there is no loss in information asymptotically.

10 Monte Carlo Simulations

This section provides simulation evidence concerning the �nite-sample properties

of the CI�s introduced in the paper. We consider four models: a quantile selection

model, an entry game model with multiple equilibria, a mean selection model, and an

interval-outcome linear regression model. For brevity, the results for the third and fourth

models are reported in Supplemental Appendix F. The results for the fourth model are

remarkably similar to those for the ��at bound�version of the quantile selection model,

25See Example 5 in the second subsection of Supplemental Appendix B for details.
26For example, with n = 500 and r1;n = 2; the expected number of observations per cube is 125

or 31:3 depending on the cube. With n = 1000 and r1;n = 3; the expected number of observations
per cube is 250; 62:5; or 15:6: These expected numbers hold for any value of dX : Computation time is
proportional to (dX !=(dX !2!)) �

Pr1;n
r=1(2r)

dX :
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in spite of the substantial di¤erences between the models. The results for the third

model are similar to those for the quantile selection model.

In all models, we compare di¤erent versions of the CI�s introduced in the paper. In

the quantile selection and mean selection models, we compare one of the CI�s introduced

in the paper with CI�s introduced in CLR and LSW.

10.1 Tests Considered in the Simulations

In the simulation results reported below, we compare di¤erent test statistics and

critical values in terms of their coverage probabilities (CP�s) for points in the identi�ed

set and their false coverage probabilities (FCP�s) for points outside the identi�ed set.

Obviously, one wants FCP�s to be as small as possible. FCP�s are directly related to the

power of the tests used to constructed the CS and are related to the volume of the CS,

see Pratt (1961).

The following test statistics are considered: (i) CvM/Sum, (ii) CvM/QLR, (iii)

CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi) KS/Max, as de�ned in Section 9.

Both asymptotic normal and bootstrap versions of these tests are computed.

In all models we consider the PA/Asy and GMS/Asy critical values. We also consider

the PA/Bt, GMS/Bt, and Sub critical values in the quantile selection model and interval-

outcome regression model. The critical values are simulated using 5001 repetitions (for

each original sample repetition).27 The �base case�values of �n; Bn; and " for the GMS

critical values are speci�ed in Section 9 and are used in all four models. Additional

results are reported for variations of these values. The subsample size is 20 when the

sample size is 250: Results are reported for nominal 95% CS�s. The number of simulation

repetitions used to compute CP�s and FCP�s is 5000 for all cases. This yields a simulation

standard error of :0031:

We also report results for the CLR-series, CLR-local linear, and LSW CI�s. These

CI�s are computed, for the most part, as described in CLR and LSW. Supplemental

Appendix F provides details. The CLR CI�s use cross-validation to determine the tun-

27The Sum, QLR, and Max statistics use the functions S1; S2; and S3; respectively. The PA/Asy and
PA/Bt critical values are based on the asymptotic distribution and bootstrap, respectively, and likewise
for the GMS/Asy and GMS/Bt critical values. The quantity � is set to 0 because its value, provided it
is su¢ ciently small, has no e¤ect in these models. Sub denotes a (non-recentered) subsampling critical
value. It is the :95 sample quantile of the subsample statistics, each of which is de�ned exactly as the
full sample statistic is de�ned but using the subsample in place of the full sample. The number of
subsamples considered is 5001. They are drawn randomly without replacement.
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ing parameters. The L1 version of the LSW CI is employed. The critical values and

CP/FCP�s are simulated using 5001 and 5000 repetitions, respectively, except when

stated otherwise.28

The reported FCP�s are �CP-corrected�by employing a critical value that yields a

CP equal to :95 at the closest point of the identi�ed set if the CP at the closest point is

less than :95: If the CP at the closest point is greater than :95; then no CP correction

is carried out. The reason for this �asymmetric�CP correction is that CS�s may have

CP�s greater than :95 for points in the identi�ed set, even asymptotically, in the present

context and one does not want to reward over-coverage of points in the identi�ed set by

CP correcting the critical values when making comparisons of FCP�s.

10.2 Quantile Selection Model

10.2.1 Description of the Model

In this model we are interested in the conditional � -quantile of a treatment response

given the value of a covariate Xi: The results also apply to conditional quantiles of

arbitrary responses that are subject to selection. Selection yields the conditional quantile

to be unidenti�ed. We use a quantile monotone instrumental variable (QMIV) condition

that is a variant of Manski and Pepper�s (2000) Monotone Instrumental Variable (MIV)

condition to obtain bounds on the conditional quantile. (The MIV condition applies

when the parameter of interest is a conditional mean of a treatment response.) A

nice feature of the QMIV condition is that non-trivial bounds are obtained without

assuming that the support of the response variable is bounded, which is restrictive in

some applications. The nontrivial bounds result from the fact that the distribution

functions that de�ne the quantiles are naturally bounded between 0 and 1:

Other papers that bound quantiles using the natural bounds of distribution func-

tions include Manski (1994), Lee and Melenberg (1998), Blundell, Gosling, Ichimura,

and Meghir (2007), and Giustinelli (2010). The QMIV condition di¤ers from the condi-

tions in these papers, except Giustinelli (2010), although it is closely related to them.29

28The LSW critical value is not simulated. It uses a standard normal critical value.
29Manski (1994, pp. 149-153) establishes the worst case quantile bounds, which do not impose any

restrictions. Lee and Melenberg (1998, p. 30) and Blundell, Gosling, Ichimura, and Meghir (2007, pp.
330-331) provide quantile bounds based on the assumption of monotonicity in the selection variable
Ti (which is binary in their contexts), which is a quantile analogue of Manski and Pepper�s (2000)
monotone treatment selection condition, as well as bounds based on exclusion restrictions. In addition,
Blundell, Gosling, Ichimura, and Meghir (2007, pp. 332-333) employ a monotonicity assumption that is
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Giustinelli (2010) derives bounds on unconditional quantiles with a �nite-support IV,

whereas we consider bounds on conditional quantiles with a continuous (or discrete) IV.

The model set-up is quite similar to that in Manski and Pepper (2000). The obser-

vations are i.i.d. for i = 1; :::; n: Let yi(t) 2 Y be individual i�s �conjectured�response
variable given treatment t 2 T . Let Ti be the realization of the treatment for individual
i: The observed outcome variable is Yi = yi(Ti): Let Xi be a covariate whose support

contains an ordered set X . We observe Wi = (Yi; Xi; Ti): The parameter of interest, �;

is the conditional � -quantile of yi(t) given Xi = x0 for some t 2 T and some x0 2 X ;
which is denoted Qyi(t)jXi(� jx0): We assume the conditional distribution of yi(t) given
Xi = x is absolutely continuous at its � -quantile for all x 2 X :
For examples, one could have: (i) yi(t) is conjectured wages of individual i for t years

of schooling, Ti is realized years of schooling, and Xi is measured ability or wealth, (ii)

yi(t) is conjectured wages when individual i is employed, say t = 1; Xi is measured

ability or wealth, and selection occurs due to elastic labor supply, (iii) yi(t) is consumer

durable expenditures when a durable purchase is conjectured, Xi is income or non-

durable expenditures, and selection occurs because an individual may decide not to

purchase a durable, and (iv) yi(t) is some health response of individual i given treatment

t; Ti is the realized treatment, which may be non-randomized or randomized but subject

to imperfect compliance, and Xi is some characteristic of individual i; such as weight,

blood pressure, etc.

The quantile monotone IV assumption is as follows:

Assumption QMIV. The covariate Xi satis�es: for some t 2 T and all (x1; x2) 2 X 2

such that x1 � x2; Qyi(t)jXi(� jx1) � Qyi(t)jXi(� jx2); where � 2 (0; 1) ; X is some ordered

subset of the support of Xi; and Qyi(t)jXi(� jx) is the quantile function of yi(t) conditional
on Xi = x:30

This assumption may be suitable in the applications mentioned above.

close to the QMIV assumption, but their assumption is imposed on the whole conditional distribution of
yi(t) given Xi; rather than on a single conditional quantile, and they do not explicitly bound quantiles.
30The �� -quantile monotone IV� terminology follows that of Manski and Pepper (2000). Alterna-

tively, it could be called a �� -quantile monotone covariate.�
Assumption QMIV can be extended to the case where additional (non-monotone) covariates arise, say

Zi: In this case, the QMIV condition becomes Qyi(t)jZi;Xi
(� jz; x1) � Qyi(t)jZi;Xi

(� jz; x2) when x1 � x2
for all z in some subset Z of the support of Zi: Also, as in Manski and Pepper (2000), the assumption
QMIV is applicable if X is only a partially-ordered set.
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Given Assumption QMIV, we have: for (x; x0) 2 X 2 with x � x0;

� = P
�
yi(t) � Qyi(t)jXi(� jx)jXi = x

�
� P (yi(t) � �jXi = x)

= P (yi(t) � � & Ti = tjXi = x) + P (yi(t) � � & Ti 6= tjXi = x)

� P (Yi � � & Ti = tjXi = x) + P (Ti 6= tjXi = x) ; (10.1)

where �rst equality holds by the de�nition of the � -quantile Qyi(t)jXi(� jx); the �rst
inequality holds by Assumption QMIV, and the second inequality holds because Yi =

yi(Ti) and P (A \B) � P (B):

Analogously, for (x; x0) 2 X 2 with x � x0;

� = P
�
yi(t) � Qyi(t)jXi(� jx)jXi = x

�
� P (yi(t) � �jXi = x)

= P (yi(t) � � & Ti = tjXi = x) + P (yi(t) � � & Ti 6= tjXi = x)

� P (Yi � � & Ti = tjXi = x) ; (10.2)

where the �rst and second inequalities hold by Assumption QMIV and P (A) � 0:
The inequalities in (10.1) and (10.2) impose sharp bounds on �: They can be rewritten

as conditional moment inequalities:

E (1(Xi � x0)[1(Yi � �; Ti = t) + 1(Ti 6= t)� � ]jXi) � 0 a.s. and

E (1(Xi � x0)[� � 1(Yi � �; Ti = t)]jXi) � 0 a.s. (10.3)

For the simulations, we consider the following data generating process (DGP):

yi(1) = �(Xi) + � (Xi)ui; where @� (x) =@x � 0 and � (x) � 0;
Ti = 1fL (Xi) + "i � 0g; where @L (x) =@x � 0;
Xi � Unif [0; 2]; ("i; ui) � N(0; I2); Xi ? ("i; ui);
Yi = yi(Ti); and t = 1: (10.4)

The variable yi(0) is irrelevant (because Yi enters the moment inequalities in (10.3) only

through 1(Yi � �; Ti = t)) and, hence, is left unde�ned. With this DGP, Xi satis�es the

QMIV assumption for any � 2 (0; 1) : We consider the median: � = 0:5: We focus on
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the conditional median of yi(1) given Xi = 1:5; i.e., � = Qyi(1)jXi(0:5j1:5) and x0 = 1:5:
Some algebra shows that the conditional moment inequalities in (10.3) imply:

� � �(x) := �(x) + � (x) ��1
�
1� [2� (L (x))]�1

�
for x � 1:5 and

� � �� (x) := �(x) + � (x) ��1
�
[2� (L (x))]�1

�
for x � 1:5: (10.5)

We call �(x) and �� (x) the lower and upper bound functions on �; respectively. The

identi�ed set for the quantile selection model is
�
supx�x0 �(x); infx�x0

�� (x)
�
: The shape

of the lower and upper bound functions depends on the �; �; and L functions. We

consider three speci�cations, one that yields �at bound functions, another that yields

kinked bound functions, and a third that yields peaked bound functions.31

The CP or FCP performance of a CI at a particular value � depends on the shape

of the conditional moment functions, as functions of x; evaluated at �: In the present

model, the conditional moment functions are

�(x; �) =

(
E (1(Yi � �; Ti = 1) + 1(Ti 6= 1)� 0:5jXi = x) if x < 1:5

E (� � 1(Yi � �; Ti = 1)jXi = x) if x � 1:5:
(10.6)

Figure 1 shows the bound functions and conditional moment functions for the �at,

kinked, and peaked cases. The bound functions are given in the upper row. Note that

�(x) is de�ned only for x 2 [0; 1:5] and �� (x) only for x 2 [1:5; 1]: The conditional moment
functions are given in the lower row. The latter are evaluated at the value of � that

yields the lower endpoint of the identi�ed interval.32

We consider a base case sample size of n = 250: We also report a few results for

n = 100; 500; and 1000:

31For the �at bound DGP, �(x) = 2; � (x) = 1; and L (x) = 1 for x 2 [0; 2] : In this case, �(x) = 2 +
��1

�
1� [2� (1)]�1

�
for x � 1:5 and �� (x) = 2 + ��1

�
[2� (1)]

�1
�
for x > 1:5: For the kinked bound

DGP, �(x) = 2(x ^ 1); � (x) = x; L (x) = x ^ 1; �(x) = 2(x ^ 1) + x � ��1
�
1� [2� (x ^ 1)]�1

�
for

x � 1:5; and �� (x) = 2 (x ^ 1) + x ���1
�
[2� (x ^ 1)]�1

�
for x > 1:5: The kinked � and L functions are

the same as in the simulation example in Chernozhukov, Lee, and Rosen (2008). For the peaked bound
function, �(x) = 2(x ^ 1); � (x) = x5; L (x) = x ^ 1; �(x) = 2 (x ^ 1) + x5��1

�
1� [2� (x ^ 1)]�1

�
for

x � 1:5; and �� (x) = 2 (x ^ 1) + x5��1
�
[2� (x ^ 1)]�1

�
for x > 1:5:

32See Supplemental Appendix F for conditional-moment-function �gures with � evaluated at the point
at which the FCP�s are computed.
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Figure 1. Three Bound Functions on � and Three Corresponding Conditional Moment

Functions for the Quantile Selection Model

10.2.2 g Functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0; 1]; i.e., intervals. It is not assumed that the researcher knows that Xi � U [0; 2]:

The regressor Xi is transformed via the method described in Section 9 to lie in (0; 1):33

The hypercubes have side-edge lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and the

base case value of r1 is 7:34 The base case number of hypercubes is 56: We also report

results for r1 = 5; 9; and 11; which yield 30; 90; and 132 hypercubes, respectively. With

n = 250 and r1 = 7; the expected number of observations per cube is 125; 62:5; :::; 20:8;

or 17:9 depending on the cube. With n = 250 and r1 = 11; the expected number also

can equal 12:5 or 11:4: With n = 100 and r1 = 7; the expected number is 50; 25; :::; 8:3;

33This method takes the transformed regressor to be �((Xi � Xn)=�X;n); where Xn and �X;n are
the sample mean and standard deviations of Xi and �(�) is the standard normal distribution function.
34For simplicity, we let r1 denote r1;n here and below.
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or 7:3:

10.2.3 Simulation Results: Con�dence Intervals Proposed in This Paper

Tables I-III report CP�s and CP-corrected FCP�s for a variety of test statistics and

critical values proposed in this paper for a range of cases. The CP�s are for the lower

endpoint of the identi�ed interval in Tables I-III and for the �at and kinked bound

functions.35 FCP�s are for points below the lower endpoint.36

Table I provides comparisons of di¤erent test statistics when each statistic is cou-

pled with PA/Asy and GMS/Asy critical values. Table II provides comparisons of the

PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and Sub critical values for the CvM/Max and

KS/Max test statistics. Table III provides robustness results for the CvM/Max and

KS/Max statistics coupled with GMS/Asy critical values. The results in Table III show

the degree of sensitivity of the results to (i) the sample size, n; (ii) the number of cubes

employed, as indexed by r1; (iii) the choice of (�n; Bn) for the GMS/Asy critical values,

and (iv) the value of "; upon which the variance estimator �n(�; g) depends. Table III

also reports results for con�dence intervals with nominal level :5; which yield asymptot-

ically half-median unbiased estimates of the lower endpoint.

Table I shows that all CI�s have CP�s greater than or equal to :95 with �at and kinked

bound DGP�s. The PA/Asy critical values lead to noticeably larger over-coverage than

the GMS/Asy critical values. The GMS/Asy critical values lead to CP�s that are close

to :95 with the �at bound DGP and larger than :95 with the kinked bound DGP. The

CP results are not sensitive to the choice of test statistic function: Sum, QLR, or Max.

They are only marginally sensitive to the choice of test statistic form: CvM or KS.

The FCP results of Table I show (i) a clear advantage of CvM-based CI�s over

KS-based CI�s, (ii) a clear advantage of GMS/Asy critical values over PA/Asy critical

values, and (iii) little di¤erence between the test statistic functions: Sum, QLR, and

Max. These results hold for both the �at and kinked bound DGP�s.

35Supplemental Appendix F provides additional results for the upper endpoints and for the lower
endpoints with the peaked bound function. The results are similar in many respects.
36Note that the DGP is the same for FCP�s as for CP�s, just the value � that is to be covered is

di¤erent. For the lower endpoint of the identi�ed set, FCP�s are computed for � equal to �(1) � c �
sqrt(250=n); where c = :25; :58; and :61 in the �at, kinked, and peaked bound cases, respectively. These
points are chosen to yield similar values for the FCP�s across the di¤erent cases considered.
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Table I. Quantile Selection Model: Base Case Test Statistic Comparisons

(a) Coverage Probabilities

Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

DGP Crit Val

Flat Bound PA/Asy .979 .979 .976 .972 .972 .970

GMS/Asy .953 .953 .951 .963 .963 .960

Kinked Bound PA/Asy .999 .999 .999 .994 .994 .994

GMS/Asy .983 .983 .983 .985 .985 .984

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound PA/Asy .51 .50 .48 .68 .67 .66

GMS/Asy .37 .37 .37 .60 .60 .59

Kinked Bound PA/Asy .65 .65 .62 .68 .68 .67

GMS/Asy .35 .35 .34 .53 .53 .52
� These results are for the lower endpoint of the identi�ed interval.

Table II compares the critical values PA/Asy, PA/Bt, GMS/Asy, GMS/Asy, and

Sub. The results show little di¤erence in terms of CP�s and FCP�s between the Asy and

Bt versions of the PA and GMS critical values in most cases. The GMS critical values

noticeably out-perform the PA critical values in terms of FCP�s. For the CvM/Max

statistic, which is the better statistic of the two considered, the GMS critical values also

noticeably out-perform the Sub critical values in terms of FCP�s.

Table III provides results for the CvM/Max and KS/Max statistics coupled with the

GMS/Asy critical values for several variations of the base case. The table shows that

these CS�s perform quite similarly for di¤erent sample sizes, di¤erent numbers of cubes,

and a smaller constant ":37 There is some sensitivity to the magnitude of the GMS

tuning parameters, (�n; Bn)� doubling their values increases CP�s, but halving their

values does not decrease their CP�s below .95. Across the range of cases considered the

CvM-based CS�s out perform the KS-based CS�s in terms of FCP�s and are comparable

37The � value at which the FCP�s are computed di¤ers from the lower endpoint of the identi�ed set
by a distance that depends on n�1=2: Hence, Table III suggests that the �local alternatives�that give
equal FCP�s decline with n at a rate that is slightly faster than n�1=2 over the range n = 100 to 1000:

47



Table II. Quantile Selection Model: Base Case Critical Value Comparisons�

(a) Coverage Probabilities

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

DGP Statistic

Flat Bound CvM/Max .976 .977 .951 .950 .983

KS/Max .970 .973 .960 .959 .942

Kinked Bound CvM/Max .999 .999 .983 .982 .993

KS/Max .994 1.00 .984 .982 .950

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound CvM/Max .48 .49 .37 .36 .57

KS/Max .66 .69 .59 .57 .69

Kinked Bound CvM/Max .62 .64 .34 .33 .47

KS/Max .67 .72 .52 .50 .47
� These results are for the lower endpoint of the identi�ed interval.

in terms of CP�s.

The last two rows of Table III show that a CS based on � = :5 provides a good

choice for an estimator of the identi�ed set. For example, the lower endpoint estimator

based on the CvM/Max-GMS/Asy CS with � = :5 is close to being median-unbiased. It

is less than the lower bound with probability :518 and exceeds it with probability :482

when n = 250:

In conclusion, we �nd that the CS based on the CvM/Max statistic with the GMS/Asy

critical value performs best in the quantile selection models considered. Equally good

are the CS�s that use the Sum or QLR statistic in place of the Max statistic and the

GMS/Bt critical value in place of the GMS/Asy critical value. The CP�s and FCP�s of

the CvM/Max-GMS/Asy CS are quite good over a range of sample sizes.

10.2.4 Simulation Results: Comparisons with CLR and LSW
Con�dence Intervals

Table IV provides comparisons of the CvM/Max/GMS/Asy CI (denoted in this
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Table III. Quantile Selection Model with Flat Bound: Variations on the Base Case�

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 250; r1 = 7;" = 5=100) .951 .960 .37 .59

n = 100 .957 .968 .40 .64

n = 500 .954 .955 .36 .58

n = 1000 .948 .948 .34 .57

r1 = 5 .949 .954 .36 .56

r1 = 9 .951 .963 .37 .61

r1 = 11 .951 .966 .37 .63

(�n; Bn) = 1=2(�n;bc; Bn;bc) .948 .954 .38 .58

(�n; Bn) = 2(�n;bc; Bn;bc) .967 .968 .38 .63

" = 1=100 .949 .957 .37 .64

� = :5 .518 .539 .03 .08

� = :5 & n = 500 .513 .531 .03 .07
� These results are for the lower endpoint of the identi�ed interval.

section by AS) with the CLR-series, CLR-local linear, and LSW CI�s.38 Results are

reported for the �at, kinked, and peaked bound functions, the base case sample size

250; and sample sizes 100 and 500:

Table IV shows that the CP performances of the nominal 95% AS and LSW CI�s

are good (i.e., greater than or equal to :95) for all bound functions and all sample sizes.

The CLR CI�s have good CP performance for n = 500; but not for n = 100 or 250: For

n = 250; the CLR CI�s under-cover in the �at bound case (:903 and :853). For n = 100;

the CLR-series CI under-covers substantially for all three bound functions (:820; :885;

:858).39

The AS CI has the best (lowest) FCP performance by a substantial margin in the

38We only report results for the CLR-local linear CI for n = 250: For n = 500; this CI is very time
consuming to compute for 5000 CP and FCP repetitions due to the use of cross validation.
39Under-coverage by the CLR CI�s when n = 100 and 250 is not necessarily due to the choice of too

small an estimated contact set. For example, for n = 250; the CLR-series and CLR-local linear CI�s
based on the support set have CP�s equal to :903 and :854; respectively, in the �at bound case.
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Table IV. Quantile Selection Model: Comparisons of Con�dence Intervals with Those

Proposed in Chernozhukov, Lee, and Rozen (2008) and Lee, Song, and Whang (2011)�

CP (95%) FCP (corrected) CP (50%)

CS �at kink peak �at kink peak �at kink peak

n = 250

CvM/Max/GMS/Asy .951 .983 .997 .37 .34 .41 .52 .72 .82

CLR-series .903 .962 .944 .79 .45 .29 .56 .83 .80

CLR-local linear .853y .952y .945y .86y .46y .26y .46y .77y .76y

LeeSongWhang .957 .999 .999 .54 .86 .76 .73 .98 .99

n = 100

CvM/Max/GMS/Asy .957 .981 .989 .40 .34 .47 .52 .69 .73

CLR-series .820 .885 .858 .89 .88 .83 .50 .71 .70

LeeSongWhang .962 .999 1.000 .53 .72 .58 .69 .97 .98

n = 500

CvM/Max/GMS/Asy .954 .984 .998 .36 .39 .72 .51 .74 .88

CLR-series .934 .986 .979 .68 .52 .53yy .59 .88 .88

LeeSongWhang .962 1.000 1.000 .55 .92 .95 .74 .99 1.00

� These results are for the lower endpoint of the identi�ed interval.
y This indicates the number of repetitions used is (3000, 3001). Other cases use (5000, 5001)

repetitions.

�at and kinked bound cases for all three sample sizes. In the peaked bound case, the

CLR-local linear and CLR-series CI�s have the best FCP�s for n = 250; 500; while the

AS CI has the best FCP�s in the n = 100 case. 40 The LSW CI has worse (higher)

FCP�s than those of the AS CI in all nine cases considered.

All of the CI�s are half-median-unbiased in all of the scenarios considered. In the

�at bound case, the AS and CLR CI�s are close to being median-unbiased (except for

40The CP correction used in the FCP results in Table IV and elsewhere does not provide (complete)
size correction because it corrects the CP only based on the data generating process (DGP) considered
for the particular FCP calculation. Complete �nite-sample size correction can be obtained by reducing
the nominal � used to compute a CI, to say �0; such that the �nite-sample minimum coverage probability
is greater than or equal to the desired size 1�� for all DGP�s considered with equality for some DGP.
For example, for the CLR-series CI with n = 250; (complete) �nite-sample size correction for the

three DGP�s considered (�at, kinked, peaked) requires 1 � �0 = :991 to achieve size :950 and yields
size-corrected FCP�s for the kinked and peaked cases of :65 and :41; respectively (and no change from
the Table IV value of :79 for the �at case). Hence, with size-correction, the AS CI dominates the
CLR-series CI in terms of FCP�s for n = 250: This is not true for n = 500:
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the CLR CI when n = 100): But, for the kinked and peaked bound cases, all of the CI�s

have CP�s that exceed :50 by a substantial margin. In all cases, the LSW CI�s are the

farthest from being median unbiased.

In sum, the AS CI exhibits the best overall performance in the cases considered here.

It has good 95% CP performance in all cases and the best FCP performance in seven of

nine cases.41

10.3 Entry Game Model

10.3.1 Description of the Model

This model is a complete information simultaneous game (entry model) with two

players and n i.i.d. plays of the game. We consider Nash equilibria in pure strate-

gies. Due to the possibility of multiple equilibria, the model is incomplete, see Tamer

(2003). In consequence, two conditional moment inequalities and two conditional mo-

ment equalities arise. Andrews, Berry, and Jia (2004), Beresteanu, Molchanov, and

Molinari (2010), Galichon and Henry (2009b), and Ciliberto and Tamer (2009) also

consider moment inequalities and equalities in models of this sort.

Following the approach in Section 8, eight non-competitive e¤ects parameters are

estimated via a preliminary maximum likelihood estimator based on the number of

entrants, similar to Bresnahan and Reiss (1991) and Berry (1992). These estimators are

plugged into a set of moment conditions that includes two moment inequalities and two

moment equalities.

We consider the case where the two players�utility/pro�ts depend linearly on vectors

of covariates, Xi;1 andXi;2; with corresponding parameters � 1 and � 2: A scalar parameter

�1 indexes the competitive e¤ect on player 1 of entry by player 2. Correspondingly, �2
indexes the competitive e¤ect on player 2 of entry by player 1.

Speci�cally, for player b = 1; 2; player b�s utility/pro�ts are given by

X 0
i;b� b + Ui;b if the other player does not enter and

X 0
i;b� b � �b + Ui;b if the other player enters, (10.7)

41The comparisons of the AS, CLR, and LSW CI�s in the mean selection model are similar to the
comparisons in the quantile selection model, see Supplemental Appendix F. The main di¤erence is that
in the kinked bound case the CLR CI�s perform noticeably worse than in the quantile selection model
in terms of CP�s and better in terms of FCP�s when n = 250 (which is sample considered for the mean
selection model). The peaked bound case is not considered in the mean selection model.
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where Ui;b is an idiosyncratic error known to both players, but unobserved by the

econometrician. The random variables observed by the econometrician are the co-

variates Xi;1 2 R4 and Xi;2 2 R4 and the outcome variables Yi;1 and Yi;2; where Yi;b
equals 1 if player b enters and 0 otherwise for b = 1; 2: The unknown parameters are

� = (�1; �2)
0 2 [0;1)2; and � = (� 01; � 02)0 2 R8: Let Yi = (Yi;1; Yi;2) and Xi = (X

0
i;1; X

0
i;2)

0:

The covariate vector Xi;b equals (1; Xi;b;2; Xi;b;3; X
�
i )
0 2 R4; where Xi;b;2 has a Bern(p)

distribution with p = 1=2; Xi;b;3 has a N(0; 1) distribution, X�
i has a N(0; 1) distribution

and is the same for b = 1; 2: The idiosyncratic error Ui;b has a N(0; 1) distribution. All

random variables are independent of each other. Except when speci�ed otherwise, the

equilibrium selection rule (ESR) used to generate the data is a maximum pro�t ESR

(which is unknown to the econometrician and not used by the CS�s). That is, if Yi could

be either (1; 0) or (0; 1) in equilibrium, then it is (1; 0) if player 1�s monopoly pro�t

exceeds that of player 2 and is (0; 1) otherwise. We also provide some results when the

data is generated by a �player 1 �rst�ESR in which Yi = (1; 0) whenever Yi could be

either (1; 0) or (0; 1) in equilibrium.

The moment inequality functions are

m1(Wi; �; �) = P (X 0
i;1� 1 + Ui;1 � 0; X 0

i;2� 2 � �2 + Ui;2 � 0jXi)� 1(Yi = (1; 0))
= �(X 0

i;1� 1)�(�X 0
i;2� 2 + �2)� 1(Yi = (1; 0)) and

m2(Wi; �; �) = P (X 0
i;1� 1 � �1 + Ui;1 � 0; X 0

i;2� 2 + Ui;2 � 0jXi)� 1(Yi = (0; 1));
= �(�X 0

i;1� 1 + �1)�(X
0
i;2� 2)� 1(Yi = (0; 1)): (10.8)

We have E(m1(Wi; �0; � 0)jXi) � 0 a.s., where �0 and � 0 denote the true values, because
given Xi a necessary condition for Yi = (1; 0) is X 0

i;1� 1 + Ui;1 � 0 and X 0
i;2� 2 � �2 +

Ui;2 � 0: However, this condition is not su¢ cient for Yi = (1; 0) because some sample

realizations with Yi = (0; 1) also may satisfy this condition. An analogous argument

leads to E(m2(Wi; �0; � 0)jXi) � 0 a.s.
The two moment equality functions are

m3(Wi; �; �) = 1(Yi = (1; 1))� P (X 0
i;1� 1 � �1 + Ui;1 � 0; X 0

i;2� 2 � �2 + Ui;2 � 0jXi);

= 1(Yi = (1; 1))� �(X 0
i;1� 1 � �1)�(X

0
i;2� 2 � �2); and

m4(Wi; �; �) = 1(Yi = (0; 0))� P (X 0
i;1� 1 + Ui;1 � 0; X 0

i;2� 2 + Ui;2 � 0jXi)

= 1(Yi = (0; 0))� �(�X 0
i;1� 1)�(�X 0

i;2� 2): (10.9)
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We employ a preliminary estimator of � given �; as in Section 8. In particular, we

use the probit ML estimator b�n(�) = (b�n;1(�)0;b�n;2(�)0)0 of � = (� 01; � 02)0 given � based on
the observations f(1(Yi = (0; 0)); 1(Yi = (1; 1)); Xi;1; Xi;2) : i � ng:42

The model described above is point identi�ed under suitable conditions because �

is identi�ed by the second conditional moment equality m4(Wi; �; �) and � is identi�ed

by the �rst moment equality m3(Wi; �; �) given that � is identi�ed. See Tamer (2003)

for some su¢ cient conditions for point identi�cation.43 Although the model is point

identi�ed, considerable additional information about � and � is provided by the moment

inequalities in (10.8), as pointed out by Tamer (2003). We exploit this information using

the methods employed here.

We show that the gains from exploiting the moment inequalities are substantial by

comparing the �nite-sample FCP�s of the tests introduced in this paper with those of

Wald, Lagrange multiplier, and likelihood ratio CS�s based on the ML estimator which

groups the outcomes (0; 1) and (1; 0); as in Bresnahan and Reiss (1991) and Berry (1992).

