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Abstract

This paper generalizes the standard homoscedastic macro-finance model by allow-

ing for stochastic volatility, using the ‘square root’ specification of the mainstream-

finance literature. Empirically, this specification dominates the standard model be-

cause it is consistent with the square root volatility found in macroeconomic time

series. Thus it establishes an important connection between the stochastic volatility

of the mainstream finance model and macroeconomic volatility of the Okun (1971) -

Friedman (1977) type. This research opens the way to a richer specification of both

macroeconomic and term structure models, incorporating the best features of both

macro-finance and mainstream-finance models.

1 Introduction

This paper develops a general affine macro-finance model of the US macroeconomy

and the Treasury bond market. As the name suggests the macro-finance approach

allows bond yields to reflect macroeconomic variables as well as latent variables

representing financial market factors. It is based on the ‘central bank model’ (CBM)

developed by Svensson (1999), Rudebusch (2002), Smets (1999), Kozicki and Tinsley

(2005) and others, which represents the behavior of the macroeconomy in terms

of the output gap (gt), inflation (πt) and the short term interest rate (rt). The

model developed in this paper allows bond yields to reflect changes in macroeconomic

volatility related to the underlying rate of inflation.

In turn, the behavior of bond yields helps inform the specification of the macro-

economy, yielding new insights into the operation of monetary policy. In particular,

early macro-finance studies showed that although macroeconomic variables provide

a good description of the behavior of short rates they do not provide an adequate de-

scription of long term yields (Kozicki and Tinsley (2001), Ang and Piazzesi (2003)).
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This finding has spawned an important macroeconometric literature which augments

the CBM with latent variables, capturing exogenous changes in inflation and inter-

est rates (Kozicki and Tinsley (2005) provides a useful summary). This literature

shows that these rates are characterized by a non-stationary common trend (or unit

root) that seems to be explained by the underlying rate of inflation. It follows the

standard macroeconometric literature in assuming a homoscedastic (fixed) variance

structure. This situation is familiar to macroeconomic modelers but poses a poten-

tial problem for term structure researchers: it is well-known that asymptotic (long

maturity) yields are not properly defined if the interest rate is driven by a random

walk (a homoscedastic unit root process).

This theoretical problem was first raised as an empirical issue by Dewachter and

Lyrio (2006), but with this notable exception, macro-finance modelers have avoided

it by assuming that the underlying inflation variable follows a near-unit root process

(Ang and Piazzesi (2003), Rudebusch and Wu (2003), Dewachter, Lyrio, and Maes

(2006)). However, because this variable is stationary, it mean-reverts to a constant

rather than the variable end-point suggested by unit root macroeconomic models.

As Kozicki and Tinsley (2005), Dewachter and Lyrio (2006) and others note, this

means that it cannot be interpreted as a long run inflation expectation because it is

anchored to a constant that cannot be influenced by monetary policy.

Mainstream finance yield curve research avoids these problems by using het-

eroscedastic (stochastic volatility) interest rate models based on Cox, Ingersoll, and

Ross (1985). I modify their continuous time specification for use with discrete time

macroeconomic data, getting a sensible forward rate asymptote without placing con-

straints on the roots of system. The stochastic trend is estimated using the Extended

Kalman Filter, which is also standard in the mainstream finance literature. Model

restrictions allow the stochastic trend-volatility term to be interpreted as an infla-
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tion trend, consistent with the hypothesis that macroeconomic volatility is influenced

by the underlying rate of inflation (Okun (1971), Friedman (1977), Engel (1982))1.

This specification encompasses the standard macro-finance model, which is decisively

rejected by the data.

The research described in this paper was initially motivated by my interest in the

asymptotic yield problem raised by early drafts of the Dewachter and Lyrio (2006)

paper. I expected the new specification to outperform the standard one in explain-

ing long maturity yields and with this in mind I extended the conventional (10-year

maximum) maturity data set to include a 15 year yield, the longest available his-

torically. However, the results are surprising in this respect. The new specification

does give a dramatic improvement in fit, but the main reason for this is the impor-

tance of the Okun-Friedman heteroscedasticity effect found in the macro data. Once

this is allowed for, its more flexible yield curve specification adds very little. This

finding suggests that this new macro-finance framework - which uses estimates of

macroeconomic volatility to inform the stochastic volatility parameters of the term

structure model - should be better at discriminating between rival models than the

mainstream finance one (Chen and Scott (1993), Dai and Singleton (2002)), which

does not. It further suggests that CBM-based studies of monetary policy should use

the heteroscedastic framework rather than the current homoscedastic one, allowing

the effects of the stochastic trend on the second as well as the first moments of the

system to be analyzed.

The paper is set out as follows. The next section describes the macroeconomic

model and its stochastic structure, supported by appendix 1. Section 3 derives the

1Ball (1992) offers a theoretical analysis of this phenomenon and the empirical evidence is ex-
amined by Brunner and Hess (1993), Holland (1995), Caporale and McKiernan (1997) and others.
There is also an extensive literature on the effect of inflation and macroeconomic volatility on the
equity risk premium (Brandt and Wang (2003), Lettau, Ludvigson, and Wachter (2006)).
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bond pricing model, supported by appendix 2. It discusses the theoretical problems

posed by the unit root in the standard specification and shows how these are avoided

in the general affine specification. The two respective empirical models are compared

in Section 4. Section 5 offers a brief conclusion and suggestions for further research.

2 The general affine macro-model framework

This section specifies the macroeconomic framework. This is ‘general affine’ or

‘exponential-affine’ in the sense of (Duffie and Kan (1996), Duffie, Filipovic, and

Schachtermayer (2003), to be explained). It consists of a heteroscedastic macroeco-

nomic Vector Autoregression (VAR) augmented by two latent variables, which is

specified under the physical (or observed) probability measure P . The yield model

is specified under the risk neutral measure Q in the next section.

2.1 The macroeconomic dynamics

The macro-model is based on the CBM. It represents the behavior of the macroecon-

omy in terms of the inflation rate (πt), output gap (gt) and the 3 month Treasury

Bill rate (r1,t). These are part of an n−vector zt of macroeconomic variables driven

by the difference equation system:

zt = K +Φ0yt +Σ
L
l=1Φlzt−l +Gηt (1)

where G is a lower triangular matrix, ηt is an n−vector of i.i.d orthogonal errors and

yt is a k−vector of latent factors. These follow the first order process:

yt = θ + Ξyt−1 + εt (2)
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where εt is an k−vector of i.i.d orthogonal errors, θ = {θ1,...,θk}0 and Ξ = Diag{ξ1,...,ξk}2 .

It is assumed that zt is observed without measurement error and that yt is unobserv-

able. I estimate yt using the Extended Kalman Filter (Harvey (1989), Duffee and

Stanton (2004)) as described in appendix 3 .

The specific model developed in this paper defines zt = {gt, πt, r1,t}0, yt = {yπ∗,t, yr∗,t}0,

εt = {επ∗,t, εr∗,t}0, ξ = {ξπ∗ , ξr∗} and θ = {θπ∗ , θr∗}0. In my preferred model, yπ∗,t is

a martingale driving the inflation asymptote: π∗t = yπ∗,t + ϕπ∗ , where ϕπ∗ is a shift

constant. The central tendency r∗ of the real interest rate r is yr∗,t plus the constant

ϕr∗ . yr∗,t is assumed to be a mean reverting Gaussian variable (ξ2 = ξr∗ , |ξr∗ | < 1),

so ϕr∗ plays an identical role to θr∗ , which it is convenient to set to zero, making

ϕr∗ the long run mean. The central tendency of the nominal interest rate is thus

r∗t = yπ∗,t+yr∗,t+ϕπ∗+ϕr∗ , which reverts to the asymptote r
∗∗
t = yπ∗,t+ϕπ∗+ϕr∗ .

The output gap is also assumed to be a zero-mean reverting variable: g∗t = 0. These

equilibrium conditions are enforced by imposing a set of restrictions on (1):

Φ0 = (I − ΣLl=1Φl)R; K = Φ0ϕ; (3)

where : ϕ0 = {ϕπ∗ , ϕr∗}; R =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

1 0

1 1

⎤⎥⎥⎥⎥⎥⎥⎦

to give the equilibrium solution z∗t = (I − ΣLl=1Φl)−1Φ0(yt + ϕ) = R(yt + ϕ).

This system can be consolidated by defining xt = {y0t, z0t}0; vt = {ε0t, η0t}0 and

combining (1) and (2) to get an L−th order difference system described in appendix

1 as (23). The yield model employs the state space form (Harvey (1989)), obtained

by arranging this as first order difference system describing the dynamics of the state

2 In this paper, Diag{δ} represents a matrix with the elements of the row vector δ in the main
diagonal and zeros elsewhere. 0a is the (a × 1) × 1 zero vector; 1a is the (a × 1) × 1 summation
vector; 0a,b the (a× b) zero matrix; and Ia the a2 identity matrix.
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vector:

Xt = Θ+ΦXt−1 +Wt (4)

where Xt = {y0t, z0t, ..., z0t−l}0 is the state vector, Wt = C.{ε0t, η0t, 01,N−k−n}0 and Θ,Φ

& C are defined in appendix 1. Xt has dimension N = k + nl.

The macroeconomic data were provided by Datastream and are shown in chart

1. πt is the annual CPI inflation rate and r1,t the 3 month Treasury Bill rate. The

output gap series gt is the quarterly OECD measure, derived from a Hodrick-Prescott

filter. The yield data were taken from McCulloch and Kwon (1991), updated by the

New York Federal Reserve Bank3. These have been extensively used in the empirical

literature on the yield curve. To represent this curve I use 1,2,3,5,7,10 and 15 year

maturities. These yield data are available on a monthly basis, but the macroeconomic

data dictated a quarterly time frame (1961Q4-2004Q1, a total of 170 periods). The

quarterly yield data are shown in chart 2. The 15 year yield is shown at the back of

the chart, while the shorter maturity yields are shown at the front.

