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ABSTRACT 
 

The BLU properties of OLS estimators under known assumptions have encouraged the 
widespread use of OLS multivariate regression analysis in many empirical studies that are based 
upon a conceptual model of a single explanatory equation. However, such a model may well be 
an imperfect empirical approximation to the valid underlying conceptual model, that may well 
contain several important additional interrelationships between the relevant variables. In this 
paper, we examine the conditions under which we can predict the direction of the resultant  
endogeneity bias that will prevail in the OLS asymptotic parameter estimates for any given 
endogenous or predetermined variable, and the extent to which we can rely upon simple 
heuristics in this process. We also identify the underlying structural parameters to which the 
magnitude of the endogeneity bias is sensitive. The importance of such sensitivity analysis has 
been underlined by an increasing awareness of the inability of standard diagnostic tests to shed 
light upon the extent of the endogeneity bias, rather than upon merely its existence. The paper  
examines the implications of the analysis for statistical inferences about the true value of the 
regression coefficients and the validity of associated t-statistics.  
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1. Introduction 
 
The best linear unbiased (BLU) properties of ordinary least-squares (OLS) under known 
assumptions have encouraged the widespread use of OLS multivariate regression analysis in 
many empirical studies that are based upon a conceptual model of a single explanatory equation. 
However, such a model may well be an imperfect empirical approximation to the valid 
underlying conceptual model, which may contain several important additional interrelationships 
between the relevant variables. These additional interrelationships may well undermine the strict 
exogeneity assumption [2] used to generate the standard BLU properties of OLS, so that the OLS 
parameter estimates may be biased even as the sample size increases asymptotically, and hence 
be no longer consistent. However, estimation techniques, such as Instrumental Variables (IV), 
that are intended to overcome OLS endogeneity bias, involve requirements, such as the 
availability of a whole set of suitable instruments that are uncorrelated with the disturbance term 
but strongly correlated with the original variable, which may not hold in practice. As we 
demonstrate later in the paper, rather than overcoming it, the substitution of instruments as proxy 
variables for only a subset of the relevant endogenous variables may instead increase the 
magnitude of the endogeneity bias, even when these instruments are uncorrelated with the 
disturbance term in the primary equation of interest. It is therefore important for both statistical 
theorists and empiricists to understand more fully the factors which influence both the direction 
and the magnitude of the endogeneity bias which may result from OLS multivariate estimation. 
 
As Nakamura and Nakamura [11, 12] have stressed, standard empirical tests [6, 14] for the 
existence of such OLS bias do not perform well as predictors of the extent of such bias, despite 
the fact that it is the extent of the bias which may be of prime interest in many applied studies. 
Moreover, as Magnus and Vasnev [9] have recently emphasised, standard diagnostic tests may 
similarly provide little or no information about the sensitivity of parameter estimates to 
departures from the underlying assumptions of the model that is being estimated, but instead may 
indeed be (asymptotically) statistically independent from such sensitivity assessments. 
Diagnostic testing alone, upon which econometric practice has tended to concentrate, will 
therefore do little to fill the vacuum left by the relative neglect of the important questions which 
fall within the domain of sensitivity analysis. These questions include the nature of the sensitivity 
of the extent and direction of the OLS endogeneity bias to key features of the conceptual model 
that adequately characterises the underlying interrelationship between the variables.  

 
Being able to assess the direction of bias associated with existing OLS studies, and the factors to 
which its magnitude may be sensitive, is of substantial potential value in many policy and 
decision-making contexts. There are, for example, many existing studies (see [4, 5]) based upon 
OLS estimation of the effectiveness of resources in boosting educational performance, which 
yield parameter estimates of this effectiveness that appear to be not significantly different from 
zero. If these estimates were taken at their face value, they would have important implications 
for policy decisions, such as that allocating additional resources to the educational sector cannot 
be justified by their being expected to have a positive impact on educational performance. In 
interpreting the results of such existing OLS multivariate studies, there is a need to assess the 
likely direction of the bias that these estimates may involve, and the conditions under which this 
bias may be large.   
 