We consider a base case sample size of n = 500; as well as n = 250 and 1000:

10.3.2 g Functions

We take the functions g to be hypercubes in R2: They are functions of the 2-vector

Xy
i = (X

y0
i;1; X

y0
i;2)

0 = (X 0
i;1b�n;1(�); X 0

i;2b�n;2(�))0: The vector Xy
i is transformed �rst to have

sample mean equal to zero and sample variance matrix equal to I2 (by multiplication

by the inverse of the upper-triangular Cholesky decomposition of the sample covariance

matrix of Xy
i ). Then, it is transformed to lie in [0; 1]

2 by applying the standard normal

distribution function �(�) element by element.
The hypercubes have side-edge lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and

the base case value of r1 is 3: The base case number of hypercubes is 56:We also report

results for r1 = 2 and 4; which yield 20 and 120 hypercubes, respectively. With n = 500

and r1 = 3; the expected number of observations per cube is 125; 31:3; or 13:9 depending

on the cube. With n = 500 and r1 = 4; the expected number also can equal 7:8: With

n = 250 and r1 = 3; the expected number is 25; 15:6; or 6:9:

42See Supplemental Appendix F for the speci�cation of the log likelihood function and its gradient.
43Tamer (2003) uses a large support condition on one regressor in each index X 0

i;1�1 and X
0
i;2�2 to

obtain point identi�cation. However, this is just a su¢ cient condition. It seems that identi�cation is
likely to hold in many cases under much less stringent conditions on the distribution of the regressors.
See Supplemental Appendix F for further discussion.
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10.3.3 Entry Game Simulation Results I

Tables V and VI provide results for the entry game model. Results are provided for

GMS/Asy critical values only because (i) PA/Asy critical values are found to provide

similar results and (ii) bootstrap and subsampling critical values are computationally

quite costly because they require computation of the bootstrap or subsample ML esti-

mator for each repetition of the critical value calculations.

Table V provides CP�s and FCP�s for competitive e¤ect � values ranging from (0; 0)

to (3; 1):44 Table V shows that the CP�s for all CS�s vary as � varies with values ranging

from :913 to :987: The QLR-based CS�s tend to have higher CP�s than the Sum- andMax-

based CS�s. The CvM/Max statistic dominates all other statistics except the CvM/QLR

statistic in terms of FCP�s. In addition, CvM/Max dominates CvM/QLR� in most cases

by a substantial margin� except for � = (2; 2) or (3; 1): Hence, CvM/Max is clearly the

best statistic in terms of FCP�s. The CP�s of the CvM/Max CS are good for many �

values, but they are low for relatively large � values. For � = (3; 0); (2; 2); and (3; 1); its

CP�s are :915; :913; and :918; respectively. This is a �small�sample e¤ect� for n = 1000;

this CS has CP�s for these three cases equal to :934; :951; and :952; respectively.

Table VI provides results for variations on the base case � value of (1; 1) for the

CvM/Max and KS/Max statistics combined with GMS/Asy critical values. The CP�s

and FCP�s of the CvM/Max CS increase with n: They are not sensitive to the number of

hypercubes. There is some sensitivity to the magnitude of (�n; Bn); but it is relatively

small. There is noticeable sensitivity of the CP of the KS/Max CS to "; but less so for

the CvM/Max CS. There is relatively little sensitivity of CP�s to changes in the DGP

via changes in the regressor variances (of Xi;b;2 and Xi;b;3 for b = 1; 2) or a change in the

equilibrium selection rule to player 1 �rst.

The last two rows of Table VI provide results for estimators of the identi�ed set based

on CS�s with � = :5: The two CS�s considered are half-median unbiased. For example,

the CvM/Max-GMS/Asy CS with � = :5 covers the true value with probability :610;

which exceeds :5; when n = 500:

In conclusion, in the entry game model we prefer the CvM/Max-GMS/Asy CS over

other CS�s considered because of its the clear superiority in terms of FCP�s even though

it under-covers somewhat for large values of the competitive e¤ects vector �:

44The � values for which FCP�s are computed are given by �1 � :1 � sqrt(500=n) and �2 � :1 �
sqrt(500=n); where (�1; �2) is the true parameter vector.
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Table V. Entry Game Model: Test Statistic Comparisons for Di¤erent Competitive

E¤ects Parameters (�1; �2)

(a) Coverage Probabilities

Case Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(�1; �2) = (0; 0) .979 .972 .980 .977 .975 .985

(�1; �2) = (1; 0) .961 .980 .965 .959 .983 .972

(�1; �2) = (1; 1) .961 .985 .961 .955 .985 .962

(�1; �2) = (2; 0) .935 .982 .935 .944 .984 .952

(�1; �2) = (2; 1) .943 .974 .940 .953 .987 .947

(�1; �2) = (3; 0) .921 .975 .915 .938 .935 .984

(�1; �2) = (2; 2) .928 .942 .913 .943 .972 .922

(�1; �2) = (3; 1) .928 .950 .918 .949 .973 .932

(b) False Coverage Probabilities (coverage probability corrected)

(�1; �2) = (0; 0) .76 .99 .59 .91 .99 .83

(�1; �2) = (1; 0) .60 .99 .42 .83 .66 .99

(�1; �2) = (1; 1) .62 .96 .41 .82 .99 .58

(�1; �2) = (2; 0) .51 .83 .35 .66 .96 .47

(�1; �2) = (2; 1) .57 .57 .38 .69 .82 .44

(�1; �2) = (3; 0) .49 .41 .36 .61 .43 .64

(�1; �2) = (2; 2) .59 .34 .39 .65 .42 .49

(�1; �2) = (3; 1) .57 .27 .39 .65 .47 .44

10.3.4 Entry Game Simulation Results II

Next, we compare the �nite-sample (CP-corrected) FCP�s of two CS�s introduced in

this paper with the FCP�s of three CS�s that do not exploit the moment inequalities.

Figure 2 graphs the FCP�s of the CvM/Max and KS/Max CS�s using the GMS/Asy

critical values (with the base case values of the tuning parameters). It also graphs

the FCP�s of the Wald, Lagrange multiplier, and likelihood ratio CS�s based on the

ML estimator that groups the outcomes (1; 0) and (0; 1) (which ignore the moment

inequalities). The sample size is n = 500 and the true values of (�1; �2) are (1; 1): The

horizontal axis in Figure 2 gives the distance between the true value of �1; i.e., �1;0 = 1;
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Table VI. Entry Game Model: Variations on the Base Case (�1; �2) = (1; 1)

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 500; r1 = 3;" = 5=100) .961 .962 .41 .58
n = 250 .948 .963 .39 .56

n = 1000 .979 .968 .52 .65

r1 = 2 (20 cubes) .962 .956 .41 .55

r1 = 4 (120 cubes) .962 .964 .42 .59

(�n; Bn) = 1=2(�n;bc; Bn;bc) .954 .959 .39 .57

(�n; Bn) = 2(�n;bc; Bn;bc) .967 .962 .42 .58

" = 1=100 .926 .873 .32 .66

Reg�r Variances = 2 .964 .968 .54 .71

Reg�r Variances = 1/2 .963 .966 .29 .43

Player 1 First Eq Sel Rule .955 .957 .39 .57

� = :5 .610 .620 .05 .13

� = :5 & n = 1000 .695 .650 .06 .16

and the null value of �1; i.e., �1;null: The distance for the corresponding values of �2 is

taken to be the same.45

As �1;0 � �1;null increases, the FCP�s decrease for all CS�s, as expected. Figure 2

shows that the CS�s that exploit the moment inequalities have far better (lower) FCP�s.

Speci�cally, to obtain a FCP equal to p for any p in [0:75; 0:0]; the distance of a parameter

from the identi�ed set needs to be three times as far or farther when using the Wald,

LM, or LR CS as compared to the CvM/Max or KS/Max CS. Thus, we conclude that

the CS�s introduced here, which exploit the moment inequalities and equalities, are

noticeably superior to those that just employ the moment equalities.

45Hence, the Euclidean distance between points outside the identi�ed set and points on the boundary
of the identi�ed set are proportional to the distances on the horizontal axis in Figure 2.
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11 Outline

This Supplement includes six appendices.

Supplemental Appendix A gives proofs of Theorems 1 and 2(a).

Supplemental Appendix B provides a number of supplemental results to the main

paper. These include:

(i) results for Kolmogorov-Smirnov (KS) and approximate Cramér von Mises (A-

CvM) tests and CS�s in Section 13.1,

(ii) three additional examples of collections G and probability measuresQ that satisfy
Assumptions CI, M, FA(e), and Q in Section 13.2,

(iii) an illustration of the veri�cation of Assumptions LA1-LA3 in Section 13.3,

(iv) an illustration of some uniformity issues that arise with in�nite-dimensional

nuisance parameters in Section 13.4,

(v) an illustration of problems with pointwise asymptotics in Section 13.5, and

(vi) coverage probability results for subsampling tests and CS�s under drifting se-

quences of distributions in Section 13.6.

Supplemental Appendix C provides proofs of the results that are stated in the main

paper but are not proved in Supplemental Appendix A. These include:

(i) the proofs of Lemmas 2 and 3 and Theorem 2(b) in Section 14.1,

(ii) the proofs of Lemma 4 and Theorem 3 concerning �xed alternatives in Section

14.2,

(iii) the proof of Theorem 4 concerning local power in Section 14.3, and

(iv) the proof of Lemma 1 concerning the veri�cation of Assumptions S1-S4 in Section

14.4.

Supplemental Appendix D provides proofs of the results stated in Supplemental

Appendix B. These include:

(i) the proofs of Kolmogorov-Smirnov and approximate Cramér von Mises results in

Section 15.1,

(ii) the proof of Lemma B2 in Section 15.2,

(iii) the proofs of Theorems B4 and B5 regarding uniformity issues in Section 15.3,

and

(iv) the proofs of the subsampling results in Section 15.4.
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Supplemental Appendix E proves Lemma A1, which is stated in Supplemental Ap-

pendix A.

Supplemental Appendix F provides the simulation results for the mean selection and

interval-outcome regression models and additional material (and results) concerning the

simulations in the quantile selection and entry game models.
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12 Supplemental Appendix A

In this Appendix, we provides proofs of the uniform asymptotic coverage probability

results for GMS and PA CS�s. In particular, it proves Theorems 1 and 2(a). Proofs of

the other results stated in the paper are given in Supplemental Appendix C.

12.1 Proof of Theorem 1

The following Lemma is used in the proofs of Theorems 1, 2, 3, and 4. It establishes

a functional CLT and uniform LLN for certain independent non-identically distributed

empirical processes.

Let h2 denote a k� k-matrix-valued covariance kernel on G �G (such as an element
of H2):

De�nition SubSeq(h2). SubSeq(h2) is the set of subsequences f(�an ; Fan) : n � 1g;
where fan : n � 1g is some subsequence of fng; for which

(i) lim
n!1

sup
g;g�2G

jjh2;Fan (�an ; g; g
�)� h2(g; g

�)jj = 0;

(ii) �an 2 �; (iii) fWi : i � 1g are i.i.d. under Fan ; (iv) V arFan (mj(Wi; �an)) > 0 for j =

1; :::; k; for n � 1; (v) supn�1EFan jmj(Wi; �an)=�Fan ;j(�an)j2+� < 1 for j = 1; :::; k; for

some � > 0; and (vi) Assumption M holds with Fan in place of F and Fn in Assumptions

M(b) and M(c), respectively.

The sample paths of the Gaussian process �h2(�); which is de�ned in (4.2) and appears
in the following Lemma, are bounded and uniformly �-continuous a.s. The pseudo-metric

� on G is a pseudo-metric commonly used in the empirical process literature:

�2(g; g�) = tr (h2(g; g)� h2(g; g
�)� h2(g

�; g) + h2(g
�; g�)) : (12.1)

For h2(�; �) = h2;F (�; �; �); where (�; F ) 2 F ; this metric can be written equivalently as

�2(g; g�) = EF jjD�1=2
F (�)[em(Wi; �; g)� em(Wi; �; g

�)]jj2; whereem(Wi; �; g) = m(Wi; �; g)� EFm(Wi; �; g): (12.2)

Lemma A1. For any subsequence f(�an ; Fan) : n � 1g 2 SubSeq(h2);
(a) �an;Fan (�an ; �)) �h2 (�) as n!1 (as processes indexed by g 2 G), and
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(b) supg;g�2G jjbh2;an;Fan (�an ; g; g�)� h2(g; g
�)jj !p 0 as n!1:

Comments. 1. The proof of Lemma A1 is given in Supplemental Appendix E. Part
(a) is proved by establishing the manageability of fm(Wi; �an ; g) � EFanm(Wi; �an ; g) :

g 2 Gg and by establishing a functional CLT for Rk-valued i.n.i.d. empirical processes
with the pseudo-metric � by using the functional CLT in Pollard (1990, Thm. 10.2) for

real-valued empirical processes. Part (b) is proved using a maximal inequality given in

Pollard (1990, (7.10)).

2. To obtain uniform asymptotic coverage probability results for CS�s, Lemma A1 is
applied with (�an ; Fan) 2 F for all n � 1 and h2 2 H2: In this case, conditions (ii)-(vi) in

the de�nition of SubSeq(h2) hold automatically by the de�nition of F : To obtain power
results under �xed and local alternatives, Lemma A1 is applied with (�an ; Fan) =2 F for

all n � 1 and h2 may or may not be in H2:

Proof of Theorem 1. First, we prove part (a). Let f(�n; Fn) 2 F : n � 1g be a
sequence for which h2;Fn(�n) 2 H2;cpt for all n � 1 and the term in square brackets

in Theorem 1(a) evaluated at (�n; Fn) di¤ers from its supremum over (�; F ) 2 F with

h2;F (�) 2 H2;cpt by �n or less, where 0 < �n ! 0 as n ! 1: Such a sequence always

exists. To prove part (a), it su¢ ces to show that part (a) holds with the supremum

deleted and with (�; F ) replaced by (�n; Fn):

By the compactness ofH2;cpt; given any subsequence fun : n � 1g of fng; there exists
a subsubsequence fan : n � 1g for which d(h2;Fan (�an); h2;0) ! 0 as n ! 1 for some

�0 2 �; where d is de�ned in (5.6), and some h2;0 2 H2;cpt: This and (�an ; Fan) 2 F for

all n � 1 implies that f(�an ; Fan) : n � 1g 2 SubSeq(h2;0):

Now, by Lemma A1, we have 
�an;Fan (�an ; �)bh2;an;Fan (�an ; �)

!
)
 
�h2;0(�)
h2;0(�)

!
as n!1 (12.3)

as stochastic processes on G; where bh2;an;Fan (�an ; g) = bh2;an;Fan (�an ; g; g) and h2;0(g) =
h2;0(g; g):

Given this, by the almost sure representation theorem, e.g., see Pollard (1990,

Thm. 9.4), there exists a probability space and random quantities ~�an(�); ~h2;an(�);
~�0(�); and ~h2(�) de�ned on it such that (i) (~�an(�); ~h2;an(�)) has the same distribution as
(�an;Fan (�an ; �);bh2;an;Fan (�an ; �)); (ii) (~�0(�); ~h2(�)) has the same distribution as (�h2;0(�);
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h2;0(�)); and

(iii) sup
g2G







 

~�an(g)
~h2;an(g)

!
�
 
~�0(g)
~h2(g)

!




! 0 as n!1 a.s. (12.4)

Because h2;0(�) is deterministic, condition (ii) implies that ~h2(�) = h2;0(�) a.s.
De�ne

~h"2;an(�) = ~h2;an(�) + " �Diag(~h2;an(1k));

~Tan =

Z
S(~�an(g) + h1;an;Fan (�an ; g);

~h"2;an(g))dQ(g);

h"2;0(�) = h2;0(�) + "Ik; and

~Tan;0 =

Z
S
�
~�0(g) + h1;an;Fan (�an ; g); h

"
2;0(g)

�
dQ(g): (12.5)

By construction, ~Tan and Tan(�an) have the same distribution, and ~Tan;0 and

T (han;Fan (�an)) have the same distribution for all n � 1:
Hence, to prove part (a), it su¢ ces to show that

A = lim sup
n!1

h
PFan (

~Tan > xhan;Fan (�an ))� P ( ~Tan;0 + � > xhan;Fan (�an ))
i
� 0: (12.6)

Below we show that
~Tan � ~Tan;0 ! 0 as n!1 a.s. (12.7)

Let

e�n = 1( ~Tan;0 + ( ~Tan � ~Tan;0) > xhan;Fan (�an ))� 1( ~Tan;0 + � > xhan;Fan (�an ))

= e�+
n � e��

n ; where (12.8)e�+
n = maxfe�n; 0g 2 [0; 1] and e��

n = maxf�e�n; 0g 2 [0; 1]:

By (12.7) and � > 0; limn!1 e�+
n = 0 a.s. Hence, by the bounded convergence theorem,

lim
n!1

EFan
e�+
n = 0 and

A =lim sup
n!1

EFan
e�n = lim sup

n!1
EFan

e�+
n � lim inf

n!1
EFan

e��
n

= �lim inf
n!1

EFan
e��
n � 0: (12.9)
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Hence, (12.6) holds and the proof of part (a) is complete, except for (12.7).

To prove part (b), analogous results to (12.6), (12.8), and (12.9) hold by analogous

arguments.

It remains to show (12.7). We do so by �xing a sample path ! and using the bounded

convergence theorem (because ~Tan and ~Tan;0 are both integrals over g 2 G with respect
to the measure Q): Let ~
 be the collection of all ! 2 
 such that (~�an(g); ~h2;an(g))(!)
converges to (~�0(g); h2;0(g))(!) uniformly over g 2 G as n!1 and supg2G k~�0(g)(!)k <
1: By (12.4) and ~h2(�) = h2;0(�) a.s., P (~
) = 1: Consider a �xed ! 2 ~
: By Assumption
S2 and (12.4), for all g 2 G;

sup
�2[0;1)p�f0gv

���S �~�an(g)(!) + �; ~h"2;an(g)(!)
�
� S

�
~�0(g)(!) + �; h"2;0(g)

����! 0 (12.10)

as n!1 a.s. Thus, for all g 2 G and all ! 2 e
;
S
�
~�an(g)(!) + h1;an;Fan (�an ; g);

~h"2;an(g)(!)
�

�S
�
~�0(g)(!) + h1;an;Fan (�an ; g); h

"
2;0(g)

�
! 0 as n!1: (12.11)

Next, we show that for �xed ! 2 ~
 the �rst summand on the left-hand side of (12.11)
is bounded by a constant. Let 0 < � < 1: By (12.4), there exists N <1 such that for

all n � N;

sup
g2G

k~�an(g)(!)� ~�0(g)(!)k < � and



Diag(~h2;an(1k))(!)� Ik




 < � (12.12)

using the fact that Diag(h2;0(1k)) = Ik by construction. Let B�(!) = supg2G jj~�0(g)(!)jj
+ �: Then, for all n � N;

sup
g2G

k~�an(g)(!)k � B�(!) <1: (12.13)

First, consider the case where no moment equalities are present, i.e., v = 0 and
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k = p: In this case, for n � N; we have: for all g 2 G;

0 � S(~�an(g)(!) + h1;an;Fan (�an ; g);
~h"2;an(g)(!))

� S(~�an(g)(!); ~h
"
2;an(g)(!))

� S(�B�(!)1p; " �Diag(~h2;an(1p)))
� S(�B�(!)1p; "(1� �)Ip); (12.14)

where the �rst inequality holds by Assumption S1(c), the second inequality holds by

Assumption S1(b) and h1;an;Fan (�an ; g) � 0p (which holds because (�an ; Fan) 2 F); the
third inequality holds by Assumption S1(b) and (12.13) as well as by Assumption S1(e)

and the de�nition of ~h"2;an(g)(!) in (12.5), and the last inequality holds by Assumption

S1(e) and (12.12). For �xed ! 2 ~
; the constant S(�B�(!)1p; "(1 � �)Ip) bounds the

�rst summand on the left-hand side of (12.11) for all n � N:

For the case where v > 0; the third inequality in (12.14) needs to be altered because

S(m;�) is not assumed to be non-increasing in mII ; where m = (m0
I ;m

0
II)

0: In this case,

for the bound with respect to the last v elements of ~�an(g)(!); denoted by ~�an;II(g)(!);

we use the continuity condition on S(m;�); i.e., Assumption S1(d), which yields uni-

form continuity of S(�B�(!)1p;mII ; "(1 � �)Ik) over the compact set fmII : jjmII jj �
B�(!) <1g and delivers a �nite bound because supg2G;n�1 jj~�an;II(g)(!)jj � B�(!):

By an analogous but simpler argument, for �xed ! 2 ~
; the second summand on the
left-hand side of (12.11) is bounded by a constant.

Hence, the conditions of the bounded convergence theorem hold and for �xed ! 2 ~
;
~Tan(!)� ~Tan;0(!)! 0 as n!1: Thus, (12.7) holds and the proof is complete. �

12.2 Proof of Theorem 2(a)

For GMS CS�s, Theorem 2(a) follows immediately from the following three Lemmas.

The PA critical value is a GMS critical value with 'n(x) = 0 for all x 2 R and this

function 'n(x) satis�es Assumption GMS1 (though not Assumption GMS2(b)). Hence,

Theorem 2(a) for GMS CS�s covers PA CS�s.

Lemma A2. Suppose Assumptions M, S1, and S2 hold. Then, for every compact

9



subset H2;cpt of H2 and all � > 0;

lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF (Tn(�) > c0(hn;F (�); 1� �) + �) � �:

Lemma A3. Suppose Assumptions M, S1, and GMS1 hold. Then, for every compact
subset H2;cpt of H2;

lim
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF

�
c('n(�);

bh2;n(�); 1� �) < c(h1;n;F (�);bh2;n(�); 1� �)
�
= 0:

Lemma A4. Suppose Assumptions M, S1, and S2 hold. Then, for every compact
subset H2;cpt of H2 and for all 0 < � < � (where � is as in the de�nition of c(h; 1��)),

lim
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF

�
c(h1;n;F (�);bh2;n(�); 1� �)<c0(h1;n;F (�); h2;F (�); 1� �) + �

�
=0:

The following Lemma is used in the proof of Lemma A4.

Lemma A5. Suppose Assumptions M, S1, and S2 hold. Let fh2;n : n � 1g and
fh�2;n : n � 1g be any two sequences of k � k-valued covariance kernels on G � G such
that d(h2;n; h�2;n)! 0 and d(h2;n; h2;0)! 0 for some k� k-valued covariance kernel h2;0
on G � G: Then, for all �1 > 0 and all � > 0;

lim inf
n!1

inf
h12H1

�
c0(h1; h2;n; 1� �+ �1) + � � c0(h1; h

�
2;n; 1� �)

�
� 0:

Proof of Lemma A2. For all � > 0; we have

lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF (Tn(�) > c0(hn;F (�); 1� �) + �)

� lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

[PF (Tn(�) > c0(hn;F (�); 1� �) + �)

� P (T (hn;F (�)) > c0(hn;F (�); 1� �))]

+lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

P (T (hn;F (�)) > c0(hn;F (�); 1� �))

� 0 + �; (12.15)
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where the second inequality holds by Theorem 1(a) with xhn;F (�) = c0(hn;F (�); 1��)+ �
and by the de�nition of the quantile c0(hn;F (�); 1� �) of T (hn;F (�)): �

Proof of Lemma A3. Let f(�n; Fn) 2 F : n � 1g be a sequence for which h2;Fn(�n) 2
H2;cpt and the probability in the statement of the Lemma evaluated at (�n; Fn) di¤ers

from its supremum over (�; F ) 2 F (with h2;F (�) 2 H2;cpt) by �n or less, where 0 < �n !
0 as n!1: Such a sequence always exists. It su¢ ces to show

lim
n!1

PFn

�
c('n(�n);bh2;n(�n); 1� �) < c(h1;n;Fn(�n);bh2;n(�n); 1� �)

�
= 0: (12.16)

By the compactness of H2;cpt; given any subsequence fun : n � 1g of fng; there
exists a subsubsequence fan : n � 1g for which d(h2;Fan (�an); h2;0) ! 0 as n ! 1 for

some h2;0 2 H2;cpt: This and (�an ; Fan) 2 F for all n � 1 implies that f(�an ; Fan) : n �
1g 2 SubSeq(h2;0): Hence, it su¢ ces to show

lim
n!1

PFan

�
c('an(�an);

bh2;an(�an); 1� �) < c(h1;an;Fan (�an);
bh2;an(�an); 1� �)

�
= 0

(12.17)

for f(�an ; Fan) : n � 1g 2 SubSeq(h2;0):
By Lemma A1(a), for f(�an ; Fan) : n � 1g 2 SubSeq(h2;0); we have

�an;Fan (�an ; �)) �h2;0(�) as n!1: (12.18)

We now show that for all sequences �n !1 as n!1; we have

lim
n!1

PFan

 
sup

g2G;j�p

j�an;Fan ;j(�an ; g)j > �an

!
= 0; (12.19)

where �an;Fan ;j(�an ; g) denotes the jth element of �an;Fan (�an ; g):We show this by noting

that (12.18) and the continuous mapping theorem give: 8� > 0;

lim
n!1

PFan

 
sup

g2G;j�p

j�an;Fan ;j(�an ; g)j > �

!
= P

 
sup

g2G;j�p

j�h2;0;j(g)j > �

!
; (12.20)

where �h2;0;j(g) denotes the jth element of �h2;0(g): In addition, the sample paths of

�h2;0;j(�) are bounded a.s., which yields 1
�
sup

g2G;j�p
j�h2;0;j(g)j > �

�
! 0 as � !1 a.s.
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Hence, by the bounded convergence theorem,

lim
�!1

P

 
sup

g2G;j�p

j�h2;0;j(g)j > �

!
= 0: (12.21)

Equations (12.20) and (12.21) imply (12.19).

Next, we have

�an(�an ; g) = ��1an

�
D
�1=2
an (�an ; g)D

1=2
Fan
(�an)

�
a1=2n D

�1=2
Fan

(�an)man(�an ; g) (12.22)

= ��1anDiag
�1=2(h2;an;Fan (�an ; g))

�
�an;Fan (�an ; g) + h1;an;Fan (�an ; g)

�
where the second equality holds by the de�nitions of h2;an;Fan (�an ; g); �an;Fan (�an ; g); and

h1;an;Fan (�an ; g) in (5.2) and Dn(�; g) = Diag(�n(�; g)):

Consider constants f�n : n � 1g such that �n ! 1 and �n=�n ! 0 as n ! 1: We

have

PFan

�
c('an(�an);

bh2;an(�an); 1� �) < c(h1;an;Fan (�an);
bh2;an(�an); 1� �)

�
� PFan

�
'an;j(�an ; g) > h1;an;Fan ;j(�an ; g) for some j � p; some g 2 G

�
� PFan

 
�an;j(�an ; g) > 1 & h1;an;Fan ;j(�an ; g) < Ban

for some j � p; some g2 G

!

� PFan

 
[h
�1=2
2;an;Fan ;j

(�an ; g)�an;Fan ;j(�an ; g) + h
�1=2
2;an;Fan ;j

(�an ; g)h1;an;Fan ;j(�an ; g)] > �an

& h1;an;Fan ;j(�an ; g) < Ban for some j � p; some g 2 G

!

� PFan

 
[�an + h

�1=2
2;an;Fan ;j

(�an ; g)h1;an;Fan ;j(�an ; g)] > �an &

h1;an;Fan ;j(�an ; g) < Ban for some j � p; some g 2 G

!

+PFan

 
sup

g2G;j�p

jh�1=22;an;Fan ;j
(�an ; g)�an;Fan ;j(�an ; g)j > �an

!

� PFan

0BB@ h
�1=2
2;an;Fan ;j

(�an ; g)h1;an;Fan ;j(�an ; g) > �an � �an &

h
�1=2
2;an;Fan ;j

(�an ; g)h1;an;Fan ;j(�an ; g) < "�1=2(1 + op(1))Ban

for some j � p; some g 2 G

1CCA+ o(1)

= o(1); (12.23)

where the �rst inequality holds because c0(h; 1��+�) and c(h; 1��) are non-increasing
in the �rst p elements of h1 by Assumption S1(b), the second inequality holds because
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(�an ; Fan) 2 F implies that h1;an;Fan ;j(�an ; g) � 0 8j � p; 8g 2 G and Assumption
GMS1(a) implies that (i) 'an;j(�an ; g) = 0 � h1;an;Fan ;j(�an ; g) whenever �an;j(�an ; g) � 1
and (ii) 'an;j(�an ; g) � Ban a.s. 8j � p; 8g 2 G; the third inequality holds by (12.22),
the fourth inequality holds because P (A) � P (A\B)+P (Bc); the last inequality holds

because (i) h
�1=2
2;an;Fan ;j

(�an ; g) � "�1=2h
�1=2
2;0;j (1k; 1k)(1+op(1)) = "�1=2(1+op(1)) by Lemma

A1(b) and (5.2) and (ii) the second summand on the left-hand side of the last inequality is

o(1) by (12.19) with �an replaced by "
1=2�an=2 using (i), and the equality holds because

(�an � �an) � "�1=2(1 + op(1))Ban = �an(1 � �an=�an � "�1=2(1 + op(1))Ban=�an) =

�an(1 + op(1)) using Assumption GMS1(b) and �an !1 as n!1:

Hence, (12.17) holds and the Lemma is proved. �

Proof of Lemma A4. The result of the Lemma is equivalent to

lim
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF

�
c0(h1;n;F (�);bh2;n(�); 1� �+ �)

< c0(h1;n;F (�); h2;F (�);1� �)� "�
�
= 0; (12.24)

where "� = � � � > 0: By considering a sequence f(�n; Fn) 2 F : n � 1g that is within
�n ! 0 of the supremum in (12.24) for all n � 1; it su¢ ces to show that

lim
n!1

PFn

�
c0(h1;n;Fn(�n);bh2;n(�n); 1� �+ �)

< c0(h1;n;Fn(�n); h2;Fn(�n);1� �)� "�
�
= 0: (12.25)

Given any subsequence fung of fng; there exists a subsubsequence fang such that
d(h2;Fan (�an); h2;0) ! 0 as n ! 1 for some h2;0 2 H2;cpt because h2;Fn(�n) 2 H2;cpt:

Hence, it su¢ ces to show that (12.25) holds with an in place of n:

The condition d(h2;Fan (�an); h2;0) ! 0 and (�n; Fn) 2 F for all n � 1 imply that

f(�an ; Fan) : n � 1g 2 SubSeq(h2;0): Hence, by Lemma A1(b), d(bh2;an;Fan (�an); h2;0)!p

0 as n!1: Furthermore,

bh2;an(�an ; g; g�)
= bD�1=2

an (�an)b�an(�an ; g; g�) bD�1=2
an (�an) (12.26)

= Diag(bh2;an;Fan (�an ; 1k))�1=2bh2;an;Fan (�an ; g; g�)Diag(bh2;an;Fan (�an ; 1k))�1=2:

13



Hence, d(bh2;an(�an); h2;0) !p 0 as n ! 1: Given this, using the almost sure rep-

resentation theorem as above, we can construct f~h2;an(g; g�) : g; g� 2 Gg such that
d(~h2;an ; h2;0) ! 0 as n ! 1 a.s. and ~h2;an and bh2;an(�an) have the same distribution
under (�an ; Fan) for all n � 1:
For �xed ! in the underlying probability space such that d(~h2;an(�; �)(!); h2;0)! 0 as

n!1; Lemma A5 with h2;n = ~h2;an(!) (= ~h2;an(�; �)(!)); h�2;n = h2;Fan (�an); h2;0 = h2;0;

and �1 = � gives: for all � > 0;

lim inf
n!1

h
c0(h1;an;Fan (�an);

~h2;an(!); 1� �+ �) + �

�c0(h1;an;Fan (�an); h2;Fan (�an);1� �)
i
� 0: (12.27)

Equation (12.27) holds a.s. This implies that (12.25) holds with an in place of n because

(i) ~h2;an and bh2;an(�an) have the same distribution for all n � 1 and (ii) for any sequence
of sets fAn : n � 1g; P (An ev:) (= P ([1m=1 \1k=m Ak)) = 1 (where ev. abbreviates

eventually) implies that P (An)! 1 as n!1: �

Proof of Lemma A5. Below we show that for fh2;ng and fh�2;ng as in the statement
of the Lemma, for all constants xh1;h�2;n 2 R that may depend on h1 2 H1 and h�2;n; and

all � > 0;

lim sup
n!1

sup
h12H1

h
P (T (h1; h2;n) � xh1;h�2;n)� P (T (h1; h

�
2;n) � xh1;h�2;n + �)

i
� 0: (12.28)

Note that this result is similar to those of Theorem 1.