These inflation and interest rates all exhibit a high degree of persistence, which

could be the effect of slow mean reversion, unit roots or of structural breaks. Table

1 shows the means, standard deviations and first order autocorrelation coefficients of

these data, as well as KPSS and ADF test results. The ADF tests show that the null

hypothesis of non-stationarity for these variables cannot be rejected at the 5% level.

The KPSS (Kwiatowski, Phillips, Schmidt, and Shin (1992)) statistics for inflation

and 1-10 year interest rates are only significant at the 10% level, suggesting that the

null hypothesis of stationarity may just be acceptable. However, the KPSS statistic

for the 15 year rate is almost significant at the 5% level. Moreover, Fama (2006)

argues persuasively that the long upswing and downswing in rates evident in the

3 I am grateful to Tony Rodrigues of the New York Fed for supplying a copy of this yield dataset.
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charts was the result of a succession of permanent shocks that were on balance positive

until 1981 and negative thereafter. In this paper, I follow Kozicki and Tinsley (2005),

Dewachter and Lyrio (2006) and Fama (2006) in analyzing a macroeconometric model

characterized by a unit root.

2.2 The stochastic structure

The standard macro-finance model assumes that the volatility structure is homoscedas-

tic and Gaussian: Wt ∼ N(0N ,Ω), while mainstream finance models usually assume

that volatility is stochastic, driven by square root processes in one or more of the

state variables4 . Dai and Singleton (2000) derive ‘admissibility’ conditions to ensure

that these state variables remain non-negative and the variances are well-defined.

They classify an admissible model with N state variables and m independent square

root factors conditioning volatility is classed as Am(N). Thus the standard macro-

finance model (which is homoscedastic) is classified as A0(N) and the mainstream

specification (with a single stochastic volatility term) as A1(N) .

This paper develops a model that encompasses the A0(N) and A1(N) specifi-

cations. These models all generate affine yield curves because the probability dis-

tributions underpinning them are all ‘exponential-affine’ in the sense of Duffie, Fil-

ipovic, and Schachtermayer (2003). They define a process as exponential-affine un-

der any measure M if the conditional Moment Generating Function (LM[ν, Xt] =

EM[exp[ν0Xt+1] | Xt]) for Xt+1, is an exponential-affine (loglinear) function of Xt.

EM denotes the expectation under the measure M while E & V denote the mean

& variance under the state price density and ν is a vector of Laplace coefficients.

The Moment Generating Function (MGF) is the Laplace Transform of the density

4Preliminary tests showed no significant evidence of Autoregressive Conditional Heteroscedastic-
ity (ARCH) in this data set.
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of Xt+1. For example A0(N) assumes that ε1,t is normally distributed with mean

zero and standard deviation δ01 and we use the formula for the MGF of a normal

variable:

E[exp[ν.yπ∗,t+1|yπ∗,t]] = exp[ν(µ+ ξπ∗yπ∗,t) +
1

2
ν2δ01]. (5)

In A1(N), this latent variable also drives volatility through a square root process

similar to the diffusion for the spot interest rate in CIR (1985). They show that in

discrete time, this has a non-central conditional χ2 distribution. If we normalize the

time interval (s− t) in their equation (18) as unity and replace r by yπ∗ :

yπ∗,t+1 ∼ χ2[2cyπ∗,t+1; 2cµ; 2ξπ∗cyπ∗,t] (6)

where 2c is the scale factor, 2ξπ∗cyπ∗,t is the non-centrality parameter and 2cµ shows

the degrees of freedom.

This process is exponential-affine because its conditional Moment Generating

Function (MGF) is a log-linear function of yπ∗,t:

E[exp[ν.yπ∗,t+1|yπ∗,t]] = exp[
νξπ∗yπ∗,t
1− ν/c

− cµ ln[1− ν

c
]] (7)

(provided that: ν < c, Johnson and Kotz (1970)). Differentiating (7) w.r.t. ν once,

twice and then setting ν to zero gives the conditional mean and variance:

E[yπ∗,t+1|yπ∗,t] = µ+ ξπ∗yπ∗,t; V [yπ∗,t+1|yπ∗,t] = δ01 + δ11yπ∗,t; (8)

where : δ01 = µ/c, δ11 = 2ξπ∗/c.

In the limiting case of a unit root, the degree of freedom parameter is zero. This
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model is studied by Seigel (1979) and his basic results are reported in Chapter 29 of

Johnson and Kotz (1970). Important results have also been obtained for this case by

Gourieroux and Jasiak (2002). In this limit: ξπ∗ = 1; δ01 = µ = 0; c = 2/δ11, and

(8) simplifies to:

E[yπ∗,t+1|yπ∗,t] = yπ∗,t; V [yπ∗,t+1|yπ∗,t] = δ11yπ∗,t. (9)

This process is a martingale: the expectation of any future value is equal to the

current value. However, unlike the random walk model, the error variance is also

proportional to this value. These models can all be represented as: yπ∗,t+1 = θπ∗ +

ξπ∗yπ∗,t + επ∗,t+1. To be consistent with (2) we set the intercept θπ∗ equal to µ for

the models (5) and (8) and to zero in (9).

In A1(N), this stochastic trend also conditions the volatility of the other variables.

It is ordered as x1,t = yπ∗,t, the first variable in the (k + n) vector xt. The other

contemporaneous variables are put into an (k + n − 1) vector x2,t, so that: xt =

{x1,t, x02,t}0 and conformably: vt = {w1,t, v02,t}0 and wt = {w1,t, w02,t}0, where w1,t =

επ∗,t. Similarly, writing Xt = {x1,t,X 0
2,t}0 and partitioning Wt,Θ,Φ, C conformably

(see appendix 1), (4) becomes:

⎡⎢⎢⎣ x1,t+1

X2,t+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣ θ1

Θ2

⎤⎥⎥⎦+
⎡⎢⎢⎣ ξ1 0

0
N−1

Φ21 Φ22

⎤⎥⎥⎦
⎡⎢⎢⎣ x1,t

X2,t

⎤⎥⎥⎦+
⎡⎢⎢⎣w1,t+1

W2,t+1

⎤⎥⎥⎦ (10)

where θ1 = θπ∗ , ξ1 = ξπ∗ and w1,t+1 = επ∗,t+1. In this paper subscripts 1 and 2

denote partitions of N (or k+n) dimensional vectors and matrices into 1 and N − 1

(or k + n − 1). The stochastic structure for (10) is described in appendix 1. The

distribution of x2,t and X2,t conditional upon x1,t−1 is assumed to be Gaussian. The

conditional covariance of X2,t is Σ0 + Σ1x1,t−1, where: Σi = C22∆iC
0
22 and ∆i =
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Diag{{δi2, ..., δi(k+n)}, 00N−k−n}; i = 0, 1. C22 is a lower triangular and ∆i; i = 0, 1

are deficient diagonal (N − 1)2 matrices.

This model is the discrete time analogue of the ‘general affine’ A1(N) model

developed by Duffie and Kan (1996), which generalizes the CIR model by adding a

translation or shift constant to a model variable like an interest rate or stochastic

trend when defining the volatility term in the rate diffusion. However, it is convenient

to allow for this shift by using ϕπ∗ in (3) instead, keeping yπ∗ a CIR process but

making the inflation asymptote π∗ a Duffie and Kan process. Importantly, the Duffie

and Kan A1(N)model encompasses A0(N). Similarly, the discrete time A0(N)model

is a special case of my A1(N) model, which can be obtained by taking the limit as c

tends to infinity. Setting δ11 and Σ1 to zero then makes x1,t and x2,t homoscedastic.

This also renders the distribution of yπ∗,t+1 Gaussian, allowing this to be defined in

the A0(N) model as another zero-mean reverting latent variable (θ1 = 0)5 . These

models are ‘admissible’ in the sense (of Dai and Singleton (2000) and (2002)) that

they ensure that the variance structure remains non-negative definite6. They can be

used independently of the yield specification, as for example by (Kozicki and Tinsley

(2005)). However my interest is to use them jointly with bond market data, using

the macro-yield framework developed in the next section.

3 The general affine yield curve framework

This section is supported by appendix 2 and shows how exponential-affine MGFs can

be used to model the yield curve consistently with the macro models of the previous

section. It is based on the fact (Duffie, Filipovic, and Schachtermayer (2003)) that

the MGF of a distribution that is exponential-affine under the risk neutral measure

5This parameter is equivalent to ϕ1 in (3) in this case.
6 In A1(N) the variable driving volatility x1,t has a non-central χ2 distribution and is non-

negative, keeping the variance structure Σ0 +Σ1x1,t−1 for X2,t non-negative definite.
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Q generates an exponential-affine discount bond price model:

Pτ,t = exp[−γτ −Ψ0τ Xt]; τ = 1, ...,M. (11)

The natural logarithm of this price is denoted by pτ,t and is linear in Xt. Reversing

sign and dividing by maturity τ gives the discount yields: rτ,t = −pτ,t/τ = ατ+β
0
τXt;

where: ατ = γτ/τ ; βτ = Ψτ/τ. The slope coefficients βτ are known as ‘factor

loadings.’ Stacking the yield equations for τ = 4, 8, 12, 20, 28, 40 & 60 quarters and

adding an error vector et gives the multivariate regression model used in section 4

for the (7× 1) vector rt :

rt = α+B0Xt + et = α+B0
0yt +Σ

L
l=1B

0
lzt+1−l + et (12)

where : et ∼ N(0, P̄ ); P̄ = Diag{ρ1, ρ2, ..., ρ7}.

and et is an i.i.d.error vector.7 This is the affine yield curve framework used in this

paper. The remainder of this section discusses the measure Q used for asset pricing

and the ‘essentially affine’ yield models EA0(N) and EA0(N) corresponding to the

macromodels A0(N) and A0(N) of the previous section.