It is therefore of considerable interest in many decision contexts to be able to understand the 
conditions under which: 
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a. multiple additional relationships will pull the cumulative asymptotic bias in the estimate of 
any given coefficient of the primary equation in an overall direction that can be predicted from 
insights into the qualitative characteristics of the underlying structural parameters of the model 
that these multiple additional relationships and the primary equation generate; 
 
b. simple heuristic rules can assist in determining the overall direction of the cumulative 
endogeneity bias; 
 
c. any given additional relationship adds to, rather than offsets, the overall strength of the 
cumulative asymptotic bias; 
 
d. the sign and magnitude of some structural parameters of the model are irrelevant to 
determining the cumulative asymptotic bias for a given coefficient; 
 
e. an (upper or lower) bound upon the true value of the regression coefficient can be derived 
from its OLS asymptotic estimate; 
 
f. the true value of the regression coefficient is an integer multiple of its OLS asymptotic 
estimate; 
 
g. an unbiased estimate of the standard t-statistic for assessing the significance of a given 
coefficient estimate would attain the level conventionally associated with a given degree of 
statistical significance, even though a biased OLS estimate of the t-statistic appears not to be 
statistically significant; 
 
h. the impact of the omission of some endogenous and/or predetermined variables from the OLS 
regression upon the direction and extent of the cumulative asymptotic bias can be predicted. 
 
The paper is organised as follows. Section 2 focuses on the conditions under which it is possible 
to determine the direction of the cumulative endogeneity bias.  Section 3 examines the 
implications of the analysis for drawing statistical inferences about the true value of the 
regression coefficients in the presence of endogeneity bias.  Section 4 considers the sensitivity of 
the cumulative endogeneity bias to changes in the value of key parameters. Section 5 extends the 
analysis to cases where some predetermined and/or endogenous variables are not included as 
regressors in the OLS estimation, and examines the impact of replacing an endogenous variable 
by an instrumental variable upon the extent of the cumulative bias. Section 6 concludes our 
discussion, with the mathematical proofs contained in the Appendix. 
 
 
2. The Generation of Cumulative Endogeneity Bias 
 
The primary equation of interest will be assumed to be of the form: 

                       1 1
2 1

n m

i k ik n h ih i
k h

x x z u+
= =

= + −∑ ∑β β                                                                                 (1) 

However, there also exist multiple additional inter-relationships of the form: 

                       
1 1

2,....,
n m

ij kj ik hj ih ij
k h
k j

x b x c z u for j n
= =
≠

= + − =∑ ∑                                                           (2)                      



 3

where across a sample of p observations, denoted by i = 1, ..., p,  ikx denotes the ith observation 
on the kth variable that is endogenous to the inter-relationships (1) - (2) for k = 1,..., n, and ihz   
denotes the ith observation on the hth predetermined variable that is not endogenously 
determined by the inter-relationships (1) - (2). Both the ikx and the ihz  will be assumed to be 
expressed in terms of deviations from their respective sample means. The kjb  and hjc  are the 
corresponding structural parameters in the jth inter-relationship, with 
 
                  1 1 1{2,..., } {1,..., }k k h n hb for k J n and c for h M mβ β +≡ ∈ ≡ ≡ ∈ ≡                           (3) 
 

iju is the random disturbance term for the ith observation in the jth structural relation in the 

model (1) – (2). The iju are assumed to be independently and identically multivariate normally 

distributed for each observation i = 1,...., p, with zero means and a covariance matrix V ≡ [ kjσ ]  

that is symmetric and positive definite. The model implied by (1) - (3) may be written in matrix 
form as:  
 

            XB + ZC = U                                                                                               (4) 
 
where X is the p x n matrix with elements ikx , Z is the  p x m matrix with elements ihz , B is an n 
x n matrix with elements kjb , where 1kkb ≡ −  for each {1,..., }k J n∈ ≡ , and C is the m x n matrix 
with elements hjc . U is the p x n matrix with random elements iju . We will require B to be non-
singular. 0X  will denote the p x (n - 1) sub-matrix of X with elements 1ikx for k J∈ , with 

0 [ , ]0Y X Z≡  . Φ will denote the null set, with: 
 
                   0 1 1 ,{ : 0}, {2,.., }, ,j n h j hjJ j J b K n m b c for h M j J+≡ ∈ ≠ ≡ + ≡ ∈ ∈                        (5) 
 
The OLS estimates of the coefficients kβ  in (1) will be denoted by ˆ

kβ  for each k K∈ , with plim 
denoting the probability limit of the entity in question, as the sample size p becomes infinitely 
large, and with ˆ ˆo

k kplimβ β≡ . The shorthand ‘iff’ will denote ‘if and only if’. 
                                                               
For this general formulation, we can establish the following Propositions, with their derivation 
given in the Appendix.  
 