We use (12.28) to obtain: for all � > 0 and �1 > 0;

lim sup
n!1

sup
h12H1

P (T (h1; h2;n) � c0(h1; h
�
2;n; 1� �)� �)

� lim sup
n!1

sup
h12H1

�
P (T (h1; h2;n) � c0(h1; h

�
2;n; 1� �)� �)

�P (T (h1; h�2;n) � c0(h1; h
�
2;n; 1� �)� �=2)

�
+lim sup

n!1
sup
h12H1

P (T (h1; h
�
2;n) � c0(h1; h

�
2;n; 1� �)� �=2)

� 0 + 1� �

< 1� �+ �1; (12.29)

where the second inequality holds by (12.28) with �=2 in place of � and xh1;h�2;n =
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c0(h1; h
�
2;n; 1� �)� � and by the de�nition of the 1� � quantile of T (h1; h�2;n):

We now use (12.29) to show by contradiction that the result of the Lemma holds.

Suppose the result of the Lemma does not hold. Then, there exist constants � > 0 and

"� > 0; a subsequence fan : n � 1g; and a sequence fh1;an 2 H1 : n � 1g such that

lim
n!1

�
c0(h1;an ; h2;an ; 1� �+ �1) + � � c0(h1;an ; h

�
2;an ; 1� �)

�
� �"� < 0: (12.30)

Using this and (12.29), we have

lim sup
n!1

P (T (h1;an ; h2;an) � c0(h1;an ; h2;an ; 1� �+ �1) + �)

� lim sup
n!1

P (T (h1;an ; h2;an) � c0(h1;an ; h
�
2;an ; 1� �)� "�=2)

� lim sup
n!1

sup
h12H1

P (T (h1; h2;an) � c0(h1; h
�
2;an ; 1� �)� "�=2)

< 1� �+ �1; (12.31)

where the �rst inequality holds by (12.30) and the last inequality holds by (12.29) with

"�=2 in place of �:

Equation (12.31) is a contradiction to (12.30) because the left-hand side quantity in

(12.31) (without the lim supn!1) is greater than or equal to 1� �+ �1 for all n � 1 by
the de�nition of the 1��+ �1 quantile c0(h1;an ; h2;an ; 1��+ �1) of T (h1;an ; h2;an): This
completes the proof of the Lemma except for establishing (12.28).

To establish (12.28), we write

lim sup
n!1

sup
h12H1

h
P (T (h1; h2;n) � xh1;h�2;n)� P (T (h1; h

�
2;n) � xh1;h�2;n + �)

i
(12.32)

� lim sup
n!1

sup
h12H1

h
P (T (h1; h2;n) � xh1;h�2;n)� P (T (h1; h2;0) � xh1;h�2;n + �=2)

i
+lim sup

n!1
sup
h12H1

h
P (T (h1; h2;0) � xh1;h�2;n + �=2)� P (T (h1; h

�
2;n) � xh1;h�2;n + �)

i
:

The �rst summand on the right-hand side of (12.32) is less than or equal to 0 by the

same argument as used to prove Theorem 1(a) with �an;Fan (�an ; �) replaced by �h2;an (�)
in (12.3), where �h2;an (�) is de�ned in (4.2), because d(h2;an ; h2;0) ! 0 as n ! 1
implies that the Gaussian processes �h2;an (�) ) �h2;0(�) as n ! 1: This argument uses

Assumption S2.

Similarly, the second summand on the right-hand side of (12.32) is less than or equal
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to 0 by an argument analogous to that for Theorem 1(b). Hence, (12.28) is established,

which completes the proof. �
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13 Supplemental Appendix B

13.1 Kolmogorov-Smirnov and Approximate

CvM Tests and CS�s

In this Appendix, we provide results for Kolmogorov-Smirnov (KS) and approximate

CvM (A-CvM) tests and CS�s de�ned in Sections 3.1 and 4.2, respectively. A-CvM tests

are Cramér-von Mises-type tests in which the test statistic is an in�nite sum that is

truncated to include only the �rst sn functions fg1; :::; gsng or the test statistic is an
integral with respect to the measure Q and the integral is approximated by a (possibly

weighted) average over the functions fg1; :::; gsng; which are obtained by simulation or
by a quasi-Monte Carlo method. The same functions fg1; :::; gsng are used for the test
statistic and the critical value. In the case of simulated functions, the probabilistic

results given here are for �xed (i.e., non-random) functions fg1; :::; gsng: If fg1; :::; gsng
are obtained via i.i.d. draws from Q; then the probability results are made conditional

on the observed functions fg1; :::; gsng for n � 1:
We show that (i) KS and A-CvMCS�s have uniform asymptotic coverage probabilities

that are greater than or equal to their nominal level 1��; (ii) KS and A-CvM tests have

asymptotic power equal to one for all �xed alternatives, and (iii) KS and A-CvM tests

have asymptotic power that is arbitrarily close to one for a broad array of n�1=2-local

alternatives whose localization parameter is arbitrarily large.

We consider a slightly more general KS statistic than that de�ned in (3.7):

Tn(�) = sup
g2Gn

S(n1=2mn(�; g);�n(�; g)); (13.1)

where Gn � G:
For KS tests and CS�s, we make use of the following assumptions.

Assumption KS. Gn " G as n!1:

LetWbd denote a subset ofW (the set of k�k positive de�nite matrices) containing
matrices whose eigenvalues are bounded away from zero and in�nity.

Assumption S2 0. S(m;�) is uniformly continuous in the sense that for all bounded
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setsM in Rk and all sets Wbd

sup
�2[0;1)p�f0gv

sup
m;m02M:
jjm�m0jj��

sup
�;�02Wbd:
jj���0jj��

jS(m+ �;�)� S(m0 + �;�0)j ! 0 as � ! 0:

The following Lemma shows that Assumption S2 0 is not restrictive.

Lemma B1. The functions S1; S2; and S3 satisfy Assumption S2 0.

The following assumption is a strengthening of Assumptions LA1(b) and LA2.

Assumption LA2 0. (a) For all B < 1; supg2G:h1(g)�B jjh1;n;Fn(�n; g) � h1(g)jj ! 0 as

n!1; where �n; Fn; and h1(g) are as in Assumption LA1, and

(b) the k � d matrix �F (�; g) = (@=@�
0)[D

�1=2
F (�)EFm(Wi; �; g)] exists and satis�es:

for all sequences f�n : n � 1g such that �n ! 0 as n!1;

sup
jj���0jj��n

sup
g2G

jj�Fn(�; g)� �F0(�; g)jj ! 0 as n!1 and sup
g2G

jj�F0(�0; g)jj <1;

where �0; F0; and Fn are as in Assumption LA1.

Assumption LA2 0(a) only requires uniform convergence of h1;n;Fn(�n; g) to h1(g) over

fg 2 G : h1(g) � Bg because uniform convergence over g 2 G typically does not hold.
Assumption LA2 0 is not restrictive.

For A-CvM tests and CS�s, we use Assumptions S2 0; LA2 0; and the following as-

sumptions, which hold automatically in the case of an approximate test statistic that is

a truncated sum with sn !1:

Assumption A1. The functions fg1; :::; gsng for n � 1 are �xed (i.e., non-random) and
sn !1 as n!1:

Assumption A2. The functions fg1; g2; :::g satisfy:

snX
`=1

wQ;n(`)S(m
�(g`); h2;F0(��; g`)+"Ik)!

Z
S(m�(g); h2;F0(��; g)+"Ik)dQ(g) as n!1;

where m�(g) = (m�
1(g); :::;m

�
k(g))

0; m�
j(g) = EF0mj(Wi; ��)gj(Xi)=�F0;j(��); �� and F0

are de�ned as in Assumption FA, wQ;n(`) = Q(fg`g) in the case of an approximate
test statistic that is truncated sum, wQ;n(`) = n�1 in the case of an approximate test
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statistic that is a simulated integral, and wQ;n(`) is a suitable weight when a test statistic

is approximated by a quasi-Monte Carlo method.

Assumption A3. The functions fg1; g2; :::g satisfy: for some sequence of constants
fB�

c <1 : c = 1; 2; :::g such that B�
c !1 as c!1;

snX
`=1

wQ;n(`)1(h1(g`) < B�
c )S(�0(g`)�0; h2(g`) + "Ik)

!
Z
1(h1(g) < B�

c )S(�0(g)�0; h2(g) + "Ik)dQ(g) as n!1;

where �0(g) = �F0(�0; g); h2(g) = h2;F0(�0; g); and �0 and F0 are de�ned as in Assump-

tion LA1.

Assumptions A1-A3 are not restrictive because (i) they hold automatically if the

approximate test statistic is a truncated sum and (ii) if the approximate test statistic

is a simulated integral and fg1; g2; :::g are i.i.d. with distribution Q and sn ! 1 as

n!1; then they hold conditional on fg1; g2; :::g with probability one.
The following result establishes that nominal 1�� KS and A-CvM CS�s have uniform

asymptotic coverage probability greater than or equal to 1� �:

Theorem B1. Suppose Assumptions M, S1, and S2 0 hold and Assumption GMS1 holds
when considering GMS CS�s. Then, for every compact subset H2;cpt of H2; KS-GMS,

KS-PA, A-CvM-GMS, and A-CvM-PA con�dence sets CSn satisfy

lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) � 1� �:

Comments. 1. Assumptions KS and A1 are not needed in Theorem B1.

2. Theorem B1 is an analogue of Theorem 2(a) for CS�s based on KS and A-

CvM statistics. It is proved by making adjustments to the proof of Theorem 2(a). An

analogue of Theorem 2(b) is not given here because the proof of Theorem 2(b) does

not go through with KS or A-CvM test statistics. The proof of Theorem 2(b) utilizes

the bounded convergence theorem which applies only if the test statistic is an integral

with respect to some measure Q: The continuous mapping theorem cannot be applied

because the convergence of h1;n;Fn(�n; g) to h1;1;F0(�0; g) is not uniform over g 2 G for
many sequences f(�n; Fn) 2 F : n � 1g; where (�n; Fn)! (�0; F0):
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The next result shows that KS and A-CvM tests have asymptotic power equal to

one against all �xed alternatives. This implies that any parameter value outside the

identi�ed set is included in a KS or A-CvM CS with probability that goes to zero as

n!1; see the Comment to Theorem 3.

Theorem B2. Suppose Assumptions FA, CI, Q, S1, S3, and S4 hold, Assumption KS
holds when considering the KS test, and Assumptions A1 and A2 hold when considering

A-CvM tests. Then, the KS-GMS and KS-PA tests satisfy the results of Theorem 3

concerning power under �xed alternatives. In addition, A-CvM-GMS and A-CvM-PA

tests, respectively, satisfy

(a) limn!1 PF0(T n;sn(��) > csn('n(��);
bh2;n(��); 1� �)) = 1 and

(b) limn!1 PF0(T n;sn(��) > csn(0G;bh2;n(��); 1� �)) = 1:

The following result is for n�1=2-local alternatives.

Theorem B3. Suppose Assumptions M, S1-S4, S2 0; LA1, and LA2 0 hold, Assumptions
KS and LA3 hold when considering the KS test, and Assumptions A1, A3, and LA3 0

hold when considering A-CvM tests. Let �n;� = �n;�(�) = �n + ��0n
�1=2(1 + o(1)) be

as in Assumption LA1(a) with � = ��0 for some � > 0 and �0 2 Rd� : Then, under

n�1=2-local alternatives, the A-CvM-GMS and A-CvM-PA tests, respectively, satisfy

(a) lim�!1 limn!1 PFn(T n;sn(�n;�(�)) > csn('n(�n;�(�));
bh2;n(�n;�(�)); 1 � �)) = 1

provided Assumption GMS1 also holds,

(b) lim�!1 limn!1 PFn(T n;sn(�n;�(�)) > csn(0G;bh2;n(�n;�(�)); 1� �)) = 1; and

(c) KS-GMS and KS-PA tests satisfy parts (a) and (b), respectively, with T n;sn(�n;�(�))

replaced by Tn(�n;�(�)) and with the subscript sn on csn(�; �; �) deleted.

Comment. Theorem B3 shows that KS and A-CvM tests have power arbitrarily close

to one for the same n�1=2-local alternatives as Cramér-von Mises tests that are based

on integrals with respect to a probability measure Q:

13.2 Instruments and Weight Functions

In this section we provide three additional examples of instruments G and weight
functions Q that satisfy Assumptions CI, M, F(e), and Q. We also specify non-data-

dependent methods for transforming a regressor to lie in [0; 1]:

If x 2 R is known to lie in an open, closed, or half-open interval denoted by bc; dc;
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where �1 � c � d � 1; then one can transform x into [0; 1] via

t(x) = x�c
d�c if c > �1 & d <1; t(x) = ex

1+ex
if c = �1 & d =1;

t(x) = ex�c�1
1+ex�c if c > �1 & d =1; t(x) = 2ex�d

1+ex�d if c = �1 & d <1:
(13.2)

Alternatively, a vector Xi can be transformed �rst to have sample mean equal to

zero and sample variance matrix equal to Idx (by multiplication by the inverse of the

upper-triangular Cholesky decomposition of the sample covariance matrix of Xi). Then,

it can be transformed to lie in [0; 1]dx by applying the standard normal distribution

function �(�) element by element. This method is employed in Section 10.3.

Example 3. (B-splines). A collection of B-splines provides a set G that satis�es
Assumptions CI and M for those (�; F ) for which EF (mj(Wi; �)jXi = x) is a continuous

function of x for all j � k: The regressors are transformed to lie in [0; 1]dx : We consider

normalized cubic B-splines with equally-spaced knots on [0; 1]dx : (B-splines of other

orders also could be considered.) The class of normalized cubic B-splines is a countable

set de�ned by

GB�spline = fg(x) : g(x) = BC(x) � 1k for C 2 CB�splineg; where
CB�spline =

�
C�a;r = �dxu=1 [((au � 1)=(2r); (au + 3)=(2r)] \ [0; 1]] 2 [0; 1]dx : a = (a1; :::; adx)0

au 2 f�2;�1; :::; 2rg for u = 1; :::; dx and r = r0; r0 + 1; :::

�
and

BC�a;r(x) = 1(x 2 C
�
a;r)

�
dxY
u=1

8>>>>>><>>>>>>:

y3u=6 for xu 2 ((au � 1)=(2r); au=(2r)]
(�3y3u + 12y2u � 12yu + 4)=6 for xu 2 (au=(2r); (au + 1)=(2r)]
(�3z3u + 12z2u � 12zu + 4)=6 for xu 2 ((au + 1)=(2r); (au + 2)=(2r)]
z3u=6 for xu 2 ((au + 2)=(2r); (au + 3)=(2r)]
0 otherwise,

x = (x1; :::; xdx)
0; yu = 2rxu � (au � 1); and zu = 4� yu for u = 1; :::; dx;

(13.3)

for some positive integer r0; see Schumaker (2007, p. 136). If dx = 1; a B-spline in

GB�spline has �nite support given by the union of four consecutive subintervals each of
length (2r)�1: If dx � 1; a cubic B-spline in GB�spline has support on a dx-dimensional
hypercube in [0; 1]dx with edges of length 4 � (2r)�1:
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Note that a bounded continuous product kernel with bounded support could be used

in place of B-splines in Example 3.

Weight Function Q for GB�spline: There is a one-to-one mapping�B�spline : GB�spline !
AR�; where AR� is de�ned as AR is de�ned in Section 3.4 but with f�2;�1; :::; 2rgdx in
place of f1; :::; 2rgdx : We take Q = ��1B�splineQAR� ; where QAR� is a probability measure
on AR�: For example, the uniform distribution on a 2 f�2;�1; :::; 2rgdx conditional on
r and some discrete mass function fw(r) : r = r0; r0+1; :::g on r gives the test statistic:

Tn(�) =

1X
r=r0

w(r)
X

a2f�2;�1;:::;2rgdx
(2r + 3)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (13.4)

where ga;r(x) = BC�a;r(x) � 1k for C�a;r 2 CB�spline

Example 4 (Data-dependent Boxes). Next, we consider a class of functions Gbox;dd
that is designed to be applied with a data-dependent weight function Q de�ned below.

Because this Q only puts positive weight on center-points x that are in the support ofXi;

it turns out to be necessary to consider boxes with di¤erent left and right edge lengths

as measured from the �center�point. (See footnote 46 below for an explanation.)

We de�ne

Gbox;dd = fg : g(x) = 1(x 2 C) � 1k for C 2 Cbox;ddg; where (13.5)

Cbox;dd =
�
Cx;r1;r2 =�dxu=1(xu�r1;u; xu + r2;u]: x2 SuppFX;0(Xi); r1;u; r2;u2 (0; �r) 8u � dx

	
for some �r 2 (0;1]; x = (x1; :::; xdx)

0; r1 = (r1;1; :::; r1;dx)
0; r2 = (r2;1; :::; r2;dx)

0; and

SuppFX;0(Xi) denotes the support of Xi when F0 is the true distribution.

Data-dependent Q for Gbox;dd: There is a one-to-one mapping �box;dd : Gbox;dd !
f(x; r1; r2) 2 SuppFX;0(Xi) � (0; �r)2dxg: Thus, for any probability measure Q� on

f(x; r1; r2) 2 SuppFX;0(Xi) � (0; �r)2dxg; (�box;dd)�1Q� is a valid probability measure on
Gbox;dd: In this case, the inverse mapping (�box;dd)�1 is (�box;dd)�1[x; r1; r2] = gx;r1;r2(�) =
1(� 2 Cx;r1;r2) � 1k: Let

Q�FX;0 = FX;0 � Unif
��
�dxu=1(0; �X;u�r)

�2�
; where

�2X;u = V arFX;0(Xi;u) for u = 1; :::; dx (13.6)
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and FX;0 denotes the true distribution of Xi:
46 The scale factors �X;1; :::; �X;dx are in-

cluded here to make Q�FX;0 equivariant to location and scale changes in Xi: Of course,

FX;0 and f�2X;u : u � dxg are unknown, so they need to be replaced by estimators. The
distribution FX;0 can be estimated by the empirical distribution ofXi based on a subsam-

ple of size bn of fXi : i � ng; denoted by bFX;bn(�): Here we use the empirical distribution
based on a subsample, rather than the whole sample, because the computational costs

are large when bn = n and n is large.47 The variances f�2X;u : u � dxg can be estimated
by the sample variances based on fXi : i � ng; denoted by fb�2X;n;u : u = 1; :::; dxg: In
this case, the test statistic is

Tn(�)

=

Z
Rdx

Z
(�dxu=1(0;b�X;n;u�r))2 S(n

1=2mn(�; gx;r1;r2);�n(�; gx;r1;r2))

�
dxY
u=1

(b�X;n;u�r)�2dr1dr2d bFX;mn(x) (13.7)

= b�1n

bnX
i=1

Z
(�dxu=1(0;b�X;n;u�r))2 S(n

1=2mn(�; gXi;r1;r2);�n(�; gXi;r1;r2))dr1dr2

dxY
u=1

(b�X;n;u�r)�2;
where gx;r1;r2 is as above.

When an approximate test statistic T n;sn(�) that is a simulated integral is employed,

see (3.16) in Section 3.5, it is de�ned as in (13.7) but with the integral over (r1; r2)

replaced by an average over ` = 1; :::; sn; the term
Qdx
u=1(b�X;n;u�r)�2 deleted, and gXi;r1;r2

replaced by gXi;r1;`;r2;` ; where f(r1;`; r2;`) : ` = 1; :::; sng are i.i.d. with a Unif(�dxu=1(0;b�X;n;u�r))2 distribution. Alternatively, in this case, one can take bn = sn; delete the

integral over (r1; r2); delete the term
Qdx
u=1(b�X;n;u�r)�2; and replace gXi;r1;r2 by gXi;r1;i;r2;i ;

where f(r1;i; r2;i) : i = 1; :::; sng are as above.
46One might think that a natural data-dependent measure Q is Qs = ��1box(FX;0 � Unif((0; �r)dx);

de�ned on Gsbox; where Gsbox is de�ned as Gbox is de�ned in (3.13) but with R replaced by Supp(Xi):
However, such a Q does not necessarily have support that contains Gsbox and, hence, the resulting test
may not have power against all �xed alternatives. See the following paragraph for details. It is for this
reason that Gbox;dd is de�ned to contain boxes that are asymmetric about their center points.
The probability distribution Qs on Gsbox; does not necessarily satisfy Assumption Q. To see why,

consider a simple example with dx = 1 and k = 1: Suppose Xi takes only four values: 0; 1; 2; 3 each
with probability 1=4 and �r > 1: Then, for g1;1(x) = 1(x 2 (0; 2]) 2 Gsbox; we have B(g1;1; �) = fg1;1g:
This holds because if ! > 0; g1;1+!(0) = 1 but g1;1(0) = 0; if ! < 0; g1;1+!(2) = 0 but g1;1(2) = 1; if
! > 0; g2;1+!(3) = 1 but g1;1(3) = 0; and if ! < 0; g2;1+!(1) = 0 but g1;1(1) = 1: The set fg1;1g has
zero Qs measure. So, Qs does not satisfy Assumption Q.
47Also, it is easier to establish the asymptotic validity of this procedure when bn=n! 0 as n!1:
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Example 5. (Continuous/Discrete Regressors). The collections Gc-cube and Gbox
(de�ned in the main paper) and GB�spline and Gbox;dd (de�ned here) can be used with
continuous and/or discrete regressors. However, one can design G to exploit the known
support of discrete regressors. Suppose Xi = (X

0
1;i; X

0
2;i)

0; where X1;i 2 Rdx;1 is a contin-
uous random vector and X2;i 2 Rdx;2 is a discrete random vector that takes values in a

countable set D = fx2;1; x2;2; :::g; where x2;u 2 Rdx;2 for all u � 1: De�ne the set Gc=d by

Gc=d = fg : g = g1g2; g1 2 G1; gd 2 GDg; (13.8)

where x = (x01; x
0
2)
0; g1 is an Rk-valued function of x1; g2 is an R-valued function of x2;

G1 = Gc-cube; Gbox; GB�spline; or Gbox;dd; with x and dx replaced by x1 and dx;1; respectively,
and GD = fgd : gd(x2) = 1fdg(x2)g for d 2 Dg:

Weight Function Q for Gc=d: When G is of the form Gc=d; it is natural to take Q to

be of the form Q1 �QD; where Q1 is a probability measure on G1; such as any of those
considered above with x1 in place of x; and QD is a probability measure on D: If D is a

�nite set, then one may take QD to be uniform. For example, when G1 = Gbox and QD
is uniform, the test statistic is

Tn(�) =
1

#D

X
d2D

Z
[0;1]dx;1

Z
(0;�r)dx;1

S(n1=2mn(�; gx1;rgd);�n(�; gx1;rgd))�r
�dxdrdx1; (13.9)

where #D denotes the number of elements in D and x1 2 Rdx;1 : When G1 = Gc-cube or
GB�spline; Tn(�) is a combination of the formulae given above.

The following result establishes Assumptions CI, M, and FA(e) for GB�spline; Gbox;dd;
and Gc=d and Assumption Q for the weight functions Q on these sets.

Lemma B2. (a) For any moment function m(Wi; �); Assumptions CI and M hold with

G = GB�spline for all (�; F ) for which EF (mj(Wi; �)jXi = x) is a continuous function of

x for all j � k:

(b) For any moment function m(Wi; �); Assumptions CI and M hold with G =

Gbox;dd:
(c) For any moment function m(Wi; �); Assumptions CI and M hold with G = Gc=d;

where G1 = Gc-cube; Gbox; GB�spline; or Gbox;dd; with (x; dx) replaced by (x1; dx;1) and
in the case of G1 = GB�spline Assumption CI and M only hold for (�; F ) for which

EF (mj(Wi; �)jXi;1 = x1; X2;i = d) is a continuous function of x1 2 [0; 1]dx;1 8d 2 D;
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8j � k:

(d) Assumption FA(e) holds for GB�spline; Gbox;dd; and Gc=d:
(e) Assumption Q holds for the weight function Qc = ��1B�splineQAR� on GB�spline;

where QAR� is uniform on a 2 f�2;�1; :::; 2rgdx conditional on r and r has some

probability mass function fw(r) : r = r0; r0 + 1; :::g with w(r) > 0 for all r:
(f) Assumption Q holds for the weight function Qd = (�box;dd)�1Q�FX;0 ; whereQ

�
FX;0

=

(FX;0 � Unif((�dxu=1(0; �X;u�r))2) on Gbox;dd:
(g) Assumption Q holds for the weight function Qe = Q1 � QD on Gc=d; where Q1

is a probability measure on G1 equal to any of the distributions Q on G considered in
part (e), part (f), or in Lemma 4 but with x1 in place of x; D is a �nite set, and

QD = Unif(D):

Comment. The uniform distribution that appears in parts (e)-(g) of the Lemma could
be replaced by another distribution and the results of the Lemma still hold provided the

other distribution has the same support. For example, in part (g), Assumption Q holds

when D is a countably in�nite set and QD is a probability measure whose support is D:

13.3 Example: Veri�cation of Assumptions

LA1-LA3 and LA3 0

Here we verify Assumptions LA1-LA3 and LA3 0 in a simple example for purposes

of illustration. These assumptions are the main assumptions employed with local alter-

natives.

Example. SupposeWi = (Yi; Xi)
0 2 R2 and there is a single moment inequality function

m(Wi; �) = Yi � � and no moment equalities, i.e., p = 1 and v = 0: Suppose the true

parameters/distributions f(�n; Fn) 2 F : n � 1g and the null values f�n;� 2 �; : n � 1g
satisfy: (i) �n ! �0 and Fn ! F0 (under the Kolmogorov metric) for some (�0; F0) 2 F ;
(ii) �n;� = �n + �n�1=2 for some � > 0; (iii) Yi = �n + �(Xi)n

�1=2 + Ui; (iv) �(x) � 0;

8x 2 R; and (v) under all F such that (�; F ) 2 F for some � 2 �; (Xi; Ui) are i.i.d.

with distribution that does not depend on F; Xi and Ui are independent, EFUi = 0;

V arF (Ui) = 1; V arF (Xi) 2 (0;1); and EF jUij2+� + EF j�(Xi)j2+� <1 for some � > 0;

and supg2G EF (1 + �
2(Xi))(1 + g2(Xi)) <1:

We show that in this example Assumptions LA1 and LA2 hold, Assumption LA3

holds if � is su¢ ciently large, and Assumption LA3 0 holds if G andQ satisfy Assumptions
CI and Q, respectively.
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By (v), we can write EFg(Xi) = Eg(Xi) and EF�(Xi)g(Xi) = E�(Xi)g(Xi):

Assumption LA1(a) holds by (i) and (ii). Assumption LA1(b) holds by the following

calculations:

n1=2EFnm(Wi; �n; g) = n1=2EFn(Ui + �(Xi)n
�1=2)g(Xi) = h1(g); where

h1(g) = E�(Xi)g(Xi) 2 [ 0;1) and (13.10)

�2Fn(�n) = V arFn(Yi) = V arFn(Ui + �(Xi)n
�1=2) = 1 + n�1V arFn(�(Xi))! 1:

To show Assumption LA1(c), we have

EFnY
2
i g(Xi)g

�(Xi) = EFn(�n + �(Xi)n
�1=2 + Ui)

2g(Xi)g
�(Xi)

! EF0(�0 + Ui)
2g(Xi)g

�(Xi)

= EF0Y
2
i g(Xi)g

�(Xi) as n!1; (13.11)

uniformly over g; g� 2 G; using (i), (iii), and (v). Here we have used Yi = �0 + Ui under

F0: This holds because Fn ! F0 by (ii), which implies that PFn(Yi � y)! PF0(Yi � y)

for all continuity points Yi; but direct calculations show that PFn(Yi � y) = P (�n +

�(Xi)n
�1=2+Ui � y)! P (�0+Ui � y) for all continuity points y of Ui+ �0 and, hence,

Yi = �0 + Ui under F0:

Next, we write

EFnm(Wi; �n; g)m(Wi; �n; g
�)

= EFnY
2
i g(Xi)g

�(Xi)� �nE[EFn(YijXi)(g(Xi) + g�(Xi))] + �
2
nEg(Xi)g

�(Xi)

= EFnY
2
i g(Xi)g

�(Xi)� �nE[(�n + �(Xi)n
�1=2)(g(Xi) + g�(Xi))]

+�2nEg(Xi)g
�(Xi)

= EF0Y
2
i g(Xi)g

�(Xi)� �20Eg(Xi)� �20Eg
�(Xi) + �20Eg(Xi)g

�(Xi) + o(1)

= EF0m(Wi; �0; g)m(Wi; �0; g
�) + o(1); (13.12)

where o(1) holds uniformly over g; g� 2 G; using (13.11), (i), (iii), and (v). In addition,
EFnm(Wi; �n; g) = o(1) and EF0m(Wi; �0; g) = o(1) uniformly over g 2 G by (13.10) and
(v). Hence, the �rst part of Assumption LA1(c) holds. The second part of Assumption

LA1(c) holds by the same argument with �n;� in place of �n:

Assumption LA1(d) holds because V arFn(mj(Wi; �n;�)) = V arFn(mj(Wi; �n)) > 0:

Assumption LA1(e) holds using (v) and the above expression for �2Fn(�n):
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Assumption LA2 holds because �F (�; g) does not depend on (�; F ) by the following

calculations and (v): 8F such that (�; F ) 2 F and 8g 2 G;

�F (�; g) = (@=@�)[D
�1=2
F (�)EFm(Wi; �; g)]

= ��1F (�)(@=@�)EF (Yi � �)g(Xi)] = ���1F (�)Eg(Xi); (13.13)

where the second equality holds because DF (�) = �2F (�) = V arF (Yi) does not depend

on �:

We have: �0(g) = �F0(�0; g) = �Eg(Xi) by (13.13) and �2F0(�0) = 1: Hence, in

Assumption LA3, h1(g)+�0(g)� = E�(Xi)g(Xi)�Eg(Xi)�; which is negative whenever

� > E�(Xi)g(Xi)=Eg(Xi): Hence, if the null value �n;� deviates from the true value �n
by enough (i.e., if n1=2(�n;���n) = � is large enough), then the null hypothesis is violated

for all n and Assumption LA3 holds.

Next, we show that Assumption LA3 0 holds provided Assumptions CI and Q hold.

We have: (a) �0(g) = �Eg(Xi); (b) h1(g) < 1 8g 2 G by (13.10) using (v), and (c)
�0 = �=� > 0 because � > 0 by (ii) and � > 0 by de�nition. Hence, the condition of

Assumption LA3 0 reduces to

Q(fg 2 G : Eg(Xi) > 0g) > 0: (13.14)

Suppose Eg�(Xi) > 0 for some g� 2 G: (This is a very weak requirement on G and is
implied by Assumption CI, see below.) Let �1 = Eg�(Xi) > 0: Then, using the metric

�X de�ned in Section 6, for any g 2 G with �X(g; g�) < �1; we have Eg(Xi) > 0 because

otherwise g(Xi) = 0 a.s. and �1 > �X(g; g
�) = (Eg�(Xi)

2)1=2 � Eg�(Xi) = �1; which

is a contradiction. Thus, Eg(Xi) > 0 for all g 2 B�X (g�; �1); where B�X (g�; �1) is the
open �X-ball in G centered at g� with radius �1: By Assumption Q, Q(B�X (g�; �1)) > 0:
Hence, (13.14) holds and Assumption LA3 0 is veri�ed.

Lastly, we show that Assumption CI implies that Eg�(Xi) > 0 for some g� 2 G: For
all � > �0; we have

XF0(�) = fx 2 R : EF0(mj (Wi; �) jXi = x) < 0g
= fx 2 R : �0 � � < 0g = R; (13.15)

where the second equality holds because Yi = �0+Ui under F0; and so, EF0(mj (Wi; �) jXi

= x) = EF0(Yi � �jXi = x) = �0 � �:
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By (13.15), PF0(Xi 2 XF0(�)) = PF0(Xi 2 R) = 1 > 0: Hence, by Assumption CI,

there exists g� 2 G such that EF0m(Wi; �)g
�(Xi) = E(�0��)g�(Xi) < 0 for � > �0: That

is, Eg�(Xi) > 0:

13.4 Uniformity Issues with In�nite-Dimensional

Nuisance Parameters

This section illustrates one of the subtleties that arises when considering the uniform

asymptotic behavior of a test or CS in a scenario in which a test statistic exhibits

a �discontinuity in its asymptotic distribution� and an in�nite-dimensional nuisance

parameter a¤ects the asymptotic behavior of the test statistic.