3.1 The risk neutral measure Q

Assets are priced under the risk neutral measure, which adjusts the state probabilities

in such a way that they all have the same expected return. These adjustments depend

upon ‘price of risk’ parameters that show the effect of model variables on the risk

premia. For the yield model to be affine these prices must also be affine in the state

variables. So for example, the variable λ1,t shows the price of risk associated with

7The usual conventional in macro-finance models is that this represents measurement error.

12



the stochastic trend, which plays an important role in this analysis:

λ1,t = λ10 + λ11x1,t + Λ12X2,t. (13)

If this is zero, then an ‘asymptotic’ or ‘end-point’ portfolio that is constructed so

that it is only exposed to shocks in x1,t has a zero risk premium and is expected to

earn the spot rate. If it is constant (λ1,t = λ10), then variations in this risk premium

depend only upon variations in volatility, such as those induced by x1,t in A1(N).

This parameter plays the key role in that model. If λ11 is also non-zero then the

trend can influence the risk premia thorough variations in the price of risk, even if

volatility is fixed as in A0(N), so λ11 plays the key role in that model. Appendix 2

shows how the prices of risk associated with the other variables are adjusted, following

Duffee (2002). After this modification, the models A0(N) and A1(N) are classified as

the ‘essentially affine’ models EA0(N) and EA1(N), respectively represented by the

empirical models M0 and M1 in section 4. Following Dewachter and Lyrio (2006),

both models incorporate the restrictions: ξ1 = 1;Λ12 = 0N−1.

As appendix 2 explains, variations in λ1,t are a nuisance in the EA1(N) model

M1 and the conventional assumption is that λ1,t = λ10 for that model. On the other

hand, it is important to allow λ1,t to reflect variations in x1,t in M0, so in this

case λ1,t = λ10+λ11x1,t. This means that M1 does not encompass M0. However, an

encompassing specification that nests both models can be constructed by relaxing the

usual macro-finance assumption that bond market participants use the true value of

ξ1 in pricing. This gives my ‘baseline’ model M2, which uses a new parameter ξ
B
1 to

describe their estimate of the speed of adjustment of x1,t under P, which may differ

from the parameter ξ1 defined in the macro-model
8. This modification is a technical

8A shift in the parameters from (4) to (14) could occur either because of the risk adjustment
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one, designed to allow encompassing tests, but could detect an error in the market

estimate of ξ1. Appendix 2 derives the MGF of M2 under measure Q and shows how

it can be used as a ‘model generating function’ to derive the other empirical models.

It can for instance be used as a moment generating function to give the dynamics of

this system under Q:

⎡⎢⎢⎣ x1,t+1

X2,t+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣ θQ1

ΘQ2

⎤⎥⎥⎦+
⎡⎢⎢⎣ ξQ1 00N−1

ΦQ21 Φ
Q
22

⎤⎥⎥⎦
⎡⎢⎢⎣ x1,t

X2,t

⎤⎥⎥⎦+
⎡⎢⎢⎣wQ1,t+1

WQ
2,t+1

⎤⎥⎥⎦ (14)

where the time t expectations of the error terms are zero under Q. Table 2 shows

parameter values for models M0-M2, where:

H0 = Σ0Λ20 + δ01λ10C21;H1 = Σ0Λ20;Υ0 = Λ21 + δ01λ11C21;Υ1 = Λ21 + Σ1Λ20.

(15)

These reduced form parameters show the effects of the coefficients λ10 and λ11 mod-

elling the price of risk associated with x1,t. The vectors Λ20 & Λ21 and the matrix

Λ22 are defined in (37) and model the price of risk associated with x2,t. Obviously,

if all of these parameters are set to zero, the parameters revert to those shown (for

P) in the first column. The parameter values for model M2 are shown in the second

column. Those for M1 in the next column assume the market uses the true value of

ξB1 = ξ1. The parameters for M0 in the final column are standard and appendix 2

shows that they can be derived from those for M2 by setting δ11 & Σ1 to zero and

taking the limit as c tends to infinity. In this case we replace ξB1 by ξQ0
1 = ξ1 − δ01

λ11, which is the Duffee (2002) risk-adjusted parameter.

implied by (36) or because the bond market does not use the true values of the parameters in (4).
However, it is not possible to distinguish these two effects without imposing restrictions on (36).
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3.2 The EA1(N) yield specifications (M1 and M2)

The coefficients of (11) are partitioned Ψτ conformably with (10) as {ψ1,τ ,Ψ02,τ}0.

They are recursive in maturity. Since −pτ,1 = r1,t its coefficients have the starting

values: γ1 = ψ1,1 = 0; and Ψ2,1 = J2,r, where J2,r is a selection vector such that

J 02,rX2,t = r1,t. It is also recursive in the sense that Ψ2,τ does not depend upon ψ1,τ−1

(or γτ−1) :

Ψ2,τ = (Φ
Q
22)

0Ψ2,τ−1 + J2,r (16)

= (I − (ΦQ22)0)−1(I − ((ΦQ22)0)τ )J2,r

where ΦQ22 = Φ22−Λ22 (defined in table 2) adjusts Φ22 to allow for the effect of X2,t

on the associated prices of risk. I assume that the roots of this sub-system are stable

under Q, so this has the asymptote:

Ψ∗2 = limτ→∞Ψ2,τ = (I − (ΦQ22)0)−1J2,r (17)

Dividing by τ and taking the limit as this goes to infinity gives the limit for β2

shown in table 3. This Gaussian sub-structure is common to all models, but the

structure of the remaining coefficients depends critically upon the model specification,

particularly if the system is non-stationary.

Importantly, as Dai and Singleton (2002) and others note, non-stationarity under

Q is not a problem in the EA1 specification. Indeed their results, like previous

mainstream EA1(N) estimates (Chen and Scott (1993)) suggest that there is a root

which is significantly larger than unity under Q. The volatility of x1,t+1 is linear in

x1,t and so the equation determining its price coefficient includes a non-linear Jensen
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effect. For M2:

ψ1,τ =
ξB1 [ψ1,τ−1 + λ10 +Ψ

0
2,τ−1C21]

1 + [ψ1,τ−1 + λ10 +Ψ02,τ−1C21]/c
− ξB1 λ10
1 + λ10/c

−Ψ02,τ−1Υ1−
1

2
Ψ02,τ−1Σ1Ψ2,τ−1.

(18)

For a regular solution:

λ10 + c > 0; [ψ1,τ−1 + λ10 +Ψ
0
2,τ−1C21] + c > 0. (19)

As Campbell, Lo, and MacKinlay (1996) note in a similar heteroscedastic yield curve

model9, the price parameter ψ∗1 is determined by a quadratic rather than a linear

equation and is well-defined (with β∗1 = 0) even if
¯̄̄
ξQ1
1

¯̄̄
≥ 110 . For the intercept:

∆γτ = (Θ2−C21µ−H1)
0Ψ2,τ−1−

1

2
Ψ02,τ−1Σ0Ψ2,τ−1+cµ ln[

c+ ψ1,τ−1 + λ10 +Ψ
0
2,τ−1C21

c+ λ10
].

(20)

Unit roots are not a problem in EA1(N). Indeed, they simplify the model struc-

ture, giving model M1 with ξB1 = ξ1 = 1. Substituting µ = 0 into (20) ‘switches

off’ the logarithmic term and makes γτ and hence the asymptotic forward rate f
∗

independent of ψ∗1, as shown in appendix 2. In other words, because the volatility of

x1,t is proportional to x1,t−1, the associated Jensen effects are found in (18), but not

in (20). This also simplifies the risk premium, derived in appendix 2 as (43).

9Their model uses a Gaussian approximation to the Cox, Ingersoll, and Ross (1985) process
describing the spot rate, due originally to Sun (1992).
10 Substituting (17) into (18) gives ψ∗1 as the solution to: ψ

∗
1 =

ξ1(ψ
∗
1+λ10+Ψ

∗0
2 C21)

1+(ψ∗1+λ10+Ψ
∗0
2 C21)/c

- ξ1λ10
1+λ10/c

-

Ψ∗02 Υ1-
1
2
Ψ∗02 Σ1Ψ

∗
2. This may be arranged as: 0 =ϑ

2+ϑ(c(1− ξ1)− ζ)− cζ where: ϑ = ψ∗1 +λ10+

Ψ∗02 C21; and ζ =
λ10(1−ξ1)+λ10/c

1+λ10/c
+Ψ∗02 (C21 −Υ1)− 1

2
Ψ∗02 Σ1Ψ

∗
2. The intercept term cζ shows the

product of the roots and is a very large negative number. Consequently, one root is a large negative
and the other a large positive number. Phase analysis reveals that the recursion (18) selects the
positive root.
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3.3 The standard EA0(N) specification (M0)

The pricing formulae for this model are well-known and appendix 2 considers them as

limits of these baseline M2 formulae. Taking the limit of (18) as c tends to zero gives

a quadratic recursion. However, the restriction δ11 = 0 ‘switches off’ this quadratic

effect, reducing (18) to a linear recursion:

ψ1,τ = ξQ0
1 ψ1,τ−1 +Ψ

0
2,τ−1Φ

Q0
21 . (21)

The intercepts do follow a quadratic recursion:

∆γτ = γτ − γτ−1 = Ψ
0
2,τ−1Θ

Q0
2 + ψ1,τ−1θ

Q0
1 −

1

2
Ψ02,τ−1Σ0Ψ2,τ−1

−1
2
δ01[ψ1,τ−1 +Ψ

0
2,τ−1C21]

2; (22)

with the parameters defined in table 2. In contrast to the M1 model, the intercept

exhibits the nonlinear Jensen effects in M0 and not the first slope coefficient.