Proposition 1. The cumulative (asymptotic) bias, kθ , in each estimated coefficient  kβ  under 
OLS is given by: 
 

            
1 1

1 1 11 1
ˆ [ ( ) ( )] 2,...,k k k kj k j j

j J J

plim b b d b for k n mθ β β β σ σ
∈ ∈

≡ − = − + + = +∑ ∑               (6) 

 
where 1

1 1 11 1 1 1 1[ ] for [ ] and ( ) .  for ,j j j j j jd e e b b b j JE E σ σ σ σ−≡ ≡ ≡ + + + ∈                 (7)                      
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Proposition 1 shows how the extent of the cumulative bias, in each endogenous variable and in 
each predetermined variable, depends upon the underlying model parameters, for the general 
case where the covariance matrix V is not necessarily diagonal. For any endogenous or 
predetermined variable k = 2,…, n + m, the direction and magnitude of the cumulative bias kθ  
depends upon each 1, and for all 2,....,kj k jb b j nβ = , and upon all the elements of the covariance 
matrix V. However, for any given set of endogenous and predetermined variables and given 
values of the elements of the covariance matrix V,  the extent of the cumulative bias kθ  does not 
depend upon the values of the coefficients and for ( ) 2,..., ,h hjb h k n mβ ≠ = + and 2,....,j n= .  
 
Even within this general context, it is possible to establish necessary and sufficient conditions on 
the underlying model parameters to ensure that the sign of the overall cumulative bias is 
determinate from (6) and (7), as in the following Proposition.  
 
Proposition 2. The cumulative bias, kθ , in the estimated coefficient kβ  under OLS will be 
negative (positive) if there is a subset 1J ′  of 1 {2,...., }J n≡ , with 1 1 1J J J′′ ′≡ − , such that for each 

je  defined by (7) above: 
 
                      1 10 , ,je for j whenever j J or j J′ ′′≤ ≠ ∈ ∈                                                      (8) 
 
                       1 1 1 10 & &je for j whenever j J J or j J J′ ′′ ′′ ′≥ ≠ ∈ ∈ ∈ ∈                                 (9)    
                        
                   1 11 1 1 1 1( )( ) 0 , ,kj k jb b b ( ) whenever j J or j Jσ σ β ′ ′′+ + ≥ ≤ ∈ ∈                            (10)                 
 
              1 11 1 1 1 1 1 1( )( ) 0 & &kj k jb b b ( ) whenever j J J or j J Jσ σ β ′ ′′ ′′ ′+ + ≤ ≥ ∈ ∈ ∈ ∈             (11)                      
 
where (10) or (11) holds as a strict inequality for at least one 1J∈  and at least one 1j J∈ , and E 
in (7) is indecomposable. Moreover, the cumulative bias becomes more negative (positive) for 
each ,j  combination for which (10) or (11) holds as a strict inequality. Conditions (8) – (11) are 
also necessary for the sign of the overall cumulative bias to be determinate from (6) and (7), 
given only the sign pattern of each 1 11 1 1 1, ( ) and ( ) for , ,j kj k je b b b k j Jσ σ β+ + ∈ , whenever 

3n ≠ , 10 for all ,je j J≠ ∈ , and V is not diagonal. In these necessary and sufficient conditions, 

we may have 1 1J J′ = , with 1J ′′ = Φ . 
 
As we show in the Appendix, E  is a positive definite matrix, with therefore 0E >  and 

10 for alljje j J> ∈ . For the case of a single endogenous variable, and hence n = 2, (8) and (9) 
have no force, with Proposition 2 implying: 
 
             0k (=,>)θ < iff  12 11 12 2 12( )( ) 0 2,.., 2k kb b b (=,<) for k mσ σ β+ + > = +                         (12) 
 
In the case of two endogenous variables, with therefore n = 3, conditions (8) – (11) are sufficient 
for the sign of the cumulative bias kθ  to be determinate for each k = 2,...,3 + m, but not 
necessary. Since 0E > , the sign pattern of 1[ ]jd E −=  can be determined from the sign pattern 
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of each je  without imposing conditions (8) and (9) in the 2x2 case where n - 1 = 2. For the case 
of n = 3, we may derive from Proposition 1 that the more general necessary and sufficient 
conditions for being able to sign 0kθ <  for any variable 2,...,3k m= +  are that: 
 