In many testing problems, the asymptotic distribution of a KS-type statistic is deter-

mined by establishing the weak convergence of some underlying stochastic process and

applying the continuous mapping theorem. This yields the asymptotic distribution to

be the supremum of the limit process. In the context of conditional moment inequalities

with drifting sequences of distributions, this method does not work. The reason is that

the normalized mean function of the underlying stochastic process, i.e., h1;n;Fn(�n; g);

often (in fact, usually) does not converge uniformly over g 2 G to its pointwise limit,
i.e., h1(g); and, hence, stochastic equicontinuity fails.48

We show by counter-example that the asymptotic distribution under drifting se-

quences of null distributions of a KS statistic, where the �sup�is over g 2 G; does not
necessarily equal the supremum of the limiting process indexed by g 2 G that is deter-
mined by the �nite-dimensional distributions. Hence, if the critical value is based on this

limiting process, a KS test does not necessarily have correct asymptotic null rejection

probability. In fact, we show that it can over-reject the null hypothesis substantially.

The same phenomenon does not arise with CvM statistics, which are �average�

statistics. This is because the averaging smooths out the non-uniform convergence of

the normalized mean function.

The results in the �rst section of this Appendix show that the problem discussed

above does not arise with the KS statistic when the critical value employed is a GMS

critical value that satis�es Assumption GMS1, see Section 4, or a PA critical value. The

validity of these critical values is established using a uniform asymptotic approximation

48Note that drifting sequences of distributions are of interest because correct asymptotic coverage
probabilities under all drifting sequences is necessary, though not su¢ cient, for correct uniform asymp-
totic coverage probabilities.
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of the distribution of the KS statistic, rather than using asymptotics under sequences

of true distributions.

To start, we give a very simple deterministic example to illustrate a situation in

which a deterministic KS statistic does not converge to the supremum of the pointwise

limit, but an �average� CvM statistic does converge to the average of the pointwise

limit. Consider the piecewise linear functions fn : [0; 1]! [0; 1] de�ned by

fn(x) =

8><>:
x="n for x 2 [0; "n]
1� (x� "n)="n for x 2 ["n; 2"n]
0 for x 2 [2"n; 1];

(13.16)

where 0 < "n ! 0 as n!1: Then, for all x 2 [0; 1];

fn(x)! f(x) = 0 as n!1: (13.17)

The KS statistic does not converge to the supremum of the limit function:

sup
x2[0;1]

fn(x) = 19 0 = sup
x2[0;1]

f(x) as n!1: (13.18)

On the other hand, the CvM statistic does converge to the average of the limit function:Z 1

0

fn(x)dx = "n ! 0 =

Z 1

0

f(x)dx as n!1: (13.19)

The convergence result for the KS statistic in (13.18) is potentially problematic

because in a testing problem with a KS statistic the critical value might be obtained

from the distribution of the supremum of the limit process. If convergence in distribution

of the KS statistic to the �sup�of the limit process does not hold, then such a critical

value is not necessarily appropriate.

Now we show that the phenomenon illustrated in (13.16)-(13.19) arises in conditional

moment inequality models. We consider a particular conditional moment inequality

model with a single linear moment inequality, a �xed true value �0; and a particular

drifting sequence of distributions. (Note that CX stands for �counterexample.�)

Assumption CX. (a) m(Wi; �) = Yi � � for Yi; � 2 R;
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(b) m(Wi; �0) = Yi = Ui+1(Xi 2 ("n; 1]); where the true value �0 equals 0; EUi = 0;
EU2i = 1; the distribution of Ui does not depend on n; Ui and Xi are independent, and

the constants f"n : n � 1g satisfy "n ! 0 as n!1;

(c) Xi = "n with probability 1=2 and Xi is uniform on [0; 1] with probability 1=2;

(d) fWi = (Yi; Xi)
0 : i � n; n � 1g is a row-wise independent and identically

distributed triangular array (with the dependence of Wi; Yi; and Xi; on n suppressed

for notational simplicity),

(e) S(m;�) = S(m) for m 2 R;
(f) S satis�es Assumptions S1 and S2, and

(g) G = fga;b : ga;b = 1(x 2 (a; b]) for some 0 � a < b � 1g:

The function S1(m) = [m]2� satis�es Assumptions CX(e)-(f). Assumption CX(e) is made

for simplicity. It could be removed and with some changes to the proofs the results given

below would hold for S = S2 as well. The class of functions G speci�ed in Assumption
CX(g) is the class of one-dimensional boxes, as in Example 1 of Section 3.3.

We write

n1=2mn(�0; ga;b) = n�1=2
nX
i=1

Yiga;b(Xi) = �n(ga;b) + h1;n(ga;b); where

�n(ga;b) = n1=2(mn(�0; ga;b)� EFnmn(�0; ga;b)) and

h1;n(ga;b) = n1=2EFnmn(�0; ga;b): (13.20)

The KS statistic is

sup
ga;b2G

S(n1=2mn(�0; ga;b)) = sup
ga;b2G

S(�n(ga;b) + h1;n(ga;b)):
49 (13.21)

Let �(�) be a mean zero Gaussian process indexed by ga;b 2 G with covariance kernel
K(�; �) and with sample paths that are uniformly �-continuous, where K(�; �) and �(�; �)
are speci�ed in the proof of Theorem B4 given in the next subsection.

The KS statistic satis�es the following result.

Theorem B4. Suppose Assumption CX holds. Then,
(a) �n(�)) �(�) as n!1;

(b) h1;n(ga;b)! h1(ga;b) =1 as n!1 for all ga;b 2 G;
(c) supga;b2G jh1;n(ga;b)� h1(ga;b)j9 0 as n!1;

(d) S(�n(ga;b) + h1;n(ga;b))!d S(�(ga;b) + h1(ga;b)) as n!1 for all ga;b 2 G;
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(e) supga;b2G S(�(ga;b) + h1(ga;b)) = 0 a.s.,

(f) supga;b2G S(�n(ga;b) + h1;n(ga;b)) � S(�n(g0;"n) + h1;n(g0;"n))!d S(Z
�) as n!1;

where Z� � N(0; 1=2) and the inequality holds a.s., and

(g) supga;b2G S(�n(ga;b) + h1;n(ga;b))9d supga;b2G S(�(ga;b) + h1(ga;b)) as n!1:

Comments. 1. TheoremB4(g) shows that the KS statistic does not have an asymptotic
distribution that equals the supremum over ga;b 2 G of the pointwise limit given in
Theorem B4(d). This is due to the lack of uniform convergence of h1;n(ga;b) shown in

Theorem B4(c). (Note that the convergence in part (d) of the Theorem also holds jointly

over any �nite set of ga;b 2 G:)
2. Let c1;1�� denote the 1�� quantile of supga;b2G S(�(ga;b)+h1(ga;b)): By Theorem

B4(e), c1;1�� = 0: Theorem B4(f) and some calculations (given in the proof of Theorem

B4 below) yield

lim inf
n!1

P

 
sup
ga;b2G

S(�n(ga;b) + h1;n(ga;b)) > c1;1��

!
� 1=2: (13.22)

That is, if one uses c1;1�� as the critical value, the nominal level � test based on the

KS statistic has an asymptotic null rejection probability that is bounded below by 1=2;

which indicates substantial over-rejection.

Next, we provide results for a CvM statistic de�ned byZ
S(n1=2mn(�0; ga;b))dQ(ga;b) =

Z
S(�n(ga;b) + h1;n(ga;b))dQ(ga;b); (13.23)

where Q is a probability measure on G: In contrast to the KS statistic, the CvM statistic

is well-behaved asymptotically.

Theorem B5. Suppose Assumption CX holds. Then,

Z
S(�n(ga;b) + h1;n(ga;b))dQ(ga;b)!d

Z
S(�(ga;b) + h1(ga;b))dQ(ga;b) as n!1:

Comment. Theorem B5 is not proved using the continuous mapping theorem due

to the non-uniform convergence of h1;n(ga;b): Rather, it is proved using an almost sure

representation argument coupled with the bounded convergence theorem.
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13.5 Problems with Pointwise Asymptotics

In the case of unconditional moment inequalities, pointwise asymptotics have been

shown in Andrews and Guggenberger (2009) to be de�cient in the sense that they fail

to capture the �nite-sample properties of a typical test statistic of interest. This is due

to the discontinuity in the asymptotic distribution of the test statistic. In the case of

conditional moment equalities, the de�ciency of pointwise asymptotics is even greater.

We show in a simple example that the asymptotic distribution of a test statistic Tn(�0)

under a �xed distribution F0 often is pointmass at zero even when the true parameter �0
is on the boundary of the identi�ed set. This does not re�ect the statistic�s �nite-sample

distribution.

Suppose (i) Wi = (Yi; Xi)
0; (ii) there is one moment inequality function m(Wi; �) =

Yi � � and no moment equalities (i.e., p = 1 and v = 0); (iii) the true distribution is F0
for all n � 1; (iv) Yi = �0+�(Xi)+Ui; where Xi; Ui 2 R and �(�) = �F0(�); (v) �(x) � 0
8x 2 R; Xzero = fx 2 SuppF0(Xi) : �(x) = 0g 6= ?; and �(�) is continuous on R; and (vi)
under F0; (Xi; Ui) are i.i.d., Xi and Ui are independent, EF0Ui = 0; V arF0(Ui) = 1; Xi

is absolutely continuous, and V arF0(Xi) 2 (0;1): As de�ned, the conditional moment
inequality is

EF0(m(Wi; �0)jXi) = �(Xi) � 0 a.s. (13.24)

The inequality in (13.24) is strict except when Xi 2 Xzero: Often, the latter occurs with
probability zero. For example, this is true if Xzero is a singleton (or a set with Lebesgue
measure zero). In spite of the moment inequality being strict with probability one, the

true value �0 is on the boundary of the identi�ed set �F0 ; i.e., �F0 = (�1; �0]:
50

We consider a test statistic based on S(n1=2mn(�; g); I) with S = S1 = S2:

Tn(�0) =

Z
[n1=2mn(�0; g)]

2
�dQ(g)

=

Z "
n1=2

 
n�1

nX
i=1

(Ui + �(Xi))g(Xi)��(g)
!
+ n1=2�(g)

#2
�

dQ(g); where

mn(�0; g) = n�1
nX
i=1

(Yi � �0)g(Xi) and �(g) = EF0�(Xi)g(Xi): (13.25)

50This holds because, for any � > �0; (a) EF0(m(Wi; �)jXi) = �(Xi) + �0 � �; (b) 8� > 0; PF0(Xi 2
B(Xzero; �)) > 0 by the absolute continuity of Xi; where B(Xzero; �) denotes the closed set of points
that are within � of the set Xzero; (c) for �� > 0 su¢ ciently small, �(x) < � � �0 8x 2 B(Xzero; ��)
by the continuity of �(�); and, hence, (d) 0 < PF0(Xi 2 B(Xzero; ��)) � PF0(EF0(m(Wi; �)jXi) < 0);
which implies that � =2 �F0 :
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The �rst summand in the integrand in (13.25) is Op(1) uniformly over g 2 G by a
functional central limit theorem (CLT) and is identically zero if PF0(g(Xi) = 0) = 1: The

second summand, n1=2�(g); diverges to in�nity unless �(g) = 0: In addition, [xn]2� ! 0

as xn ! 1: Hence, if �(g) > 0; the integrand converges in probability to zero. In

the leading case in which Xzero is a singleton set (or any set with Lebesgue measure
zero), �(g) = 0 only if PF0(g(Xi) = 0) = 1 (using the absolute continuity of Xi): In

consequence, if �(g) = 0; the integrand in (13.25) equals zero a.s. Combining these

results shows that the asymptotic distribution of Tn(�0) under the �xed distribution F0
is pointmass at zero even though the true parameter is on the boundary of the identi�ed

set.51

The pointmass asymptotic distribution of Tn(�0) does not mimic its �nite-sample

distribution well at all. In �nite samples, the distribution of Tn(�0) is non-degenerate

because the quantity n1=2�(g) is �nite and far from in�nity for all functions g for which

�(x) is not large for x 2 Supp(g): Pointwise asymptotics fail to capture this.
The implication of the discussion above is that to obtain asymptotic results that

mimic the �nite-sample situation it is necessary to consider uniform asymptotics or, at

least, asymptotics under drifting sequences of distributions.

13.6 Subsampling Critical Values

13.6.1 De�nition

Here we de�ne subsampling critical values and CS�s. Let b denote the subsample

size when the full sample size is n: We assume b ! 1 and b=n ! 0 as n ! 1: The

number of di¤erent subsamples of size b is qn: There are qn = n!= (b! (n� b)!) di¤erent

subsamples of size b:

Let fTn;b;j (�) : j = 1; :::; qng be subsample statistics where Tn;b;j (�) is de�ned exactly
the same as Tn (�) is de�ned but based on the jth subsample rather than the full sample.

The empirical distribution function and the 1 � � quantile of fTn;b;j (�) : j = 1; :::; qng
51This argument is only heuristic. The result can be proved formally using a combination of an almost

sure representation result and the bounded convergence theorem as in the proofs given in Supplemental
Appendix A.
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are

Un;b (�; x) = q�1n

qnX
j=1

1(Tn;b;j (�) � x) for x 2 R and

cn;b (�; 1� �) = inffx 2 R : Un;b (�; x) � 1� �g; (13.26)

respectively. The subsampling critical value is cn;b(�0; 1 � �): The nominal level 1 � �

CS is given by (2.5) with cn;1��(�) = cn;b(�; 1� �):52

13.6.2 Asymptotic Coverage Probabilities
of Subsampling Con�dence Sets

Next, we show that nominal 1�� subsampling CS�s have asymptotic coverage prob-
abilities greater than or equal to 1 � � under drifting sequences of parameters and

distributions f(�n; Fn) 2 F : n � 1g: The sequences that we consider are those in the
set Seqb; which is de�ned as follows.

Let H1;H2; and H be de�ned as in (5.5). Let H�
1(h1) = fh�1 2 H1 : h

�
1;j(g) > 0 only

if h1;j(g) =1 for j � p; 8g 2 Gg:

De�nition Seqb(h�1;h). For h 2 H and h�1 2 H�
1(h1); de�ne Seq

b(h�1; h) to be the set

of sequences f(�n; Fn) : n � 1g such that
(i) (�n; Fn) 2 F 8n � 1;
(ii) limn!1 h1;n;Fn(�n; g) = h1(g) 8g 2 G;
(iii) limn!1 supg;g�2G jjD

�1=2
Fn

(�n)�Fn(�n; g; g
�)D

�1=2
Fn

(�n)� h2(g; g
�)jj = 0; and

(iv) limn!1 b
1=2D

�1=2
Fn

(�n)EFnm(W; �n; g) = h�1(g) 8g 2 G.

Let

Seqb =
S

h�12H�
1(h); h2H

Seqb(h�1; h): (13.27)

We use the following assumptions.

Assumption SQ. For all functions h1 : G ! Rp[+1]�f0gv; h2 : G2 !W, and mean zero
Gaussian processes f�h2(g) : g 2 Gg with �nite-dimensional covariance matrix h2(g; g�)
52The subsampling critical value de�ned above is a non-recentered subsampling critical value. One

also could consider recentered subsampling critical values, see Andrews and Soares (2010) for the
de�nition. But, there is little reason to do so because tests based on recentered subsampling critical
values have the same �rst-order asymptotic power properties as PA tests and recentered bootstrap
tests and worse behavior than the latter two tests in terms of the magnitude of errors in null rejection
probabilities asymptotically.
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for g; g� 2 G; the distribution function of
R
S(�h2(g)+h1(g); h2(g)+ "Ik)dQ(g) at x 2 R

is

(a) continuous for x > 0 and

(b) strictly increasing for x > 0 unless v = 0 and h1(g) =1p a.s. [Q]:

Lemma B3 below shows that Assumption SQ is satis�ed by S1 and S2:

Lemma B3. Assumption SQ holds when S = S1 or S2:

The following Assumption C is needed only to show that subsampling CS�s are not

asymptotically conservative. For (�; F ) 2 F , de�ne h1;j;F (�; g) =1 if EFmj(Wi; �; g) >

0 and h1;j;F (�; g) = 0 if EFmj(Wi; �; g) = 0 for g 2 G; j = 1; :::; p: Let h1;F (�; g) =

(h1;1;F (�; g); :::; h1;p;F (�; g); 0
0
v)
0:

Assumption C. For some (�; F ) 2 F ;
R
S(�h2;F (�; g)+h1;F (�; g); h2;F (�; g)+"Ik)dQ(g)

is continuous at its 1� � quantile, where f�h2;F (�; g) : g 2 Gg is a mean zero Gaussian
process concentrated on the space of uniformly �-continuous bounded Rk-valued func-

tionals on G, i.e., Uk� (G); with covariance kernel h2;F (�; g; g�) for g; g� 2 G:

Assumption C is not very restrictive.

The exact and asymptotic con�dence sizes of a subsampling CS are

ExCSn = inf
(�;F )2F

PF (Tn(�) � cn;b(�; 1� �)) and AsyCS = lim inf
n!1

ExCSn: (13.28)

The next assumption is used to establish AsyCS for subsampling CS�s. It is a high-level

condition that is di¢ cult to verify and hence is not very satisfactory.

Assumption Sub. For some subsequence fvn : n � 1g of fng for which f(�vn ; Fvn) 2
F : n � 1g satis�es limn!1 PFvn (Tn(�vn) � cn;b(�vn ; 1 � �)) = AsyCS (such a subse-

quence always exists), there is a subsequence fmng of fvng such that f(�mn ; Fmn) 2 F :
n � 1g belongs to Seqb; where Seqb is de�ned with mn in place of n throughout.

Part (a) of the following Theorem shows that subsampling CS�s have correct asymp-

totic coverage probabilities under drifting sequences of parameters and distributions.

Theorem B6. Suppose Assumptions M, S1, S2, and SQ hold. Then, a nominal 1� �

subsampling con�dence set based on Tn(�) satis�es

(a) inff(�n;Fn):n�1g2Seqb lim infn!1 PFn(Tn(�n) � cn;b(�n; 1� �)) � 1� �;
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(b) if Assumption C also holds, then

inf
f(�n;Fn):n�1g2Seqb

lim inf
n!1

PFn(Tn(�n) � cn;b(�n; 1� �)) = 1� �; and

(c) if Assumptions Sub and C also hold, then AsyCS = 1� �:

Comment. Theorem B6(c) establishes that subsampling CS�s have correct AsyCS

provided Assumption Sub holds. The latter condition is di¢ cult to verify. Hence, this

result is not nearly as useful as the uniformity results given for GMS and PA CS�s in

Section 5.
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14 Supplemental Appendix C

In this Appendix, we prove all the results stated in the main paper except for Theo-

rems 1 and 2(a), which are proved in Supplemental Appendix A, and Lemma A1, which

is proved in Supplemental Appendix E. The proofs are given in the following order:

Lemma 2, Lemma 3, Theorem 2(b), Lemma 4, Theorem 3, Theorem 4, and Lemma 1.

14.1 Proofs of Lemmas 2 and 3 and Theorem 2(b)

Proof of Lemma 2. We have: � =2 �F (G) implies that EFmj(Wi; �)gj(Xi) < 0

for some j � p or EFmj(Wi; �)gj(Xi) 6= 0 for some j = p + 1; :::; k: By the law of

iterated expectations and gj(x) � 0 for all x 2 Rdx and j � p; this implies that

PF (Xi 2 XF (�)) > 0 and, hence, � =2 �F :
On the other hand, � =2 �F implies that PF (Xi 2 XF (�)) > 0 and the latter implies

that � =2 �F (G) by Assumption CI. �

The proof of Lemma 3 uses the following Lemma, which is an existence and unique-

ness result. The proof of the Lemma utilizes an extended measure result from Billingsley

(1995, Thm. 11.3), which delivers the existence part of the Lemma. The proof is given

after the proof of Lemma 3.

Lemma C1. Let R be a semi-ring of subsets of Rdx. Let � be a bounded countably

additive set function on �(R) such that �(�) = 0 and �(C) � 0 for all C 2 R[ fRdxg:
If Rdx can be written as the union of a countable number of disjoint sets in R, then �
is a measure on �(R) (and hence �(C) � 0 for all C 2 �(R)):53

Proof of Lemma 3. First, we establish Assumption CI for G = Gbox with �r = 1: It

su¢ ces to show

EF (mj(Wi; �)gj(Xi)) � 0 8g 2 G ) EF (mj(Wi; �)jXi) � 0 a.s.
for j = 1; :::; p and

EF (mj(Wi; �)gj(Xi)) = 0 8g 2 G ) EF (mj(Wi; �)jXi) = 0 a.s.

for j = p+ 1; :::; k: (14.1)

53A class of subsets, R, of a universal set is called a semi-ring if (a) the empty set � 2 R; (b) A;B 2 R
implies A \B 2 R; (c) if A;B 2 R and A � B, then there exist disjoint sets C1; :::; CN � R such that
B �A =

SN
i=1 Ci, see Billingsley (1995, p.138).
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We use the following set function:

�j(C) = ��1F;j(�)EFmj(Wi; �)1(Xi 2 C) for C 2 �(Cbox) = B(Rdx); (14.2)

where �(Cbox) denotes the �-�eld generated by Cbox; B(Rdx) is the Borel �-�eld on Rdx ;
and �(Cbox) = B(Rdx) is a well-known result. First we show �j(R

dx) � 0: Let IL =

(�L;L]dx : Then, IL 2 Cbox and �j(IL) � 0: We have

0 � lim
L!1

�j(IL) = lim
L!1

��1F;j(�)EFmj(Wi; �)1(Xi 2 IL)

= ��1F;j(�)EFmj(Wi; �)1(Xi 2 Rdx) = �j(R
dx); (14.3)

where the second equality holds by the dominated convergence theorem, ��1F;j(�)mj(w; �)

�1(x 2 IL) ! ��1F;j(�)mj(w; �)1(x 2 Rdx) as L ! 1; j��1F;j(�)mj(w; �)1(x 2 IL)j �
��1F;j(�)jmj(w; �)j for all w, and ��1F;j(�)EF jmj(Wi; �)j <1:

Next, we treat the cases j � p and j > p separately because di¤erent techniques are

employed. First, we consider j = 1; :::; p: Suppose EFmj(Wi; �)gj(Xi) � 0 8g 2 G. Then,
�j(C) � 0 8C 2 Cbox: We want to show that EFmj(Wi; �)1(Xi 2 C) � 0 8C 2 B(Rdx)
because this implies that EF (mj(Wi; �)jXi) � 0 a.s. since Xi is Borel measurable.

By Lemma C1, we have �j(C) � 0 8C 2 �(Cbox) if (a) Cbox is a semi-ring of subsets
of Rdx ; (b) �j is bounded, (c) �j is countably additive, (d) �j(�) = 0; (e) �j(R

dx) � 0;
and (f) Rdx can be written as the union of a countable number of disjoint sets in Cbox: It
is a well-known result that (a) holds (provided � is added to Cbox). By condition (vi) in
(2.3), (b) holds. Condition (c) holds by the dominated convergence theorem. Because

1(Xi 2 �) = 0; condition (d) holds. By (14.3), condition (e) holds. Condition (f) holds
because

Rdx =
[

fi1;i2;:::;ikg2Nk

kY
j=1

(ij; ij + 1]; (14.4)

where N is the set of all natural numbers. Therefore, �j(C) � 0 8C 2 �(Cbox) = B(Rdx);
i.e.,

EFmj(Wi; �)1(Xi 2 C) � 0 8C 2 B(Rdx): (14.5)

Next, we consider j = p+ 1; :::; k: Suppose EFmj(Wi; �)gj(Xi) = 0 8g 2 Gbox: Then,
�j(C) = 0 8C 2 Cbox We want to show that EFmj(Wi; �)1(Xi 2 C) = 0 8C 2 B(Rdx)
because this implies that EF (mj(Wi; �)jXi) = 0 a.s. because Xi is Borel measurable. To

do so, we show that C0 = B(Rdx); where C0 � fC 2 B(Rdx) : �j(C) = 0g: It su¢ ces to
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show B(Rdx) � C0: Because Cbox � C0 and �(Cbox) = B(Rdx); it su¢ ces to show that C0
is a �-�eld. The set C0 is indeed a �-�eld because (a) Rdx 2 C0 by (14.3), (b) if C 2 C0;
then �j(C

c) = �j(R
dx) � �j(C) = 0; i.e., C

c 2 C0; and (c) if C1; C2; ::: are disjoint sets
in C0; then �j(

S1
i=1Ci) =

P1
i=1 �j (Ci) = 0 because �j is an additive set function, i.e.,S1

i=1Ci 2 C0: This completes the proof of Assumption CI for G = Gbox with �r =1:

Assumption CI holds for G = Gbox with �r = 1 implies that Assumption CI holds

for G = Gbox when �r 2 (0;1): The reason is that if some deviation is captured by a big
box, it also must be captured by some smaller box contained in the big box (because a

big box is a �nite disjoint union of smaller boxes).

For G = Gc-cube; Assumption CI holds by the same argument as for Gbox but with
Cc-cube in place of Cbox provided (i) Cc-cube [ f�g is a semi-ring of subsets of [0; 1]dx ; (ii)
[0; 1]dx can be written as the union of a countable number of disjoint sets in Cc-cube;
and (iii) �(Cc-cube) = B([0; 1]dx): Condition (i) is straightforward to verify. Condition
(ii) is veri�ed by using [2r`=1((` � 1)=(2r); `=(2r)] = [0; 1] (since the interval (0; 1=(2r)]

is de�ned specially to include 0) to construct a �nite number of dx-dimensional boxes

whose union is [0; 1]dx : Condition (iii) holds because every element of Cbox can be written
as a countable union of sets in Cc-cube and �(Cbox) = B([0; 1]dx):
Finally, we establish Assumption M. For G = Gbox; Assumptions M(a) and M(b) hold

by taking G(x) = 1 8x and �1 = 4=� + 3: Assumption M(c) holds because Cbox forms a
Vapnik-Cervonenkis class of sets. Assumption M holds for Gc-cube because Gc-cube � Gbox:
�

Proof of Lemma C1. Because (i) � : �(R) ! R is a bounded countably additive

set function, (ii) �(�) = 0; and (iii) �(C) � 0 8C 2 R; Billingsley�s (1995) Thm. 11.3
implies that there exist a measure, ��; on �(R) that agrees with � on R. We want to
show that �� agrees with � on �(R): That is, we want to show that Ceq = �(R); where

Ceq = fC 2 �(R) : �� (C) = � (C)g: (14.6)

It su¢ ces to show that �(R) � Ceq because by de�nition, �(R) � Ceq: We use Dynkin�s
�-� theorem, e.g., see Billingsley (1995, p.33), to establish this.

Because R is a semi-ring, R is a �-system. Now, we show that Ceq is a �-system.
By de�nition, the set Ceq is a �-system if (a) Rdx 2 Ceq; (b) 8C1; C2 2 Ceq such that
C1 � C2; C2 � C1 2 Ceq; and (c) 8C1; C2; ::: 2 Ceq such that Ci " C; C 2 Ceq: We show
(a), (b), and (c) in turn.
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(a) By assumption, Rdx can be written as the union of countable disjoint R-sets, say
C1; C2; ::: 2 R; where Rdx =

Sn
i=1Ci: By countable additivity of both � and �

�; we have

�(Rdx) =

1X
i=1

�(Ci) =

1X
i=1

��(Ci) = ��(Rdx); (14.7)

where the second equality holds because C1; C2; ::: 2 R and �� agrees with � on R.
Thus condition (a) holds.

(b) Suppose C1; C2 2 Ceq and C1 � C2; then C2 = (C2 � C1) [ C1: Thus,

�(C2 � C1) = �(C2)� �(C1) = ��(C2)� ��(C1) = ��(C2 � C1); (14.8)

where the �rst and the third equalities hold by the countable additivity of � and �� and

the second equality holds because C1; C2 2 Ceq: Thus, condition (b) holds.
(c) Suppose C1; C2; ::: 2 Ceq and Ci " C; then C = C1 [ (

S1
i=2(Ci � Ci�1)) and

C1; C2 �C1; ::: are mutually disjoint. By condition (b), Ci �Ci�1 2 Ceq for i � 2: Thus,

� (C) = � (C1) +
1X
i=2

� (Ci � Ci�1) = �� (C1) +
1X
i=2

�� (Ci � Ci�1) = �� (C) : (14.9)

That is, condition (c) holds.

Therefore, Ceq is a �-system. BecauseR � Ceq by Dynkin�s �-� theorem, �(R) � Ceq:
In consequence, �(R) = Ceq; i.e., �� agrees with � on �(R): Because �� is a measure on
�(R); � must be a measure on �(R): �

Proof of Theorem 2(b). Consider the parameters (�c; Fc) that appear in Assumption
GMS2. First, we determine the asymptotic behavior of the critical value c('n(�c);bhn;2(�c); 1� �) under (�c; Fc): We have

�n(�c; g) = ��1n n1=2D
�1=2
n (�c; g)mn(�c; g)

= D
�1=2
n (�c; g)D

1=2
Fc
(�c)�

�1
n [�n;Fc(�c; g) + h1;n;Fc(�c; g)] (14.10)

= Diag�1=2(h2;n;Fc(�c; g))�
�1
n [�n;Fc(�c; g) + h1;n;Fc(�c; g)]:

Note that h2;n;Fc(�c; g) is a function of bh2;n;Fc(�c; g; g) by (5.2). Let
TGMS
n (�c) =

Z
S(�bh2;n(�c)(g) + 'n(�c; g);

bh2;n(�c; g) + "Ik)dQ(g): (14.11)
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Equations (4.10), (12.26), (14.10), and (14.11) imply that the distribution of TGMS
n (�c)

is determined by the joint distribution of f�bh2;n(�c)(g) : g 2 Gg; fbh2;n;Fc(�c; g) : g 2 Gg;
and f��1n �n;Fc(�c; g) : g 2 Gg:
We have f(�c; Fc) : n � 1g 2 SubSeq(h2;Fc(�c)) because (�c; Fc) 2 F : Hence, by

Lemma A1(b), d(bh2;n;Fc(�c); h2;Fc(�c)) !p 0 as n ! 1: By the same argument as in

(12.26), this yields d(bh2;n(�c); h2;Fc(�c))!p 0: The latter, the independence of bh2;n;Fc(�c)
and f�h2(�) : h2 2 H2g; and an almost sure representation argument imply that the
Gaussian processes f�bh2;n(�c)(�) : n � 1g converge weakly to �h2;Fc (�c)(�) as n ! 1:

The sequence of random processes fbh2;n(�c; �) : n � 1g converges in probability uni-
formly (and hence in distribution) to h2;Fc(�c; �); where bh2;n(�c; g) = bh2;n(�c; g; g) and
h2;Fc(�c; g) = h2;Fc(�c; g; g): The sequence f��1n �n;Fc(�c; �) : n � 1g converges in proba-
bility to zero uniformly over g 2 G because �n !1 and f�n;Fn(�c; �) : n � 1g converges
to a Gaussian process with sample paths that are bounded a.s. Therefore, we have0B@ �bh2;n(�c)(�)bh2;n(�c; �)

��1n �n;Fc(�c; �)

1CA)

0B@ �h2;Fc (�c)(�)
h2;Fc(�c; �)

0G

1CA as n!1; (14.12)

where bh2;n(�c) that appears in �bh2;n(�c)(�) is a function on G � G whereas bh2;n(�c; �) is
a function on G; likewise for �h2;Fc (�c)(�) and h2;Fc(�c; �); and 0G denotes the R

k-valued

function on G that is identically (0; :::; 0)0 2 Rk:
By the almost sure representation theorem, see Pollard (1990, Thm. 9.4), there

exist f(~�n(g); ~h2;n(g); ~��;n(g)) : g 2 G; n � 1g and f~�(g); ~h2(g) : g 2 Gg such that (i)
f(~�n(g); ~h2;n(g); ~��;n(g)) : g 2 Gg has the same distribution as f(�bh2;n(�c)(g); bh2;n(�c; g);
��1n �n;Fc(�c; g)) : g 2 Gg for all n � 1; (ii) f(~�(g); ~h2(g)) : g 2 Gg has the same
distribution as f(�h2;Fc (�c)(g); h2;Fc(�c; g) : g 2 Gg; and

(iii) sup
g2G









0B@ ~�n(g)
~h2;n(g)

~��;n(g)

1CA�
0B@ ~�(g)
~h2(g)

0

1CA







! 0 a.s. (14.13)

Let
~TGMS
n =

Z
S(~�n(g) + e'n(g); ~h2;n(g) + "Ik)dQ(g); (14.14)

where e'n(g) is de�ned just as 'n(�; g) is de�ned in (4.10) but with ~h2;n;j(g)+ "~h2;n;j(1k)
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in place of h2;n;Fn;j(�; g); where ~h2;n;j(g) denotes the (j; j) element of ~h2;n(g); and ~�n(g)

in place of �n(�; g); where

~�n(g) = Diag(~h2;n(g) + "~h2;n(1k))
�1=2(��1n ~��;n(g) + ��1n h1;n;Fc(�c; g)): (14.15)

Then, ~TGMS
n and TGMS

n (�c) have the same distribution for all n � 1 and the same

asymptotic distribution as n!1: Let ~cn(1��) denote the 1��+ � quantile of ~TGMS
n

plus �; where � is as in the de�nition of c(h; 1 � �): Then, ~cn(1 � �) has the same

distribution as c('n(�c);bh2;n(�c); 1� �) for all n � 1:
Let ~
� be the collection of ! 2 
 such that at !; ~�(g)(!) is bounded and the

convergence in (14.13) holds. By (14.13) and the fact that the sample paths of f~�(g) :
g 2 Gg are bounded a.s., we have PFc(~
�) = 1:
Under (�c; Fc) for all n � 1;

��1n h1;n;Fc(�c; g) = ��1n n1=2D
�1=2
Fc

(�c)EFcm(Wi; �c; g)! h1;1;Fc(�c; g) (14.16)

as n!1 using Assumption GMS2(c). Thus, for �xed ! 2 ~
�;

~�n(g)(!) = Diag�1=2(~h2(g) + "~h2(1k) + o(1))(o(1) + ��1n h1;n;Fc(�c; g))

! h1;1;Fc(�c; g); (14.17)

as n!1 for all g 2 G; where ~h2;j(g) denotes the (j; j) element of ~h2(g); using (14.13),
~h2(1k) = Ik (which holds by (5.1) and De�nition SubSeq(h2)), ~h2;j(g) � 0; " > 0:
By (14.17), Assumption GMS1(a), Bn ! 1 as n ! 1 (by Assumption GMS2(b))

and the fact that h1;1;Fc(�c; g) equals either 0 or 1 by de�nition, we have

e'n(g)(!)! h1;1;Fc(�c; g) as n!1 (14.18)

for all ! 2 ~
�:
By (14.13), (14.15), (14.18), and Assumption S1(d), we have

S(~�n(g) + e'n(g); ~h�2;n(g) + "Ik)(!)