If ξQ0
1 = 1, then clearly (21) has a unit root and as appendix 2 and table 3

show, the long forward rates behave like (-)τ2 in the limit, reflecting the well-known

asymptotic problem. In the specification of Dewachter and Lyrio (2006), x1 has a unit

root under P (µ = 0, ξ1 = 1) but is mean-reverting under Q: (
¯̄̄
ξQ0
1

¯̄̄
= |ξ1−δ01λ11| <

1). This provides a neat way of avoiding the asymptotic yield problem while allowing

the inflation asymptote in the macro-model to be a variable end-point as in (Kozicki

and Tinsley (2001)). However, this restriction constrains the rate at which ψ1,τ grows

in the recursion (21), constraining the effect of the stochastic trend on short maturity

yields. It also means that the associated factor risk premium, the excess return

expected for holding the ‘asymptotic’ portfolio (constructed so that the portfolio

weights sum to: ψ1 = 1, Ψ02 = 0N−1), is negatively related to the inflation trend,
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as appendix 2 demonstrates. Moreover, the EA1(N) model relaxes this restriction

and my results, reflecting those of mainstream research (for example Chen and Scott

(1993), Dai and Singleton (2002)), suggest that this root is significantly greater than

unity.

4 The empirical models

The empirical model consists of a heteroscedastic VAR describing the 3 macroeco-

nomic variables (4) and the associated equations describing the 7 representative yields

(12). It is estimated by quasi-maximum likelihood and the Extended Kalman filter,

which gives optimal linear estimates of the latent variables in this situation. The like-

lihood function is derived in appendix 3. The preliminary tests reported in section

2.1 indicated the presence of a unit root in the macroeconomic and yield data. Fur-

ther (AIC) tests suggested a third order lag structure for (1). With n = 3, k = 2 and

l = 3, there are N = 11 state variables. Consequently this research focussed on the

EA0(11) and EA1(11) specifications. The baseline model M2 uses 66 parameters11

and has a loglikelihood L(2)=747.5 as shown in table 4.

The EA1(11) model M1 specializes this by assuming a unit root and maintaining

the standard identity between macro and yield parameters under P : ξB1 = ξ1 =

1;µ = 012 . These 3 restrictions are easily accepted by the data: the χ2(3) likelihood

ratio test gives an acceptance value of p =0.97. The unit root EA0(11) specification

M0 is also nested in M2, employing 6 restrictions: δ11 and ∆1(4) are set to zero and

again ξ1 = 1. However, its loglikelihood of L(0)=694.3 is much lower than for the

other models and it is overwhelmingly rejected against M2. This rejection is largely

11These are ξB1 , ξ1, ξ2, λ10, δ01, δ11, ∆0(4), ∆1(4), H1(4), Υ1(3), Λ22(13), G(3), Φ(27) and
ϕ(2). Estimates are reported in table 5. It was found that although λ22,r∗r∗ was significant (table
5c) the remaining elements of the first rows of Λ22 and Υ1 (or Υ0) were very poorly determined
and could be eliminated without significantly reducing the likelihood. The structural parameters µ
and c follow from (8) given ξ1, δ01 and δ11.
12This restriction is imposed via (8) by setting δ01 = 0.
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due to the restriction δ11 = 0. The effect of this is twofold: (a) it makes the stochastic

trend homoscedastic and (b) it removes the nonlinearity from (18), reducing it to the

linear recursion (21). Theoretically, these two effects are inextricably related because

the parameters of the stochastic structure structure(δ01, δ11,∆0,∆1 and C22) are not

affected by the change of measure and the conventional macro-finance assumption is

that they are the same in the macro and yield models. However further relaxing this

assumption allows (a) and (b) to be separated.

To explore this idea, I constructed two new models: M3 and M4. The ‘encom-

passing’ specification M4 nests all of the other models. It is based on M2 but uses 10

new parameters (δB01, δ
B
11,∆

B
0 and ∆

B
1 ) to replace their macro equivalents in the yield

model. It has the loglikelihood value L(4) = 749.713. As table 4 shows, model M1 is

acceptable against this alternative, suggesting that the conventional macro-finance

assumption is valid. Model M3 then specializes M4 by using the restrictions δB11 = 0

and ∆B0 = 0. This is a hybrid in which the true macro-model is the heteroscedastic

A1(N) model, but the bond market mistakenly uses a best-fit EA0(N) specification

instead of EA1(N). Comparing its loglikelihood L(3) with that L(0) of M0 which

it nests, gives an estimate of effect (a): of heteroscedasticity in the macroeconomy.

This is highly significant. Indeed, M3 is accepted against the alternative of M4 (p =

0.13), with a likelihood almost as high as that for M2 and my preferred model M1.

Although these models are not directly comparable, this observation tells us that (b),

the increase in fit due to the use of a macro-consistent yield model, is in practice rela-

tively small. In other words, if the yield model parameters (δB01, δ
B
11,∆

B
0 and ∆

B
1 ) are

estimated separately they not very well determined statistically. In practice, these

parameters are determined by the macro-finance restriction, which equates them with

13Comparing L(3) gives a p−value of 0.60, indicating that the market actually uses the true values
of these stochastic parameters. Nevertheless this model is useful in distinguishing (a) and (b).

19



their macro model analogues and thus uses macro data to pin them down.

Since these L(M) values are the sum of loglikelihood values at each period (appen-

dix 3) they can be analyzed as time series. Chart 3 shows the effect of disaggregating

the differences [L(3)-L(0)] due to effect (a) of heteroscedasticity in the macroecon-

omy. This is very marked in the early 1980s when the stochastic trend peaks, but

also noticeable when the trend is low, at the beginning and the end of the estima-

tion period. The difference [L(4)-L(3)] due to (b), the use of the more general EA1

yield curve specification, is much smaller and reflecting this, the residuals from the

heteroscedastic macro-based specifications M1, M2, M3 and M4 are all very simi-

lar. Despite the theoretical superiority of the EA1(N)−based yield specification, it

is hard to see any systematic improvement over maturity or over time. The impulse

responses and factor loadings of these models are also similar. For that reason I now

focus on the results for the preferred model, M1.

4.1 The empirical macro-model

At the core of this model there is a macro VAR with a steady state solution dictated

by the restrictions (3). The novelty here is the introduction of the square root

volatility effects implied by the CIR-based term structure model. The model is driven

by a nominal factor x1,t and a real factor x2,t. Model estimates of these factors are

shown in Chart 4, along with their 95% confidence intervals. Most of the work is

done by the nominal factor, which has a unit root. Since x1,t has a non-central χ2

distribution, the downside variance is smaller than the upside, but this asymmetry is

only apparent at the beginning of the estimation period when the underlying inflation

rate is low. This variable drives the conditional heteroscedasticity in the macro

variables. Their one-quarter-ahead forecasts values and 95% confidence intervals are

shown in chart 5. The effect of heteroscedasticity is particularly pronounced in the
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case of the spot rate, consistent with the finding in univariate models (Chen, Karolyi,

Longstaff, and Sanders (1992), Ait-Sahalia (1996), Stanton (1997) and others). Its

variance is low over the first four years of the estimation period, consistent with the

ex post stability of interest rates over this period (chart 5c). The behavior of the spot

rate over the medium term is also influenced by the real factor x2,t, as is clear from

a comparison with chart 4b. As expected, this real interest series reveals a marked

tightening of monetary policy in the late 1970s, with a very relaxed stance in the

early 1990s and again post-millennium. The model attributes the ultra-low interest

rates seen over the early years of the millennium to a relaxation of monetary policy,

coming against a background of a low underlying inflation rate.

How firmly do these factors anchor inflation and interest rates? This question

depends upon whether output, inflation & interest rates and the real factor x2,t are

contintegrated with the non-stationary nominal factor x1,t. This was checked by

running ADF tests on the residuals of the output, inflation & interest rate equations,

which decisively reject non-stationarity (table 6b). These variables adjust quickly and

smoothly to their equilibrium values. This mean-reversion effect can be summarized

in terms of the model’s eigenvalues. The autoregressive coefficient associated with

x1,t is unity, but the other roots are stable and are reported in table 7. Four pairs of

roots are sinusoidal, reflecting the cyclical nature of the macroeconomic data14.

These cyclical effects are seen more clearly in the impulse responses, which show

the dynamic effects of innovations in the macroeconomic variables on the system.

Because these innovations are correlated empirically, we work with orthogonalized

innovations using the triangular factorization defined in (23). The orthogonalized

impulse responses show the effect on the macroeconomic system of increasing each of

14However the imaginary components of the first root is small, meaning that the macro-model is
dominated exponential adjustment effects.
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these shocks by one percentage point for just one period using the Wald representa-

tion of the system. This arrangement is affected by the ordering of the macroeconomic

variables in the vector xt. Like Kozicki and Tinsley (2005) I adopt the standard or-

dering: xt = {yπ∗,t, yr∗,t, gt, πt, r1,t}. The first shock (υ1) reflects permanent policy

or expectational changes in the inflation asymptote while the second (υ2) reflects

structural shocks to the real interest rate. Conventionally, υ3 is interpreted as a

positive demand shock and (υ4) as a negative supply shock. Finally (υ5) represents

transitory changes in monetary policy. Chart 6 shows the results of this exercise.

This gives a plausible description of the macroeconomic dynamics. As in the model

of Kozicki and Tinsley (2005), the use of Kalman filters to pick up the effect of un-

observable expectational influences seems to solve the notorious price puzzle - the

tendency (noted originally by Sims (1992)) for increases in policy interest rates to

anticipate inflationary developments and apparently cause inflation. The nominal fil-

ter dictates the long run equilibrium of the macroeconomy (and its volatility). These

effects are persistent, but the responses of the macroeconomic variables to surprises

in inflation, output and interest rates are rapid. They are largely exponential in

nature, suggesting that monetary policy has been effective in securing its objectives

quickly, without significant policy reversals or cycles.

