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1 Introduction

Studies on the firm size distribution and Gibrat’s Law to date have been the province of empiricists.

We can write down various reduced form models, as in McCloughan (1995), to reproduce many

of the statistical facts surrounding the firm size distribution and Gibrat’s Law of Proportionate

Effect which states that the growth rate of a firm is independent of its size. However, little of

the empirical work has been guided by a formal structural model. In Caves’ (1998) survey on

the recent empirical findings in industrial organization, he states, “Although the importance of

these facts for economic behavior and performance is manifest, their development has not been

theory-driven.” This paper seeks to take a step towards filling this gap.

We employ an extension of the Ericson and Pakes (1995) model of a dynamic industry that

allows for firm growth developed by Laincz (2004a). By varying key priors, the simulations

demonstrate potential sources for the various, and sometimes conflicting, results on Gibrat’s Law

uncovered in the empirical literature. We demonstrate that the model matches empirical findings

on Gibrat’s Law.

A more recent literature uncovers significant cross-industry variation in the higher moments

of the firm size distribution. Machado and Mata (2000) find that industry characteristics such

as technological orientation and capital-intensity are significantly related to the skewness. Lotti

and Santerelli (2004) show how the distribution of a new cohorts differs across different industries

and over time. Audretsch et al. (2004) present evidence suggesting that the firm size distribution

of the service industry differs from manufacturing. We use the model to develop theoretical

reasoning for many of these findings, however, our analysis also emphasizes that some variables

have strong non-monotonic effects on the moments of the firm size distribution suggesting caution

in generalizing empirical results based on linear specifications.

After briefly reviewing the lengthy empirical literature on Gibrat’s Law and its relationship to

the firm size distribution in the next section, section 3 presents the basic model. In section 4 we
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compare the results of a baseline simulation to the empirical literature on the firm size distribution

and Gibrat’s Law. Section 5 then documents how varying key structural parameters alters the

firm size distribution. Section 6 summarizes the results.

2 Gibrat’s Law and Empirical Findings

Following the seminal works of Hart and Prais (1956) and Ijiri and Simon (1964), the industrial

organization literature devoted much energy into exploring the statistical regularity known as

Gibrat’s Law as it applies to the firm size distribution. Figure 1 shows the size distribution of

enterprises for the U.S. in 2001. Notably, the distribution is significantly skewed to the right

with the large peak for the smallest size class with non-zero employment. The following simple

statistical process generates almost the same distribution. Let xi be the size of firm i, then growth

from one period to the next is represented as:

xi(t) = xβi (t− 1) exp [ui(t)] , β > 0 (1)

where ui(t) v iid N(µ, σ2). Defining yi(t) = lnxi(t), then:

yi(t) = βyi(t− 1) + ui(t). (2)

When β = 1 we have Gibrat’s Law wherein the growth rate of a firm is independent of its size

and the process yields a log-normal distribution of firm sizes. Empirical work on the firm size

distribution finds that this characterization is a close, but imperfect proxy for the data. The

earliest work on Gibrat’s Law only had data available for large firms. Hart and Prais (1956), for

example, included only firms listed on the London Stock Exchange between 1885 and 1950. They

found that Gibrat’s Law provided a good statistical approximation for the distribution. Simon

and Bonini (1958) found similar results for large US firms.

More recently, Hart and Oulton (1996) compare the implications of (1) to a large sample of

firms measured by employees, net sales, and net assets. They find that the distribution has a
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long right tail, with skewness coefficient estimates ranging from 0.19 to 0.75, and leptokurtic with

values from 4.58 to 6.20. However, they argue the deviations should not be compared with the

extreme of matching the log-normal distribution exactly and that the close approximation justifies

the use of Gibrat’s Law in empirical work.

Our task is rather different. We are specifically interested in the deviations themselves. We

want to construct a sensible model of optimizing firm behavior that can both approximate the

distribution and provide us with a tool to understand the deviations and, moreover, cross-industry

differences. Before turning to the model, we look at the literature that explicitly rejects the strong

form of Gibrat’s Law where β is exactly one.

Mansfield (1962) was perhaps the first to explicitly deal with the problems that entry and

exit present for the interpretation of Gibrat’s Law. Specifically, since exiting firms effectively

have a growth rate of -100%, does Gibrat’s Law hold for all firms, only the survivors, or for firms

exceeding a size threshold such as minimum efficient scale? Of the three, he found that the latter

interpretation fit his data the best using a χ2 test on the lognormality of the distributions for

each of his industries in each time period. In growth size regressions, Mansfield found that in the

entire sample of survivors, firms grow less than proportionally, i.e. β < 1. However, analyzing

large firms only, he found that the mean growth rate is independent of size, i.e. β = 1. He still

concluded that Gibrat’s law does not hold for any of the versions considered due to the fact that,

even for the case of larger firms only, the variance of growth rates decreases with size.

Subsequent empirical analysis largely confirmed Mansfield’s initial foray into the subject. Us-

ing more advanced econometric techniques to deal with heteroscedasticity and sample selection

bias, Hall (1987) and Evans (1987) found that Gibrat’s Law generally holds for large firms, but

not for the entire population. They uncover a negative relationship between size and growth.

Dunne and Hughes (1994) also find that while size evolves proportionally for medium and large

firms, small firms’ growth rates have higher variance and tend to decrease with size.

Another set of growth regression studies focused on the persistence of deviations of firm size
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from the mean, which would imply biased estimates for β. Singh and Whittington (1975) and

Kumar (1985) found evidence for serial correlation in the growth rates of firms supporting the

variant of Gibrat’s Law proposed in Ijiri and Simon (1964). Kumar (1985) confirms the previous

findings rejecting the strong form of Gibrat’s Law, by showing that the earlier conclusions were

robust to correcting for autocorrelation in the growth rates.

One of the problems that has plagued this literature, particularly the early work by Hart and

Prais (1956) and Simon and Bonini (1958), has been data without a balanced representation of

small firms. Dunne and Hughes (1994) and Hart and Oulton’s (1996) work tries to address the

problem by using a database with broad representation of small firms. They use this database

to test for differences in growth rates among firms of different size classes and find the differences

to be significant in contrast to Gibrat’s Law. In the analysis of our model, we find the same

differences and we also note that how small firms are counted matters when analyzing the firm

size distribution itself.

A newer literature focusses on cross-industry variation. Santarelli and Lotti (2004) look at

the evolution of the size distribution of new firms in four industries. Over a period of five years

most of the distributions approach the log normal distribution, however, they find that the more

technologically oriented industries achieved the lognormal faster. Audretsch et al. (2004) find

evidence that services may exhibit different distributional properties than manufacturing, the

main focus of the empirical literature to date. Looking at the Dutch hospitality sector they find

that growth is independent of size, whereas the majority of studies focusing on manufacturing

find the negative growth-size relation discussed above. Machado and Mata (2000) use quantile

regressions to examine the effect of industry characteristics on different portions of the distribution

for Portuguese data. While their results are mixed for some characteristics and distribution

measures, they find that the impact of industry characteristics on skewness is the most stable over

time. Both technology measures and the rate of growth in an industry reduce the skewness of the

distribution, while turbulence increases it.
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However, all of the results of the previous paragraph lack a solid theoretical base for their

findings. It is this gap in the literature we seek to fill by proposing a fully dynamic model of

optimizing firms that generates the distributional characteristics found in the empirical literature.

3 The Model

To capture the forces that affect firm size distribution in a structural model, we apply a

variant of the Ericson and Pakes (1995) model described in Laincz (2004a). The modification

allows for continually falling marginal costs through process R&D such that we can discuss both

firm and industry growth rates. That enables us to perform analogous growth-size tests on the

resulting simulated data.

We specify an industry with a finite set of imperfect substitutes such that one of the common

drawbacks of the Ericson-Pakes framework does not apply. Because the state space for a single

industry can be very large, it limits the total number of firms that the computational algorithm can

handle, often to no more than about 10 firms. In order to generate a cross-sectional distribution

with a reasonable number of observations, our industry is characterized by a finite set of imperfect

substitutes, but each good is produced by a Cournot oligopoly. We solve for the dynamics

associated with each substitute separately treating them as highly disaggregated goods and then

aggregate across the varieties. We think of each good as being defined at a 7-digit level in the

SIC or NAIC codes, for example, and the aggregation taking place at a less detailed industry level

such as 4 or 5 digits.1

By specifying independent products within the same broader market, we bridge the literature

between the earlier stochastic models and the more recent literature devoted to strategic inter-

action. The older literature presumed that a market contained a series of isolated opportunities

and assigned exogenous probabilities that these opportunities would be undertaken by either in-

1 The approach is similar to Sutton (1998), pgs. 19-20. However, our use of the term “submarkets” differs from
his and accords more with his notion of “subindustry” (see pages 297-298).
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cumbents or new entrants. As Sutton (1997) states, the assumption is “crude,” however, “. .