! S(~�(g) + h1;1;Fc(�c; g); h2;Fc(�c; g) + "Ik)(!) (14.19)

as n!1 8! 2 ~
�;8g 2 G: Now, by the argument given from (12.14) to the end of the
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proof of Theorem 1, the quantity on the left-hand side of (14.19) is bounded by a �nite

constant. This, (14.19), and the bounded convergence theorem give

~TGMS
n ! ~TGMS =

Z
S(~�(g) + h1;1;Fc(�c; g); h2;Fc(�c; g) + "Ik)dQ(g) (14.20)

as n!1 a.s.

By (14.20),

P ( ~TGMS
n � x)! P ( ~TGMS � x) as n!1 (14.21)

for all continuity points x of the distribution of ~TGMS: Let ~c0(1 � �) denote the 1 � �

quantile of ~TGMS: Let ~c(1 � �) = ~c0(1 � � + �) + �; where � is as in the de�nition of

c(h; 1� �): By Assumption GMS2(a), the distribution function of ~TGMS; which equals

that of T (h1;Fc(�c)); is continuous and strictly increasing at x = ~c(1��): Using Lemma
5 of Andrews and Guggenberger (2010), this gives

~cn(1� �) ! p ~c(1� �) and

c('n(�c);
bh2;n(�c); 1� �) ! p ~c(1� �); (14.22)

where the second convergence result holds because ~cn(1��) and c('n(�c);bh2;n(�c); 1��)
have the same distribution.

Next, by the same argument as used above to show (14.20), but with �bh2;n(�c)(g) and
'n(�c; g) replaced by �n;Fc(�c; g) and h1;n;Fc(�c; g); respectively, we have

Tn(�c)!d T (h1;Fc(�c)) =

Z
S(�h2;Fc (�c)(g) + h1;1;Fc(�c; g); h2;Fc(�c; g) + "Ik)dQ(g);

(14.23)

where h1;Fc(�c) = (h1;1;Fc(�c); h2;Fc(�c)); h1;n;Fc(�c) ! h1;1;Fc(�c) by straightforward

calculations, and �n;Fc(�c; �)) �h2;Fc (�c)(�) by Lemma A1(a). Note that T (h1;Fc(�c)) and
~TGMS have the same distribution because �h2;Fc (�c)(�) and ~�(�) have the same distribution.
Thus, ~c(1��) (= ~c0(1��+ �)+ �) is the 1��+ � quantile of T (h1;Fc(�c)) plus � > 0:
By (14.22), (14.23), Assumption GMS2(a), and Lemma 5 of Andrews and Guggen-

berger (2010), for � > 0; we have

lim
n!1

PFc(Tn(�c) � c('n(�c);bh2;n(�c); 1� �))

= P (T (h1;Fc(�c)) � ~c0(1� �+ �) + �): (14.24)
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The limit as � ! 0 of the right-hand side equals 1 � � because distribution functions

are right-continuous and the distribution function of T (h1;Fc(�c)) at its 1� � quantile

equals 1� � by Assumption GMS2(a).

Combining (14.24) and the result of Theorem 2(a), which holds for all � > 0 and

hence holds when the limit as � ! 0 is taken, gives Theorem 2(b). �

14.2 Proofs of Results for Fixed Alternatives

Proof of Lemma 4. First, we prove part (a). It holds immediately that Supp(Qa) =
Gc-cube because Gc-cube is countable and Qa has a probability mass function that is positive
at each element in Gc-cube:
Next, for part (b), consider g = gx;r 2 Gbox; where gx;r(y) = 1(y 2 Cx;r) � 1k and

(x; r) 2 [0; 1]dx � (0; �r)dx : Let � > 0 be given. The idea of the proof is to �nd a set

Gg;�� � B�X (g; �) (� Gbox) such that Qb(Gg;��) > 0: This implies that Qb(B�X (g; �)) > 0;
which is the desired result.

The set Gg;�� needs to be de�ned di¤erently (for reasons stated below) depending on

whether xu < 1 or xu = 1; for u = 1; :::; dx; where x = (x1; :::; xdx)
0: For �� > 0; de�ne

Gg;�� = fgx+�0;r+�1 : (�0; �1) 2 �g;��g; where
�g;�� = f(�0; �1) 2 R2dx : for u = 1; :::; dx; if xu < 1; �0;u 2 [��; 2��] &

�1;u 2 [0; ��] and for xu = 1; �0;u 2 [���; 0] & �1;u 2 [�2��;���]g: (14.25)

We have Qb(Gg;��) = Q�b((x; r) + �g;��) > 0 for all �� > 0 because Q�b is the uniform

distribution on [0; 1]dx � (0; �r)dx :
Next, we show that Gg;�� � B�X (g; �): Let U(xu<1) � f1; :::; dxg be the set of indices u

such that xu < 1 and let U(xu=1) � f1; :::; dxg be the set of indices u such that xu = 1: Let
gx+�0;r+�1 2 Gg;��: The uth lower endpoints of the Cx;r and Cx+�0;r+�1 boxes are xu�ru and
xu+�0;u�(ru+�1;u); respectively. The lower endpoint of the Cx+�0;r+�1 box is larger than
that of Cx;r box because �0;u � �1;u 2 [0; 2��] (whether u 2 U(xu<1) or u 2 U(xu=1)): The
uth upper endpoints of the Cx;r and Cx+�0;r+�1 boxes are xu+ru and xu+�0;u+ru+�1;u;

respectively. If u 2 Uxu<1; the upper endpoint of the Cx+�0;r+�1 box is larger than that
of Cx;r box because �0;u + �1;u 2 [0; 3��]: If u 2 U(xu=1); the uth upper endpoint of the

Cx+�0;r+�1 box is smaller than that of Cx;r box because �0;u + �1;u 2 [�3��; 0]:
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Using the results of the previous paragraph, we have

�2X(gx;r; gx+�0;r+�1)

= EFX;0 [1(Xi 2 Cx;r)� 1(Xi 2 Cx+�0;r+�1)]
2

�
dxX
u=1

PFX;0(Xi;u 2 (xu � ru; xu + �0;u � (ru + �1;u)])

+
X

u2U(xu<1)

PFX;0(Xi;u 2 (xu + ru; xu + �0;u + ru + �1;u])

+
X

u2U(xu=1)

PFX;0(Xi;u 2 (1 + �0;u + ru + �1;u; 1 + ru] \ [0; 1])

�
dxX
u=1

PFX;0(Xi;u2 (xu� ru; xu� ru+2��]) +
X

u2U(xu<1)

PFX;0(Xi;u2 (xu+ ru; xu+ ru+3��])

+
X

u2U(xu=1)

PFX;0(Xi;u 2 (1 + ru � 3��; 1 + ru] \ [0; 1]); (14.26)

where the �rst inequality uses the dx-dimensional extension of the one-dimensional result

that (a; b]�(c; d] � (a; c] [ (b; d] when a � c and b � d; where � denotes the symmetric

di¤erence of two sets.

The �rst and second summands on the rhs of (14.26) tend to zero as �� # 0 by the
right continuity of distribution functions. The third summand on the rhs equals zero

when �� is su¢ ciently small (i.e., when 3�� < minu�dx ru): Therefore, for �� > 0 su¢ ciently

small, �2X(gx;r; gx+�0;r+�1) < � and Gg;�� � B�X (g; �): This completes the proof of part
(b).

Note that in the proof of part (b) we cannot treat the case where u 2 U(xu=1) in the
same way that we treat the case for u 2 U(xu<1) because for u 2 U(xu<1) we use the center
point xu+ �0;u > xu which is not in [0; 1] if xu = 1 and hence violates the assumption of

part (b) that the centers of the Gbox boxes lie in [0; 1]dx : Conversely, we cannot treat the
case where u 2 U(xu<1) in the same way that we treat the case for u 2 U(xu=1) because
doing so would lead to a term PFX;0(Xi;u 2 (1+ ru� 3��; 1+ ru]) in (14.26) that does not
go to zero as �� # 0 if Xi;u has positive probability of equaling 1 + ru: �

Proof of Theorem 3. Part (a) follows from part (b) because

c('n(��);
bh2;n(��); 1� �) � c(0G;bh2;n(��); 1� �); (14.27)
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which holds because 'n(��; g) � 0k 8g 2 G by Assumption GMS1(a), c(h1;bh2;n(��); 1��)
is non-increasing in the �rst p elements of h1 by Assumption S1(b), and the last v

elements of 'n(��; g) equal zero.

Now we prove part (b). By Assumptions FA(a) and CI, �(g0) > 0 for some g0 2 G:
By construction, ej = m�

j(g0)=�(g0) 2 [�1;1) for j = 1; :::; k and ej = �1 for some
j � p or jejj = 1 for some j = p+1; :::; k: As de�ned above, B�X (g0; � 2) denotes a �X-ball
centered at g0 with radius � 2 > 0; where �X is de�ned in (6.3). First we show that for

some � 2 > 0; Z
B�X (g0;�2)

S (m�(g)=�(g0); h2;0(g) + "Ik) dQ(g) > 0; (14.28)

where m�(g) = (m�
1(g); :::;m

�
k(g))

0 and h2;0(g) = h2;F0(��; g): We have: for j = 1; :::; k;

jm�
j(g)�m�

j(g0)j
= jEF0mj(Wi; ��)gj(Xi)� EF0mj(Wi; ��)g0;j(Xi)j=�F0;j(��)
� (EF0m

2
j(Wi; ��))

1=2(EF0(gj(Xi)� g0;j(Xi))
2)1=2=�F0;j(��)

� (EF0jjm(Wi; ��)jj2)1=2�X(g; g0)=�F0;j(��); (14.29)

where g0;j(Xi) denotes the jth element of g0(Xi):

Given � 1 2 (0; 1); let

� 2 = � 1�(g0)�F0;j(��)=(EF0jjm(Wi; ��)jj2)1=2: (14.30)

By (14.29), for all g 2 B�X (g0; � 2);

jm�
j(g)�m�

j(g0)j � � 1�(g0) for all j = 1; :::; k: (14.31)

Hence, for all g 2 B�X (g0; � 2); there exists j � k such that either

j � p and m�
j(g)=�(g0) � m�

j(g0)=�(g0) + � 1 = �1 + � 1 < 0 or (14.32)

j 2 fp+ 1; :::; kg and jm�
j(g)=�(g0)j � jm�

j(g0)=�(g0)j � � 1 = 1� � 1 > 0

using the triangle inequality.

By (14.32) and Assumption S3, S(m�(g)=�(g0); h2;0(g)+"Ik) > 0 for all g 2 B�X (g0; � 2):
In addition, by Assumption Q, Q(B�X (g0; � 2)) > 0: These properties combine to give

(14.28).
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We use (14.28) in the following: for all � > 0;

(n1=2�(g0))
��Tn(��)

= (n1=2�(g0))
��
Z
G
S
�
�n;F0(��; g) + h1;n;F0(��; g); h2;n;F0(��; g)

�
dQ(g)

� (n1=2�(g0))
��
Z
B�X (g0;�2)

S
�
�n;F0(��; g) + h1;n;F0(��; g); h2;n;F0(��; g)

�
dQ(g)

=

Z
B�X (g0;�2)

S
�
(n1=2�(g0))

�1�n;F0(��; g) +m�(g)=�(g0); h2;n;F0(��; g)
�
dQ(g)

!p

Z
B�X (g0;�2)

S (m�(g)=�(g0); h2;0(g) + "Ik) dQ(g)

> 0; (14.33)

where � is as in Assumption S4, the �rst equality holds by (5.4), the �rst inequality holds

by Assumption S1(c), the second equality holds by Assumption S4 and the de�nition of

m�
j(g) in (6.2), the last inequality holds by (14.28), and the convergence holds by the

argument given in the following paragraph.

By Lemma A1(a) and the continuous mapping theorem, supg2G jj�n;F0(��; g)jj =
Op(1): (Note that Lemma A1 applies for (�an ; Fan) = (��; F0) =2 F for all n � 1 because
Assumptions FA(b)-(d) imply conditions (ii)-(v) in the de�nition of SubSeq(h2;F0(��)):)

Also, (n1=2�(g0))�1 = o(1); because Assumptions FA and CI imply that �(g0) > 0 for

some g0 2 G:Hence, (i) (n1=2�(g0))�1�n;F0(��; �)) 0G: In addition, (ii) supg2G jjh2;n;F0(��;
g)� h2;0(g)� "Ikjj !p 0; where h2;0(g) = h2;F0(��; g; g); by Lemma A1(b), (12.26), and

the de�nition of h2;n;F (�; g): As in previous proofs, by the almost sure representation

theorem, there exists a probability space and random quantities de�ned on it with the

same distributions as (n1=2�(g0))�1�n;F0(��; �) and h2;n;F0(��; �) for n � 1 such that the
convergence in (i) and (ii) holds almost surely for these random quantities. Further-

more, using Assumptions S1(b) and S1(e), the integrand in the last equality in (14.33)

is bounded by supg2Bcl�X (g0;�2);�2Rk:jj�jj��� S(� + m�(g)=�(g0); (" � ���)Ik) < 1 for all

g 2 B�X (g0; � 2) for some ��; ��� > 0 for n su¢ ciently large, where Bcl�X (g0; � 2) denotes
the closure of B�X (g0; � 2); because a continuous function on a compact set attains its
supremum using Assumption S1(d) and using an argument analogous to that in (12.14)

to treat the second argument of the function S: Thus, by the bounded convergence theo-

rem, the convergence in (14.33) holds a.s. for the newly constructed random quantities.

In consequence, it holds in probability for the original random quantities by the equality
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in distribution of the original and newly constructed random quantities. This completes

the proof of the convergence in (14.33).

Next, we show that under F0;

c(0G;bh2;n(��); 1� �) = Op(1): (14.34)

This and (14.33) give

PF0(Tn(��) > c(0G;bh2;n(��); 1� �))

= PF0

�
(n1=2�(g0))

��Tn(��) > (n
1=2�(g0))

��c(0G;bh2;n(��); 1� �)
�

� PF0

 Z
B�X (g0;�2)

S (m�(g)=�(g0); h2;0(g) + "Ik) dQ(g) + op(1) > op(1)

!
! 1 (14.35)

as n!1; which establishes the result of the Theorem.

It remains to show (14.34). Lemma A5, applied with h2;n = h2;0; fh�2;n : n � 1g being
any sequence of k�k-matrix-valued covariance kernels on G � G such that d(h�2;n; h2;0)!
0; h1 = 0G; � as in the de�nition of c(h; 1 � �); � replaced by � � � > 0; and �1 = �;

gives: 8� > 0;

lim inf
n!1

�
c0(0G; h2;0; 1� �+ � + �) + � � c0(0G; h

�
2;n; 1� �+ �)

�
� 0 and hence

lim sup
n!1

c0(0G; h
�
2;n; 1� �+ �) � c0(0G; h2;0; 1� �+ � + �) + � <1: (14.36)

By Lemma A1(b) and (12.26), we obtain d(bh2;n(��); h2;0) !p 0: As in previous proofs,

by the almost sure representation theorem, there exists a probability space and random

quantities ~h2;n(�; �) de�ned on it with the same distributions as bh2;n(��; �; �) for n � 1 such
that d(~h2;n; h2;0)! 0 a.s. This and (14.36) gives lim supn!1 c0(0G; ~h2;n; 1� �+ �) <1
a.s., which implies (14.34) because ~h2;n(�; �) and bh2;n(��; �; �) have the same distribution
for all n � 1 and c(0G;bh2;n(��); 1� �) = c0(0G;bh2;n(��); 1� �+ �) + �: �
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14.3 Proofs of Results for n�1=2-Local Alternatives

Proof of Theorem 4. The proof of part (a) uses the following. By element-by-element
mean-value expansions about �n and Assumptions LA1(a), LA1(b), and LA2,

D
�1=2
Fn

(�n;�)EFnm(Wi; �n;�; g)

= D
�1=2
Fn

(�n)EFnm(Wi; �n; g) + �Fn(�n;g; g)(�n;� � �n); and so

n1=2D
�1=2
Fn

(�n;�)EFnm(Wi; �n;�; g)! h1(g) + �0(g)�; (14.37)

where �n;g may di¤er across rows of �Fn(�n;g; g); �n;g lies between �n;� and �n; �n;g ! �0;

�Fn(�n;g; g)! �0(g); and by de�nition h1(g) + �0(g)� =1 if h1(g) =1:

Now, the proof of part (a) is the same as the proof of Theorem 2(b) with the fol-

lowing changes: (i) (�n;�; Fn) appears in place of (�c; Fc) whenever (�c; Fc) is used in an

expression with n �nite, (ii) (�0; F0) appears in place of (�c; Fc) whenever (�c; Fc) is used

in an asymptotic expression, (iii) f(�n;�; Fn) : n � 1g satis�es the conditions to be in
SubSeq(h2) (where h2 = h2;F0(�0)) by Assumptions LA1(a) and LA1(c)-(e) and because

fWi : i � 1g are i.i.d. under Fn and Assumption M holds given that (�n; Fn) 2 F by

Assumption LA1, (iv) equation (14.16) is replaced by

��1n D
�1=2
Fn (�n;�; g)D

1=2
Fn
(�n;�)h1;n;Fn(�n;�; g)! �1(g) as n!1; (14.38)

which holds by Assumption LA4, (14.37) (because ��1n n1=2�Fn(�n;g; g)(�n;� � �n) ! 0),

and D
�1=2
Fn (�n;�; g)D

1=2

Fn (�n; g) ! Ik (using Assumption LA1(c)), (v) �1(g) appears in

place of h1;1;Fc(�c; g) in (14.17), (vi) '(�1(g)) appears in place of h1;1;Fc(�c; g) in (14.18)-

(14.20), where (14.18) holds for all g 2 G' by Assumption LA5(a) and (14.19) holds for
all g 2 G'; (vii) Assumption LA5(b) is used in place of Assumption GMS2(a) in two
places, (viii) (h1+�0�; h2) and h1(g) appear in place of h1;Fc(�c) and h1;1;Fc(�c); respec-

tively, in (14.23) and (14.24), and (ix) (14.23) holds using (14.37) in place of h1;n;Fc(�c)!
h1;1;Fc(�c) and using �n;Fn(�n;�; �) ) �h2(�) in place of �n;Fc(�c; �) ) �h2;Fc (�c)(�): The
result �n;Fn(�n;�; �) ) �h2(�) holds by Lemma A1(a) because f(�n;�; Fn) : n � 1g 2
SubSeq(h2) by the argument given in (iii) above. The desired result is given by (14.24)

with the changes indicated above. This completes the proof of part (a).

Part (b) holds by the same argument as for part (a) but with 'n(�n;�; g) replaced

by 0; which simpli�es the argument considerably. Assumption LA6 is used in place of

Assumption LA5(b) in the proof.
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Part (c) holds by the following argument:

���T (h1 +�0�0�; h2)

= ���
Z
S(�h2(g) + h1(g) + �0(g)�0�; h2(g) + "Ik)dQ(g)

=

Z
S(�h2(g)=� + h1(g)=� +�0(g)�0; h2(g) + "Ik)dQ(g)

!
Z
S(�0(g)�0; h2(g) + "Ik)dQ(g) > 0 (14.39)

as � !1 a.s., where � is as in Assumption S4, the second equality holds by Assumption

S4, the convergence holds a.s. (with respect to the randomness in �h2) by the bounded

convergence theorem applied for each �xed sample path ! because jj�h2(g)jj has bounded
sample paths a.s. and using Assumption LA3 0 (which guarantees that h1;j(g) <1 and

hence h1;j(g)=� ! 0 as � !1 for all j � p; for all g in a set with Q measure one), and

the inequality holds by Assumptions LA3 0 and S3.

Equation (14.39) implies that T (h1 + �0�0�; h2) ! 1 a.s. as � ! 1: Because

T (h1 +�0�0�; h2) � Jh;��0 and the quantities c('(�1); h2; 1� �) and c(0G; h2; 1� �) do
not depend on �; the result of part (c) follows. �

14.4 Proofs Concerning the Veri�cation

of Assumptions S1-S4

Proof of Lemma 1. Assumptions S1(a)-(d) and S3 hold for the functions S1; S2; and
S3 by Lemma 1 of Andrews and Guggenberger (2009). Assumptions S1(e) and S4 hold

immediately for the functions S1; S2; and S3 with � = 2 in Assumption S4.

To verify Assumption S2 for S = S1; S2; or S3; it su¢ ces to show that

lim sup
n!1

jS(mn + �n;�n)� S(m0 + �n;�0)j = 0 (14.40)

for all sequences f�n 2 [0;1)p � f0gv : n � 1g and f(mn;�n) : n � 1g such that
(mn;�n)! (m0;�0); m0 2 Rk; and �0 2 W :

For clarity of the proof, we consider a simple case �rst. We consider the function

S1 and suppose �n = �0: In this case, without loss of generality, we can assume that

�0 = Ik: Given that S1 is additive, it su¢ ces to consider the cases where (p; v) = (1; 0)

and (0; 1): It is easy to see that Assumption S2 holds in the latter case because �n does
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not appear. For the case where (p; v) = (1; 0); we have

jS1(mn + �n; Ik)� S1(m0 + �n; Ik)j
=
���[mn + �n]

2
� � [m0 + �n]

2
�
���

�
��[mn + �n]� � [m0 + �n]�

�� �[mn + �n]� + [m0 + �n]�
�

� jmn �m0j (jmnj+ jm0j)
= o(1)O(1); (14.41)

where the second inequality holds because
��[a]� � [b]��� � ja� bj and by Assumption

S1(b). This completes the veri�cation of Assumption S2 for the simple case.

Next, we verify Assumption S2 for S = S2: For any sequence f�n 2 [0;1)p � f0gv :
n � 1g; there exists a subsequence fun : n � 1g of fng such that

lim
n!1

��S2(mun + �un ;�un)� S2(m0 + �un ;�0)
��

= lim sup
n!1

jS2(mn + �n;�n)� S2(m0 + �n;�0)j : (14.42)

Let ft1;un ; t0;un 2 [0;1)p � f0gv : n � 1g be sequences such that

(mun + �un � t1;un)
0��1un (mun + �un � t1;un) � S2(mun + �un ;�un) + 2

�un and

(m0 + �un � t0;un)
0��10 (m0 + �un � t0;un) � S2(m0 + �un ;�0) + 2

�un : (14.43)

Then,

lim
n!1

[S2(mun + �un ;�un)� S2(m0 + �un ;�0)]

= lim
n!1

�
(mun + �un � t1;un)

0��1un (mun + �un � t1;un)� S2(m0 + �un ;�0)
�

� lim
n!1

[(mun + �un � t1;un)
0��1un (mun + �un � t1;un)

�(m0 + �un � t1;un)
0��10 (m0 + �un � t1;un)]

= lim
n!1

[(mun + �un � t1;un)
0(��1un � �

�1
0 )(mun + �un � t1;un)

+(mun �m0)
0��10 (m0 +mun + 2�un � 2t1;un)]

= 0; (14.44)

where the last equality holds if �un � t1;un = O(1) because mun ! m0 < 1 and

��1un ! ��10 as n!1:
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We now show that �un � t1;un = O(1): We have

m0
un�

�1
unmun � S2(mun + �un ;�un)

� (mun + �un � t1;un)
0��1un (mun + �un � t1;un)� 2�un : (14.45)

Thus,

lim
n!1

(mun + �un � t1;un)
0��1un (mun + �un � t1;un)

� lim
n!1

[m0
un�

�1
unmun + 2

�un ] = m0
0�

�1
0 m0 <1; (14.46)

which implies that mun + �un � t1;un = O(1): The latter and mun ! m0 <1 give

�un � t1;un = O(1): (14.47)

Next, by an analogous argument to (14.44) with � and t1;un replaced by � and t0;un ;
respectively, we obtain the following upper bound:

lim
n!1

[S(mun + �un ;�un)� S(m0 + �un ;�0)]

= lim
n!1

[S(mun + �un ;�un)� (m0 + �un � t0;n)
0��10 (m0 + �un � t0;un)]

� 0; (14.48)

where the inequality uses �un � t0;un = O(1); which holds by an analogous argument to

that given for (14.47). Equations (14.44) and (14.48) imply that the left-hand side of

(14.42) equals zero, which completes the veri�cation of Assumption S2 for S2:

The veri�cation of Assumption S2 for S = S1; where �n need not equal �0; is

obtained by replacing �n and �0 in the proof above for S2 by Diagf�ng and Diagf�0g;
respectively, because S1(m;�) = S2(m;�) when � is diagonal. Assumption S2 holds for

the function S3 when (p; v) = (1; 0) and (0; 1) because S3 = S1 = S2 in these cases. It

holds for S3 in the general (p; v) case because it holds in these two special cases. �
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15 Supplemental Appendix D

In this Appendix, we provide proofs of the results stated in Supplemental Appendix

B. The �rst sub-section gives proofs for the Kolmogorov-Smirnov and approximate CvM

tests and CS�s. The second sub-section gives proofs for results concerning GB�spline and
Gc=d: The third sub-section gives proofs for results concerning �asymptotic issues with the
Kolmogorov-Smirnov statistic.�The fourth sub-section gives proofs for the subsampling

results.

15.1 Proofs of Kolmogorov-Smirnov and Approximate

Cramér von Mises Results

Proof of Lemma B1. To verify Assumption S2 0 for S1; S2; and S3; it su¢ ces to show
that

lim sup
n!1

jS(mn + �n;�n)� S(mn;0 + �n;�n;0)j = 0 (15.1)

for all sequences f�n 2 [0;1)p � f0gv : n � 1g; f(mn;�n) 2 M�Wbd : n � 1g; and
f(mn;0;�n;0) 2M�Wbd : n � 1g for which (mn;�n)� (mn;0;�n;0)! 0 as n!1:

The veri�cation of (15.1) is an extension of the veri�cation of (14.40) in the proof

of Lemma 1. The extension consists of (i) replacing m0 and �0 by mun;0 and �un;0
throughout (14.42)-(14.48), (ii) making use of the fact that mun ; mun;0; and �

�1
un are

bounded by the de�nitions ofM and Wbd; and (iii) making use of the fact that ��1un �
��1un;0 ! 0 given that �un � �un;0 ! 0 and �un ;�un;0 2 Wbd: �

Proof of Theorem B1. When Tn(�) is the KS statistic and when Tn(�) is replaced by
the approximate statistic T n;sn(�); the results of Theorem 1 hold under the assumptions

of that Theorem plus Assumption S2 0: The proof of Theorem 1 goes through with

the following changes: (i) the statistics ~Tan and ~Tan;0 are changed from integrals with

respect to Q to suprema over g 2 Gn or weighted averages over fg1; :::; gsng with weights
fwQ;n(`) : ` = 1; :::; sng; (ii) in the proof of (12.7), (12.10) holds uniformly over g 2 G
because Assumption S2 has been strengthened to Assumption S2 0; and (iii) (12.11)

holds with the supremum over g 2 Gn added or with the average over fg1; :::; gsng
added, because (12.10) holds uniformly over g 2 G and the weights are non-negative
and sum to at most one by Assumption A2. This completes the proof of Theorem 1 for

the KS and A-CvM test statistics.
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The result of Theorem B1 is the same as that of Theorem 2(a). The proof of Theorem

2(a) follows immediately from Lemmas A2-A4. The proof of Lemma A4 uses Lemma

A5. The proofs of Lemmas A2-A5 go through for the KS and A-CvM test statistics

with the following minor changes: (i) in the proof of Lemma A2, T (h) is replaced by

T sn(h) (de�ned in (4.6)) and the new version of Theorem 1 for the KS and A-CvM

statistics is employed, (ii) in the proof of Lemma A3, the form of the test statistic

only enters through the �rst inequality of (12.23), which holds for the supremum and

weighted average forms of the test statistic, (iii) in the proof of Lemma A4, no changes

are required because the form of the test statistic only enters through Lemma A5, and

(iv) in the proof of Lemma A5, T (h) is replaced by T sn(h): �

Proof of Theorem B2. Theorem B2 is proved by adjusting the proof Theorem 3. The
proof of Theorem 3 goes through up to (14.32) with the only change being that c(�; �; �)
is replaced by csn(�; �; �) for A-CvM tests in (14.27)� in particular, the integral with

respect to Q in (14.28) is not changed. Equation (14.33) needs to be replaced, see (15.2)

and (15.6) below; (14.34) is established with c(�; �; �) replaced by csn(�; �; �) for A-CvM
tests; (14.35) holds, with Tn(��) and c(�; �; �) replaced by T n;sn(��) and csn(�; �; �) for A-
CvM tests, using the replacements for (14.33) given in (15.2) and (15.6) below; the �rst

equation in (14.36) holds by Lemma A5 with c(�; �; �) replaced by csn(�; �; �) for A-CvM
tests, noting that Lemma A5 is extended to KS and A-CvM critical values in the proof

of Theorem B1 above; in the second equation in (14.36) �c0(0G; h2;0; 1��+�+ �) <1"
holds for the KS critical value because c0(0G; h2;0; 1� � + � + �) does not depend on n

and the KS test statistic T (0G; h2;0) is �nite a.s. since the sample paths of �h2;0(�) and
h2;0(�) are bounded a.s.; and in the second equation in (14.36) �supn�1 c0;sn(0G; h2;0; 1�
�+ � + �) <1" holds for an A-CvM critical value because c0;sn(0G; h2;0; 1� �+ � + �)
is less than equal to the corresponding quantile based on the KS statistic, which does

not depend on n and is �nite a.s.