                       1 11 12 1( )( ) 0 2,3j kj k jb b b for jσ σ β+ + ≥ =                                                              (13) 
 
                 12 11 12 3 13 23 13 11 13 2 12 32( )( ) 0 & ( )( ) 0k k k kb b b e b b b eσ σ β σ σ β+ + ≤ + + ≤                         (14) 
 
with at least one of the inequalities in (13) and (14) being a strict inequality. Similarly, for the 
case where n = 3, necessary and sufficient conditions for being able to sign 0kθ > for any 

2,..., 3k m= +  are that the inequalities in (13) and (14) hold in reverse, with at least one of these 
inequalities being a strict inequality. For cases where there are three or more endogenous 
variables, and hence where n > 3,  the sign pattern of 1E −  cannot in general be determined 
without imposing conditions (8) and (9), unless V is diagonal. Conditions (8) – (11) then provide 
both necessary and sufficient conditions within Proposition 2 for being able to determine the sign 
of kθ  for any endogenous or predetermined variable k = 2,..., m + n when V is not diagonal, 
given only the sign pattern of the relevant combinations of the underlying parameters. 
 
In the following Proposition, we examine the relationship between the standard error of the OLS 
estimate of the first equation under endogeneity bias and the underlying variance of the 
disturbance term of the first equation. 
   
Proposition 3. The asymptotic value of 2 ˆ ˆ /( )s p nυ υ′≡ −  (where s is the standard error of the 
OLS estimate of the first equation, the residuals are given by ˆˆ oυ x Y β≡ − , where β̂  is the vector 
of OLS estimates of β , and ˆ ˆυ υ′  is the OLS residual sum of squares) is strictly less than the 
variance 2

1 11σ σ≡  of the disturbance term of the first equation by the positive amount:   
 
                      

1 1

1 11 1 1 11 1( ) ( )j j j
j J J

q b d bσ σ σ σ
∈ ∈

= + +∑ ∑                                                                (15)                      

 
whenever 1 1 11 1j jb for some j Jσ σ≠ − ∈  , and the jd  are given by (7) above. If V is diagonal:       

                     

1

2 2 2 2 2
1 1 1 1(1 (1/ )) / (1 ( / ))2 2

o j j
j J

q and s plim s = where bσ ζ σ ζ ζ σ σ
∈

= − ≡ ≡ + ∑               (16)                      

   
with 0 01 1for J and for J> ≠ Φ = = Φζ ζ . 
 
To establish further definitive results, we will assume in the following Propositions 4 -  18 that V 
is a diagonal matrix, so that the disturbance terms iju  in (4) are contemporaneously uncorrelated 
across different equations. We then have: 
 
Proposition 4.  The cumulative bias, kθ , is given by: 
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1 1

2
2 2 21

1 1 1 1
ˆ ( ) / ( ) /k k k j k j kj j o j k j kj j

j J j J
plim b b b s b b bσθ β β β σ β σ

ζ ∈ ∈

≡ − = − + = − +∑ ∑                (17)                   

                                                                  
for each 2,...,k n m= + , and does not depend upon the value of the parameters hjb  for any 

1,h k≠ for each 1j J∈  or upon the value of the parameters 1h hb≡β  for 1,h k≠ . 
 
Thus for the case where V is diagonal, we can establish analytically a smaller set of parameters 
of the underlying model to which the extent of the cumulative bias is sensitive. For any of the 
endogenous variables denoted by 2,...,k n= , or any of the predetermined variables, as denoted 
by 1,....,k n n m= + + , the extent of the cumulative bias kθ  will depend upon the values of the 
underlying parameters 1, and for all 2,...,k kj jb b j nβ = , as well as upon the values of 

2 for all 1,...,j j nσ = . Again, however, for any given set of endogenous and predetermined 
variables, the extent of the cumulative bias kθ  does not depend upon the values of the parameters 

hjb  for any other endogenous or predetermined variables (as denoted by ,1h k≠ ) in any of the 
equations 2,...,j n= . Similarly it does not depend upon the values of the coefficients hβ  in the 
first equation on any other endogenous or predetermined variables (as denoted 
by ( ) 2,.....,h k n m≠ = + ). Nevertheless, the magnitude of the variances 2

jσ  of the residual 
disturbance terms will indeed in general vary with which endogenous and predetermined 
variables are included in these equations.  
 