. most conventionally defined industries exhibit both some strategic interdependence within sub-

markets, and some degree of independence across submarkets.”2 Our characterization allows for

strategic interdependence within each product market, but independence across products within

the industry.

3.1 The Industry

We characterize the industry as producing intermediate goods sold into a perfectly competitive

final goods sector. Firms producing the intermediate goods choose quantity produced, investment

in R&D, and whether to exit or not, if they are currently active in the product market, or enter

if they are not currently active. The dynamic equilibrium is a Markov Perfect Nash Equilibrium

which imposes that decisions are functions only of the current state which is the current market

structure. The basic timing of the model begins with incumbent firms first choosing whether to

exit or not. The remaining incumbent firms then compete in a Cournot fashion in the product

market and determine their optimal levels of investment in R&D to lower future costs which follows

a stochastic process. Potential entrants then compare their opportunity cost of remaining outside

the industry to the expected value of entering in the next period. These potential entrants draw

on a public stock of knowledge which increases overtime through spillovers according to another

stochastic process. At the end of the period, R&D outcomes and the public stock of knowledge

for the next period are determined by the results of the stochastic processes.

3.1.1 The Product Markets

Demand for intermediate goods comes from a perfectly competitive final goods sector with a CRS

production function.3 Output in period t, Yt, of the final goods sector is given by the production

2 Sutton (1997), p. 49.

3 We could analagously think of (3) as the utility function for a consumer and apply the framework to imperfectly
competitive final goods producers.
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function:

Yt = kθ11t · kθ22t · · · kθMMt , where
MX
m=1

θm = 1. (3)

Each kmt is the input from subsector m, where m denotes the products within the industry.

Within each subsector, multiple firms engage in Cournot competition providing a homogenous

good to gain market share. Normalizing the price of the final good to unity, the demand for each

intermediate good kmt is given by:

kmt =
θmYt
Pmt

. (4)

Firms producing intermediate goods at any given time have a technology for production of

intermediate goods where the marginal costs are constant although they vary across firms. All

firms are assumed to face constant fixed costs which do not vary either with time or across firms.

Each intermediate goods firm, n ∈ [1, Nm], in industry m faces the following optimization problem

for choosing quantity:

max
qjm

πjm = Pm

Ã
θmY,

NmX
n=1

qnm

!
qjm −MCjmqjm − f (5)

where market size, θmY , and total quantity,
PNm

n=1 qnm, determine the price of the intermediate

good, Pm. qjm is the quantity output of firm j producing product m, MCjm are the marginal

costs for firm j, and f is fixed costs. The implicit production function is linear in the input good

with a coefficient equal to the inverse of the marginal cost.

We focus on one submarket to illustrate the model in the discussion that follows. Let N∗m

be the number of firms producing qnm > 0. The Cournot-Nash equilibrium outcomes yield the

profits for firm j as

π∗jm = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−f,

θmY

N∗m
n=1MCmn−(N∗m−1)MCjm

2

N∗m
n=1MCmn

2 − f

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6)
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Firms choose to produce if: ⎛⎝N∗mX
n=1

MCmn − (N∗m − 1)MCjm

⎞⎠ ≥ 0. (7)

Equation (7) simply states that a firm will choose not to produce if its marginal costs are too high

relative to its competitors. The choice of produce or not to produce (also exit or not exit) is

assumed made prior to quantity decisions and all firms know the decisions of their rivals to ensure

uniqueness of the solution.

The Cobb-Douglas specification generates a Cournot solution for the intermediate goods firms

in which profits are homogenous of degree zero in the vector of marginal costs across firms. Thus, a

proportional change in the vector of marginal costs leaves profits the same despite falling marginal

costs through process innovation (described below). Moreover, it allows for continuously declining

marginal costs as opposed to the Ericson-Pakes framework where marginal costs are restricted to

take on values in a finite set. The reason is that for any given vector of marginal costs, once the

policy functions specifying R&D expenditures, entry, and exit are determined, these decisions will

not vary provided the vector of marginal costs changes proportionally. Hence, policy functions

for a finite subset of possible vectors of marginal costs are sufficient to characterize the long-run

equilibrium as marginal costs continuously decline with process innovation.

However, the functional form of the demand system does create a problem in the case of

an intermediate goods industry containing a monopolist. Because the price elasticity of market

demand is unity, the monopolist’s solution is not well defined. We assume that there is a minimum

scale level of operations for a monopoly.4 Let q be the minimum amount that a monopoly must

produce in order to engage in the market. The assumption has two effects. First, it immediately

defines a solution for the monopoly problem with a positive level of output while still providing

4 There are other assumptions that could be made here instead, but do not significantly affect the results. For
example, it would be more natural to think of the minimum scale assumption applying to all firms whether or
not there is a monopoly. This assumption, while more plausible, only complicates the Cournot-Nash solution by
changing the corner solution for output from 0 to q for affected firms. Moreover, Dixit-Stiglitz technology is a
viable alternative that yields the same homogeneity of degree zero property, but it does not create a poorly defined
monopoly problem as in Laincz (2004b). That extension introduces a more complicated problem to solve without
adding much in the way of additional insights for the present inquiry.
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the monopoly with incentives to invest in order to lower its costs. Furthermore, provided q is

sufficiently small, there remain strong incentives for firms to strive to become monopolists. The

minimum scale chosen for the simulations of the next section, while small enough to generate large

monopoly profits, is such that in equilibrium firms always have sufficiently strong incentives to

remain in the market or enter the market when the number of firms is small. Those incentives

are discussed in the next subsection. Given that true monopolies without regulatory protection

are exceedingly rare, the focus on markets where the probability of a monopoly emerging is quite

small seems realistic and appropriate for the questions at hand regarding the distribution of firms.

3.1.2 Evolution of Market Structure

The number of firms operating in each product market and their relative levels of marginal cost

determine the market structure at any point in time. The market structure evolves through

process R&D which lowers a firm’s marginal cost when R&D is successful. We track the level

of marginal costs by accounting for the number of innovations that each firm j in market m has

available at time t and denote it as ijmt. The mapping from innovations to marginal costs is:

MCjmt =
1

Z
exp(−ηijmt). (8)

Marginal costs fall at the rate η with each additional innovation. Z is a scale parameter on costs

which we use below to calibrate the model to match the mean employment level of firms observed

in the data. Z captures the unit labor costs of firms relative to the price of the final output

good. Firms with a greater number of innovations enjoy a cost advantage over rivals. The cost

advantage generates higher profits and the motive for engaging in process R&D.

The total number of innovations accessible by firm j is the sum of publicly available innovations

for product m, labelled Imt, and each firm’s private innovations, ipjmt,

ijmt = Imt + ipjmt. (9)

Private innovations of incumbents diffuse to the public stock at a constant rate, δ. Thus, Imt
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increments by one with probability δ in every period. We interpret δ as the strength of lead-time,

secrecy, and patent protection within the industry. However, for incumbent firms an increment in

the stock of public innovations also means a reduction in the stock of private innovations. Thus,

in the absence of successful R&D in any period (discussed below), diffusion of an innovation to

the public stock leaves the total stock of innovations for an incumbent unchanged. In section 5,

we explore how the diffusion rate, δ, alters the observed firm size distribution.