54



For the KS test, we replace (14.33) with the following:

(n1=2�(g0))
��Tn(��) �Q(B�X (g0; � 2))

= (n1=2�(g0))
�� sup

g2Gn
S
�
�n;F0(��; g) + h1;n;F0(��; g); h2;n;F0(��; g)

�
�Q(B�X (g0; � 2))

� (n1=2�(g0))
��
Z
B�X (g0;�2)

1(g 2 Gn)S
�
�n;F0(��; g) + h1;n;F0(��; g); h2;n;F0(��; g)

�
dQ(g)

=

Z
B�X (g0;�2)

1(g 2 Gn)S
�
(n1=2�(g0))

�1�n;F0(��; g) +m�(g)=�(g0); h2;n;F0(��; g)
�
dQ(g)

!p

Z
B�X (g0;�2)

S (m�(g)=�(g0); h2;0(g) + "Ik) dQ(g) > 0; (15.2)

where � is as in Assumption S4, m�(g) = (m�
1(g); :::;m

�
k(g))

0; m�
j(g) is de�ned in (6.2) for

j � k; h2;0 = h2;F0(��); and the convergence uses the argument given in the paragraph

following (14.33) as well as 1(g 2 Gn)! 1(g 2 G) = 1 as n!1 by Assumption KS.

For A-CvM tests, we replace (14.33) with the following results:

(n1=2�(g0))
��T n;sn(��)

=
snX
`=1

wQ;n(`)S
�
(n1=2�(g0))

�1�n;F0(��; g`) +m�(g`)=�(g0); h2;n;F0(��; g`)
�
; (15.3)

using Assumption S4. We have

sup
g2G

jm�
j(g)j � (EF0(m2

j(Wi; ��)=�
2
F0;j
(��))

1=2(EF0G
2(Xi))

1=2 <1; (15.4)

for j = 1; :::; k; using the de�nition ofm�(g); Assumption FA (which imposes Assumption

M in part FA(e)), and the Cauchy-Schwarz inequality. Next, we have

sup
g2G

���S �(n1=2�(g0))�1�n;F0(��; g) +m�(g)=�(g0); h2;n;F0(��; g)
�

�S (m�(g)=�(g0); h2;0(g) + "Ik)
��� = op(1) (15.5)

under F0; using the uniform continuity of S over a compact set, which holds by Assump-

tion S1(d), where attention can be restricted to a compact set by (i) equation (15.4),

(ii) supg2G jjn�1=2�n;F0(��; g)jj = op(1) by Lemma A1(a), and (iii) supg2G jjh2;n;F0(��) �
h2;0 � "Ikjj = op(1) using Lemma A1(b) and the de�nition of h2;n;F0(��) in (5.2), and
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Lemma A1 applies for the reasons given in the paragraph following (14.33).

Equations (15.3) and (15.5) yield

(n1=2�(g0))
��T n;sn(��) + op(1)

=

snX
`=1

wQ;n(`)S (m
�(g`)=�(g0); h2;0(g`))

!
Z
S (m�(g)=�(g0); h2;0(g)) dQ(g)

�
Z
B�X (g0;�2)

S (m�(g)=�(g0); h2;0(g)) dQ(g) > 0; (15.6)

where the convergence holds for �xed fg1; g2; :::g by Assumptions A1, A2, and S4, the
�rst inequality holds by Assumption S1(c), and the second inequality holds by (14.28).

This completes the proof. �

Proof of Theorem B3. Part (a) follows from part (b) because

csn('n(�n;�);
bh2;n(�n;�); 1� �) � csn(0G;bh2;n(�n;�); 1� �); (15.7)

which holds because 'n(��; g) � 0k 8g 2 G by Assumption GMS1(a), c(h1;bh2;n(��); 1��)
is non-increasing in the �rst p elements of h1 by Assumption S1(b), and the last v

elements of 'n(��; g) equal zero.

Now, we prove part (b). When Tn(�) is replaced by the A-CvM statistic T n;sn(�n;�);

the results of Theorem 1 hold under Assumptions M, S1, and S2 0 with (�; F ) replaced

by (�n;�; Fn); sup(�;F )2F :h2;F (�)2H2;cpt
deleted, Tn(�); T (hn;F (�)); and xhn;F (�) replaced

by T n;sn(�n;�); T sn(hn;Fn(�n;�)) (de�ned in (4.6)), and xhn;Fn (�n;�); respectively, where

xhn;Fn (�n;�) 2 R is a constant that may depend on (�n;�; Fn) and n through hn;Fn(�n;�):

The adjustments needed to the proof of Theorem 1 are quite similar to those stated at

the beginning of the proof of Theorem B1. In addition, the proof uses the fact that

f(�n;�; Fn) : n � 1g satis�es the conditions to be in SubSeq(h2) (where h2 = h2;F0(�0))

by Assumptions LA1(a) and LA1(c)-(e) and because fWi : i � 1g are i.i.d. under
Fn and Assumption M holds given that (�n; Fn) 2 F by Assumption LA1. Because

f(�n;�; Fn) : n � 1g 2 SubSeq(h2); Lemma A1 applies, which is used in (12.3). Also,

(h1;n;F (�); h2;F (�)) is changed to (h1;n;Fn(�n;�); h2;Fn(�n;�)) throughout the proof of The-

orem 1.

Next, using the mean-value expansion in (14.37) and the de�nition h1;n;F (�; g) =
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n1=2D
�1=2
F (�)EFm(Wi; �; g); we have:

sup
g2G

jjh1;n;Fn(�n;�; g)� h1;n;Fn(�n; g)� �0(g)�jj

= sup
g2G

jj�Fn(�n;g; g)n1=2(�n;� � �n)� �0(g)�jj

� sup
g2G

sup
�2�:jj���0jj��n

jj�Fn(�; g)�(1 + o(1))� �0(g)�jj

! 0; (15.8)

where �n;g may di¤er across rows of �Fn(�n;g; g); �n;g lies between �n;� and �n; �n =

jj�n;� � �njj + jj�n � �0jj ! 0; the inequality holds using Assumption LA1(a), and the

convergence to zero uses Assumption LA2 0(b). (Note that the (1 + o(1)) term in (15.8)

requires the condition in Assumption LA2 0(b) that supg2G jj�0(g)�jj <1:)

Equation (15.8) and Assumption LA2 0(a) give: for all B <1;

sup
g2G:h1(g)�B

jjh1;n;Fn(�n;�; g)� h1(g)� �0(g)�jj ! 0: (15.9)

By Assumption LA1(c), d(h2;Fn(�n;�); h2;F0(�0))! 0: This implies that �h2;Fn (�n;�)(�)
) �h2(�); where h2 = h2;F0(�0): As in previous proofs, by the almost sure representation

theorem, there exists a probability space and random quantities ~�n(�) and ~�(�) de�ned
on it with the same distributions as �h2;Fn (�n;�)(�) and �h2(�); respectively, for n � 1; such
that supg2G jj~�n(g) � ~�(g)jj ! 0 a.s. Hence, T sn(hn;Fn(�n;�)) and eT sn(hn;Fn(�n;�)) have
the same distribution, where the latter is de�ned to be

eT sn(hn;Fn(�n;�)) = snX
`=1

wQ;n(`)S(~�n(g`) + h1;n;Fn(�n;�; g`); h2;Fn(�n;�; g`) + "Ik): (15.10)

For all � > 0; B <1; and � = �0�; we have

A1;n(�;B) = sup
g2G:h1(g)�B

jS(~�n(g)=� + h1;n;Fn(�n;�; g)=�; h2;Fn(�n;�; g) + "Ik)

�S(~�(g)=� + h1(g)=� +�0(g)�0; h2(g) + "Ik)j
! 0 as n!1 a.s. (15.11)

using Assumption S2 0; (15.9), supg2G jj~�n(g)� ~�(g)jj ! 0 a.s., supg2G jj~�(g)jj <1 a.s.,

and d(h2;Fn(�n;�); h2)! 0; where h2 = h2;F0(�0):
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In addition, for all B <1; we have

A2(�;B) = sup
g2G:h1(g)�B

jS(~�(g)=� + h1(g)=� +�0(g)�0; h2(g) + "Ik)

�S(�0(g)�0; h2(g) + "Ik)j
! 0 as � !1 a.s. (15.12)

We use (15.11) and (15.12) to obtain: for all constants B�
c < 1 as in Assumption

A3,

��� eT sn(hn;Fn(�n;�))
�

snX
`=1

wQ;n(`)1(h1(g`) � B�
c )S(~�n(g`)=� + h1;n;Fn(�n;�; g`)=�; h2;Fn(�n;�; g`) + "Ik)

�
snX
`=1

wQ;n(`)1(h1(g`) � B�
c )S(�0(g`)�0; h2(g`) + "Ik)� A1;n(�;B

�
c )� A2(�;B

�
c )

!n!1 a.s.

Z
1(h1(g) � B�

c )S(�0(g)�0; h2(g) + "Ik)dQ(g)� A2(�;B
�
c )

!�!1 a.s.

Z
1(h1(g) � B�

c )S(�0(g)�0; h2(g) + "Ik)dQ(g); (15.13)

where the �rst inequality uses Assumptions S1(c) and S4, the second inequality holds by

the de�nitions of A1;n(�;B�
c ) and A2(�;B

�
c ); the �rst convergence result holds by (15.11)

and Assumption A3, and the second convergence result holds by (15.12).

Let csup;0(0G; h�2; 1 � �) denote the 1 � � quantile of Tsup(0G; h�2) = supg2G S(�h2(g);

h�2(g)+ "Ik); where h
�
2 is some k�k-matrix-valued covariance kernel on G � G: Let 0G�G

denote the k � k-matrix-valued covariance kernel on G � G that equals the k � k zero

matrix for all (g; g�) 2 G � G: The A-PA critical value satis�es

csn(0G;bh2;n(�n;�); 1� �) � csup;0(0G;bh2;n(�n;�); 1� �+ �) + �

� csup;0(0G; 0G�G; 1� �+ �) + �

< 1; (15.14)

where the �rst inequality holds because a weighted average over fg1; :::; gsng with non-
negative weights that sum to one or less (by Assumption A2) is less than or equal to

the corresponding supremum over g 2 G; which implies that T sn(0G; h�2) � Tsup(0G; h
�
2)

8h�2; the second inequality holds because S(�h2(g); h�2(g)+ "Ik) � S(�h2(g); "Ik) 8g 2 G;
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for all covariance kernels h�2 by Assumption S1(e), which implies that Tsup(0G; h
�
2) �

Tsup(0G; 0G�G) 8h�2; and the last inequality holds because supg2G S(�h2(g); "Ik) <1 a.s.,

which holds by Assumption S2 0 and supg2G jj�h2(g)jj <1 a.s.

We now have: for all B�
c as in Assumption A3,

lim
�!1

lim inf
n!1

PFn

�
T sn(hn;Fn(�n;�)) > csn(0G;bh2;n(�n;�); 1� �)

�
� lim

�!1
lim inf
n!1

P
�
��� eT sn(hn;Fn(�n;�)) > ���c(0G; 0G�G; 1� �+ �) + ����

�
� lim

�!1
P

�Z
1(h1(g) � B�

c )S(�0(g)�0; h2(g) + "Ik)dQ(g)� A2(�;B
�
c )

> ���c(0G; h2; 1� �+ �) + ����
�

= 1

�Z
1(h1(g) � B�

c )S(�0(g)�0; h2(g) + "Ik)dQ(g) > 0

�
; (15.15)

where the �rst inequality holds by (15.14) and the equality in distribution of eT sn(hn;Fn
(�n;�)) and T sn(hn;Fn(�n;�)); the second inequality holds by (i) the �rst two inequalities

in (15.13), (ii) the �rst convergence result in (15.13), and (iii) the bounded convergence

theorem, and the last equality holds by the second convergence result of (15.13) and the

bounded convergence theorem.

The left-hand side (lhs) in (15.15) does not depend on B�
c : Hence, the lhs is greater

than or equal to the limit as c!1 of the right-hand side, which equals

1

�Z
1(h1(g) � 1)S(�0(g)�0; h2(g) + "Ik)dQ(g) > 0

�
= 1 (15.16)

by the monotone convergence theorem and the assumption that B�
c ! 1 as c ! 1;

where the equality holds by Assumptions LA3 0 and S3.

Lastly, we prove part (c) regarding KS tests and CS�s. The proof is essentially the

same as that for parts (a) and (b) with T n;sn(�n;�); csn(�; �; �);
Psn

`=1wQ;n(`):::; and
R
:::

dQ(g) replaced by the KS quantities Tn(�n;�); c(�; �; �); supg2G; and supg2G :::; respectively
(or with Gn in place of G). �
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15.2 Proof of Lemma B2 Regarding GB�spline; Gbox;dd; and Gc=d
Proof of Lemma B2. First we verify Assumption CI for G = GB�spline: Letmj;F (�; x) =

EF (mj (Wi; �) jXi = x): Write

XF (�) =
 

p[
j=1

fx 2 Rdx : mj;F (�; x) < 0g
![ 

k[
j=p+1

fx 2 Rdx : mj;F (�; x) 6= 0g
!
:

(15.17)

If PF (Xi 2 XF (�)) > 0; then the probability that Xi lies in one of the k sets in (15.17) is

positive. Suppose (without loss of generality) that PF (Xi 2 fx : m1;F (�; x) < 0g) > 0:
The set fx : m1;F (�; x) < 0g can be written as the union of disjoint non-degenerate
hypercubes in CB�spline (i.e., hypercubes with positive Lebesgue volumes) because con-
tinuity of m1;F (�; x) implies that if m1;F (�; x) < 0 then m1;F (�; y) < 0 for all y in some

hypercube that includes x: The number of such hypercubes is countable (because other-

wise their union would have in�nite volume). One of these hypercubes, call it H; must

have positive Xi probability. (Otherwise, the union of these hypercubes would have Xi

probability zero.)

In sum, we have H 2 CB�spline; PF (Xi 2 H) > 0; and m1;F (�; x) < 0 for all x 2 H:

In addition, the B-spline whose support is H is positive on the interior of H: Thus, if

PF (Xi 2 int(H)) > 0; we have EFm1(Wi; �)BH(Xi) < 0; which establishes Assumption

CI.

On the other hand, if PF (Xi 2 int(H)) = 0; then we must have PF (Xi 2 H=int(H)) >
0: Because m1;F (�; x) is a continuous function of x; there exists a �nite number of

hypercubes in CB�spline whose interiors have union that includes H=int(H) and for
which m1;F (�; x) < 0 for all x in each hypercube. One of these hypercubes, say H1;

must have interior with positive probability because PF (Xi 2 H=int(H)) > 0: In sum,

H1 2 CB�spline; PF (Xi 2 int(H1)) > 0; m1;F (�; x) < 0 for all x 2 H1; and the B-spline

BH1(x) is positive for x 2 int(H1): Hence, EFm1(Wi; �)BH1(Xi) < 0; which establishes

Assumption CI.

Now we establish Assumption CI for Gbox;dd: The fact that Assumption CI holds
for G = Gbox for all �r 2 (0;1] by Lemma 3 implies that Assumption CI holds for
G = Gbox;dd for all �r 2 (0;1]: The reason is as follows. Let Gbox(�r) and Gbox;dd(�r) de-
note Gbox and Gbox;dd; respectively, when �r is the upper bound on ru or r1;u and r2;u:
For any box Cx0;r 2 Gbox(�r); if Cx0;r captures some deviation from the model, i.e.,

EFmj(Wi; �)1(Xi 2 Cx0;r) < 0 for some j = 1; :::; p or EFmj(Wi; �)1(Xi 2 Cx0;r) 6=
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0 for some j = p + 1; :::; k; then (i) Cx0;r \ SuppFX;0(Xi) 6= � and (ii) Cx0+�;r+�
captures the same deviation for � > 0 su¢ ciently small. Result (ii) holds because

lim�#0EFmj(Wi; �)1(Xi 2 Cx0+�;r+�) = EFmj(Wi; �)1(Xi 2 Cx0;r): The latter holds

by the bounded convergence theorem because (Cx0+�;r+� � Cx0;r) # � as � # 0; and
hence mj(w; �)1(x 2 Cx0+�;r+�) ! mj(w; �)1(x 2 Cx0;r) as � # 0 for every w; and
EF jmj(Wi; �)1(Xi 2 Cx0+�;r+�)j � EF jmj(Wi; �)j <1: By (i) and � 2 (0; �r=2]; Cx0+�;r+�
can be written as a box, Cx;r1;r2 in Gbox;dd(3�r) by picking a point x 2 Cx0;r\SuppFX;0(Xi);

which is necessarily in the interior of Cx0+�;r+�; and letting r1 = x � x0 + r and r2 =

x0+ r�x+2�:We have jx�x0j � �r; r1 � 2�r; and r2 � 3�r: Because Cx;r1;r2 = Cx0+�;r+�

and Cx0+�;r+� captures a deviation from the model, Cx;r1;r2 does as well, and the proof

is complete.

Note that in the preceding argument, it is necessary to expand Cx0;r to Cx0+�;r+�
because Cx0;r is not necessarily in Gbox;dd(3�r) if the only elements of Cx0;r \SuppFX;0(Xi)

are on the boundary of Cx0;r: Also, note that the argument above does not go through

if one uses symmetric side lengths (i.e., r1;u = r2;u) in the de�nition of Gbox;dd:
Next, we verify Assumption CI for G = Gc=d: We write

XF (�) = [d2DX1;F (�; d); where (15.18)

X1;F (�; d) = fx1 2 Rdx;1 : EF (mj (Wi; �) jX1;i = x1; X2;i = d) < 0 for some j � p or

EF (mj (Wi; �) jX1;i = x1; X2;i = d) 6= 0 for some j = p+ 1; :::; kg;

for d 2 D: We have

PF (Xi 2 �F (�)) = PF

 
(X 0

1;i; X
0
2;i)

0 2
[
d2D

�1;F (�; d)

!
=
X
d2D

PF (X1;i 2 �1;F (�; d)jX2;i = d)PF (X2;i = d): (15.19)

If PF (Xi 2 �F (�)) > 0; then there exists some d� 2 D such that PF (X2;i = d�) > 0 and

PF ((X1;i 2 �1;F (�; d�)jX2;i = d�) > 0: (15.20)

Given the inequality in (15.20), we use the same argument to verify Assumption CI

as given for Gc-cube; Gbox; GB�spline; or Gbox;dd with dx replaced by dx;1; but with EF (�)
replaced by EF (�jX2;i = d�) throughout, and using the fact that fg : g = g11fd�g;
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g1 2 G1g � Gc=d for G1 = Gc-cube; Gbox; GB�spline; or Gbox;dd:
Next, we verify Assumption M. Assumptions M(a) and M(b) hold for GB�spline by

taking G(x) = 2=3 8x and �1 = 4=� + 3: Assumption M(c) holds for GB�spline because
each element of GB�spline can be written as the sum of four functions each of which is

the product of an indicator function of a box and a polynomial of order four. Man-

ageability of polynomials and indicator functions of boxes hold because they have �nite

pseudo-dimension (as de�ned in Pollard (1990, Sec. 4)). Manageability of �nite linear

combinations of these functions holds by the stability properties of cover numbers under

addition and pointwise multiplication, see Pollard (1990, Sec. 5).

Assumption M holds for Gbox;dd because it holds for Gbox by Lemma 3 and Gbox;dd �
Gbox:
The veri�cation of Assumption M for G = Gc=d is the same as in the proof of Lemma 3

when G1 is Gc-cube; Gbox; or Gbox;dd because Cbox � ffdg : d 2 Dg is a Vapnik-Cervonenkis
class of sets. The veri�cation of Assumption M for G = Gc=d when G1 is GB�spline is
essentially the same as the proof above for GB�spline: The functions in Gc=d in this case
still can be written as the sum of four functions each of which is the product of an

indicator function of a box� in this case, the box is of the form B � fdg; where B is a

box in Rdx;1 and d 2 D� and a polynomial of order four.
Assumption FA(e) holds for GB�spline; Gbox;dd; and Gc=d by the same arguments as

given above for Assumption M.

This completes the proofs of parts (a)-(d) of the Lemma.

Part (e) of the Lemma holds, i.e., Supp(Qc) = GB�spline; because GB�spline is count-
able and Qc has a probability mass function that is positive at each element in GB�spline:
Now, we prove part (f) using a similar argument to that for part (b) of Lemma 4.

Consider g = gx;r1;r2 2 Gbox;dd; where gx;r1;r2(y) = 1(y 2 Cx;r1;r2) � 1k and (x; r1; r2) 2
Supp(Xi)� (�dxu=1(0; �X;u�r))2: Let � > 0 be given. Let �0 = (�0;1; :::; �0;dx)0 and likewise
for �1 and �2: De�ne

Gg;�� = fgx+�0;r1��1;r2+�2 : ��� � �0;u � ��; �� � �1;u; �2;u � 2�� 8u � dxg: (15.21)

By the same sort of argument as for (14.26), for g� = gx+�0;r1��1;r2+�2 2 Gg;��; we
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have

�2X(g; g
�) = EFX;0 [1(Xi 2 Cx;r1;r2)� 1(Xi 2 Cx+�0;r1��1;r2+�2)]

2

�
dxX
u=1

[PFX;0(Xi;u 2 (xu � r1;u; xu + �0;u � (r1;u � �1;u)])

+PFX;0(Xi;u 2 (xu + r2;u; xu + �0;u + r2;u + �2;u])]

�
dxX
u=1

[FXu;0(xu � r1;u + 3��)� FXu;0(xu � r1;u)]

+

dxX
u=1

[FXu;0(xu + r2;u + 3��)� FXu;0(xu + r2;u)]; (15.22)

where FXu;0(�) denotes the distribution function of Xi;u and the �rst inequality holds

because �0;u + �1;u � 0 and �0;u + �2;u � 0: Because distribution functions are right

continuous, the rhs of (15.22) converges to zero as �� # 0: Thus, �2X(g; g�) converges
to zero uniformly over Gg;�� as �� # 0 and there exists an �� > 0 su¢ ciently small that

Gg;�� � B�X (g; �):
Next, we have Qc(Gg;��) equals

Q�FX;0
�
�dxu=1[xu � ��; xu + ��]�dxu=1 [r1;u � 2��; r1;u � ��]�dxu=1 [r2;u + ��; r2;u + 2��]

�
> 0;

(15.23)

where Q�FX;0 = FX;0 � Unif((�dxu=1(0; �X;u�r))2 and the inequality holds because x 2
Supp(Xi) and �� > 0: This completes the proof of part (f).

Lastly, we prove part (g). By parts (e) and (f) and parts (a) and (b) of Lemma

4, we have G1 � Supp(Q1): Because Supp(QD) = D and Qe = Q1 � QD; we have

Gc=d � Supp(Qe): �

15.3 Proofs of Theorems B4 and B5 Regarding

Uniformity Issues

Proof of Theorem B4. Part (a) holds by an empirical process central limit theorem
because the intervals f(a; b] : 0 � a < b � 1g form a Vapnik-Cervonenkis class of sets,

e.g., see the proof of Lemma A1(a). The covariance kernel of �(�) and the pseudo-metric
�� are speci�ed below.

Let c _ d = maxfc; dg and c ^ d = minfc; dg:
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To prove part (b), we write

Yiga;b(Xi) = (Ui + 1(Xi 2 ("n; 1]) � 1(Xi 2 (a; b])
= Ui1(Xi 2 (a; b]) + 1(Xi 2 (a _ "n; b]) (15.24)

and

EFnYiga;b(Xi) = EFnUi1(Xi 2 (a; b]) + PFn(Xi 2 (a _ "n; b])
= PFn(Xi 2 (a _ "n; b])
! (b� a)=2; (15.25)

where the second equality uses Assumption CX(b) and the convergence uses Assumption

CX(c) and holds by slightly di¤erent arguments when a = 0 and a > 0: Equation (15.25)

and b � a > 0 imply that h1;n(ga;b) = n1=2EFnYiga;b(Xi) ! 1 = h1(ga;b) as n ! 1 for

all ga;b 2 G; which proves part (b).
Part (c) holds because h1(ga;b) =1 for all ga;b 2 G and

inf
ga;b2G

h1;n(ga;b) = inf
ga;b2G

n1=2PFn(Xi 2 (a _ "n; b])

= inf
a;b: "n�a<b�1

n1=2PFn(Xi 2 (a; b]) = 0 (15.26)

for all n; where the �rst equality holds by (15.25) and the last equality holds by As-

sumption CX(c).

Part (d) holds because �n(ga;b) + h1;n(ga;b) = Op(1) + n1=2(b � a)=2 !p 1 by part

(a) and (15.25) for all ga;b 2 G. This, combined with Assumption CX(f) (in particular,
Assumption S1(d)), proves part (d).

Part (e) holds by part (b) and Assumption CX(f) (in particular, Assumption S2)

because S(�(ga;b) + h1(ga;b)) = S(1) = 0 for all ga;b 2 G:
To show part (f), we de�ne

g�n(x) = 1(x 2 (0; "n]): (15.27)

Then,

h1;n(g
�
n) = n1=2EFnYig

�
n(Xi) = PFn(Xi 2 (0 _ "n; "n]) = 0 (15.28)

for all n; where the second equality holds by (15.25) with a = 0 and b = "n:
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Next, we have

sup
ga;b2G

S(�n(ga;b) + h1;n(ga;b)) � S(�n(g
�
n) + h1;n(g

�
n)) = S(�n(g

�
n)); (15.29)

where the equality holds by (15.28). The asymptotic distribution of S(�n(g�n)) is estab-

lished as follows:

�n(g
�
n) = n�1=2

nX
i=1

[Yi1(Xi 2 (0; "n])� EFnYi1(Xi 2 (0; "n])]

= n�1=2
nX
i=1

[Ui1(Xi = "n) + Ui1(Xi 2 (0; "n))

+1(Xi 2 ("n; 1])1(Xi 2 (0; "n])� EFn1(Xi 2 ("n; 1])1(Xi 2 (0; "n])]

= n�1=2
nX
i=1

Ui1(Xi = "n) + n�1=2
nX
i=1

Ui1(Xi 2 (0; "n))

! d Z
� � N(0; 1=2); (15.30)

where the second equality uses EFnUi = 0 and Ui and Xi are independent. The

convergence in distribution in (15.30) holds by a triangular array CLT for the �rst

summand on the second last line because Ui1(Xi = "n) has mean zero and variance

EFnU
2
i 1(Xi = "n) = 1 � PFn(Xi = "n) = 1=2 for all n using Assumption CX(b). The

second summand on the second last line of (15.30) is op(1) because its mean is zero and

its variance is

V ar

 
n�1=2

nX
i=1

Ui1(Xi 2 (0; "n))
!
= V ar(Ui1(Xi 2 (0; "n)))

= EFnU
2
i 1(Xi 2 (0; "n)) = 1 � PFn(Xi 2 (0; "n)) = "n=2; (15.31)

where the �rst equality holds by Assumption CX(d), the second and third equalities

hold by Assumption CX(b), and the last equality holds by Assumption CX(c).

Equations (15.29) and (15.30), Assumption S1(d), and the continuous mapping the-

orem combine to prove part (f).

Part (g) holds if

sup
ga;b2G

S(�n(ga;b) + h1;n(ga;b))9p 0 (15.32)
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using part (e). By part (f), for all � � 0;

lim inf
n!1

P

 
sup
ga;b2G

S(�n(ga;b) + h1;n(ga;b)) > �

!
� lim inf

n!1
P (S(�n(g

�
n)) > �)

= P (S(Z�) > �): (15.33)

Now, by the dominated convergence theorem, as � ! 0;

P (S(Z�) > �)! P (S(Z�) > 0) = 1=2; (15.34)

where the equality holds because S(m) > 0 i¤ m < 0 by Assumption S2 and P (Z� <

0) = 1=2: Hence, the right-hand side in (15.33) is arbitrarily close to 1=2 for � > 0

su¢ ciently small, which implies that (15.32) holds and part (g) is established.

Lastly, we compute the covariance kernel K(ga1;b1 ; ga2;b2) of the Gaussian process

�(�): We have

EFnY
2
i ga1;b1(Xi)ga2;b2(Xi)

= EFn(Ui + 1(Xi 2 ("n; 1])2 � 1(Xi 2 (a1 _ a2; b1 ^ b2])
= EFnU

2
i 1(Xi 2 (a1 _ a2; b1 ^ b2])

+EFn(2Ui + 1)1(Xi 2 (a1 _ a2 _ "n; b1 ^ b2])
= PFn(Xi 2 (a1 _ a2; b1 ^ b2]) + PFn(Xi 2 (a1 _ a2 _ "n; b1 ^ b2])
! (1=2)1(a1 = a2 = 0) + maxf(b1 ^ b2)� (a1 _ a2); 0g
= K1(ga1;b1 ; ga2;b2); (15.35)

where the third equality uses Assumption CX(b) and the convergence uses Assumption

CX(c).

In addition, we have

lim
n!1

EFnYiga;b(Xi) = (b� a)=2 = K2(ga;b); (15.36)

where the �rst equality holds by (15.25). Putting the results of (15.35) and (15.36)
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together yields

K(ga1;b1 ; ga2;b2)

= lim
n!1

�
EFnY

2
i ga1;b1(Xi)ga2;b2(Xi)� EFnYiga1;b1(Xi) � EFnYiga2;b2(Xi)

�
= K1(ga1;b1 ; ga2;b2)�K2(ga1;b1)K2(ga2;b2): (15.37)

The square of the pseudo-metric �� on G is

�2�(ga1;b1 ; ga2;b2) (15.38)

= lim
n!1

EFn (Yiga1;b1(Xi)� Yiga2;b2(Xi)� EFnYiga1;b1(Xi) + EFnYiga2;b2(Xi))
2 :

The limit in (15.38) exists and can be computed via calculations analogous to those in

(15.25) and (15.35). �

Proof of Theorem B5. For notational convenience, we let g denote ga;b: By Theorem
B4(a), �n(�) ) �(�) as n ! 1: As in the proof of Theorem 1(a), by an almost sure

representation argument, e.g., see Thm. 9.4 of Pollard (1990), there exist processes

~�n(�) and ~�(�) on G that have the same distributions as �n(�) and �(�); respectively, for
which

sup
g2G

j~�n(g)� ~�(g)j ! 0 a.s. (15.39)

Let e
 denote the sample paths for which the convergence in (15.39) holds. By (15.39),
P (e
) = 1:
For each ! 2 e
; we apply the bounded convergence theorem to obtain

lim
n!1

Z
S(~�n(g)(!) + h1;n(g))dQ(g) =

Z
S(~�(g)(!) + h1(g))dQ(g); (15.40)

which yields the result of the Theorem. Now we check the conditions for the bounded

convergence theorem. For all g 2 G; pointwise convergence holds:

S(~�n(g)(!) + h1;n(g))! S(~�(g)(!) + h1(g)) as n!1

by (15.39), Theorem B4(b), and Assumption S1(d). A bound on S(~�n(g)(!) + h1;n(g))

over g 2 G and n su¢ ciently large is given by S(infg�2G ~�(g�)(!) � ") for some " > 0:
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This follows because for all " > 0 and g 2 G; we have

0 � S(~�n(g)(!) + h1;n(g)) � S(~�n(g)(!))

� S( inf
g�2G

~�n(g
�)(!)) � S( inf

g�2G
~�(g�)(!)� ") <1; (15.41)

where the �rst inequality holds by Assumption S1(c), the second inequality holds by

Assumption S1(b) and h1;n(g) � 0 for all g 2 G by (15.25), the third inequality holds by
Assumption S1(b), the fourth inequality holds for all n su¢ ciently large by (15.39) and

Assumption S1(b), and the last inequality holds because infg�2G ~�(g�)(!) > �1 because

the sample paths of ~�(�) are bounded a.s. (which follows from jm(Wi; �0)g(Xi)j �
jm(Wi; �0)j � jUij + 1 < 1 a.s. and (15.39)). This completes the proof of (15.40) and

the Theorem is proved. �

15.4 Proofs of Subsampling Results

Proof of Lemma B3. For S1; Assumption SQ(a) holds because (i) if v � 1; the

summand
Pk

j=p+1(�
2
h2;j
(g)=(h2;j;j(g) + ")) is absolutely continuous for all g 2 G, where

�h2(g) = (�h2;1(g); :::; �h2;k(g)
0 and h2;j;j(g) denotes the jth diagonal element of h2(g);

(ii) if v = 0 and h1(g) 6= 1p; the summands [�h2;j(g) + h1;j(g)]
2
�=(h2;j;j(g) + ") are

absolutely continuous for x > 0 and all j � p such that h1;j(g) < 1; (iii) if v = 0 and

h1(g) =1p; S1(�h2(g) + h1(g); h2(g) + "Ik) = 0 and its distribution function equals one

for all x > 0; and (iv) if S1(�h2(g) + h1(g); h2(g) + "Ik) is absolutely continuous for all

g 2 G; then
R
S1(�h2(g) + h1(g); h2(g) + "Ik)dQ(g) is absolutely continuous.