These results are reflected in chart 7, which report the results of the Analysis

of Variance (ANOVA) exercise. These charts show the share of the total variance

attributable to the innovations at different lag lengths and are also obtained using the

Wald representation of the system, as described in Cochrane (1997). They indicate

the contribution each innovation would make to the volatility of each model variable

if the error process was suddenly started (having been dormant previously). So for

example we see that the output surprise η1,t accounts for nearly all of the short run

volatility in output, with similar results for the responses of inflation and spot rates
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to thier own innovations. However, the effect of other innovations builds up over

time.

4.2 The empirical yield model

The behavior of the yield curve is dictated by the factor loadings. These are depicted

in Chart 8, as a function of maturity (expressed in quarters). The first panel shows the

loadings on x1,t (broken line) and x2,t (continuous line). The second panel shows the

loadings on π (dotted line), g (broken line) and the spot rate (continuous line). The

spot rate provides the link between the macroeconomic model and the term structure.

Since it is the 3 month yield, this variable has a unit coefficient at a maturity of one

quarter and other factors have a zero loading. The spot rate loadings decline over the

next few years, reflecting the adjustment of the spot rate towards x1,t and x2,t. The

spot rate thus determines the slope of the short-term yield curve. Three to five year

maturity yields are strongly influenced by the behavior of the real rate factor x2,t.

The loading on this factor then fades gradually over the longer maturities, allowing

this to act as a ‘curvature’ factor. In contrast, the loading upon x1,t moves up to

unity and then increases gradually with maturity over the 2 to 15 year maturity

range, so that it acts as a ‘level’ factor. The loadings for output and inflation have

a humped shape, but are relatively small.

Chart 9 shows the risk premia implied by models M0 and M1 for the 15 year yield.

Although the loadings for these models are similar, the risk premia differ because they

also depend upon the specification of the price of risk and in particular the parameter

λ10. This parameter determines the effect of the stochastic trend on the asymptotic

risk premium (appendix 2) and differs between the two models, helping to explain

the difference shown in 15 year premia. It is significantly negative in M1, but forced

to adopt a positive value in M0 in order to keep the model dynamics stable under Q.
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This means that although the stochastic trend has a positive effect on the 15 year

premia in both models, this is more powerful in M1 than it is in M0. The real factor

also has a strong positive effect in both models, as is clear from the chart. The effect

of the macroeconomic variables on the risk premia in these models is relatively small

in the 15 year area. The impulse responses for the 5-year yield and ANOVA results

for the 10 year yield are shown in charts 6 and 7. These reflect the combined effect of

the factor loadings and the dynamic characteristics of the model variables discussed

in the previous section. The behavior of the 5 year yield depends upon the spot rate

and the financial factors. The variance of the 10 year yield (chart 7) is dominated by

the shocks to the two financial factors, reflecting the ‘level’ and ‘curvature’ effects.

The effect of the spot rate and other macroeconomic variables is negligible at this

maturity. Table 6 shows that the joint macro-yield model closely replicates the first

three moments of the data shown in table 1.

5 Conclusion

This research aligns the new macro-finance model with the mainstream finance lit-

erature, using a latent variable with stochastic first and second moments to model

the unit root. Because volatility depends upon the stochastic trend in this model,

the Jensen effects induced by the convexity of the bond price function affect the

associated slope parameter and not the intercept. This means that the trend affects

the steady state inflation and spot rates without disturbing the asymptotic forward

rate. The model was initially designed to tackle the asymptotic problem posed by

the unit root, but in practice it seems that its superior performance stems from its

ability to handle the heteroscedasticity of the macroeconomic data rather than the

asymptotic yield problem. Unfortunately it is not possible to test these models on

longer term yields using this historical data set because there have been long periods
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when the US Treasury did not fund in the 20-30 year area. However, 30 year issuance

has now resumed and the growing demand from pension providers is likely to keep

this funding window open. Moreover, the increasing number of 50-year issues in the

UK and French Treasury markets should generate data better suited to an empirical

test of asymptotic model behavior.

In the meantime, the significance of the inflation-driven conditional heteroscedas-

ticity found in US macro data motivates the use of the general affine model to study

both the macroeconomy and the bond market. In contrast to the volatility-clustering

effects implied by GARCH macro models, this conditional heteroscedasticity is per-

sistent, exhibiting a unit root. Mathematically, it is more tractable than the GARCH

model, generating linear structures that could lend themselves not just to research

on the term structure but to optimal control and similar intertemporal optimization

problems. Empirically, this finding helps to explain the ‘Great Moderation’ - the fall

in output; interest rate and inflation volatility seen since the mid 1980s (Bernanke

(2004), Kim, Nelson, and Piger (2004)), attributing it to the fall in the inflation

trend associated with the recession of the early 1980s. It reminds us that this so-

called moderation is actually a return to the low-inflation, low-volatility epoch that

characterized the early post-war years. The ‘general affine’ macro-model A1 helps to

explain both the rise and subsequent fall in volatility.

Compared to the mainstream finance model of the bond market, the macro-

finance EA1 model can use a relatively large number of factors (11) because the

parameters of the model are informed by macroeconomic as well as yield data (with

a total of 1700 data points). It can also use an unrestricted specification of the

price of risk, with a large number of parameters. It is particularly informative about

the stochastic volatility parameters, identifying these with the volatility parameters

of the macro model, which are well-determined. The relative adjustment speeds
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mean that the behavior of the yield curve is largely dictated by three factors: the

inflation end-point, the real interest rate factor and the spot rate. The model is

consistent with the traditional three-factor finance specification in this sense, but

links these factors to the behavior of the macroeconomy. This research opens the

way to new CBM-based studies of monetary policy and a much richer term structure

specification, incorporating the best features of both macro-finance and mainstream

finance models.
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Appendix 1: The state-space representation of the model

Define xt = {y0t, z0t}0; vt = {ε0t, η0t}0 and combine (1) and (2) to get:

xt =

⎡⎢⎢⎣ θ

K +Φ0θ

⎤⎥⎥⎦+ΣLl=1Γlxt−l + wt (23)

where:

wt = Γvt; Γ =

⎡⎢⎢⎣ Ik 0k,n

Φ0 G

⎤⎥⎥⎦ ;

Γ1 =

⎡⎢⎢⎣ Ξ 0k,n

Φ0Ξ Φ1

⎤⎥⎥⎦ ;Γl =
⎡⎢⎢⎣0k,k 0k,n
0n,k Φl

⎤⎥⎥⎦ ; l = 2, ..., L.

Stacking (23) puts the system into state space form (4), where Xt = {y0t, z0t, ..., z0t−l}0,

Wt = C.{ε0t, η0t, 01,N−k−n}0 and:

Θ= {θ,K0 + θ0Φ00, 01,N−k−n}0; (24)

Φ=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ 0k,n ... 0k,n 0k,n

Φ0Ξ Φ1 ... Φl−1 Φl

0n,k In .. 0n,n 0n,n

0n,k 0n,n ... In 0n,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣ ξ1 0
0
N−1

Φ21 Φ22

⎤⎥⎥⎦ .
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The second matrix repartitions Φ conformably with (10), so that Φ21 is (N − 1)× 1

and Φ22 is (N − 1)2. Similarly:

C =

⎡⎢⎢⎢⎢⎢⎢⎣
Ik 0k,n 0k,(N−k−n)

Φ0 G 0n,(N−k−n)

0(N−k−n),k 0(N−k−n),n 0(N−k−n),(N−k−n)

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎣ 1 00N−1

C21 C22

⎤⎥⎥⎦ .

where: C21 is (N − 1)× 1 and C22 is (N − 1)2. Comparing this with the partition of

(24), note that:

Φ21 = C21ξ1 (25)

Similarly for xt = {x1,t, x02,t}0 repartition vt = {w1,t, v02,t}0, wt = {w1,t, w02,t}0 and

(23) conformably and write Γ as:

Γ =

⎡⎢⎢⎣ Ik 0k,n

Φ0 G

⎤⎥⎥⎦ =
⎡⎢⎢⎣ 1 01,(k+n−1)

Γ21 Γ22

⎤⎥⎥⎦ ;

where Γ22 is an (k + n− 1)2 lower triangular matrix with unit diagonals and Γ21 is

a (k + n − 1) column vector. The errors in x2,t+1 are decomposed into orthogonal

components that are related to w1,t+1 and v2,t+1 = stu2,t+1:

w2,t+1 = Γ21w1,t+1 + Γ22stu2,t+1 (26)

where: u2,t+1 is an (n+k−1) vector of standard normal variables, st = Diag{(δ02+

δ12x1,t)
1
2 , ..., (δ0(k+n) + δ1(k+n)x1,t)

1
2 }; δmj ≥ 0, m = 0, 1; j = 1, ..., k + n, and

E[u2,t+1w1,t+1] = 0(k+n−1);u2,t+1 ∼ N [0(k+n−1), I(k+n−1)]. The error structure of
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(10) follows from (26) as:

W2,t+1 =C21w1,t+1 + C22StU2,t+1 (27)

U2,t+1 ∼N(0N−1,D) (28)

where: U2,t+1 = {(u02,t+1, 00N−k−n}0; St = Diag{{(δ02 + δ12x1,t)
1
2 , ..., (δ0(k+n) +

δ1(k+n)x1,t)
1
2 }, 00N−k−n}; D = Diag{10k+n−1, 00N−k−n}, so that StD = St. This im-

plies the Gaussian conditional MGFs:

E[exp[ν02U2,t+1]] = exp[
1

2
[ν02Dν2]; (29)

E[exp[ν02StU2,t+1]] = exp[
1

2
[ν02S

2
t ν2] .

where:

S2t = StDSt = ∆0 + x1,t∆1 (30)