The constantly growing public stock of innovations allows potential entrants to remain viable.5

Completely new firms in a particular market do not have to invest to learn all of the innovations

that have taken place in an industry since the beginning of time. Rather, we assume that most

innovations are in the form of readily available public knowledge, while more recent innovations

are held privately by incumbent firms. Existing firms have access to all of the publicly available

technological innovations and have discovered some new ones through process R&D which is

temporarily private information. It is through this process of knowledge diffusion that industries

are prevented from becoming permanently monopolized.6

We assume that new firms generally enter at relatively lower efficiency levels than incumbents

to capture the fact that hazard rates of exit decline with the age of the firm (See Dunne, Robertson,

and Samuelson, 1988). Specifically, new firms will enter, on average, with fewer private innovations

than incumbents:

0 < ipEN < eip = Z Ã
MX
m=1

NmX
n=1

1

Nmt
ipnmt

!
dt, (10)

where ipEN represents the number of private innovations of a new entrant. If new firms entered

5 If all information was permanently private, a leading firm could innovate a sufficient number of times such
that the cost to a new firm of acquiring enough innovations to generate positive profits would make entry costs
prohibitively high.

6 In the specification presented here, there are no spillovers between active firms which contrasts with the
empirical evidence (e.g. Griliches, 1998). The spillover from private to the public stock of knowledge is necessary
for continual growth because it enables new firms to enter at levels competitive with incumbents. The model can
be adjusted to account for diffusion between incumbent firms. Doing so would enable analysis of the role of secrecy
and lead time and how they interact with market structure. Overall, we do not believe it would change the main
results presented in the next section, but we do believe it is worthy of exploration in future work.
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at higher levels than incumbents, then incumbents would be more likely to die than entrants

producing the counterfactual result that incumbents have a higher hazard rate of exit than new

firms. The left side of the inequality implies that new firms are bringing some new ideas while the

right-side, eip, is the equilibrium average (over the long-run) number of private innovations held by
incumbent firms. This assumption then creates the possibility that new firms can immediately

establish themselves as the new leader if incumbents repeatedly fail to innovate.7

The stock of private innovations held by incumbent firm j increases through successful R&D.

The role of R&D is given by:

ipjm,t+1 = ipjmt + υjmt (11)

where:

Pr(υjmt) =

⎧⎪⎪⎨⎪⎪⎩
axjmt

1+axjmt
, for υjmt = 1

1
1+axjmt

for υjmt = 0

⎫⎪⎪⎬⎪⎪⎭ . (12)

xjmt is the level of R&D undertaken by a firm at time t. Note that the function does not vary with

firm size, i.e. large firms do not possess an inherent advantage in successfully conducting R&D.

We do not need to assume advantages owing to size to generate R&D spending distributions

that match the highly skewed distributions in the data (see Laincz 2004a). This assumption

is consistent with the arguments of Cohen and Klepper (1992) among others that there are no

differences in the productivity of research investment owing to firm size.

The parameter a governs the productivity of R&D and is interpreted as measuring the tech-

nological opportunity and basic state of science. We assume this to be constant across firms and

product markets. Clearly, the level of R&D productivity will be an important parameter for

variation in the firm size distribution. Higher levels of a generate greater potential for any one

7 This outcome occurs only rarely. Most of the time new firms will enter with a small market share relative to
existing incumbents.
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firm to extend its technological advantage and generate greater variance in firm sizes. We explore

the relationship between technological opportunity and the firm size distribution in section 5.

The combination of the two stochastic variables, R&D and diffusion, in conjunction with the

solution to the dynamic equilibrium results in an upper bound on how much of a lead firms

will actually gain over potentially new firms in equilibrium. Because returns to investment are

decreasing when marginal costs are relatively low, firms will enter a “coasting” state and choose

not to invest because the gains eventually become outweighed by the costs.8

This specification for the evolution of marginal costs and innovation has several notable fea-

tures. First, it is the relative marginal costs that matter to firms’ profits as shown in (6); the

absolute level of the marginal costs (or total stock of innovations) is irrelevant to the decisions of

a firm. Second, in contrast to Ericson-Pakes, the spillover process does not change the marginal

costs of active firms, but it does lower the costs of potential entrants because the stock of pub-

licly available innovations continually grows. This feature allows for potential entrants to remain

within striking distance of the incumbents. Hence, the contribution of private innovations to the

public stock is an externality that benefits the pool of potential entrants.

3.1.3 Dynamic Equilibrium

Let snm be the number of firms with ip private innovations producing product m and define the

vector sm = [snm] which describes the market structure at any point in time. There are two

types of firms facing different problems: incumbents and potential entrants. Incumbents are

either producing for the market or choosing to exit. Their problem is characterized by comparing

the expected net present value of investment in R&D against a positive liquidation value given by

φ. Potential entrants compare an outside alternative, ψ, against the net present value of entering

minus sunk costs of establishing production facilities denoted by χ. Both φ and χ are assumed

constant across time and equal across firms.

8 See Ericson and Pakes (1995) for a discussion of the coasting states.
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An incumbent’s intertemporal decision can be described by the following Bellman equation

where time subscripts are replaced with a prime indicating a future value and all others are

current:

V I
jm(ipjm, sm) = max

½
φ, π(ijm, sm)− cxjm +

µ
1

1 + r

¶
E
£
V I(ip0jm, s

0
m|ipjm, sm)

¤¾
(13)

where the I superscript refers to the value of an incumbent. If the firm chooses to exit it receives

the liquidation value φ, otherwise the firm receives current period profits minus its investment

level in R&D, xjm at a cost of c per unit plus the discounted expected value conditional on future

market structure. The future market structure depends on the firm’s current number of private

innovations and the current market structure. 1/(1 + r) is the common discount factor facing

all firms. The expectation sign reflects the fact that the firm is assigning probability weights via

the transition matrix of the market structure moving from its current state to all possible states.

These include the probability of a spillover, the probability the firm itself will be successful in

R&D, the probabilities of other firms being successful, and the probabilities of entry and exit.

A potential entrepreneur may enter a submarket, incur sunk entry costs, and establish pro-

duction and R&D facilities. Production and sales do not begin until the following period. The

Bellman equation resembles that for incumbents with few changes:

V EN
jm (ipEN , sm) = max

½
ψ, − χ− cxjm +

µ
1

1 + r

¶
EV I(ip0jm, s

0
m|ipEN , sm)

¾
(14)

where the EN superscript refers to entrants and the future value corresponds to that of being an

incumbent in the next period. ψ measures the opportunity cost of entering and χ represents the

sunk entry costs. By endogenizing entry and exit, we can observe how turnover rates respond

to changes in structural parameters as we observe changes in the firm size distribution in the

analytical section of the paper.

The investment strategy of firms derives from the first order conditions on the above. Let

C1(ip
0
jm + 1, s

0
m) denote the expected value of the firm conditional on successful innovation and

C2(ip
0
jm, s

0
m) the expected value if it fails to innovate. We can then rewrite the Bellman equation
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for incumbents as:

V I
jm(ipjm, sm) = max

⎧⎪⎪⎨⎪⎪⎩
φ, π(ijm, sm)− cxjm+³

1
1+r

´ h
axjm
1+axjm

C1(ip
0
jm + 1, s

0
m)+

1
1+axjm

C2(ip
0
jm, s

0
m)
i
⎫⎪⎪⎬⎪⎪⎭ (15)

From this, the first-order condition yields the following policy function:

xjm(ipjm, sm) = max

⎧⎨⎩0, −1 +
q

a(C1−C2)
(1+r)c

a

⎫⎬⎭ . (16)

The firm chooses the value maximizing level of R&D investment subject to a non-negativity

constraint on R&D expenditure. Investment in R&D rises with the expected marginal gain in

value, C1−C2, and falls with the discount rate, r, and the cost of investment, c. The productivity

of R&D, captured by a, has offsetting effects. As a rises it increases the probability of successful

R&D and an incentive to increase investment. However, the higher the level of a the lower the

marginal product for any given level of investment which lowers R&D investment.

Overall, the industry exhibits growth in total output and thus, Y in equation (1), grows over

time while the innovations constantly reduce the cost of inputs. This continually growing industry

can exhibit a great deal of change over time in terms of the identities of firms, their relative sizes,

and the degree of entry and exit. The model provides us with the ability to generate a long-run

firm size distribution based on the ergodic distribution of the model and the ability to examine

the growth-size relationship at the individual firm level. The numerical algorithm uses value

function iteration to solve for the space of values given by all possible combinations of firms and

private innovations. We extract the policy functions including R&D expenditure as well as the

entry and exit decisions. From the solutions, we can simulate our product markets and industry

for comparison with the results found in the empirical literature. We now turn to that analysis.