 For each 0j J∈ , we may define: 
 
                                        2 2 2

1 1 / 0j j ja b σ σ≡ >                                                                               (18) 
 
as the ratio between the variance in the jth endogenous variable, jx , that is due to the impact of 
the disturbance term 1iu  on the first variable, 1x , to the variance in jx  that is due to the residual 
disturbance term in the jth equation, holding constant all other explanatory variables. The 
following Propositions 5 - 8 follow directly from (16) and (17): 
 
Proposition 5. The cumulative bias, kθ , will be zero for all k K∈  if 0J = Φ , the null set. 
 
Proposition 6. If 0kβ ≠ , the cumulative proportionate bias /k kθ β  is equal to a general 
proportional bias term, given by 

0

2 2
1/ ((1/ ) 1) ( / ) 1G j o

j J
a sζ ζ σ

∈

Θ ≡ − = − = −∑ , that is negative 

whenever 0J ≠ Φ   and equal for all k K∈  for which 0kβ ≠ , plus a specific proportional bias 
term, given by 

0

2 2
1 1( / ) ( / )Sk j kj k j

j J
b bσ ζ β σ

∈

Θ ≡ − ∑  which varies with the value of each /kj kb β  for 

0.j J∈  If 0kβ = , the cumulative bias 1kθ  is equal to simply the specific bias term given by 

0

2 2
1 1( / ) ( / )Sk j kj j

j J
b bσ ζ σ

∈

′Θ ≡ − ∑ . 
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Proposition 7. It will be sufficient for the cumulative bias, kθ , to be negative (positive) for any 
k K∈  that 0J ≠ Φ   and for each 0j J∈  one or more of the following holds: (i) kβ ≥  (#) 0 and 

1 0j kjb b ≥ , (ii) 1kj k jb bβ≥ − and 1 jb  > (<) 0, (iii) 1kj k jb bβ≤ − and 1 jb  < (>) 0, with at least one of 
the inequalities in (i) - (iii) holding as a strict inequality for at least one 0j J∈ . 
 
When we define 0 1 0 1{ : 0} , { : 0} ,k j kj k j kjS j J b b S j J b b′≡ ∈ < ≡ ∈ >  we have more generally: 
 
Proposition 8. It is necessary and sufficient for the cumulative bias, kθ , to be negative (positive) 
for any k K∈ that: 
 

    
0

2 2 2
0 1 1& ( / ) ( / )

k k

kj j j k j j
j S S j J

J b b (<) bσ β σ
′∈ ∪ ∈

≠ Φ > −∑ ∑                                   (19) 

 
For a negative cumulative bias, kθ , when 0kβ < , Proposition 8 requires that there exist 
sufficiently large positive products of the coefficients kjb  and 1 jb  in some equations 0j J∈   to 
more than offset the absolute values of both any negative products of these coefficients in other 
equations 0j J∈ and the negative values of 2

1k jbβ  for all equations 0j J∈ , after applying the 

weights 
2

jσ − .  If the positive products are not sufficiently large to offset the absolute values of 
these negative terms, Proposition 8 implies that the cumulative bias, kθ , will be positive 
whenever 0kβ < . 
 
Similarly, for a positive cumulative bias, kθ , when 0kβ > , Proposition 8 requires there to exist 
sufficiently large negative products of the coefficients kjb  and 1 jb  in some equations 0j J∈   to 
more than offset both any positive products of these coefficients in other equations 0j J∈   and 
the positive values of 2

1k jbβ  for all equations 0j J∈ , after applying the weights 
2

jσ − . If the 
negative products are not large enough to offset them, Proposition 8 implies that the cumulative 
bias, kθ , will be negative whenever 0kβ > . 
 
The necessary conditions in Proposition 8 for a positive cumulative bias, kθ , when 0kβ > , or for 
a negative cumulative bias, kθ , when 0kβ < , therefore appear to be strong ones. In contrast the 
sufficient conditions in Proposition 7 for a negative cumulative bias, kθ , when 0kβ > , or for a 
positive cumulative bias, kθ , when 0kβ < , appear relatively weak. These conclusions are 
reinforced by Proposition 6, which implies that the cumulative proportionate bias /k kθ β is equal 
to a negative general term which is the same for all k = 2,...,n + m for which 0kβ ≠ , plus a 
specific term which will only offset the negative general term if the 
individual 2

1( / )j kj k jb b β σ terms are sufficiently positive overall across the additional inter-
relationships j = 2,..., n.  If any of the sufficient conditions of Proposition 7 prevails, there will be 
an under-estimate under OLS of the absolute value of the true regression coefficient kβ . This 
will tend to make it more likely that the regression coefficient kβ  will appear to be not 
significantly different from zero under standard significance tests when it actually has a non-zero 
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value, with an increased risk of an associated Type II error. The associated bias in the t-statistic 
for testing this significance is investigated further in Section 3 below.  
 