Assumption SQ(b) holds for S1 because (i) if v � 1; the summand
R Pk

j=p+1(�
2
h2;j
(g)

=(h2;j;j(g)+"))dQ(g) has positive density on [0;1); and (ii) if v = 0 and h1(g) 6=1p on

someG � G such thatQ(G) > 0; each summand
R
[�h2;j(g)+h1;j(g)]

2
�=(h2;j;j(g)+")dQ(g)

for which h1;j(g) <1 on some G � G such that Q(G) > 0 has positive density on [0;1)
and so does the sum over

Pp
j=1 :

For S2; if v = 0 and h1(g) =1p a.s. [Q]; then S2(�h2(g)+h1(g); h2(g)+"Ik) = 0 a.s.

[Q]; J(h1;h2)(x) = 1 for all x > 0; Assumption SQ(a) holds, and Assumption SQ(b) does

not impose any restriction. Otherwise, v � 1 or h1(g) < 1p on a subset G � G such
that Q(G) > 0: In this case, the random variable

R
S2(�h2(g) + h1(g); h2(g) + "Ik)dQ(g)

has support [0;1) and is absolutely continuous. Hence, Assumptions SQ(a)-(b) hold.
�
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The proof of Theorem B6 uses the following Lemma.

Lemma D1. Suppose Assumptions M and S1 hold. Then, for all h 2 H; under any
sequence f(�n; Fn) : n � 1g 2 Seqb(h�1; h);

Tn(�n)!d

Z
S(�h2(g) + h1(g); h2(g) + "Ik)dQ(g) � J(h1;h2) as n!1:

Comment. Condition (iv) of Seqb(h�1; h) is not needed for the result of Lemma D1 to
hold.

Proof of Theorem B6. First, we prove part(a). Suppose f(�n; Fn) : n � 1g 2 Seqb:

Then, there exist h 2 H and h�1 2 H�
1(h) such that f(�n; Fn) : n � 1g 2 Seqb(h�1; h): We

need to show that under f(�n; Fn) : n � 1g; lim supn!1 PFn(Tn(�n) � cn;b(�n; 1� �)) �
1��: The asymptotic distribution of Tn(�n) is given by Lemma D1. We now determine
the probability limit of cn;b(�n; 1� �):

Let J(h1;h2)(x) for x 2 R denote the distribution function of J(h1;h2): By Lemma

5 in Andrews and Guggenberger (2010), if (i) Un;b(�n; x) !p J(h�1;h2)(x) for all x 2
C(J(h�1;h2)); where C(J(h�1;h2)) denotes the continuity points of J(h�1;h2); and (ii) for all

� > 0; J(h�1;h2)(c1 + �) > 1� �; where c1 is the 1� � quantile of J(h�1;h2); then

cn;b (�n; 1� �)!p c1: (15.42)

Condition (i) holds by the properties of U-statistics of degree b and Tn;b;j (�n) !d

J(h�1;h2) (see Thm. 2.1(i) in Politis and Romano (1994)). The latter holds by Lemma D1

because subsample j is an i.i.d. sample of size b from the population distribution.

By Assumption S1(c), J(h1;h2)(x) = 0 8x < 0 for h 2 H. Thus, c1 � 0: If v = 0 and
h1(g) =1p a.s.[Q]; then J(h�1;h2)(0) = 1; c1 = 0; J(h�1;h2)(c1+�) = 1 > 1��: In all other
cases, Assumption SQ(b) applies, J(h�1;h2)(0) < 1; and J(h�1;h2)(c1 + �) > J(h�1;h2)(c1) �
1� �: Thus, condition (ii) holds and (15.42) is established.

If c1 > 0; c1 2 C(J(h1;h2)) by Assumption SQ(a). Thus,

lim inf
n!1

PFn(Tn(�n) � cn;b(�n; 1� �)) = J(h1;h2)(c1) � J(h�1;h2)(c1) = 1� �; (15.43)

where the �rst equality holds by (15.42) and Lemma D1, the inequality holds by As-

sumption S1(b) and h�1 � h1; and the second equality holds by Assumption SQ(a) and

the de�nition of c1:
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If c1 = 0; for some set G � G with Q(G) = 1; we have

PFn(Tn(�n) � cn;b(�n; 1� �))

� PFn(Tn(�n) � 0)

= PFn

�
n1=2mn;j(�n; g)

�n;j(�n; g)
� 0 8j � p &

mn;j(�n; g)

�n;j(�n; g)
= 0 8j = p+ 1; :::; k;8g 2 G

�
! P

�
�h;j(g) + h1;j(g)

h2;j;j(g) + "
� 0 8j � p &

�h;j(g)

h2;j;j(g) + "
= 0 8j = p+ 1; :::; k;8g 2 G

�
= P (S(�h(g) + h1(g); h2(g) + "Ik) = 0 8g 2 G)
= J(h1;h2)(0) � J(h�1;h2)(0) � 1� �; (15.44)

where �n;j(�; g) and h2;j;j(g) denote the jth diagonal elements of �n(�; g) and h2(g);

respectively. In (15.44), the �rst inequality holds because cn;b(�n; 1 � �) is the 1 � �

sample quantile of the subsample test statistics and the test statistics are non-negative

(by Assumption S1(a)), the �rst and second equalities hold by Assumption S2, the

convergence holds by Lemma A1(a)-(b), the third equality holds by the de�nition of

J(h1;h2); and the last inequality holds because 0 is the 1� � quantile of J(h�1;h2):

Next, we prove part (b). Let (��n; F
�
n) = (�; F ) for n � 1; where (�; F ) is speci�ed

in Assumption C. Then, f(��n; F �n) : n � 1g 2 Seqb(h�1; h); where h
�
1 = h1;F (�) and

h = (h1;F (�); h2;F (�)): Thus,

lim inf
n!1

PF �n (Tn(�
�
n) � cn;b(�

�
n; 1� �)) = J(h1;h2)(c1) = J(h�1;h2)(c1) = 1� �: (15.45)

This and the result of Theorem B6(a) establish part (b).

Lastly, we prove part (c). Suppose Assumption Sub holds and f(�mn ; Fmn) : n � 1g
belongs to Seqb (where Seqb is de�ned with mn in place of n). Then,

AsyCS = lim
n!1

PFmn (Tn(�mn) � cn;b(�mn ; 1� �))

� inf
f(�n;Fn):n�1g2Seqb

lim inf
n!1

PFn(Tn(�n) � cn;b(�n; 1� �))

= 1� � (15.46)
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using Theorem B6(b). On the other hand,

AsyCS = lim inf
n!1

inf
(�;F )2F

PF (Tn(�) � cn;b(�; 1� �))

� inf
f(�n;Fn):n�1g2Seqb

lim inf
n!1

PFn(Tn(�n) � cn;b(�n; 1� �))

= 1� �: (15.47)

Thus, we have AsyCS = 1� �: �

Proof of Lemma D1. By the same argument as used above to show (14.20), but with
�bh2;n(�c)(g) and 'n(�c; g) replaced by �n;Fn(�n; g) and h1;n;Fn(�n; g); respectively, we have

Tn(�n)!d T (h) =

Z
S(�h2(g) + h1(g); h2(g) + "Ik)dQ(g); (15.48)

where �n;Fn(�n; �)) �h2(�) by Lemma A1(a), h1;n;Fn(�n; g)! h1(g) 8g 2 G by De�nition
Seqb(h�1; h)(ii), and d(bh2;n(�n); h2) ! 0 by Lemma A1(b) and (12.26). Note that the

assumption that f(�n; Fn) : n � 1g satis�es De�nition Seqb(h�1; h) and Assumption M
implies that f(�n; Fn) : n � 1g satis�es De�nition SubSeq(h2) and hence the conditions
of Lemma A1 hold. �
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16 Supplemental Appendix E

This Appendix proves Lemma A1, which is stated in Supplemental Appendix A.

16.1 Preliminary Lemmas E1-E3

Before we prove Lemma A1, we review a few concepts from Pollard (1990) and state

several lemmas that are used in the proof.

De�nition E1 (Pollard, 1990, De�nition 3.3). The packing number D(�; �;G)

for a subset G of a metric space (G; �) is de�ned as the largest b for which there exist
points g(1); :::; g(b) in G such that �(g(s); g(s

0)) > � for all s 6= s0: The covering number

N(�; �;G) is de�ned to be the smallest number of closed balls with �-radius � whose

union covers G:

It is easy to see that N(�; �;G) � D(�; �;G) � N(�=2; �; G):

Let (
;z;P) be the underlying probability space equipped with probability distrib-
ution P: Let ffn;i(!; g) : g 2 G; i � n; n � 1g be a triangular array of random processes.
Let

Fn;! = f(fn;1(!; g); :::; fn;n(!; g))0 : g 2 Gg: (16.1)

Because Fn;! � Rn; we use the Euclidean metric jj � jj on this space. For simplicity,
we omit the metric argument in the packing number function, i.e., we write D(�;G) in

place of D(�; jj � jj; G) when G � Fn;!:
Let � denote the element-by-element product. For example for a; b 2 Rn; a � b =

(a1b1; :::; anbn)
0: Let envelope functions of a triangular array of processes ffn;i(!; g) :

g 2 G; i � n; n � 1g be an array of functions fFn(!) = (Fn;1(!); :::; Fn;n(!))0 : n � 1g
such that jfn;i(!; g)j � Fn;i(!) 8i � n; n � 1; g 2 G; ! 2 
:

De�nition E2 (Pollard, 1990, De�nition 7.9). A triangular array of processes

ffn;i(!; g) : g 2 G; i � n; n � 1g is said to be manageable with respect to envelopes
fFn(!) : n � 1g if there exists a deterministic real function � on (0; 1] for which (i)R 1
0

p
log �(�)d� < 1 and (ii) D(�jj� � Fn(!)jj; � � Fn;!) � �(�) for 0 < � � 1; all

! 2 
; all n-vectors � of nonnegative weights, and all n � 1:

Lemma E1. If a row-wise i.i.d. triangular array of random processes f�n;i(!; g) :
g 2 G; i � n; n � 1g is manageable with respect to the envelopes fFn(!) : n � 1g
and cn(!) = (cn;1(!); :::; cn;n(!))0 is an Rn-valued function on the underlying probability
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space, then

(a) f�n;i(!; g)cn;i(!) : g 2 G; i � n; n � 1g is manageable with respect to the en-
velopes

Fn(!) = (Fn;1(!)jcn;1(!)j; :::; Fn;n(!)jcn;n(!)j)0 for n � 1; (16.2)

(b) fE�n;i(�; g) : g 2 G; i � n; n � 1g is manageable with respect to the envelopes
fEFn : n � 1g provided EFn;1 <1 for all n � 1; and
(c) if another triangular array of random processes f��n;i(!; g) : g 2 G; i � n; n � 1g

is manageable with respect to the envelopes fF �n(!) : n � 1g; then f��n;i(!; g)+�n;i(!; g) :
g 2 G; i � n; n � 1g is manageable with respect to the envelopes fFn(!)+F �n(!) : n � 1g:

Lemma E2. If the triangular array of processes ffn;i(!; g) : g 2 G; i � n; n � 1g is
manageable with respect to the envelopes fFn(!) = (Fn;1(!); :::; Fn;n(!))0 : n � 1g; and
there exist 0 < � < 1 and 0 < B� < 1 such that n�1

P
i�nEF

1+�
n;i � B� for all n � 1;

then

sup
g2G

�����n�1
nX
i=1

(fn;i(!; g)� Efn;i(�; g))
�����!p 0: (16.3)

Lemma E1(b)-(c) imply that if ffn;i(!; g) : g 2 G; i � n; n � 1g is manageable,
then the triangular array of recentered processes ffn;i(!; g) � Efn;i(�; g) : g 2 G; i �
n; n � 1g also is manageable with respect to their corresponding envelopes. Lemma E2
is a uniform weak law of large numbers for triangular arrays of row-wise independent

random processes. Lemma E2 is a complement to Thm. 8.2 in Pollard (1990) which is

a uniform weak law of large numbers for independent sequences of random processes.

Lemma A1(a) is a functional central limit theorem result for multi-dimensional em-

pirical processes. We prove it using a functional central limit theorem for real-valued

empirical processes given in Pollard (1990, Thm. 10.3) and the Cramér-Wold device.

For a 2 Rk=f0kg; let

fn;i(!; g) = a0D
�1=2
Fn

(�n)n
�1=2[m(Wn;i(!); �n; g)� EFnm(Wn;i(�); �n; g)];

for ! 2 
; g 2 G; (16.4)

where Wn;i(�) = Wi; and the index n in Wn;i signi�es the fact that the distribution of

Wi is changing with n: The random variable fn;i(!; g) depends on a; but for notational
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simplicity, a does not appear explicitly in fn;i(!; g): By de�nition, we have

a0�n;Fn(�n; g) =

nX
i=1

fn;i(!; g): (16.5)

Let

�n;a(g; g
�) =

�
nEjfn;i(�; g)� fn;i(�; g�)j2

�1=2
for g; g� 2 G: (16.6)

We show in the proof of Lemma E3 below that under the assumptions, the sequence

f�n;a(g; g�) : n � 1g converges for each pair g; g� 2 G. In consequence, the pointwise
limit of �n;a(�; �) is an appropriate choice for the pseudo-metric on G. Denote the limit
by �a (�; �) ; i.e.,

�a(g; g
�) = lim

n!1
�n;a(g; g

�): (16.7)

Lemma E3. For all a 2 Rk=f0g and any subsequence f(�an ; Fan) : n � 1g 2
SubSeq(h2); for some k � k-matrix-valued covariance kernel h2 on G � G;
(a) G is totally bounded under the pseudo-metric �a;
(b) the �nite dimensional distributions of a0�an;Fan (�an ; g) have Gaussian limits with

zero means and covariances given by a0h2(g; g�)a; 8g; g� 2 G, which uniquely determine
a Gaussian distribution �a concentrated on the space of uniformly �a(�; �)-continuous
bounded functionals on G, U�a(G); and
(c) a0�an;Fan (�an ; �) converges in distribution to �a:

The proofs of Lemmas E1-E3 are given below. The proof of Lemma E2 uses the

maximal inequality in (7.10) of Pollard (1990). The proof of Lemma E3 uses the real-

valued empirical process result of Thm. 10.6 in Pollard (1990).

16.2 Proof of Lemma A1(a)

Lemma A1 is stated in terms of subsequences fang: For notational simplicity, we
prove it for the sequence fng: All of the arguments in this subsection and the next go
through with fang in place of fng:
The following three conditions are su¢ cient for weak convergence: (a) (G; �) is a

totally bounded pseudo-metric space, (b) �nite dimensional convergence holds: 8fg(1); :::;
g(L)g � G; (�n;Fn(�n; g

(1))0; :::; �n;Fn(�n; g
(L))0)0 converges in distribution, and
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(c) f�n;Fn(�n; �) : n � 1g is stochastically equicontinuous. (For example, see Thm.

10.2 of Pollard (1990).)

First, we establish the total boundedness of the pseudo-metric space (G; �); i.e.,
N(�; �;G) < 1 for all � > 0: This is done by constructing a �nite collection of closed

balls that covers (G; �):
Consider � > 0: Let B�(g; �) denote a closed ball centered at g with �-radius �: Let

#G denote the number of elements in G when G is a �nite set. (Throughout this proof

G denotes a subset of G; not the envelope function that appears in Assumption M.)
For j = 1; :::; k; let ej be a k-dimensional vector with the jth coordinate equal to one

and all other coordinates equal to zero. Then, ej 2 Rk=f0g and by Lemma E3(a), the
pseudo-metric spaces (G; �ej) are totally bounded. Consequently, for all G � G; (G; �ej)
is totally bounded. Our construction of the collection of closed balls is based on the

following relationship between f�ej : j � kg and �: 8g; g� 2 G;

�2(g; g�) = tr (h2(g; g)� h2(g; g
�)� h2(g

�; g) + h2(g
�; g�))

= lim
n!1

EFnjjD
�1=2
Fn

(�n)[em(Wi; �n; g)� em(Wi; �n; g
�)]jj2

= lim
n!1

kX
j=1

�2n;ej(g; g
�) =

kX
j=1

�2ej(g; g
�); (16.8)

where the second equality holds by (16.7), which is proved in (16.40)-(16.41).

We start with j = 1: Because (G; �e1) is totally bounded, we can �nd a set G1 � G
such that

#G1 = N(�k; �e1 ;G) and sup
g2G

min
g�2G1

�e1(g; g
�) � �k; (16.9)

where �k = �=(2
p
k): For all g 2 G1; letB1

�e1
(g; �k) = B�e1 (g; �k)\G: Then,

S
g2G1 B

1
�e1
(g;

�k) covers G:
Because B1

�e1
(g; �k) � G; (B1

�e1
(g; �k); �e2) is totally bounded. We are then able to

choose a set G2;g such that

#G2;g = N(�k; �e2 ; B
1
�e1
(g; �k)) and sup

g02B1�e1 (g;�k)
min
g�2G2;g

�e2(g
0; g�) � �k: (16.10)

Let G2 =
S
g2G1 G2;g: We have #G2 =

P
g2G1 #G2;g <1: For all g 2 G1 and g0 2 G2;g;

let

B2
�e2
(g0; �k) = B�e2 (g

0; �k) \B1
�e1
(g; �k): (16.11)
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By construction,
S
g02G2;g B

2
�e2
(g0; �k) covers B

1
�e1
(g; �k): Because

S
g2G1 B

1
�e1
(g; �k) covers

G;
S
g02G2 B

2
�e2
(g0; �k) covers G:

Repeat the previous steps to obtain in turn G3; fB3
�e3
(g; �k) : g 2 G3g; :::; Gk;

fBk
�ek
(g; �k) : g 2 Gkg: One can induce that (i) #Gk <1; (ii)

S
g02Gk B

k
�ek
(g0; �k) covers

G; and (iii) 8g 2 G; there exists (g(k); g(k�1); :::; g(1)) 2 Gk �Gk�1 � :::�G1 such that

g 2 Bk
�ek
(g(k); �k) � Bk�1

�ek�1
(g(k�1); �k) � ::: � B1

�e1
(g(1); �k): (16.12)

Thus,

�(g; g(k)) =

 
kX
j=1

�2ej(g; g
(k))

!1=2
�
�
�2

4k
+
4�2

4k
+ :::+

4�2

4k

�1=2
< �: (16.13)

Equation (16.13) implies that
S
g2Gk B

k
� (g; �) covers G, Gk is the desired �nite collection

we set out to construct, N(�; �;G) � #Gk <1; and (G; �) is totally bounded.
Second, we show that �nite dimensional convergence holds. By Lemma E3, the �nite

dimensional random vector (a0�n;Fn(�n; g
(1)); :::; a0�n;Fn(�n; g

(I)))0 converges in distribu-

tion:0BB@
a0�n;Fn(�n; g

(1))
...

a0�n;Fn(�n; g
(L))

1CCA!d N

0BB@0;
a0h2(g

(1); g(1))a ::: a0h2(g
(1); g(L))a

... :::
...

a0h2(g
(L); g(1))a ::: a0h2(g

(L); g(L))a

1CCA (16.14)

for all a 2 Rk: Thus, by the Cramér-Wold device, for all g(1); g(2); :::; g(L) 2 G;0BB@
�n;Fn(�n; g

(1))
...

�n;Fn(�n; g
(L))

1CCA!d N

0BB@0;
0BB@

h2(g
(1); g(1)) ::: h2(g

(1); g(L))
... :::

...

h2(g
(L); g(1)) ::: h2(g

(L); g(L)

1CCA
1CCA : (16.15)

Lastly, we show that f�n;Fn(�n; �) : n � 1g is stochastically equicontinuous with
respect to �: By Lemma E3, fe0j�n;Fn(�n; �) : n � 1g is stochastically equicontinuous
with respect to �ej for all j � k: (Weak convergence implies stochastic equicontinuity.)

Because �(g; g�) � �ej(g; g
�) for all g; g� 2 G; fe0j�n;Fn(�n; �) : n � 1g is stochastically

equicontinuous with respect to � for all j � k: Note that e0j�n;Fn(�n; �) is the jth coor-
dinate of �n;Fn(�n; �): Therefore, f�n;Fn(�n; �) : n � 1g is stochastically equicontinuous
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with respect to �: �

16.3 Proof of Lemma A1(b)

It su¢ ces to show that each element of D�1=2
F (�)b�n(�; g; g�)D�1=2

F (�) converges in

probability uniformly over g; g� 2 G: Suppose 1 � j; j0 � k: The (j; j0)th element of

D
�1=2
Fn

(�n)b�n(�n; g; g�)D�1=2
Fn

(�n) can be decomposed into two parts:

n�1
nX
i=1

��1Fn;j(�n)mj(Wi; �n)mj0(Wi; �n)�
�1
Fn;j0

(�n)gj (Xi) g
�
j0 (Xi)

���1Fn;j(�n)mn;j(�n; g)mn;j0(�n; g
�)��1Fn;j0(�n)

� n�1
nX
i=1

fmmn;i;j;j0(!; g; g
�)� n�1

nX
i=1

fmn;i;j(!; g)

 
n�1

nX
i=1

fmn;i;j0(!; g
�)

!
; (16.16)

where

fmn;i;j(!; g) = ��1Fn;j(�n)mj(Wi; �n)gj (Xi) ; and

fmmn;i;j;j0(!; g; g
�) = fmn;i;j(!; g)f

m
n;i;j0(!; g

�): (16.17)

Note that ffmmn;i;j;j0(!; g; g�) : g; g� 2 G; i � n; n � 1g and ffmn;i;j(!; g) : g 2 G; i � n; n �
1g are triangular arrays of row-wise i.i.d. random processes. We show the uniform

convergence of their sample means using Lemma E2.

We �rst study fmn;i;j(!; g): Let

Fm
n;!;j = f(fmn;1;j(!; g); :::; fmn;n;j(!; g))0 : g 2 Gg: (16.18)

By Assumption M(c) and Lemma E1, ffmn;i;j(!; g) : i � n; g 2 Gg are manageable with
respect to the envelopes

Fmn;�;j(!) =
�
Fmn;1;j(!); :::; F

m
n;n;j(!)

�0
; where

Fmn;i;j(!) = G(Xi)�
�1
Fn;j
(�n)jmj(Wi; �n)j: (16.19)

In consequence, there exist functions �j : (0; 1]! [0;1) for j � k such that

D
�
�j�� Fmn;�;jj; ��Fm

n;!;j

�
� �j(�) (16.20)
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for all � 2 [0;1)n; ! 2 
; and n � 1 and
p
log �j(�) is integrable over (0; 1]:

Because the data are i.i.d., we have for all 0 < � � 1 and all n;

n�1
nX
i=1

E(Fmn;i;j)
1+� = E(Fmn;1;j)

1+�

�
�
EFnG

�1(Xi)
�(1+�)=�1  

EFn

����mj (W1; �n)

�Fn;h;j(�n)

�����2
!(1+�)=�2

<1; (16.21)

where �2 = (1+�)�1=(�1�1��): The �rst inequality above holds by Hölder�s inequality
and the second holds by Assumption M(b), �2 � 2+4=(�1�1��) � 2+4=(4��1+1��) �
2 + �; and condition (vi) of (2.3). Therefore, by Lemma E2,

sup
g2G

�����n�1
nX
i=1

fmn;i;j(!; g)� Efmn;1;j(�; g)
�����!p 0: (16.22)

Now we study fmmn;i;j;j0(!; g; g
�): For all n � 1 and ! 2 
; let

Fmm
n;!;j;j0 = f(fmmn;1;j;j0(!; g; g�); :::; fmmn;n;j;j0(!; g; g�))0 : g; g� 2 Gg: (16.23)

Then, Fmm
n;!;j;j0 = Fm

n;!;j � Fm
n;!;j: Let F

mm
n;�;j;j0(!) = Fmn;�;j(!) � Fmn;�;j0(!): We have: for all

� 2 [0;1)n; ! 2 
; and n � 1;

D
�
�j�� Fmmn;�;j;j0(!)j; ��Fmm

n;!;j;j0
�

= D
�
�j�� Fmmn;�;j;j0(!)j; ��Fm

n;!;j �Fm
n;!;j

�
� D

�
�

4
j�� Fmn;�;j0(!)� Fmn;�;j(!)j; �� Fmn;�;j0(!)�Fm

n;!;j

�
�D
�
�

4
j�� Fmn;�;j(!)� Fmn;�;j0(!)j; �� Fmn;�;j(!)�Fm

n;!;j0

�
� �j(�=4)�j0(�=4); (16.24)

where the �rst inequality holds by equation (5.2) in Pollard (1990) and the second
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inequality holds by (16.20). We haveZ 1

0

q
log(�j(�=4)�j0(�=4))d� =

Z 1

0

q
log �j(�=4) + log �j0(�=4)d�

� 4

Z 1=4

0

�q
log �j(�) +

q
log �j0(�)

�
d� <1; (16.25)

where the �rst inequality holds by
p
a+ b �

p
a +

p
b: Therefore, ffmmn;i;j;j0(!; g; g�) :

g; g� 2 G; i � n; n � 1g are manageable with respect to the envelopes fFmmn;�;j;j0(!) : n �
1g:
Let � be a small positive number. We have

n�1
X
i�n

E(Fmmn;j;j0(�))1+� = E(Fmmn;j;j0(�))1+�

�
�
EFnG

�3(X1)
�2(1+�)=�3 "

EFn

����mj (W1; �n)

�Fn;j(�n)

����2+�
#(1+�)=(2+�)

�
"
EFn

����mj0 (W1; �n)

�Fn;j0(�n)

����2+�
#(1+�)=(2+�)

< 1; (16.26)

where �3 = 2(1+�)(2+�)=(��2�); the �rst inequality holds by Hölder�s inequality, and
the second holds for su¢ ciently small � > 0 by Assumption M(b) and condition (vi) of

(2.3).

With the manageability of ffmmn;i;j;j0(!; g; g�) : g; g� 2 G; i � n; n � 1g and (16.26),
Lemma E2 gives

sup
g;g�2G

�����n�1
nX
i=1

fmmn;i;j;j0 (!; g; g
�)� Efmmn;1;j;j0 (�; g; g�)

�����!p 0: (16.27)

By (16.16), (16.22), (16.27), as well as jEfmmn;1;j(�; g)j � E(Fmn;1;j)
1+� <1; we conclude

that the di¤erence between the (j; j0)th element of D�1=2
Fn

(�n)b�n(�n; g; g�)D�1=2
Fn

(�n) and

Efmmn;1;j;j0(�; g; g�)�Efmn;1;j(�; g)Efmn;1;j0(�; g�) converges to zero uniformly over (g; g�) 2 G2:
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By de�nition,

Efmmn;1;j;j0(�; g; g�)� Efmn;1;j(�; g)Efmn;1;j0(�; g�)
= EFn [�

�1
Fn;j
(�n)�

�1
Fn;j0

(�n)mj (W1; �n) gj (X1)mj0(W1; �n)g
�
j0(X1)]

�EFn
�
��1Fn;j(�n)mj(W1; �n)gj(X1)

�
EFn [�

�1
Fn;j0

(�n)mj0(W1; �n)g
�
j0(X1)]

= ��1Fn;j(�n)�
�1
Fn;j0

(�n) [�Fn(�n; g; g
�)]j;j0

! [h2(g; g
�)]j;j0 ; (16.28)

where the convergence holds uniformly over (g; g�) 2 G2 by conditions (i) and (iv) in
De�nition SubSeq(h2): This completes the proof of Lemma A1(b). �

16.4 Proof of Lemma E1

Part (a) is proved by a similar, but simpler, argument to that given in (16.24)-(16.25).

Next, we prove part (b). Because EFn;i < 1 and the processes f�n;i(!; g) : g 2
G; i � n; n � 1g are row-wise i.i.d., EFn � fE�n;i(�; g) � 1n : g 2 Gg is a subset of a one
dimensional a¢ ne subspace of Rn with diameter no greater than 2EFn;i: Thus, ��EFn
is a subset of a one dimensional a¢ ne subspace of Rn with diameter no greater than

2jj�jjEFn;i: By Lem. 4.1 in Pollard (1990), we have: for all n � 1;

D (�jj�� EFnjj; �� EFn) � 6jj�jjEFn;i=(�jj�� EFnjj) = 6=�: (16.29)

Because
R 1
0

p
log(6=�)d� = 3

p
� <1; part (b) holds.

Finally, we prove part (c). Let ���(�) : (0; 1]! R+ be the square-root-log integrable

function such that

D
�
� k�� F �n(!)k ; ��F�

n;!

�
� ��� (�) for 0 < � � 1; (16.30)

for all � 2 [0;1)n; ! 2 
; and n � 1: Let

F�
n;! = f��n(!; g) : g 2 Gg;

F sum
n;! = f�n(!; g) + ��n(!; g) : g 2 Gg; and
F+
n;! = F�

n;! �Fn;! � fa+ b 2 Rn : a 2 Fn;!; b 2 F�
n;!g; (16.31)
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where �n(!; g) = (�n;1(!; g); :::; �n;n(!; g))
0: Let

F sumn (!) = Fn(!) + F �n(!): (16.32)

Then, for 0 < � � 1 and � 2 [0;1)n;

D
�
�jj�� F sumn (!)jj; ��F sum

n;!

�
� D

�
�jj�� F sumn (!)jj; ��F+

n;!

�
� D

�
�(jj�� Fn(!)jj+ jj�� F �n(!)jj)=

p
2; ��F+

n;!

�
� D(�jj�� Fn(!)jj=(2

p
2); ��Fn;!)

�D(�jj�� F �n(!)jj=(2
p
2); ��F�

n;!)

� ��(�=(2
p
2))���(�=(2

p
2)); (16.33)

where ��(�) denotes the packing number bounding function given in De�nition E2 for

the processes f�n(!; g) : g 2 G; i � n; n � 1g; the �rst inequality holds because F sum
n;! �

F+
n;!; the second inequality holds becauseD(x;G) is decreasing in x and jja+bjj � (jjajj+
jjbjj)=

p
2 for a; b 2 [0;1)n; the third inequality holds by a stability result for packing

numbers (see Pollard (1990, p. 22)), and the last inequality holds by the manageability

of f�n(!; g) : g 2 G; i � n; n � 1g and (16.30).
The function ��(�=(2

p
2))���(�=(2

p
2)) is square-root-log integrable by (16.25), which

completes the proof of part (c). �

16.5 Proof of Lemma E2

We prove convergence in probability by showing convergence in L1: We have

E sup
g2G

�����n�1
nX
i=1

[fn;i(�; g)� Efn;i(�; g)]
����� � n�1KE

 
nX
i=1

F 2n;i

!1=2

� n�1KE

 
nX
i=1

F 1+�n;i

!1=(1+�)
� n�1K

 
E

nX
i=1

F 1+�n;i

!1=(1+�)
� n��=(1+�)K (B�)1=(1+�) ! 0 as n!1; (16.34)

where the �rst inequality holds for some constant K < 1 by manageability and the

maximal inequality (7.10) in Pollard (1990), the second inequality holds using 0 < � < 1
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by applying the inequality
Pn

i=1 x
s
i � (

Pn
i=1 xi)

s; which holds for s � 1 and xi � 0 for
i = 1; :::; n; with xi = F 1+�n;i and s = 2=(1 + �) > 0; the third inequality holds by the

concavity of the function f (x) = x1=(1+�) when � > 0; and the last inequality holds

because n�1
Pn

i=1EF
1+�
n;1 � B� for all n � 1: �

16.6 Proof of Lemma E3

For notational simplicity, we prove Lemma E3 for the sequence fng; rather than the
subsequence fang: All of the arguments in this subsection go through with fang in place
of fng:
The conclusions of Lemma E3 are implied by the result of Thm. 10.6 of Pollard

(1990), which relies on the following �ve conditions:

(i) the ffni(!; g) : g 2 Gg de�ned in (16.4) are manageable with respect to some
envelope Fa;n(!) = (Fa;n;1(!); :::; Fa;n;n(!))0;

(ii) limn!1Ea
0�n;Fn(�n; g)�n;Fn(�n; g

�)0a = a0h2(g; g
�)a for all g; g� 2 G;

(iii) lim supn!1
Pn

i=1EF
2
a;n;i <1;

(iv)
Pn

i=1EF
2
a;n;ifFa;n;i > �g ! 0 as n!1 for each � > 0; and

(v) the limit �a (�; �) is well de�ned by (16.7), and for all deterministic sequences
fg(n)g and fg�(n)g; if �a(g(n); g�(n))! 0; then �n;a(g(n); g

�
(n))! 0 as n!1:

Now we verify the �ve conditions.