4 Firm Size Distribution

4.1 Simulation

Table 1 presents the baseline parameterization of the model. We set the discount rate to 1/1.08

as an approximation of the average cost of capital for firms following Ericson and Pakes (1995).
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The rate of technological spillovers, δ, is set to 0.7 such that knowledge enters the public pool

roughly one-and-a-half years after discovery. This fits with the empirical estimates of Mansfield

(1981) on imitation time. Cost of a unit of R&D spending is set to one unit of the final good.

The liquidation value and outside opportunity cost are chosen to be small to prevent them from

dominating the incentives firms face. The liquidation value is about 7.5% of the average firm

value, while the opportunity cost is roughly 15% of average firm value. We set both fixed and

sunk costs equal to the outside opportunity cost.

The parameters a and η interact to determine the incentives for investment in R&D and

ultimately the growth rate of the industry as measured by the rate of cost reduction. These

parameters are set to 3 and 10% respectively. The latter implies that successful R&D will reduce

marginal costs by 10%, but the former governs the incentives to engage in R&D such that we

find at the mean level of R&D investment, the expected rate of cost reduction is just over 2%,

which is approximately the industry growth rate. Both of these two parameters, plus the rate

of knowledge diffusion, fixed and sunk costs will be allowed to vary in the following section to

analyze their relationship to the moments of the firm size distribution.

The state space constraints we use have a maximum of six firms per submarket and each firm

can hold up to 30 private innovations. To ensure that the state space boundaries do not drive the

results we choose our demand parameters such that when six symmetric firms are in a submarket

they are making negative profits. For the maximum number of private innovations, we checked

in the simulations whether any firm attempted to obtain more private innovations than exist in

the state space and made adjustments accordingly which led to our choice of 30.

Because we had no priors on how to vary the submarket sizes, we choose to use a simple,

transparent linear function as follows:

θm = θ1 + (m− 1) b (17)
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where θ1 is the market share of the smallest submarket and each submarket increments by b.9

Upon simulating the model, we use the state space constraints to determine θ1 and determine m

by matching the model to the empirical results on the firm size distribution. b then follows from

MP
m=1

θm = 1.

The choices on the market size parameters, θ1 and b, were determined as follows. We started

with 10 submarkets, m = 10, where the smallest market share was determined by the lowest

level of the market size that still produced positive levels of investment in R&D. At the tenth

submarket firms began to invest at the upper bound of the state space. Therefore the increments

in market share per submarket were determined to be 0.0318. For the analysis below, we then

choose the number of submarkets, m, to analyze by matching the general shape of the log-normal

distribution which closely, but not perfectly, resembles the empirical firm size distribution across

industries. We found that if there are too few markets, the distribution is skewed left instead

of right. Thus, for very narrowly defined markets with only one or two submarkets, the model

generates a high frequency of average sized firms and a small number of tiny firms. On the

other hand, as the number of submarkets expanded the model generated a bimodal distribution,

in accord with some of the findings in Bottazi et. al. (2003b) for some industries. For the

general log-normal distribution, we found that specifying five submarkets, m = 5, was the closest

match to the results reported in Hart and Oulton (1996) discussed in the next subsection. As a

further check on the validity of the results, beyond matching the general pattern of the firm size

distribution, we then conduct cross-sectional regressions to see if the growth-size relations match

the empirical literature in section 4.3.10

9 This specification is similar to Sutton (1998) Chapter 13 where he uses a geometric distribution of market
sizes. We also considered using a random process, or possibly demand shocks, but opted for the simple linear
function on account of its transparency.

10 Clearly, it would be more appealing to have the submarket sizes determined endogenously. This additional
feature could perhaps be accomplished by specifying a Dixit-Stiglitz demand function. However, it would still
require additional assumptions on how firms interact across sectors in terms of both price-taking (or not) behavior
as well as specifying how innovations in one sector affect the other. The additional complications introduced
would detract from the main task of this paper, which is to understand how the overall firm size distribution
changes with underlying structural parameters. Moreover, because our model captures strategic interaction within
each submarket, it is likely that most forms of strategic interaction across submarkets would be of second order
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4.2 Distribution Results

In our first comparison of the model with the data, we compute the ergodic distribution by

simulating the model.11 From the distribution found in the simulations, we weight the observed

outcomes by their probability of occurrence to generate the ergodic distributions for various size

measures.12

Table 2 shows the results of the baseline parameterization compared with the statistics found

in Hart and Oulton (1996) who use subsets (50 to 80 thousand companies) of a large UK database

that includes very small firms in the sample. We calibrate the cost parameter, Z, to match the

mean log size of employment reported in Hart and Oulton (1996). Because their data set has a

good representation of small firms we felt that it was the most appropriate for comparison with

the model. They find that the distribution of the natural log of various size measures (employ-

ment, sales, and net assets) exhibit positive skewness (long right-tails) and peaked (leptokurtic)

distributions relative to the log normal distribution. We report analogous measures based on our

model.13 Sales are computed by extracting the quantities and prices while we use firm values,

V I , for net assets. All values below are reported in natural logs.

Figures 2-4 show the distributions in levels (a) and in logs (b). The distributions in levels,

for all the three size proxies considered, exhibit long right tails, especially for the net assets

distribution. The size range accumulating the higher probability mass lies to the left of the

mean size in all the distributions. The distributions for both the log of sales and log of net assets

are roughly bell shaped, but exhibit thicker tails and higher peaks than the standard normal.

importance. Our assumption of no strategic interaction across submarkets fits with the arguments of Sutton
(1997), mentioned earlier, for blending strategic interaction with the independent opportunities assumed in the
older literature on Gibrat’s Law.
11 The simulation runs the model for one million periods. In order to avoid any bias caused by the specification

of the initial market structure, we simulate it first for 10,000 periods and find the modal market structure. The
main simulation then uses the modal market structure as its starting point.

12 It is important to note that the comparison here with the data is not direct. We take advantage of the fact
that through simulations we can generate the probability distribution of the market structures. Empirical studies
use a cross-section of firms at a point in time (we turn to this analysis later) while the ergodic distribution shows
the probabilities of a market structure occurring at a point in time. That is, the ergodic distribution is generated
as a time series, but it reveals what the expected cross-section would look like.

13 All employment calculations add one in levels to represent the manager which we view as part of fixed costs.
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The distribution of the log of employment exhibits less variance, but shows some skewness and

leptokurtosis.

There are two noticeable differences between the model and the data. First, the standard

deviations of the size measures are considerably smaller. This discrepancy is not surprising since

the model is designed for a particular industry whereas the empirical estimates cover a large range

of industries which would generate greater size variation.

Of greater concern is the slight negative skewness in the natural log of employment generated

by the model versus the positive skewness observed in the data. Upon careful examination of

the results, it turns out that the negative skewness is being driven by a tiny fraction of extremely

small firms. These are firms with less than one employee which constitute about 0.1% of all

firms and only 0.0025% of total employment. Those firms are to the right of the vertical line in

Figures 2a and 2b. If we eliminate them from the distribution and recalibrate Z, the skewness

in employment goes slightly positive and the negative skewness in sales is cut in half as shown

in Table 3. Moreover, the high kurtosis value in sales comes down considerably and is much

more in line with the data. If we drop more small firms, less than 5 employees (0.02% of total

employment), the skewness for employment rises to approximately 0.41. In fact, we found that

we can match the Hart and Oulton skewness figure almost exactly if we eliminate all firms of less

than 10 employees (0.14% of total employment).

The negative skewness for sales remains even after eliminating the small firms, although the

skewness value for sales reported by Hart and Oulton, while positive, is the smallest of the three.

This result of our model is being driven by the strong implications of Cournot oligopoly pricing

with homogenous goods in each submarket. For example, when multiple firms produce large

quantities, and hence have substantial employment, the direct competition between them drives

the price down significantly. What we find is that the model often generates 3 or 4 firms in a

given submarket with marginal costs that are very close. Although quantities are reasonably

high for these firms, the low level of the price accounts for the reduced skewness when comparing
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employment and sales.14 Overall, the ergodic distribution of the model reasonably matches the

observed data in terms of deviations from a log-normal distribution

When we turn to the growth-size relationship in the next subsection, we extract a balanced

panel which eliminates exiting firms. These exiting firms include these extremely small firms

that generate the negative skewness in employment. Thus, in our summary statistics on the

balanced panel below, the skewness measures increase significantly. These results suggest an

interesting hypothesis. First, although the skewness is generally smaller than that observed in

the data, it is important to bear in mind that data sets rarely include the full population of small

firms. Second, the model accounts, in some sense, for part-time workers while data typically

do not. These differences may be relevant empirically for testing distributions against the log-

normal distribution. For example, if data collected round workers upward it would imply an

underweighting of the left-side of the distribution which would bias skewness upwards.