In applying Propositions 4 - 8, consideration must be given also to the stability condition: 
 
                               1 11 . . 0k k k k kkb i e b bβ β< + <                      for all 1k J∈                               (20) 
 
that the set of simultaneous equations (4) will involve if they are to yield a stable solution that 
satisfies the Hicksian stability requirement that B’s principal minors of order Λ  are positive if 
Λ  is even and negative if Λ  is odd (see [7]). (20) implies that for all 1k J∈  the combined 
feedback effect of a unit increase in kx  on 1x  in equation 1 and of the change in 1x  on kx  in 
equation k is less than the initial unit increase in kx . If condition (20) does not hold, a series of 
unstable changes in these variables may prevail. Condition (20) will reinforce any negative 
cumulative bias kθ  if 1 0kb < , and condition (20) will reinforce any positive cumulative bias kθ  if 

1 0kb > . We also then have: 
 
Proposition 9.  For any ,k K∈  if 0 0{ : & } ΦkJ j j k j J≡ ≠ ∈ ≠ ,  1kb  < ( >) 0 when 1k J∈ , kβ  > 
(<) 0, and the stability condition (20) holds, the condition that 1 j kjb b ≥ (#) 0 for all 0kj J∈  is 
sufficient to ensure that the cumulative bias kθ  is negative (positive). If k 0,β =  the condition 
that 1 j kjb b ≥ (#) 0 for all 0j J∈  and 1 j kjb b > (<) 0 for some 0j J∈ is sufficient to ensure that the 
cumulative bias kθ  is negative (positive). 
 
Proposition 10.  For any ,k K∈  if 0 ΦkJ ≠ ,  0kβ > & 1 0kb > , or 0kβ <  & 1 0kb < , and the 
stability condition (20) holds, knowledge of the sign pattern of 1 j kjb b  for all 0kj J∈  alone is 
insufficient to determine the sign of the cumulative bias kθ  for 0k J∈ . However, if in 

addition 1 0for allkj k j kb b j Jβ≥ ∈ , the condition that 1 j kjb b ≥  (#) 0 for all 0kj J∈  is sufficient to 

ensure that the cumulative bias kθ  is negative (positive) whenever 1kb < ( >) 0  and kβ  < (>) 0 for 

0k J∈ . 
 
For the basic case where n = 2, Proposition 4 implies that: 
 
                          2 2 2 2

1 12 12 2 2 12 1( ( )) /( ) for 2,...., 2k k kb b b b k mθ σ β σ σ= − + + = +                              (21) 
 
and that the simple heuristic 2 0θ > iff 12 0b > , 2 12 2 120 iff 0, and 0 iff 0b bθ θ< < = =  holds under 
the stability condition (20), irrespective of the value of any other parameters, since 02 ΦJ = , the 
empty set, in the basic case of n = 2. However, for the predetermined variables 

3,...., 2 ( 0)k m m= + > , we have 0 ΦkJ ≠  if 12 0b ≠ , even when n = 2. Propositions 4 and 9 then 
imply that for these predetermined variables, the heuristic becomes: 12 20 if 0 & 0,k k kb bθ β< > ≥  

12 2and 0 if 0 & 0k k kb bθ β> < ≤ , whenever 12 0b ≠ . For any given set of included predetermined 
variables, the magnitude of the cumulative bias kθ  for any endogenous or predetermined variable 
k = 2,...., 2 + m, however, does not depend upon the values of the coefficients (for 1, )hjb h k≠ on 
any other (endogenous or predetermined) variables in these two equations.  
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For the case where n = 3, with now three inter-relationships given by (1) and (2), the set 02J is no 
longer empty. Proposition 9 now implies that for cases where the coefficients 1 1andk k kb bβ ≡ , in 
the reciprocal relationship between variables k and 1, are of opposite sign, we may apply the 
heuristic: 
 