Finally, the conditional value X2,t+1| x1,t+1 can be represented using (10) (25) and

(27) as:

X2,t+1 =Θ2 + Φ21x1,t + C21w1,t+1 +Φ22X2,t + C22StU2,t+1

=Θ2 − C21θ1 + C21x1,t+1 +Φ22X2,t + C22StU2,t+1. (31)

Appendix 2 : Affine yield structures

This appendix derives the MGF of the distribution under the risk neutral measure Q

and shows how it can be employed as a ‘model generating function’ to derive the yield

model, forward rates and risk premia as well as the moments of the macro system

under Q.
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The risk-neutral probability measure

Measure Q adjusts the state probabilities using a multiplicative state-dependent

subjective-utility weight Nt+1 (with the logarithm nt+1) so that the time t con-

ditional risk neutral expectation (EQ) of a scalar random variable Zt+1:

EQ[Zt+1| Xt] = E[Nt+1Zt+1| Xt]. (32)

Bond (and other asset) prices are discounted expectations of future payoffs and prices

defined under this measure:

Pτ,t = exp[−r1,t]EQ[Pτ−1,t+1| Xt]; τ = 1, ...,M. (33)

(Campbell, Lo, and MacKinlay (1996), Cochrane (2000)). Recall that the MGF for

measure Q is:

LQ[ν,Xt] = EQ[exp[ν0Xt+1]|Xt]. (34)

Using (11) to replace Pτ−1,t+1 in (33) gives a similar form with ν = −Ψτ−1:

Pτ,t = exp[−r1,t]EQ[exp[−γτ−1 −Ψ0τ−1 Xt+1]| Xt]

= exp[−γτ−1 − J 0rXt]L
Q[−Ψ0τ−1,Xt] (35)

where Jr is a selection vector such that J 0rXt = r1,t.

The discount factor is naturally exponential and if the MGF under the risk neutral

measure (LQ[ν,Xt]) is exponential-affine in Xt, then so is the expectation. Thus (35)

is of the form (11), with coefficients that are obtained recursively by matching the

coefficients (for maturity τ − 1) of the state variables Xt in the exponents of (35)

with those (for τ) in (11). For this to be the case, Nt+1 must be an exponential-affine
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function of the state variables or error terms:

−nt+1 = ωt + λ1,tx1,t+1 + Λ
0
2,tU2,t+1 (36)

where λ1,t is a scalar, Λ2,t = [λ
0
2,t, 0

0
N−(k+n)]

0 is a (N − 1) × 1 deficient vector con-

taining λ2,t which is a (k + n − 1) × 1 vector of coefficients related to the prices of

risk associated with shocks to x2,t+1. In the basic affine model class these coefficients

are constant and variations in the risk premia only depend upon those in volatility.

However, in the ‘essentially affine’ specification of Duffee (2002) they are linear in

xt, allowing an addition source of variation in the premia. I adopt his specification

using (13) with:

Λ2,t = StC
0
22Λ20 + S−1t C−122 Λ21x1,t + S−1t C−122 Λ22X2,t (37)

where Λ012,Λ20 and Λ21 are (N − 1) × 1 vectors and Λ22 is an (N − 1)2 matrix of

parameters to be estimated. The parameter λ11 allows x1 to influence the asymp-

totic risk premium through the price of risk. However since x1 affects this through

volatility it is redundant in EA1 and is set to zero. For the EA1 specifications M1

and M2 to be admissible it is also necessary that Λ12 = 0N−1 and to facilitate the

encompassing tests I follow Dewachter and Lyrio (2006) and use this restriction for

M0.

5.1 The MGF under the risk neutral measure

Using (32) and (34), the MGF of the distribution under the risk neutral measure Q

can be represented as: LQ[ν,Xt] = E[exp[nt+1+ν0Xt+1] | Xt]. Substituting (36) and

(31) and noting that x1,t+1 and U2,t+1 are independent allows this to be factorized
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as:

LQ[ν, Xt] = exp[−ωt + ν02(Θ2 − C21µ+Φ22X2,t)]×E[exp[(ν02C22St − Λ02,t)U2,t+1]]

×E[exp[(ν1 − λ1,t + ν02C21)x1,t+1| x1,t]]. (38)

For the baseline model M2, these expectations are evaluated using (7) and (29),

substituting ξB1 for ξπ∗ :

LQ[ν, Xt] = exp[−ωt + ν02(Θ2 − C21µ+Φ22X2,t) +
1

2
(ν02C22St − Λ02,t)D(StC 022ν2 − Λ2,t)

+[
ξB1 [ν1 − λ1,t + ν02C21]x1,t
1− [ν1 − λ1,t + ν02C21]/c

]− cµ ln[1− [ν1 − λ1,t + ν02C21]/c].

This probability density is normalized to unity using: ωt = 1
2Λ

0
2,tDΛ2,t−

λ1,tξ
B
1 x1,t

1+λ1,t/c
−

cµ ln[1 + λ1,t/c]. Substituting this back and using (15), (37) and setting λ1,t = λ10

gives:

LQ[ν,Xt] = exp{ν02(Θ2 − C21µ) + ν02(Φ22 − Λ22)X2,t +
1

2
ν2
0Σ0ν2 − ν02H1 (39)

−cµ ln[1− (ν1 − λ1 + ν02C21)/c] + cµ ln[1 + λ10/c]

+x1,t

"
ξB1 (ν1 − λ10 + ν02C21)

1− (ν1 − λ10 + ν02C21)/c
+

ξB1 λ10
1 + λ10/c

− ν02Υ1 +
1

2
ν2
0Σ1ν2

#
}.

Using this as a moment generating function (differentiating w.r.t. {ν1, ν2} and setting

these parameters to zero) gives (14). The formulae (16), (18) and (20) follow by

substituting ν = −Ψτ−1, into (39), substituting this into (35) and equating the

coefficients of Xt in the exponent with those in (11). M1 follows immediately from

the restrictions noted in the main text.
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The standard EA0 model as a special case

The standard way to obtain the moments and yield structure for the EA0 specifica-

tion is to use (5) instead of (7) to evaluate the second expectation in (38). However

it is more instructive to derive these from the formulae for M2, taking the limit as

c tends to infinity and setting Σ1 and δ11 to zero. This specializes the baseline pa-

rameters as shown in the final column of table 2. We expand the denominator in

θQ1 as the geometric series [1 − λ10/c + (λ10/c)
2 − ...] and use δ01 = µ/c to get the

second order approximation: θQ1 = µ − δ01λ10 + δ01o(c
−1), which is approximated

arbitrarily closely by θQ0
1 = µ− δ01λ10 for large values of c. (o(c−1) denotes terms of

order c−1 or smaller.) ΘQ0
2 follows from ΘQ2 in the same way. Similarly, ξ

Q
1 may be

written as the second order approximation: ξB1 [1 − 2λ10/c + 3(λ10/c)2 − ...], which

reduces to the first order expansion ξB1 = ξ1 − δ01λ11 upon the substitution of zero

for the limiting value of δ11 = 2ξ
B
1 /c as c tends to infinity. Φ

Q0
21 follows from ΦQ21 in

the same way.

Now consider the EA0 yield curve formulae. First note that the recursive nature

of the coefficient system means that ξB1 , δ11,Σ1 and c do not affect (16). Next, expand

the denominators in (18) as above to give the quadratic approximation:

ψ1,τ = ξB1 [ψ1,τ−1 +Ψ
0
2,τ−1C21]−Ψ02,τ−1Υ1 −

1

2
Ψ02,τ−1Σ1Ψ2,τ−1

−δ11{
1

2
[ψ1,τ−1 +Ψ

0
2,τ−1C21]

2 + λ10[ψ1,τ−1 +Ψ
0
2,τ−1C21] + o(c−1)}. (40)

Substituting the limit δ11 = 0 reduces this to a linear difference equation and then

substituting (15), (25), Σ1 = 0 and the coefficients of table 2 gives:

ψ1,τ = ξB1 [ψ1,τ−1 +Ψ
0
2,τ−1C21]−Ψ02,τ−1Λ21; (41)

= ξB1ψ1,τ−1 +Ψ
0
2,τ−1Φ

Q0
21 ;
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which reproduces (21) upon substitution of ξB1 = ξQ0

1 = ξ1 − δ01λ11. Finally, to

specialize the intercept (22) for EA0, take a Taylor approximation of the logarithmic

term in (20) around ln[1] use δ01 = µ/c and then expand the denominator terms.

cµ ln[1 +
ψ1,τ−1 +Ψ

0
2,τ−1C21

c+ λ10
] = µ

∙
ψ1,τ−1 +Ψ

0
2,τ−1C21

1 + λ10/c

¸
− 1
2
δ01

∙
ψ1,τ−1 +Ψ

0
2,τ−1C21

1 + λ10/c

¸2
+
1

6

δ01[ψ1,τ−1 +Ψ
0
2,τ−1C21]

3

c[1 + λ10/c]2
− ...

= (µ− λ10δ01)
£
ψ1,τ−1 +Ψ

0
2,τ−1C21

¤
− 1
2
δ01
£
ψ1,τ−1 +Ψ

0
2,τ−1C21

¤2
+o(c−1)

Neglecting the terms o(c−1) gives a second order approximation. Substituting back

into (20) using (15) and table 2 gives (22):

∆γτ = (Θ2 − C21µ− Σ0Λ20)0Ψ2,τ−1 −
1

2
Ψ02,τ−1Σ0Ψ2,τ−1 (42)

+θQ0
1 ψ1,τ−1 + (µ− δ01λ10)Ψ

0
2,τ−1C21 −

1

2
δ01
£
ψ1,τ−1 +Ψ

0
2,τ−1C21

¤2
=Ψ02,τ−1Θ

Q0
2 + θQ0

1 ψ1,τ−1

−1
2
Ψ02,τ−1Σ0Ψ2,τ−1 −

1

2
δ01
£
ψ1,τ−1 +Ψ

0
2,τ−1C21

¤2
.