4.3 Cross-Sectional Growth-Size Properties

We examine the growth-size relationships of the simulated model and compare them with the

empirical literature on Gibrat’s Law. To extract cross-sectional data comparable to that used in

the empirical literature, we simulate the model five times for 5,000 periods each and extract the

final periods from each run.15 That provides us with simulated panel data to test the growth-size

relationship. We ran these simulations ten times to check the robustness of these results.

The average number of total firms observed in each simulation was 138.8 (range of 132 to 143)

with an average of 43.4 new entries over two periods and 25.9 exits.16 We eliminate all the new

entrants, who do not produce in their initial period and all firms that exit to generate a balanced

panel for analysis. Table 4 shows the average distributional characteristics for size measures

14 Note that the statistics we report exclude monopolies altogether so as not to be affected by the minimum
quantity assumption. In the baseline, monopolies account for less than 0.000001% of all observations.

15 To prevent the variance of the size of the firms from being dominated by the overall growth process, we shut
down the increments to the public stock of knowledge except for the periods we extracted for analysis.

16 Note that entries and exits would match almost exactly if we included those firms that exited in the previous
period.
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across these simulations of the balanced panel of firms for the initial period. The measures are

similar to those shown in Tables 2 and 3, but note the substantial increases in the skewness values

when small exiting firms are eliminated.17

Table 5 provides the results of the regressions on each of the ten simulations of the following

form:

yt = βyt−1 + �t

where yt is the log of the various size measures. Of interest in terms of Gibrat’s Law is whether

the coefficient is significantly different from unity. Hall’s (1987) estimates for β as applied to

employment across three different samples were consistently 0.99 and significantly less than one.

Evans (1987) found values for β that range between 0.93 and 0.97 for employment. The model

here also generates a coefficient less than one, below Hall’s estimates, but in accord with those

of Evans’.18 The last columns report the percentage of times the null hypothesis of β = 1 was

rejected at the 10% level, followed by the percentage of times it was rejected at the 5%, and 1%

levels, respectively.

We use the median size values to split our sample into large and small firms. Empirical

evidence suggests that Gibrat’s Law works better for the large firms. Our results show a similar

pattern. The estimated β’s are consistently closer to one for the large firm sample for each size

measure and in every simulated sample. In fact, for the employment size measure we cannot

reject β = 1 nine out of ten times and then only at the 10% level.

For the three size measures we also tested for the equality of the coefficients between the large

and small firm subsets reported in the last rows of Table 5. For employment we reject equality in

all cases at the 5% level or better and 80% of the time at the 1% level. For sales, the differences

17 The negative skewness in sales persists, but becomes even smaller in absolute value than when we eliminated
the smallest firms outright in the preceding subsection.

18 We report the results using robust standard errors, but even without using them the results are hardly changed.
The R-squared’s are exceedingly high typically between 0.95 and 0.99. However, since there are only two simple
stochastic processes in the model and nothing akin to demand shocks, it is not surprising in the least that past size
is a good predictor of size in the short-run.
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weaken somewhat and we reject equality 60% of the time all of those t-statistics at the 5% level

or better. Equality of values is rejected in nearly all of the subsamples. It is worth emphasizing,

however, that in all subsamples, the estimated beta for large firms was greater than that of small

firms for all three size measures. Given the small sample size we draw, the large number of

significant rejections of βLARGE = βSMALL, indicates the model matches the empirical findings.

In order to test for serial correlation we reduce our sample to those firms surviving in three

consecutive periods for a balanced panel. The previous tests only had 69.5 observations on average

and after one more period of eliminating exiting firms to retain a balanced panel, we were left on

average with 46.9 firms. The test specification is similar to Kumar (1985) where growth is the

dependent variable (instead of the log of size):

µ
yt
yt−1

¶
= (1 + β) yt−1 + γ

µ
yt−1
yt−2

¶
+ �t.

Persistence in growth will show up as a positive value for γ. We find that the coefficients for β

and γ are significant at the 5% level for the majority of the ten samples. Their average estimated

values are 0.9817 and 0.577 respectively. γ is positive and significant in all but one of the samples

at the 1% level.

The positive and significant value of γ indicates serial correlation which comes as no surprise

given the design of the model. There are several contributing factors to serial correlation in our

model. First, successful firms seek to build on and protect any technological advantage and thus

invest more heavily than small firms. In addition, a growing firm pushes rival firms closer to the

exit threshold. Thus, the growing firm will get a subsequent additional increase in market share

with the increase in the likelihood of rivals’ exit. These processes of firm dynamics effectively

embed serial correlation in error terms that do not control for innovative behavior and expected

future changes in market share conditional on them. The results suggest that serial correlation

should weaken in empirical studies if appropriate controls for own and rival R&D expenditure and
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innovations are included. We leave this hypothesis for future empirical work.19

Finally, we look at the variance in growth rates across firm sizes. A number of the studies

find that the variance of the growth rate is larger for small firms (e.g. Dunne and Hughes, 1994).

Again, we separate our simulated samples by the median size. Table 6 shows the average standard

deviations in growth rates across the ten samples and for large and small firms according to the

three size measures. By all three measures the variance in the growth rate of the small firms

is larger than that of the large firms and across all ten samples. The final columns report the

percentage of rejections based on the F-statistic for the variance ratio test for equality of the

standard deviations. We reject equality at the 1% level based on the employment and sales

measures in seven out of ten samples, but in only half the samples for net assets. The latter also

has the highest level of the standard deviation. Overall, the results are encouraging in the sense

that, again the model replicates empirical findings.

To summarize the section, we find that the model is able to replicate empirical studies of

Gibrat’s Law in two ways. First, it can generate a firm size distribution with the higher moments

deviating from the log-normal distribution in the same direction as actual distributions. Secondly,

in the cross-section the model generates a negative firm size-growth relationship, decreasing vari-

ance in the growth rate with firm size, and serial correlation, all found in the data. Based on the

above we feel reasonably confident in using the model to understand how underlying structural

parameters affect the overall firm size distribution.

19 One note on the magnitude of serial correlation is required here. Our estimate of γ is larger than that found
in either Singh and Whittington (1975) or Kumar (1985) who find values of approximately 0.3 and 0.l2 respectively.
The distinguishing feature is in the difference in time periods. Those authors use a much longer time frame, 10
to 12 years, compared with our simulated data which corresponds to roughly three years based on the user cost
of capital we specify. Because we know that the model will predict serial correlation that declines over time due
to the Markov perfect nature of the equilibrium, we do not pursue that issue any further here. Suffice it to say,
that the model does generate serial correlation in the errors when using the basic regression model found in the
growth-size regressions related to Gibrat’s Law. See Pakes and Ericson (1998) for the empirical implications of
the Markov Perfect feature embedded in the model.
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5 Variation in the Firm Size Distribution

The previous section established that the model reasonably matches the data in terms of the

firm size distribution and in its cross-sectional empirics. Now we ask how the moments of the

firm size distribution change with underlying structural parameters suggested in the literature.

Specifically we vary the following parameters: sunk costs, fixed costs, productivity of R&D, rate

of spillovers, and the rate of decline in marginal costs.20 The goal of this section is to generate

a set of hypotheses that can be examined empirically. We do not carry out that examination in

this paper, but view the contribution of this analysis as setting an empirical research agenda on

the firm size distribution guided by theory. How the model fares when taken to the data should

provide insights for improvement in the model itself and a deeper understanding of the empirical

work. All of the analysis below shows the distribution including all levels of employment, i.e. all

firms are included no matter how small.21 22

5.1 Fixed Costs

We start with fixed and sunk costs. In the baseline fixed costs were set to 0.2 and we allow that

to vary from 0 to 0.25, when translated via the unit cost of labor, the range of the fixed costs

then go from about 12% (for the smallest non-zero value, 0.025) to just over 50% of total costs of

production excluding R&D costs for the mean sized firm in the sample.