(i) By (16.4), we have

fn;i(!; g) =
kX
j=1

aj�
�1
Fn;j
(�n)n

�1=2[mj(Wn;i(!); �n)gj(Xn;i(!))

�EFnmj(Wi; �n)gj (Xi)]; (16.35)

where aj denotes the jth element of a: By Assumption M(c), fgj(Xn;i(!)) : i � ng
are manageable with respect to envelopes G(Xn;i(!)): Therefore, by Lemma E1(a)-(c),

ffn;i(!; g) : i � ng is manageable with respect to envelopes Fa;n = (Fa;n;1; :::; Fa;n;n)
0

de�ned by

Fa;n;i(!) = n�1=2
kX
j=1

aj�
�1
Fn;j
(�n)[jmj(Wn;i(!); �n)jG(Xni(!))

+EFnjmj(Wi; �n)jG(Xi)]: (16.36)
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(ii) By (16.5), we have

Ea0�n;Fn(�n; g)�
0
n;Fn(�n; g

�)a

= E

 
nX
i=1

fn;i(�; g)
! 

nX
i=1

fn;i (�; g�)
!0
= nEfn;1(�; g)fn;1(�; g�)0

= n�1a0D
�1=2
Fn

(�n) � CovFn (m(W1; �n; g);m(W1; �n; g
�)) �D�1=2

Fn
(�n)a

= n�1a0D
�1=2
Fn

(�n)�Fn(�n; g; g
�)D

�1=2
Fn

(�n)a; (16.37)

where the second equality holds because the data are i.i.d., the third inequality holds

by (16.4). Condition (i) in De�nition SubSeq(h2) completes the veri�cation of condition

(ii) above.

(iii) Next, we verify lim supn!1
Pn

i=1EF
2
a;n;i <1: By the linear structure of Fa;n;i;

it su¢ ces to show that

lim sup
n!1

EFn�
�2
Fn;j
(�n)jmj(Wi; �n)j2G2(Xi) <1 and

lim sup
n!1

EFn�
�1
Fn;j
(�n)jmj(Wi; �n)jG(Xi) <1: (16.38)

The latter is implied by the former and the former holds by the same argument as in

(16.21) with � = 1:

(iv) For B as in condition (vi) of (2.3), � > 0; and � > 0 su¢ ciently small,

nX
i=1

EF 2a;n;ifFa;n;i > �g = nEF 2a;n;ifFa;n;i > �g � nEF 2+�a;n;i=�
�

� 2 (2k)2+�

n�=2��

kX
j=1

jajj2+�EFnG2+�(Xi)�
�2��
Fn;j

(�n)jmj (Wi; �n) j2+�

� 2 (2k)2+�

n�=2��

kX
j=1

jajj2+�
�
EFnG

�4(X1)
�(2+�)=�4

B(2+�)=(2+�)

� 2 (2k)2+� B(2+�)=(2+�)C(2+�)=�1

n�=2��

kX
j=1

jajj2+� ! 0; (16.39)

where the �rst equality holds because the data are identically distributed, the sec-

ond inequality holds by Jensen�s inequality using the convexity of  (x) = x2+�; i.e.,

((2k)�1
Pk

j=1(jXjj+EjXjj))2+� � (2k)�1
Pk

j=1(jXjj2+�+(EjXjj)2+�) and (EjXjj)2+� �
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EjXjj2+�; the third inequality holds with �4 = (2 + �)(2 + �)=(� � �) by the same argu-
ments as in (16.26), and the fourth inequality holds by Assumption M(b) and �4 � �1

for su¢ ciently small �:

(v) First we show that the limit �a (�; �) is well de�ned by (16.7). For any g; g� 2 G;

�2n;a(g; g
�) = nE(fn;i(�; g)� fn;i(�; g�))2

= a0D
�1=2
Fn

(�n)V arFn (m(Wi; �n; g)�m(Wi; �n; g
�))D

�1=2
Fn

(�n)a

! a0h2(g; g)a+ a0h2(g
�; g�)a� a0h2(g; g

�)a� a0h2(g
�; g)a; (16.40)

where the convergence hold uniformly over G2 by condition (i) in De�nition SubSeq(h2):
Thus, �a(g; g

�) = limn!1 �n;a(g; g
�) is well de�ned, and

lim
n!1

sup
g;g�2G

���n;a(g; g�)� �a(g; g
�)
�� = 0: (16.41)

Lastly, we show the second property of condition (v). Let � > 0 be arbitrary. Suppose

�a(g(n); g
�
(n))! 0: Then, there exists an N0 <1 such that for n � N0;

�a(g(n); g
�
(n)) � �=2: (16.42)

By (16.41), we have

lim
m!1

sup
n�1

���m;a(g(n); g�(n))� �a(g(n); g
�
(n))
�� = 0: (16.43)

Thus, there exists an N1 <1 such that for all m � N1;

sup
n�1

���m;a(g(n); g�(n))� �a(g(n); g
�
(n)

�� � �=2: (16.44)

Take N = maxfN0; N1g; then we have for n � N;

�n;a(g(n); g
�
(n)) � �: (16.45)

Thus, �a(g(n); g
�
(n))! 0 implies �n;a(g(n); g

�
(n))! 0: �
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17 Supplemental Appendix F

This Appendix provides additional material concerning the Monte Carlo simulations

in the quantile selection and entry game models in Sections 17.1 and 17.4. In addition,

it provides all of the Monte Carlo simulation results for the mean selection and interval-

outcome regression models in Sections 17.2 and 17.3.

17.1 Quantile Selection Model

The �rst subsection of this section provides additional simulation results to those

given in the paper. The second subsection provides �gures for the conditional moment

functions evaluated at the � values at which the FCP�s are computed in Table IV of the

paper. The third subsection describes the computation of the Chernozhukov, Lee, and

Rosen (2008) (CLR) and Lee, Song, and Whang (2011) (LSW) CI�s.

17.1.1 Additional Simulation Results

Table S-I provides comparisons of the coverage probability (CP) and false coverage

probability (FCP) performance of the CvM and KS test statistics and PA and GMS

critical values in the quantile selection model with peaked bound function. These com-

parisons are analogous to those reported in Table I of the paper for the �at and kinked

bound functions. The results for the peaked bound are similar to those for the �at and

kinked bound functions except that there is little di¤erence between the FCP�s for the

CvM and KS versions of the test statistics.
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Table S-I. Quantile Selection Model: Base Case Test Statistic Comparisons for

Peaked Bound Function�

(a) Coverage Probabilities

Statistic: CvM/Sum CvM/Max KS/Sum KS/Max

DGP Crit Val

Peaked Bd PA/Asy 1.000 1.000 .997 .997

GMS/Asy .997 .997 .991 .990

(b) False Coverage Probabilities (coverage-probability corrected)

Peaked Bd PA/Asy .70 .68 .48 .47

GMS/Asy .43 .41 .39 .38

� These results are for the lower endpoint of the identi�ed interval. They are based on

(5000, 5001) CP (and FCP) and critical value repetitions, respectively.

86



Table S-II provides coverage probability (CP) and false coverage probability (FCP)

results for the upper endpoint of the identi�ed interval in the quantile selection model.54

(Table I of AS provides analogous results for the lower endpoint.) Table S-II provides a

comparison of CS�s based on the CvM/Sum, CvM/QLR, CvM/Max, KS/Sum, KS/QLR,

and KS/Max statistics, coupled with the PA/Asy and GMS/Asy critical values. The

relative attributes of the di¤erent CS�s are quite similar to those reported in Table I of

AS for the lower endpoint. None of the CS�s under-cover. So, the relative attributes of

the CS�s are determined by their FCP�s. The CvM-based CS�s have lower FCP�s than

the KS-based CS�s. The CS�s that use the GMS/Asy critical values have lower FCP�s

than those based on the PA/Asy critical values. The FCP�s do not depend on whether

the Sum, QLR, or Max version of the statistic is employed. Hence, the best CS of those

considered is the CvM/Max/GMS/Asy CS, or this CS with Max replaced by Sum or

QLR.

Table S-II. Quantile Selection Model, Upper Endpoint: Base Case Test Statistic

Comparisons

(a) Coverage Probabilities

Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

DGP Crit Val

Flat Bound PA/Asy .994 .994 .993 .984 .984 .982

GMS/Asy .971 .971 .970 .974 .974 .972

Kinked Bound PA/Asy .996 .996 .996 .989 .989 .988

GMS/Asy .974 .974 .972 .976 .976 .975

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound PA/Asy .73 .72 .71 .70 .70 .69

GMS/Asy .42 .42 .42 .55 .55 .55

Kinked Bound PA/Asy .73 .73 .72 .74 .74 .73

GMS/Asy .41 .41 .41 .52 .52 .52

54For the upper endpoint with the �at bound and the upper endpoint with the kinked bound, the
FCP�s are computed at the points �(1)+0:40�sqrt(250=n) and �(1)+0:75�sqrt(250=n); respectively.
These points are chosen to yield similar values for the FCP�s across the di¤erent cases considered.
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Table S-III reports CP and FCP results for variations on the base case for the lower

endpoint with the kinked bound DGP. (Table III of AS reports analogous results for

the lower endpoint with the �at bound.) The results are similar to those in Table III

of AS. There is relatively little sensitivity to the sample size, the number of cubes g;

and the choice of ": There is relatively little sensitivity of the CP�s to the choice of

(�n; Bn); but some sensitivity of the FCP�s with the base case choice being superior to

values of (�n; Bn) that are twice or half as large. The CS with � = :5 is half-median

unbiased and avoids the well-known problem of inward-bias. But, it is farther from

being median-unbiased than in the �at bound case.

Table S-III. Quantile Selection Model, Kinked Bound, and Lower Endpoint: Varia-

tions on the Base Case

(a) Coverage Probabilities (b) False CP�s (CP-corrected)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 250; r1 = 7;" = 5=100) .983 .984 .34 .52

n = 100 .981 .985 .34 .55

n = 500 .984 .984 .39 .54

n = 1000 .984 .980 .41 .54

r1 = 5 .981 .981 .34 .49

r1 = 9 .983 .986 .35 .55

r1 = 11 .984 .987 .36 .60

(�n; Bn) = 1=2(�n;bc; Bn;bc) .984 .997 .39 .51

(�n; Bn) = 2(�n;bc; Bn;bc) .990 .991 .38 .59

" = 1=100 .981 .981 .34 .56

� = :5 .721 .710 .03 .06

� = :5 & n = 500 .741 .734 .04 .08
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17.1.2 Conditional Moment Function Figures

Figure S-1 shows the conditional moment functions �(x; �) (de�ned in (10.6)), as

functions of x; evaluated at the � values 1:531; 1:181; and 1:151 at which the FCP�s are

computed in Table IV of the paper in the �at, kinked, and peaked cases, respectively.
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Figure S-1. Conditional Moment Functions for the Quantile Selection Model

Evaluated at � Values Below the Lower Endpoint of the Identi�ed Set

17.1.3 Description of the CLR-Series, CLR-Local Linear,
and LSW Con�dence Intervals

Here we describe the computation of the CLR and LSW CI�s reported in Table IV

for the quantile selection model and Table S-V (given below) for the mean selection

model. In the quantile selection model, the parameter � is not separable from its bound

functions. Thus, we handle the model following the method in Example 4 of CLR. We

de�ne an auxiliary parameter �:

�(�) = min
x2R

�(x; �); where (17.1)

�(x; �) =

(
E (1(Yi � �; Ti = t) + 1(Ti 6= t)� � jXi = x) if x < x0

E (� � 1(Yi � �; Ti = t)jXi = x) if x � x0:
(17.2)

We obtain a CLR bound estimator b��(�) for a null � value and let the nominal 1 � �

con�dence set for � be CSCLRn (�) = f� : b��(�) � 0g: In the mean selection model,
the parameter � is separable from its bound function, so computation is as described in

CLR.
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We follow the procedure described on pp. 28-29 and 50-51 of CLR to compute b��(�)
with the following alterations: (1) for the standard error of the spline coe¢ cients (the

choice of which is not described in CLR), we use the Eicker-White formula, (2) for the set

of numbers of spline functions considered in the cross-validation procedure, we increase

the set to f5; 6; :::; 13g; and (3) to compute the many minima and maxima involved, we
use a grid-search combined with Newton-Raphson method. Speci�cally, regarding the

latter, we take 101 evenly spaced grid-points between [0; 2] (the support of x), compute

the objective functions at the 101 points, and choose the point that gives the highest

value as the starting point for the Newton-Raphson routine. Because the objective

functions have multiple sharp peaks, we believe that the combined procedure gives more

precise optima than doing the grid search or the Newton-Raphson alone. CLR does not

describe the procedure they use to obtain the minima and maxima. As in CLR, we use

cross-validation to determine the number of series/bandwidth parameter.

To obtain the LSW con�dence set, for each �; we use LSW�s test for the null hypoth-

esis: H0 : ��(x; �) � 0 8x 2 X ; and let the con�dence set be all the � values such that
the test does not reject. We use the L1-version of their test. We follow the descriptions

on p. 9 of LSW and adopt the same tuning parameters (weight, kernel, bandwidth,

etc.) as in their Monte Carlo simulation. We use 5000 random draws to simulate the

mean and covariance of the Gaussian vectors appearing in their test statistic, and use

the Gaussian quadrature method to carry out the numerical integration.

17.2 Mean Selection Model

In this section, we consider the same mean selection model that is considered in

CLR. We compare the CP�s and FCP�s of the CI�s based on the CvM and KS statistics

and the PA and GMS critical values.55 We also compare the CvM/Max/GMS/Asy CI

(abbreviated by AS below) with several other CI�s in the literature, viz., the CLR-series,

CLR-local linear, and LSW CI�s.56

The model is essentially the same as the quantile selection model described in the

paper except that the parameter of interest � is the conditional mean E(yi(1)jXi = x0)

for some x0; rather than the conditional quantile. In addition, the QMIV assumption

55These comparisons are similar to those given in Table I of the paper for the quantile selection
model.
56These comparisons are similar to those given in Table IV of the paper for the quantile selection

model.
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is replaced with the monotone instrumental variable (MIV) assumption of Manski and

Pepper (2000): for all (x1; x2) 2 X 2 such that x1 � x2;

E(yi(1)jXi = x1) � E(yi(1)jXi = x2): (17.3)

The MIV assumption is not informative unless yi(t) has bounded support. Let the sup-

port of yi(1) be [Yl; Yu] : The MIV assumption leads to the following moment inequalities:

E (1(Xi � x0)[� � Yi1 (Ti = 1)� Yl1(Ti 6= 1)]jXi) � 0 a.s. and

E (1(Xi � x0)[Yi1 (Ti = 1) + Yu1(Ti 6= 1)� �]jXi) � 0 a.s. (17.4)

We consider the same data generating processes (DGP�s) as in Section 4 of CLR.

That is, yi(1) = �(Xi) + � (Xi)ui and [Yl; Yu] = [�1:96; 1:96]; where Xi � Unif [�2; 2]
and ui � 1:96 ^ ((�1:96) _N(0; 1)) ; Ti = 1fL (Xi) + "i � 0g; where "i � N(0; 1) and

"i; ui; and Xi are independent of each other, and Yi = yi(Ti): Two speci�cations of

(�(x); �(x); L(x)) are considered, which yield �at and kinked bound functions for the

conditional mean �: For the �at bound DGP, �(x) = 0 = L(x) and �(x) = jxj : For
the kinked bound DGP, �(x) = 2 (x ^ 1) ; L (x) = x ^ 1; and �(x) = jxj : The DGP
is the same as in (10.4) of the paper for the quantile selection model except for the

distributions of Xi and ui: The parameter of interest is the conditional mean of yi(1) at

x0 = 1:5: That is, � = E(yi(1)jXi = 1:5):

We consider sample size n = 250 (which is also the base case sample size for the

quantile selection model in the paper). All results concern the lower end of the iden-

ti�ed interval for �; which equals �:98 and 1:372 in the �at and kinked bound cases,
respectively.57 All results are based on (5000; 5001) coverage probability and critical

value repetitions, respectively. The FCP�s are CP-corrected, as described in Section 10

of the paper.58

57The DGP is the same for FCP�s as for CP�s, just the value � that is to be covered is di¤erent. For
the lower endpoint of the identi�ed set, FCP�s are computed for � equal to �(1)� c; where c = :155 and
:68 in the �at and kinked bound cases, respectively. These points are chosen to yield similar values for
the FCP�s across the two cases.
58That is, a positive constant is added to the critical value such that the CP for the given case being

considered is :95 whenever the CP for the given case (without correction) is less than :95.
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Table S-IV. Mean Selection Model: Base Case Test Statistic and Critical Value

Comparisons

(a) Coverage Probabilities (95%)

Statistic: CvM/Sum CvM/Max KS/Sum KS/Max

DGP Crit Val

Flat Bd PA/Asy .976 .972 .974 .970

GMS/Asy .951 .950 .959 .958

Kinked Bd PA/Asy 1.000 1.000 .997 .997

GMS/Asy .972 .970 .946 .942

(b) False Coverage Probabilities (coverage-probability corrected)

Flat Bd PA/Asy .49 .46 .70 .68

GMS/Asy .38 .37 .63 .63

Kinked Bd PA/Asy .88 .86 .61 .59

GMS/Asy .39 .38 .33 .33

Tables S-IV and S-V report the simulation results for the mean selection model.

Table S-IV provides CP and FCP comparisons of the CI�s based on the test statistics

CvM/Sum, CvM/Max, KS/Sum, and KS/Max and the PA and GMS critical values.

All results are for the �asymptotic�versions of the tests (whose critical values are deter-

mined by simulating the asymptotic distributions), not the bootstrap versions. The CP

probability results are quite similar to those for the quantile selection model. The same

is true for the FCP results for the �at bound function. For the kinked bound function,

the main di¤erence is that the CvM form of the test statistic does not out-perform the

KS version, which it does in the quantile selection model. In particular, Table S-IV

shows that the CvM/Max statistic combined with the GMS critical value performs very

well. It has CP equal to :950 in the �at bound case and :970 in the kinked bound case.

It has the lowest FCP in the �at bound case and close to the lowest FCP in the kinked

bound case.

Table S-V compares the AS CI with the CLR-series, CLR-local linear, and LSW

CI�s. The AS and LSW CI�s have good CP properties, viz., CP�s greater than or equal
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to :95: On the other hand, the two CLR CI�s have poor CP properties. They under-cover

substantially. The AS CI has clearly the best FCP�s for the �at bound case. For the

kinked bound case, the CLR-local linear CI has best FCP�s followed by the CLR-series

and AS CI�s. The LSWCI has poor FCP�s. In sum, the AS CI has the best combined CP

and FCP properties by a substantial margin in the mean selection model with n = 250:

We note that the results in Table S-V for the AS CI are quite similar to the results in

Table IV for the quantile selection model. The same is true for the LSW CI except that

its FCP�s are worse in the mean selection model. In the kinked bound case, the CLR

CI�s perform noticeably worse in the mean selection model with n = 250 (compared to

the quantile selection model) in terms of CP�s and better in terms of FCP�s.

Table S-V. Mean Selection Model: Comparisons of Andrews and Shi (2008) Con�-

dence Intervals with Those Proposed in Chernozhukov, Lee, and Rozen (2008) and Lee,

Song, and Whang (2011)

CP (95%) FCP (corrected) CP (50%)

CS Flat Kinked Flat Kinked Flat Kinked

n = 250

CvM/Max/GMS/Asy .950 .970 .37 .38 .48 .68

CLR-series .912 .883 .78 .36 .47 .56

CLR-local linear .849 .910 .84 .25 .37 .64

LeeSongWhang .977 1.000 .64 1.00 .76 1.00

17.3 Interval-Outcome Regression Model

17.3.1 Description of Model

Here we report simulation results for an interval-outcome regression model. This

model has been considered by Manski and Tamer (2002, Sec. 4.5). It is a regression

model where the outcome variable Y �
i is partially observed:

Y �
i = �1 +Xi�2 + Ui; where E(UijXi) = 0 a.s., for i = 1; :::; n: (17.5)

One observes Xi and an interval [YL;i; YU;i] that contains Y �
i : YL;i = bYic and YU;i =

bYic+ 1; where bxc denotes the integer part of x: Thus, Y �
i 2 [YL;i; YU;i]:
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It is straightforward to see that the following conditional moment inequalities hold

in this model:

E(�1 +Xi�2 � YL;ijXi) � 0 a.s. and

E(YU;i � �1 �Xi�2jXi) � 0 a.s. (17.6)

In the simulation experiment, we take the true parameters to be (�1; �2) = (1; 1)

(without loss of generality), Xi � U [0; 1]; and Ui � N(0; 1): We consider a base case

sample size of n = 250; as well as n = 100; 500; and 1000:

The parameter � = (�1; �2) is not identi�ed. Figure S-1 shows the identi�ed set.

It is a parallelogram in (�1; �2) space enclosed by thick solid lines with vertices at

(:5; 1); (:5; 2); (1:5; 0); and (1:5; 1): The point (1; 1) is the true parameter. The thin

solid lines are the lower bounds de�ned by the �rst moment inequality and the dashed

lines are the upper bounds de�ned by the second moment inequality.

­1 ­0.5 0.5 1.5 2.5 3
­1

­0.5

0.5

1.5

2.5

3

θ1

θ 2

(0.5, 2)
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(1.5, 1)(0.5, 1)

Figure S-2. The Identi�ed Set of the Interval Outcome Model

By symmetry, CP�s of CS�s are the same for the points (:5; 1) and (1:5; 1): Also, they

are the same for (:5; 2) and (1:5; 0): We focus on CP�s at the corner point (:5; 1); which

is in the identi�ed set, and at points close to (:5; 1) but outside the identi�ed set.59

59Speci�cally, the � values outside the identi�ed set are given by �1 = 0:5 � 0:075 � (500=n)1=2 and
�2 = 1:0� 0:050� (500=n)1=2: These � values are selected so that the FCP�s of the CS�s take values in
an interesting range for all values of n considered.
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The corner point (:5; 1) is of interest because it is a point in the identi�ed set where

CP�s of CS�s typically are strictly less than one. Due to the features of the model, the

CP�s of CS�s typically equal one (or essentially equal one) at interior points, non-corner

boundary points, and the corner points (:5; 2) and (1:5; 0):

17.3.2 g Functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0; 1]: It is not assumed that the researcher knows that Xi � U [0; 1] and so the

regressor Xi is transformed via the method described in Section 9 to lie in (0; 1):60 The

hypercubes have side-edge lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and the base

case value of r1 is 7: The base case number of hypercubes is 56:We also report results for

r1 = 5; 9; and 11; which yield 30; 90; and 132 hypercubes, respectively. With n = 250

and r1 = 7; the expected number of observations per cube is 125; 62:5; :::; 20:8; or 17:9

depending on the cube. With n = 250 and r1 = 11; the expected number also can equal

12:5 or 11:4: With n = 100 and r1 = 7; the expected number is 50; 25; :::; 8:3; or 7:3:

17.3.3 Simulation Results

Tables S-VI, S-VII, and S-VIII provide results for the interval-outcome regression

model that are analogous to the results in Tables I-III for the quantile selection model.

In spite of the di¤erences in the models� the former is linear and parametric with a

bivariate parameter, while the latter is nonparametric with a scalar parameter� the

results are similar.

Table S-VI shows that the CvM/Max statistic combined with the GMS/Asy critical

value has CP�s that are very close to the nominal level .95. Its FCP�s are noticeably lower

than those for CS�s that use the KS form or PA-based critical values. The CvM/Sum-

GMS/Asy and CvM/QLR-GMS/Asy CS�s perform equally well as the Max version.

Table S-VII shows that the results for the Asy and Bt versions of the critical values are

quite similar for the CvM/Max-GMS CS, which is the best CS. The Sub critical value

yields substantial under-coverage for the KS/Max statistic. The Sub critical values are

dominated by the GMS critical values in terms of FCP�s.

Table S-VIII shows that the CS�s do not exhibit much sensitivity to the sample size

or the number of cubes employed. It also shows that at the non-corner boundary point
60This method takes the transformed regressor to be �((Xi � Xn)=�X;n); where Xn and �X;n are

the sample mean and standard deviations of Xi and �(�) is the standard normal distribution function.
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� = (1:0; 0:5) and the corner point � = (1:5; 0); all CP�s are (essentially) equal to one.61

Lastly, Table S-VIII shows that the lower endpoint estimator based on the CvM/Max-

GMS/Asy CS with � = :5 is close to being median-unbiased, as in the quantile selection

model. It is less than the lower bound with probability is :472 and exceeds it with

probability :528 when n = 250:

We conclude that the preferred CS for this model is of the CvM form, combined with

the Max, Sum, or QLR function, and uses a GMS critical value, either Asy or Bt.

Table S-VI. Interval-Outcome Regression Model: Base Case Test Statistic

Comparisons

(a) Coverage Probabilities

Critical Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

Value

PA/Asy .990 .993 .990 .989 .990 .989

GMS/Asy .950 .950 .950 .963 .963 .963

(b) False Coverage Probabilities (coverage probability corrected)

PA/Asy .62 .66 .61 .78 .80 .78

GMS/Asy .37 .37 .37 .61 .61 .61

61This is due to the fact that the CP�s at these points are linked to their CP�s at the corner point
� = (0:5; 1:0) given the linear structure of the model. If the CP is reduced at the two former points (by
reducing the critical value), the CP at the latter point is very much reduced and the CS does not have
the desired size.
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Table S-VII. Interval-Outcome Regression Model: Base Case Critical Value

Comparisons

(a) Coverage Probabilities

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

Statistic

CvM/Max .990 .995 .950 .941 .963

KS/Max .989 .999 .963 .953 .890

(b) False Coverage Probabilities (coverage probability corrected)

CvM/Max .61 .69 .37 .38 .45

KS/Max .78 .96 .61 .54 .66
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Table S-VIII. Interval-Outcome Regression Model: Variations on the Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 250; r1 = 7;" = 5=100) .950 .963 .37 .61

n = 100 .949 .970 .39 .66

n = 500 .950 .956 .37 .60

n = 1000 .954 .955 .37 .60

r1 = 5 (30 cubes) .949 .961 .37 .59

r1 = 9 (90 cubes) .951 .965 .37 .63

r1 = 11 (132 cubes) .950 .968 .38 .64

(�n; Bn) = 1=2(�n;bc; Bn;bc) .944 .961 .40 .62

(�n; Bn) = 2(�n;bc; Bn;bc) .958 .973 .39 .65

" = 1=100 .946 .966 .39 .69

(�1; �2) = (1:0; 0:5) .999 .996 .91 .92

(�1; �2) = (1:5; 0:0) 1.000 .996 .99 .97

� = :5 .472 .481 .03 .08

� = :5 & n = 500 .478 .500 .03 .07
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17.4 Entry Game Model

17.4.1 Probit Log Likelihood Function

In the entry game model, the probit log likelihood function for � = (� 1; � 2) given

� = (�1; �2) is

nX
i=1

1(Yi = (0; 0)) ln(�(�X 0
i;1� 1)�(�X 0

i;2� 2))

+
nX
i=1

1(Yi = (1; 1)) ln(�(X
0
i;1� 1 � �1)�(X

0
i;2� 2 � �2))

+

nX
i=1

1(Yi = (1; 0) or Yi = (0; 1)) ln(gi(� ; �)); where (17.7)

gi(� ; �) = 1� �(�X 0
i;1� 1)�(�X 0

i;2� 2)� �(X 0
i;1� 1 � �1)�(X

0
i;2� 2 � �2)

over � 2 R8 for �xed �: The estimator b�n(�) maximizes this function over � 2 R8 given
�:

The gradient of the probit log likelihood for � given � is

�
nX
i=1

1(Yi = (0; 0))

 
 (�X 0

i;1� 1)Xi;1

 (�X 0
i;2� 2)Xi;2

!

+
nX
i=1

1(Yi = (1; 1))

 
 (X 0

i;1� 1 � �1)Xi;1

 (X 0
i;2� 2 � �2)Xi;2

!

+
nX
i=1

1(Yi = (1; 0) or Yi = (0; 1))
1

gi(� ; �)
(17.8)

�
 
�(�X 0

i;1� 1)�(�X 0
i;2� 2)Xi;1 � �(X 0

i;1� 1 � �1)�(X
0
i;2� 2 � �2)Xi;1

�(�X 0
i;1� 1)�(�X 0

i;2� 2)Xi;2 � �(X 0
i;1� 1 � �1)�(X

0
i;2� 2 � �2)Xi;2

!
;

where  (x) = �(x)=�(x):

17.4.2 Identi�cation

Here we brie�y discuss identi�cation of the entry game model. Tamer (2003, Thm.

1) provides identi�cation results that cover the model considered in Section 10.3 because

Xi;1 and Xi;2 both contain continuous regressors whose support is R:

We point out here that this support condition is probably much stronger than is
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needed for identi�cation in many contexts. For example, suppose the unobservables Ui;1
and Ui;2 are independent and standard normal, as in Section 10.3. Suppose the regressor

vectors are Xi;1 = (1; Zi)
0 and Xi;2 = 1 and their coe¢ cient vectors are � 1 = (� 11; � 12)0

and � 2; respectively. Then, � 1 and � 2 are identi�ed provided Zi has a density with

respect to Lebesgue measure on some non-degenerate interval and � 12 6= 0: Thus, in this
case, no large support condition is needed.

To prove this result, note that P (Yi = (0; 0)jXi;1) = �(�X 0
i;1� 1)�(�� 2): Thus, for

identi�cation at (� 1; � 2); it su¢ ces to show that

P (�(�X 0
i;1� 1)�(�� 2) = �(�X 0

i;1�1)�(��2)) = 1 (17.9)

only if �1 = � 1 and �2 = � 2:

Suppose �2 = � 2: Then, (17.9) holds i¤ P (X 0
i;1� 1 = X 0

i;1�1) = 1: The left-hand side

equals P (� 11 � �11 + Zi(� 12 � �12) = 0): Given the condition on Zi; the latter equals

one only if �1 = � 1: Hence, when �2 = � 2; (�1; �2) is observational equivalent to (� 1; � 2)

only if (�1; �2) = (� 1; � 2):

Next, suppose �2 6= � 2: Let c = �(��2)=�(�� 2) (6= 1): Then, (17.9) holds i¤

P (�(�� 11 � Zi� 12) = �(��11 � Zi�12)c) = 1: The latter implies that for all z in an

open interval, say I; �(�� 11 � z� 12) = �(��11 � z�12)c: Taking the derivative with

respect to z for z 2 I; one obtains �(�� 11 � z� 12) = �(��11 � z�12)c�12=� 12: Taking

logs yields a quadratic equation in z for z 2 I:

(� 11 + z� 12)
2 = (�11 + z�12)

2 + c1 or

(� 212 � �212)z
2 + 2(� 11� 12 � �11�12)z + � 211 � �211 � c1 = 0; (17.10)

where c1 = log(c�12=� 12) and c1 is well-de�ned because � 12 6= 0: A quadratic equation
cannot hold for all z 2 I unless each coe¢ cient of the equation is zero because a non-

degenerate quadratic equation has at most two solutions. Suppose � 212� �212 = 0: Then,
� 11� 12��11�12 = 0 requires � 11 = ��11; which implies that � 211��211 = 0: In consequence,
� 211 � �211 � c1 = �c1 6= 0 and the quadratic equation is not degenerate. (Note that

c1 6= 0 because c1 = 0 i¤ c�12=� 12 = 1 i¤ �12 = c� 12; and the latter condition violates

� 212 � �212 = 0:) In conclusion, if �2 6= � 2; (17.9) cannot hold for any �1 and � 1: This

completes the proof of identi�cation.

Note that it is not clear that even continuity of Zi in a nondegenerate interval

is necessary for identi�cation of � : If Zi is discrete with s � 3 support points, then
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observational equivalence requires s nonlinear equations in two unknowns to hold. These

equations depend on the joint distribution F (�; �) of (Ui;1; Ui;2): This suggests (but does
not prove) that for most joint distribution functions F (�; �) of (Ui;1; Ui;2) identi�cation
holds under quite weak conditions on the regressor Zi:
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