Risk premia

The risk premia depend entirely upon the difference between the two measures P and

Q. To see this, note that the premium on a τ−period bond is the expected return, less

the spot rate. The gross expected rate of return is the expected payoff E[Pτ−1,t+1|Xt]

divided by its current price Pτ,t = exp[−r1,t]EQ[Pτ−1,t+1| Xt]. Taking the natural

logarithm expresses this as a percentage return and subtracting the spot rate r1,t then

gives the risk premium: ρτ,t = logE[Pτ−1,t+1|Xt]−logEQ[Pτ−1,t+1|Xt]. This is affine

provided that the MGF is exponential-affine under both measures. Substituting (11),
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(7) and (39) with ν = Ψ0τ−1 gives the risk premium. In the case of the EA1 unit root

model this gives:

ρτ,t =−Ψ02,τ−1(H1 + Λ22X2,t +Υ1x1,t) (43)

−{
ξB1 cλ10

¡
Ψ02,τ−1C21 + ψ1,τ−1

¢ ¡
2c+ λ10 +Ψ

0
2,τ−1C21 + ψ1,τ−1

¢¡
c+ λ10 +Ψ02,τ−1C21 + ψ1,τ−1

¢
(c+ λ10)

¡
c+ ψ1,τ−1 +Ψ

0
2,τ−1C21

¢}x1,t

The linear term on the first line is the compensation for the bond’s exposure

to shifts in X2,t, which is negligible for a portfolio or security like an ultra-long

bond, with a yield that mimics the asymptotic portfolio. The non-linear term on the

second line shows the premium on the asymptotic portfolio and is zero if λ10 = 0.

It is positively related to x1,t if λ10 < 0; and negatively related if λ10 > 0 since:

d2ρτ,t
dx1,tdλ10

= −ξB1 c2
Ã
C21Ψ

0
2,τ−1 + ψ1,τ−1

(c+ λ10)
2

!Ã
2c+ 2λ10 + C21Ψ

0
2,τ−1 + ψ1,τ−1¡

c+ λ10 + C21Ψ02,τ−1 + ψ1,τ−1
¢2
!
≤ 0

given (19). The risk premium in the EA0(N) model is:

ρτ,t = −Ψ02,τ−1(H0 +Υ0x1,t + Λ22X2,t)− ψ1,τ−1δ01(λ10 + λ11x1,t) (44)

Recall that this model requires the restriction λ11 > 0. This means that the associated

factor risk premium (the asymptotic premium) is negatively related to the inflation

trend. This premium is shown by δ01(λ10 + λ11x1,t) in the second term. In practice,

this effect has the effect of offsetting the effect of the component Ψ02,τ−1Υ0x1,t shown

in the first term (which is positive in the empirical model). Thus, the influence of

the trend on the premia shown in chart 9 is more pronounced in model M1.
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Forward rates and asymptotic behavior

Taking logs of (11) and maturity-differencing gives the affine forward rate structure:

fτ,t = ∆γτ+1 + [Ψτ+1 −Ψτ ]0Xt; τ = 1, ...,M. (45)

This shows that the asymptotic behavior of the forward rate depends critically upon

whether the slope coefficients converge to constants. If so, the last term vanishes

and ∆γτ+1 and hence the forward rate asymptote (f
∗
t ) is constant. Since Ψ

∗
2 =

limτ→∞Ψ2,τ = (I − (ΦQ22)0)−1J2,r is constant, this just depends upon the behavior

ψ1,τ . Table 3 shows the asymptotic effect on the yield model of imposing unit root

restrictions (ξQi
1 = 1; θQi

1 = 0) on x1,t under Q. In EA1, ψ1,τ asymptotes to a

constant, so β∗1 and f
∗ are zero. However, (21) shows that in EA0: limτ→∞(ψ1,τ+1−

ψ1,τ ) = Φ
Q00
21 Ψ

∗
2 = Φ

Q00
21 (I − (ΦQ22)0)−1J2,r. Consequently, β∗1 = limτ→∞ψ1,τ/τ =

ΦQ00
21 (I − (ΦQ22)0)−1J2,r. This expression is equal to the asymptotic effect of x1,t on

r1,t under Q and as such it should be close to unity. Substituting these coefficients

into (22) and (45) gives the asymptotic behavior of the forward rate reported in table

3. The final term in this expression is the Jensen effect associated with ψ1,τx1,t, which

behaves like (-) 12δ01β
∗2
1 τ2 in the limit. These results illustrate the basic theorem of

Dybvig, Ingersoll, and Ross (1996), which says that in an arbitrage-free framework

‘the limiting forward interest rate, if it exists, can never fall’. In other words the

forward rate must either fail to converge with maturity (as in the unit root EA0

model), or must asymptote to a constant (EA1).

Appendix 3 : The Kalman filter and the likelihood function

These models were estimated and tested using the FindMinimum algorithm on Math-

ematica. The basic results have recently been verified using Matlab. In this model,
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the unobservable variables are modelled using the Extended Kalman Filter (Harvey

(1989), Duffee and Stanton (2004)). This method assumes that the revisions in (2)

are approximately normally distributed:

εt+1 ∼N(0, Qt)

where : Qt = Q0 +Q1yπ∗,t

Qi =Diag{δ20i, δ21i}; i = 1, 2.

I represent expectations conditional upon the available information with a ‘hat’ (so

that ŷt = Êt yt; ŷs,t = Êt ys; s ≥ t) and define the covariance matrices:

V̂t = Êt(yt − ŷt)(yt − ŷt)
0;

V̂t+1,t = Êt(yt+1 − ŷt+1,t)(yt+1 − ŷt+1,t)
0 (46)

=ΞP̂tΞ
0 +Qt;

where, using (2):

yt+1,t = Êtŷt+1 = θ + Ξŷt. (47)

Similarly, using (1): zt+1 = ẑt+1,t +Gηt+1 +Φ0(yt+1 − ŷt+1,t) where:

ẑt+1,t = K +Φ0 ŷt+1,t +Σ
L−1
l=0 Φlzt−l; (48)

and using (12): rt+1 = r̂t+1,t +B0
0(yt+1 − ŷt+1,t) +B0

1(zt+1 − ẑt+1,t) + et+1. where:

r̂t+1,t = α+B0
0ŷt+1,t +B1

0ẑt+1,t +Σ
L
l=2Bl

0zt+2−l. (49)
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The t−conditional covariance matrix for this (t+ 1)−dated system is:

⎡⎢⎢⎢⎢⎢⎢⎣
P

rr

P
rz

P
ryP0

rz

P
zz

P
zyP0

ry

P0
zy

P
yy

⎤⎥⎥⎥⎥⎥⎥⎦ = Êt

⎡⎢⎢⎢⎢⎢⎢⎣
rt+1 − r̂t+1,t

zt+1 − ẑt+1,t

yt+1 − yt+1,t

⎤⎥⎥⎥⎥⎥⎥⎦ .
∙
rt+1 − rt+1,t zt+1 − zt+1,t yt+1 − yt+1,t

¸

where:
P

rr = P̄ +B1MtB
0
1+(B1Φ0+B0)V̂t+1,t(B1Φ0+B0)

0;
P

rz = B1Mt+(B1Φ0+

B0)V̂t+1,tΦ
0
0;
P

ry = (B1Φ0 + B0)V̂t+1,t;
P

zz = Φ0P̂t+1,tΦ
0
0 +Mt;

P
zy = Φ0V̂t+1,t;P

yy = V̂t+1,t;Mt = G[S0+S1yt,t]G
0; Si = Diag{δ2i1..., δ2in}; i = 0, 1 and P̄ is defined

in (12). This allows the expectations to be updated as:

ŷt+1 = ŷt+1,t +

∙P
yr

P
yz

¸⎡⎢⎢⎣
P

rr

P
rzP

zr

P
zz

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣rt+1 − r̂t+1,t

zt+1 − ẑt+1,t

⎤⎥⎥⎦ (50)

V̂t+1 = V̂t+1,t −
∙P

yr

P
yz

¸⎡⎢⎢⎣
P

rr

P
rzP

zr

P
zz

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

P
yrP
yz

⎤⎥⎥⎦ (51)

The (log) likelihood for period t+ 1 is thus:

Lt+1 = k − 1
2
ln

⎛⎜⎜⎝Det

⎡⎢⎢⎣
P

rr

P
rzP

zr

P
zz

⎤⎥⎥⎦
⎞⎟⎟⎠ (52)

−1
2

∙
rt+1 − rt+1,t zt+1 − zt+1,t

¸⎡⎢⎢⎣
P

rr

P
rzP

zr

P
zz

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣rt+1 − r̂t+1,t

zt+1 − ẑt+1,t

⎤⎥⎥⎦ .

The loglikelihood for the full sample follows by iterating (46), (47), (50) and (51)

forward given suitable starting values; substituting (48) and (49) then summing (52)

over t = 1, ...T.
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Table 1: Data Summary Statistics: 1961Q4-2004Q1

1 4 8 12 20 28 40 60

0.0266 4.4345 5.8051 6.3954 6.6305 6.7849 7.0021 7.1478 7.2513 7.4383
2.3382 2.9841 2.7750 2.8174 2.7355 2.6508 2.5447 2.4790 2.4194 2.3833
0 575 1.4161 1.1907 1.8820 1.8697 1.8793 1.9633 1.9622 1.9215 1.8188

1.0230 1.5178 2.3986 1.1986 1.0622 0.9505 0.9166 0.7550 0.5929 0.3945
0.4632 0.9921 0.9815 0.9892 0.9923 0.9944 0.9953 0.9963 0.9969 0.9971
0.2151 0.3399 0.3100 0.3307 0.3348 0.3399 0.3475 0.3548 0.3761 0.4298
-4.133 -2.411 -2.110 -2.100 -2.063 -2.031 -2.043 -1.991 -1.951 -2.091

Inflation ( ) and 3 month T-bill rate ( 1) are from Datastream. Output gap ( ) is from OECD.
Yield data are US Treasury discount bond equivalent data compiled by McCulloch and Kwon (1990)
updated by the New York Federal Reserve Bank. Mean denotes sample arithmetic mean expressed
as percentage p.a.; . standard deviation and the first order quarterly autocorrelation co-
e cient. & are standard measures of skewness (the third moment) and kurtosis (the
fourth moment). is the Kwiatowski et al (1992) statistic testing the null hypothesis of level
stationarity. The 10% and 5% significance levels are 0.347 and 0.463 respectively. is the
Adjusted Dickey-Fuller statistic testing the null hypothesis of non-stationarity. The 10% and 5%
significance levels are 2.575 and 2.877 respectively.