We find that increases in the level of fixed costs lead to a larger mean size of firms, but lower

variance, skewness and kurtosis of the firm size distribution. Figure 5a shows how the first four

20 We do not vary the outside alternative parameter, ψ, because it enters in much the same way as sunk costs,
and we do not vary the liquidation value because the parameter must be constrained to be less than Xe/(1+r) such
that firms cannot enter, produce nothing, and exit with a net gain. We also do not vary the discount rate because
even if the discount factor varied uniformly across firms, such variations basically mean interest rate variations and
those variations are typically short-run fluctuations rather than long-run characteristics inherent to an industry
that shape the firm size distribution.

21 We also examined the behavior of the first four moments when eliminating small firms as in the previous
section, but found no qualitative differences. The only notable difference was that as we eliminated small firms
from those of less than 1 employee, to less than 5, to less than 10, the effects became even more pronounced. By
that we mean that the percentage changes in any moment of the firm size distribution were larger when eliminating
small firms, but the direction of the effects was stable.

22 We also analyzed the changes in the distributions of both sales and net assets, but we do not report those
results here. Qualitatively they are very similar to the effects on the size distributions by employment.
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moments of the firm size distribution change relative to the baseline while Figure 5b shows the

same measures when we look at the firm size distribution in natural logs. The x-axis shows the

level of fixed costs and the y-axis shows the percentage change from the baseline. Figure 5c shows

the baseline distribution in levels against the low and high value of fixed costs.23 In the latter,

Figure 5c, low levels of fixed costs are associated with a greater mass of the distribution at lower

levels of employment, but also with a longer right-tail and, hence, a higher skewness. The high

levels of the fixed cost exhibit greater mass further to the right and there is a small, but noticeable,

second mode emerging to the right of the peak.

Figure 5d shows the same distribution but in natural logs and we see similar changes. The

mean size rises as the mass of small firms shrinks while the mass of larger firms grows. The variance

falls as the distribution becomes more leptokurtic (in logs) as firms become more concentrated

around the mean size. The skewness increases relative to the baseline at lower levels of the fixed

costs, but then declines at the higher levels. The initial increase stems from an increase in the

frequency of firms above the mean size creating more mass on the right-side of the distribution.

The decrease follows from the flattening of the left-side of the distribution as smaller firms become

more dispersed in their scale of operations.

When we set fixed costs to zero, the mean firm size is more than 11% below the mean size

of firms in our baseline. As fixed costs rise the mean size of firms also rises with a more rapid

increase at higher levels. Although the pattern exhibits some non-monotonicity, the variance

generally falls with increases in fixed costs, while both skewness and kurtosis decline.

Intuitively, in the model higher fixed costs make it more likely that small firms will choose not

to produce as in equation (7) and increase the likelihood of exit because future profit values are

smaller for the same level of output. Thus, by reducing the fraction of small firms in the sample

the mean size increases. Moreover, with small firms more likely to exit, higher fixed costs create

23 In Figures 9 through 12 for the graphs showing the shape of the firm size distribution, we standardize the
x-axis to maximums of 160 and 6, in levels and logs. However, in many cases the maximum sized firm exceeds
those values. We choose to standardize the x-axis to facilitate comparison in the regions showing the bulk of the
mass and how the parameters alter the distribution.
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greater incentives to innovate for incumbent firms to distance themselves from the exit threshold

which further increases the mean. The variance, however, declines and is related to the decrease

in kurtosis. With a reduced fraction of small firms, the frequency of firms near the mean size

increases, but there is also an increase in the mass of firms to the right of the peak reflecting higher

R&D investment among incumbents which decreases the kurtosis. In natural logs we see more

or less the same pattern, however, the higher moments behave differently. Skewness displays an

inverted-U shaped pattern, while the kurtosis displays a generally increasing pattern. The reason

is that the fattening of the tails in levels is primarily just to the right of the primary mode such

that in logs the effect blends with the original mode and the tails remain relatively flat.

Skewness, in levels, falls because the region of small firms becomes smaller while the frequency

of mid-sized firms increases. This effect flattens and lengthens the tail on the left-side which

reduces the skewness. Thus, fixed costs act in a way that is fairly straightforward by making it

more difficult for very small firms to survive, essentially requiring a minimum scale of operations

to produce non-negative profits and survive. These results are consistent with the findings of

Machado and Mata (2000) who use a Box-Cox quantile regression model to characterize the effect

of covariates on the firm size distribution of Portuguese firms. They find that minimum efficient

scale had a consistently positive impact on the size of firms, a negative effect on the skewness, and

an ambiguous effect on kurtosis.24

5.2 Sunk Costs

Figures 6a, 6b, 6c, and 6d show the results from varying the sunk costs of entry. The range here

starts from 0.1 such that
³

1
1+r

´
Xe > ψ continues to hold. The upper bound here is much higher

than for fixed costs to capture industries for which sunk entry costs will take, in expectation,

significant time to recover. These values can be understood as a ratio to the value of the mean

sized incumbent firm. The range is from 10% to 35% and equals approximately 21% at the

24 Machado and Mata (2000) do not report measures of variance.
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baseline. The vast majority of firms that enter the market do not recover their full sunk costs.

However, those that survive and grow ultimately reap substantial rewards. At low levels of

sunk costs, a firm does not need to survive for a long period of time before making entry optimal.

However, at high levels of the sunk costs, firms require a substantial likelihood of sustained success

to induce entry.

At low levels of the sunk costs we see little change in the mean size of firms, but a negative

effect on all the higher moments. In fact, we find that industries characterized by lower levels of

sunk and/or fixed costs will more nearly match the log-normal distribution and the strong form of

Gibrat’s Law. In Figure 9c its clear that these changes are fairly small when comparing the shape

of the baseline distribution to the low end for sunk costs. However, once sunk costs reach 0.25 (or

approximately 26% of the value of the mean sized firm), the mean size of firms rises rapidly, while

the variance increases though somewhat non-monotonically. The entry barrier discourages new

firms reducing the mass of small firms. Markets become more concentrated with fewer firms, but

of greater average size. Thus, industries with high levels of sunk entry costs will exhibit greater

average size of firms, higher variance in the size, but a flatter distribution potentially with multiple

modes.

Higher sunk costs have offsetting effects for incumbents which increases the variance but con-

tinues to reduce skewness and kurtosis. With smaller firms less likely to enter and pose a threat to

incumbents, firms have less competition reducing the benefits of engaging in R&D which flattens

the far end of the right-tail. However, at the same time, among incumbents, because the sunk

costs help extend the expected lifetime of any one firm, competition in terms of R&D intensifies.

Thus, once a firm does enter it has strong incentives to try to develop a technological lead over

its rivals. This incentive leads to an increase in the mass of firms in the mid-sized range. Once a

sufficient cost advantage has been established the first effect comes to dominate and discourages

firms from establishing an even larger technological lead because the threat of entry has been

reduced.
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The model thus suggests that industries with large sunk costs should have a larger mean size,

greater variance and a flatter distribution overall. The flatter distribution and Figures 6c and

6d suggest that bi- or multi-model distributions are quite likely for industries characterized by

high sunk entry costs. The sunk entry costs protect incumbents such that once a firm reaches a

sufficiently large size, it seeks to maintain that size by investing in R&D to maintain its advantage

but with less incentive to increase that advantage.

Audretsch et. al. (2004) argue that the service sector is more likely to approximate the strong

form of Gibrat’s Law and therefore the lognormal distribution because the link between firm size

and survival rates is weaker in industries with lower sunk costs and where capital intensity and

scale economies play less of a role.25 In our analysis, we find that to be true particularly for the

fixed costs which imply a higher requirement for scale in order for net profits to be non-negative.

We also find that the distribution more closely approximates the log-normal distribution at the

low end of the sunk costs.

5.3 Rate of Cost Reduction

The rate of cost reduction is captured by the parameter η. More specifically, η, which first

appears in (8), is the percentage decline in marginal costs of production conditional on a successful

innovation. Thus increases in η will translate into a faster industry growth rate for the same level

of investment as measured by output of the final good. We think of η as a key parameter in

governing the rate of technological progress which in the context of the model is the rate at which

costs fall.

The parameter ranges from 0.07 to 0.20 with our baseline value set to 0.1 (10%), but to

make better sense out of this specification, we convert it to the expected cost reduction at the

mean level of investment. At the low end, few firms are actually engaged in R&D and thus the

mean expected rate of cost reduction is only 0.32%, an anemically growing industry with little

25 Audretsch et al (2004) study the Dutch hospitality sector.
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innovation. However, at the upper bound, there is a fair amount of R&D and the mean rate rises

to 12.13%.26

Looking at Figures 7a-7d, we see that increases in the rate of technological progress lead to an

increase in both the mean and variance of the firm size distribution. The higher levels of cost

reduction lead to greater incentives to engage in R&D and capture market share from rivals which

leads to increases in both of the first two moments. At the same time, variation in the rate

of technological progress has non-monotonic effects on both the skewness and the kurtosis. Both

exhibit convexity as η rises. Skewness falls initially because at low levels of cost reduction, there is

a very small percentage of extremely large firms. These are firms that established a technological

advantage and raced ahead to cement their leading position. With increases in the rate of cost

reduction and, therefore, greater incentives for small and medium sized firms to use R&D, the

scope for business stealing rises. As a result the industry becomes more competitive leading to

more firms and more competition with fewer truly giant firms which reduces the overall skewness.

As the rate of cost reduction increases, around η = 0.15 or a mean expected cost reduction

of 7.1%, the skewness begins to increase as a larger mass of firms emerges in the mid-sized range

as can been seen in Figures 7c and 7d. Kurtosis undergoes a similar change. In fact, the

whole distribution almost completely flattens out at our extremely high range. This effect occurs

because the range of relative marginal costs throughout the incumbent firms increases along with

the strong incentives to engage in R&D to defend existing market share as well as capture market

share from rivals. Thus, rapid growth should lead to a high variance and a flatter distribution.

This leads to the hypothesis that industries with high rates of technological progress are more likely

than those with low rates to exhibit multi-modal distributions.

Machado and Mata (2000) also measure empirically the marginal effects of industry growth

26 Jorgenson and Stiroh (2000) report industry growth rates for highly aggregated industries with the fastest
growing industry, eletronic and electric equipment, growing at an annual rate of 5.457% from 1958 to 1996. That
would suggest an upper bound for η of approximately 0.14 or 0.15. However, since that growth rate is for an
industry at roughly the 2-digit SIC level, it therefore averages across more detailed sectors. Thus, we examine the
effects for even faster rates of growth.
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rates on the firm size distribution in their paper. They find that firms in faster growing industries

have a higher mean, but more rapid growth reduces the skewness. For kurtosis they also find a

negative effect, but it is not statistically significant.

5.4 Technological Opportunity

The productivity of R&D which we think of as the technological opportunity facing an industry

is captured by a in equation (12). It is related to the rate of cost reduction, η, in the sense that

those two parameters jointly affect the equilibrium rate of cost reduction. a governs the incentives

to engage in R&D and η defines the gains of success in terms of cost reduction. Higher levels of

a imply a higher probability of success for any given level of R&D expenditure. However, the

marginal impact of an increase in R&D expenditure falls with higher levels of a. Moreover, the

solution for the optimal level of investment based on the first-order condition of the value function

shown in (16) implies that changes in a will have countervailing effects. Thus, as a prior, we

expect to find non-monotonic behavior as a varies.

The range of a that we used went from 2 to 4, centered around the baseline value of 3. At both

the lower and upper limits the computational algorithm began to generate extreme results. At

the lower level, we found that virtually no firms were investing in R&D while at the upper bound

firms began to exceed the limitations of the state space. To provide some economic interpretation

of these values, a firm investing at the average level from the baseline, would expect success in

R&D with a probability of 20.7% and thus an expected cost reduction by the following period of

2.07%. At the lower bound of a, 2, those values fall to less than 10% and under 1% while at the

upper bound they are slightly less than double the baseline.

Figures 8a through 8d show the effect of varying a. Both the mean and variance of firm sizes

rise with productivity of R&D. In natural logs the pattern is similar, but there is some concavity

at the higher levels of a with respect to the variance. Increases in the productivity of R&D have

non-monotonic effects on both the skewness and the kurtosis. Skewness and kurtosis both exhibit
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concavity, which contrasts with the results for the rate of cost reduction. The difference between

these two parameters appears to come from the left-side of the distribution and their effects on

smaller firms. Changes in the productivity parameter affect the right-tail of the distribution in

much the same way as an increases in the rate of cost reduction. In both we observe a steady

increase in the mass of firms to the right of the peak while the peak itself shrinks which eventually

lowers the skewness and the kurtosis. In natural logs the pattern is similar with, again, another

mode emerging on the right.

At very low levels for a, we found that the right-tail was much shorter and thinner than for the

higher values. This follows from the much lower productivity in R&D which stunts the incentive

to engage in R&D and the mean size of firms is considerably smaller as a result. Thus, at the

lowest levels of a, as R&D expenditures yield greater returns with the higher marginal product,

larger firms emerge and stretch the right-tail initially leading to increases in skewness and the

kurtosis. As a rises beyond 2.5, more firms engage in R&D leading to the increase in the variance

and hence a flatter distribution overall with less skewness.

Of the structural parameters we investigate, this parameter is almost certainly the most difficult

to capture empirically. However, we do wish to emphasize the strong non-monotonicity in this

variable and in the rate of cost reduction. The main conclusion we draw here is that empirically we

should not expect proxies for either a or η to have clear monotonic effects on the higher moments

of the distribution and caution should be exercised in generalizing results found in studies of the

firm size distribution for a selected group of industries.

5.5 Rate of Spillovers

In the model, the parameter δ governs the rate at which the public stock of knowledge grows. The

faster it grows the easier it is for entrepreneurs drawing on the public stock to enter the industry

and challenge incumbents for market share. If δ = 0, it would imply that no knowledge enters

the public stock and over time no entrant would be able to challenge existing incumbents. At
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the other extreme, if δ = 1 then all new innovations enter the public stock in the following period

which would be similar to Klepper (2002) where all R&D is costlessly imitated.27

Mansfield (1981) reports imitation times that range from about 6 months to nearly three

years. Thus, we allow δ to vary from 0.3 to 0.9 which generates an expected lifetime for a single

innovation to remain private from just over one year to more than three years. Low values of δ

can be interpreted as pertaining to an industry where incumbent firms possess strong advantages

through secrecy, patent protection, and/or lead time to implement their innovations.

Figures 9a through 9d show the results which are quite striking. Changes in the rate of

spillovers generate an enormous impact on both the mean and variance. Industries with stronger

patent protection (secrecy, or lead time) will have a higher mean and variance in the size of firms.

For example, at the low end of δ = 0.3 the mean firm size is nearly six times that of the baseline!

Intuitively the stronger the protection for private innovations, the greater their value to any one

firm. Therefore firms will accumulate a great number of private innovations and establish a large

presence in the market making it difficult for any new entrant to mount a successful challenge.

However existing incumbents will compete fiercely in the R&D arena which contributes to both

the high mean and the large variance.

Looking at Figures 9c and 9d, we show the distributions when we move away from the baseline

of δ = 0.7 by ±0.2. The changes, particularly as δ falls, are more substantial here than for other

parameters examined. When δ is increased the peak mode becomes more pronounced with less

variance in firm sizes. Because private knowledge passes quickly from any firm to the public

stock, there is less ability and incentive for firms to engage heavily in R&D to separate themselves

from rivals. Firms in an industry with a high rate of spillovers are facing an uphill battle on a

slope that is nearly vertical.

At the low level of δ, the distribution has no obvious peak and shows great variation over the

27 In Klepper (2002), he assumes randomly assigned R&D productivities which allows for survival of the more
productive firms while generating high rates of exit during the product life cycle. Here we do not allow R&D
productivity to vary by firm but allow the innovations to diffuse slowly which generates the advantage of size
because large firms will hold more private innovations that smaller firms.
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mid-sized range. For the same distribution, a small, but noticeable mode emerges to the far right

(around 250 in levels and 5.6 in natural logs) which we do not see in other distributions. In fact

the distribution generated by the model fails to resemble the empirical distributions. Turning

to the higher moments there does not appear to be any straightforward effect and no discernible

pattern. We draw no conclusions regarding the effects on skewness and kurtosis here other than

to say they appear to be highly non-monotonic.