Table 2: Dynamic coe cients for di erent yield models and measures

model: 2 1 0
type: 1( ) 0( )
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This table shows how the shift from the state probability measure P underpinning the macromodel to the risk-
neutral measures used to price financial assets shift the coe cients of (14). The scalars 10 and 11 reflect the price
of risk (or risk-reward ratio) associated with variations in 1 ; while and ; = 0 1 are matrices of parameters
reflecting the price of risk associated with the other state variables and are defined in (15). The basline model M2
allows B

1 to di er from the parameter 1 defined in the macro model. M1 is the 1( ) model with B
1 = 1. M0

specialises M2 by setting 11 and 1 to zero and taking the limit as tends to infinity. This gives the standard

0( ) model with the Du ee (2002) risk adjustments shown in the final column.



Table 3: Asymptotic yield coe cients for the limit of a unit root
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Table 5a: Dynamic model structures
(asymptotic t-values in parentheses.)

Parameter M0 M1

1

1
1 05567
(176 71)

1 0604
(159 88)

1
0 07332
(5 01)

0 06777
(18 07)

1
0 25705
(12 32)

0 26856
(40 95)

1
0 08272
(2 00)

0 09445
(2 03)

1
1 14772
(60 70)

1 13737
(47 20)

1
0 13358
(2 68)

0 12858
(3 00)

1
0 00306
(0 07)

0 04055
(0 52)

1
0 11961
(1 52)

0 10821
(0 85)

1
0 75903
(6 96)

0 87218
(25 53)

Parameter M0 M1

2

2
0 09002
(11 06)

0 09065
(12 36)

2
0 04530
(4 12)

0 04145
(5 21)

2
0 06264
(3 21)

0 06850
(3 47)

2
00612
(0 44)

0 02462
(2 77)

2
0 14507
(5 92)

0 13335
(13 69)

2
0 57063
(13 21)

0 54936
(44 56)

2
0 28889
(10 10)

0 27242
(11 81)

2
0 12191
(1 32)

0 08135
(2 78)

2
0 42636
(8 63)

0 44589
(11 18)

Parameter M0 M1

3

3
0 18539
(33 22)

0 18452
(21 35)

3
0 01377
(1 99)

0 01263
(1 21)

3
0 22202
(15 73)

0 23026
(51 77)

Parameter M0 M1

0 0656
(1 49)

0 0530
(3 55)

r

0 00107
(0 26)

0 00195
(1 17)

r

0 85770
(131 69)

0 84335
(93 44)

3
0 10524

(4 94)
0 09708
(6 22)

3
0 02315

(0 78)
0 03055
(1 76)

3
0 29044

(12 50)
0 27045
(30 54)

3
0 08673

(1 57)
0 13081
(3 51)

3
0 02266

(0 31)
0 03899
(0 96)

3
0 18211

(7 61)
0 20111
(7 03)

Table 5b: Variance structures

(asymptotic t-values in parentheses).

Parameter M0 M1

01
1 1449× 10 6

(6 20)
( )

0

0r
3 54505× 10 6

(8 13)
1 6866× 10 6

(1 36)

0
3 14435× 10 6

(8 61)
2 8960× 10 6

(3 26)

Parameter M0 M1

11 ( )
1 3 541× 10 4

(2 71)

1

1r ( )
4 4070× 10 4

(1 42)

1 ( )
4 2764× 10 5

(0 39)

0
1.77538× 10 6

(12 68)
1 109 6× 10 6

(2 62)

0
3.42389× 10 6

(12 29)
2 4260× 10 7

(1 14)

1 ( )
1 0000× 10 4

(1 86)

1 ( )
3 872 2× 10 4

(3 74)
Parameter M0 M1

22

0 09618
(1 24)

0 06701
(0 64)

0 08806
(0 81)

0 13324
(0 76)

0 9944
(0 57)

0 23449
(1 45)



Table 5c: Risk adjustment structures
(asymptotic t-values in parentheses.)

Parameter M0 M1
H0 H1

r

2 2916× 10 4

(1 68)
1 1559× 10 4

(1 99)
2 1224× 10 3

(4 10)
2 3545× 10 3

(4 00)
2 8261× 10 3

(4 99)
2 8295× 10 3

(4 05)
3 6448× 10 3

(4 22)
4 2967× 10 3

(7 72)

Parameter M0 M1

0 1

1 9570× 10 2

(0 73)
2 3125× 10 3

(0 01)
0 22421
(10 02)

0 22190
(10 19)

0 3242
(1 72)

0 2990
(1 05)

Parameter M0 M1

22

22 r r

0 03718
(5 92)

0 03177
(6 25)

22 r

0 3131
(2 53)

0 33190
(3 61)

22 r

0 30476
(2 63)

0 19821
(1 80)

22 r

0 74524
(5 09)

0 60027
(2 78)

22
0 08401
(4 77)

0 08154
(25 11)

22
0 07331
(4 44)

0 09388
(19 65)

22
0 02710
(1 25)

0 02401
(9 18)

Parameter M0 M1

22
0 18290
(22 87)

0 19216
(8 31)

22
0 44998
(35 41)

0 47426
(13 6)

22
0 06090
(1 67)

0 05623
(1 97)

22
0 19941
(19 74)

0 18187
(11 32)

22
0 69468
(143 57)

0 68454
(49 16)

22
0 29080
(2 65)

0 26856
(15 67)

Parameter M0 M1

10
43 036
(2 02)

42 8160
(4 09)

11
196 394
(1 59)

( )

Table 6a: Summary statistics for estimated values, M1 1961Q4-2004Q1

1 4 8 12 20 28 40 60

0.1433 4.4933 5.9103 6.5804 6.7846 6.9040 7.1637 7.2676 7.3626 7.4621
2.23992 2.96308 2.5555 2.6222 2.5782 2.5277 2.4582 2.4204 2.3889 2.3193
0 553 1.3980 0.9157 0.7411 0.8196 0.8749 0.9212 0.9298 0.9238 0.8994

3.9787 4.5119 4.4288 3.8537 3.8352 3.8021 3.7220 3.6512 3.5751 3.4752

Mean denotes sample arithmetic mean expressed as percentage p.a.; . standard deviation and the
first order quarterly autocorrelation coe cient. and are standard measures of skewness and
kurtosis.



Table 6b: Residual Error Statistics M1 1961Q4-2004Q1

1 4 8 12 20 28 40 60

2 0.9020 0.9664 0.9099 0.8616 0.8797 0.8901 0.9158 0.9297 0.9341 0.9355
0.1824 0.5452 0.8321 1.045 0.9458 0.8563 0.7359 0.6550 0.6188 0.6034
-9.4633 -6.3951 -6.3239 -6.6522 -6.7983 -7.0042 -7.1833 -7.2131 -7.0550 -6.9903
-0.1218 -0.1283 -0.0933 -0.0261 0.0049 0.0948 0.1081 0.0832 0.0153 -0.0021
(1.57) (1.59) (1.21) (0.34) (0.06) (1.23) (1.98) (1.08) (0.19) (0.02)

The first row reports the unadjusted 2; the second the Root Mean Square Error ( ). is the
Adjusted Dickey-Fuller statistic testing the null hypothesis of non-stationarity. The 10% and 5% significance
levels are 2.575 and 2.877 respectively. is the first order quarterly autocorrelation coe cient (with
t-value in parenteses).

Table 7: Eigenvalues of the dynamic responses in M1
(in order of absolute value)

M0 M1
1 1

0 92415± 0 08084 0 93103± 0 10677
0 85770 84000

0 55264± 0 27966 0 61927
0 00649± 0 51542 0 51854± 0 18382

0 51152 0 03600± 0 50129
0 24485± 0 012387 0 26430± 0 09198
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Chart 6: Model M1 macroeconomic impulse responses
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(iv) Spot rate shock

Key - e ects on:
- - - - - output
............ inflation
––– spot rate
– — – 5 year yield

Each panel shows the e ect of a shock to one the five orthogonal innovations ( ) shown in (1) and (2). These shocks
increase the each of the five driving variables in turn by one percentage point compared to its historical value for just one
period. Since is a martingale, the first shock ( 1) has a permanent e ect on inflation and interest rates, while other
shocks are transient. The dashed line shows the e ect on output, the dotted line the e ect on inflation, the continuous line
the e ect on the spot rate and the dot-dash line the e ect on the 10 year yield. Elapsed time is measured in quarters.

Chart 7: Model M1 Analysis of Variance
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Each panel shows the contribution to total variance of innovations in each of the orthogonal shocks representing innovations
in each of the five driving variables. Elapsed time is measured in quarters.



Chart 8: Factor loadings in model M1
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Panels (i) and (ii) show the e ect of orthogonal shocks to the financial factors ( ) and macro variables ( ) respectively. These
shocks increase each of these driving variables in turn by one percentage point compared to its historical value for one period.
Maturity is measured in quarters.
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