Based on the analysis here clearly the diffusion rate plays a critical role in shaping the firm

size distribution. While δ represents the rate at which knowledge becomes available to new firms,

it does not capture spillovers between incumbents. The extreme changes in the shape of the firm

size distribution that follow from modifying δ at levels that are empirically plausible, suggest that

our measure is simply too crude to capture all that secrecy and lead time entail. Extending the

framework to account for spillovers, imitation costs, and absorptive capacity between active firms

seems a highly fruitful avenue for further work.

6 Summary

Understanding the forces that generate differences in the firm size distribution enables us to

identify the forces that generate more or less concentration across industries. This study provides

a model for undertaking this task. We show that the model replicates the characteristics of

the firm size distributions reported in the literature and reproduces the empirical growth-size

relationships. The model generates a substantial list of empirical hypotheses for testing the

effect of various structural parameters on the first four moments of firm size distributions. In

addition the model suggests that serial correlation in firm growth should weaken in empirical

studies if appropriate controls for R&D expenditure and innovations of existing and rival firms

are included.

It is worth emphasizing that the model is quite flexible and can be adapted to serve as a

baseline for analyzing particular industries by matching the parameters and the moments of an
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observed industry level firm size distribution. With that baseline, counterfactual experiments

can be conducted and the effects of policies on the firm size distribution can be analyzed, such as

subsidization of R&D or regulations that affect barriers to entry.

We note some missing elements in our framework that could be incorporated in future work.

First, merger activity is one of the major concerns in the empirical literature (for example see

Kumar, 1985, and Dunne and Hughes, 1994). Our model can incorporate mergers by combining

it with Gowrisankaran’s (1999) extension to mergers of the Ericson-Pakes framework. Second,

the model here relies on stochastic R&D success and diffusion of knowledge to generate entry,

growth, survival, and exit. More could be done to capture other risks that entrepreneurs face

such as uncertainty of true costs as in Jovanovic (1982). That would enable an exploration of

how the rise of venture capital and lowering of entry barriers, other than the sunk costs discussed

here, affect the firm size distribution.

We view the work presented here as a step forward in the interplay between the theory and

empirics of the firm size distribution. While the motivation for the theory comes from a host

of empirical observations, the theory provides us with a list of hypotheses that can be examined

empirically across industries. We would be surprised to find that all of the hypotheses generated

apply to all industries and it is highly likely that the model may serve well for some industries

but not for others. That probable outcome would lead to both further refinements of the model

and, we hope, a better understanding of the forces that shape the firm size distributions across

industries and their consequences.
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TABLE 1: Baseline parameter values for simulations.
Parameter Symbol Value

Discount Rate facing firms 1/(1 + r) 1/1.08
Rate of Technological Spillover δ 0.7
Productivity of R&D Investment a 3

Sunk Entry Costs Xe 0.2
Cost per unit of R&D Spending c 1

Fixed Costs f 0.2
Liquidation Value φ 0.1

Outside Alternative Value ψ 0.2
Rate of Decrease in Marginal Costs η 0.10
Smallest Submarket Market Share θ1 0.136
Increments in Submarket Size b 0.0318

Unit Cost of Labor Z 131.12

TABLE 2: Distribution Statistics for Baseline (Natural Logs)
Normal H&O Model H&O Model H&O Model

Measure Distribution Emp. Emp. Sales Sales Net Assets Net Assets
Mean - 3.1582 3.1582 7.2015 5.1321 5.5539 4.9010
Std. Dev. - 1.5197 0.2803 1.6628 0.3697 1.9635 2.1468
Skewness 0 0.7487 -0.1114 0.1932 -1.0220 0.4366 0.7825
Kurtosis 3 4.5794 4.7265 6.1876 11.7373 4.835 2.9123
Note: H&O refers to the results reported in Hart and Oulton (1996).

TABLE 3: Distribution Statistics for Baseline Excluding Firms with <1 Employee (Natural Logs)
Normal H&O Model H&O Model H&O Model

Measure Distribution Emp. Emp. Sales Sales Net Assets Net Assets
Mean - 3.1582 3.1582 5.1825 5.1321 5.5539 4.8469
Std. Dev. - 1.5197 0.2718 1.6628 0.3516 1.9635 2.1499
Skewness 0 0.7487 0.0777 0.1932 -0.5251 0.4366 0.77770
Kurtosis 3 4.5794 3.9254 6.1876 5.6798 4.835 2.9031

TABLE 4: Average Summary Statistics in Natural Logs
Size Measure Employment Sales Net Assets
Observations 69.5 69.5 69.5
Average 3.521 5.027 5.189
Std. Dev. 0.521 0.493 1.410
Skewness 0.867 -0.402 0.717
Kurtosis 4.183 3.819 2.714
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TABLE 5: Regression Results

Firms Size Measure Average
Coefficient

H0 : β = 1
Rejection Rate
10% level 5% 1%

All Employment 0.971 100% 90% 80%
Sales 0.966 100% 100% 100%

Net Assets 0.944 100% 100% 100%

Large Employment 0.998 10% 0% 0%
Sales 0.979 100% 90% 80%

Net Assets 0.970 70% 70% 50%
Small Employment 0.929 100% 100% 90%

Sales 0.947 100% 100% 90%
Net Assets 0.883 100% 100% 100%

Average Difference
H0 : βLARGE = βSMALL

Rejection Rate
10% level 5% 1%

Equality Employment 0.069 100% 100% 80%
Sales 0.019 60% 60% 20%

Net Assets 0.061 90% 90% 70%

TABLE 6: Tests of Standard Deviation of Growth Rates by Size Class

Size Measure Total Large Small
H0 : σ1 = σ2
Rejection Rate
10% level 5% 1%

Employment 0.301 0.159 0.361 80% 80% 70%
Sales 0.321 0.195 0.401 70% 70% 70%

Net Assets 0.542 0.438 0.584 50% 50% 30%

2



Figure 1:  US Firm Size Distribution by Employment, 2002
Source: Statistics of US Business (SUSB), Small Business Administration 
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Figure 2a:  Employment Distribution
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Fig 2b:  Ln of Employment Distribution
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Fig 3a:  Values Distribution
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Fig 3b:  Ln of Values Distribution
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Fig 4a:  Sales Distribution
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Fig 4b:  Ln of Sales Distribution 
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FIGURE 5a:  Fixed Cost Effects (Levels)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment

FIGURE  5b:  Fixed Cost Effects (Logs)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment
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FIGURE 5d:  Effects of Fixed Costs on Firm Size Distribution (Logs)
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FIGURE 5c:  Effects of Fixed Costs on Firm Size Distribution (Levels)
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FIGURE 6a:  Sunk Cost Effects (Levels)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment

FIGURE  6b:  Sunk Cost Effects (Logs)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment
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FIGURE 6c:  Effects of Sunk Costs on Firm Size Distribution (Levels)
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FIGURE 6d:  Effects of Sunk Costs on Firm Size Distribution (Logs)
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FIGURE 7a:  The Rate of Cost Reduction Effects (Levels)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment

FIGURE  7b:  The Rate of Cost Reduction Effects (Logs)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment
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FIGURE 7c:  Effects of the Rate of Cost Reduction on Firm Size Distribution (Levels)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 20 40 60 80 10
0

12
0

14
0

16
0

Employment

Fr
eq

ue
nc

y

eta=0.07 Baseline eta=0.15

FIGURE 7d:  Effects of the Rate of Cost Reduction on Firm Size Distribution (Logs)
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FIGURE 8a:  Technological Opportunity Effects (Levels)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment

FIGURE  8b:  Technological Opportunity Effects (Logs)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment
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FIGURE 8c:  Effects of the Productivity of R&D on Firm Size Distribution (Levels)
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FIGURE 8d:  Effects of the Productivity of R&D on Firm Size Distribution (Logs)
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FIGURE 9a:  The Rate of Technological Spillovers Effects (Levels)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment

FIGURE  9b:  The Rate of Technological Spillovers Effects (Logs)
Percentage Deviations from Baseline Values of Firm Size Distribution by Employment
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FIGURE 9c:  Effects of the Rate of Spillovers on Firm Size Distribution (Levels)
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FIGURE 9d:  Effects of the Rate of Spillovers on Firm Size Distribution (Logs)
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