   2 12 13 23 2if 0, 0, and 0, then 0b b bβ θ> < ≥ < ;  2 12 13 23 2if 0, 0, and 0, then 0b b bβ θ< > ≤ >      (22) 
 
and similarly for the endogenous variable k = 3. For the predetermined variables k = 4,...,2 + m, 
the heuristic from Proposition 9 becomes: 
 

1 1if 0, and 0 for 2,3, then 0; if 0, and 0 for 2,3, then 0 (23)k j kj k k j kj kb b j b b jβ θ β θ> ≥ = < < ≤ = >
 
For cases where the coefficients 1 1andk k kb bβ ≡ , in the reciprocal relationship between variables 
k and 1, are of the same sign, the heuristic (23) still holds for the predetermined variables. 
However for the endogenous variable k = 2, Proposition 10 implies that the absolute magnitude 
of 23b  relative to that of the product of 2 13and bβ  also now matters, with the extended heuristic 
becoming: 
 
                    2 12 13 23 23 2 13 2if 0, 0, 0, and , then 0b b b b bβ β θ< < ≥ ≥ <                                        (24) 
 
                    2 12 13 23 23 2 13 2if 0, 0, 0, and , then 0b b b b bβ β θ> > ≥ ≥ >                                        (25) 
 
Propositions 9 and 10 generalise these heuristic conditions to the more general case of n 
endogenous variables and m 0≥  predetermined variables. In line with our earlier discussion of 
the implications of Propositions 6 - 8, the conditions which are sufficient in (24) and (25) to 
ensure that the absolute value of the true regression coefficient 2β  is less than that of its OLS 
asymptotic estimate, and hence that 2 0θ <  2 2 2when 0, and 0 when 0β θ β< > > , are more 
stringent than those in the heuristic (23). The conditions in the heuristic (23) are themselves 
sufficient to ensure that the absolute value of the true regression coefficient 2β  is greater than 
that of its OLS asymptotic estimate, and hence 2 20 when 0θ β< > , and 2 20 when 0θ β> < . 
 
 
3. Cumulative Endogeneity Bias and Statistical Inference 
 
In this section, we investigate the implications of our above analysis for our ability to infer 
restrictions on the true values of the parameters of the primary equation of interest from 
knowledge of their OLS asymptotic estimates, in the presence of cumulative endogeneity bias. 
We will examine first the implications for the use of standard t-statistics to test whether or not 
the true value of a coefficient kβ  is significantly different from zero.  
 
Proposition 11. For any ,k K∈  if 0J ≠ Φ and 0kβ ≠ , the asymptotic proportional bias in the 
standard OLS t-statistic kt  associated with testing whether the coefficient kβ  is significantly 
different from zero equals:  
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                                       0.5( ) / ((1 ( / )) / ) 1k ok ok k kt t t L β ζ′ − = − −                                                  (26)   
 
where                             

0 0

2 2
1 1 1( / ) ( / )k j kj j j kj j

j J j J
L b b a b bσ σ

∈ ∈

≡ =∑ ∑                                                (27)                      

 
and 0.5 0.5 0.5

1
ˆ ˆ/( ), ( ), /( ),o

k k o kk k k kk ok k kkt s t s tβ ς β ς β σ ς′ ≡ ≡ =  for any given value of 0,kkς ≠  where kkς  

kkplim ς≡ and kkς  is the (k-1)th element on the principal diagonal of 1( )−′
0 0Y Y . The proportional 

bias in (26) will be negative whenever ( / ) 0k kL β ≥ , and is a strictly decreasing function of 

/kj kb β  iff 1 0jb > , of each 1 jb  iff 1
ˆ( ) 0o

kj k j kb bβ β+ >  and of each ja  in (18) iff 

1
ˆ(( / ) 0.5 ) 0o

kj j k kb b β β+ > for each 0j J∈ . If additionally, 2 > ( / ) 0k kL β ≥ , then k okt t′ < . 
 
Proposition 11 implies that, even with an infinitely large sample of observations, downward 
proportionate bias will result in the standard t-statistic for testing whether the coefficient kβ  is 
significantly different from zero for any endogenous or predetermined variable k = 2,..., n + m, 
whenever each product 1( / )j kj kb b β  is non-negative for 0j J∈ ,  0kβ ≠  and 0J ≠ Φ , for any 
given value of 0kkς ≠ . The downward proportionate bias will be greater the larger is each 

1 , andj kj jb b a , whenever the corresponding 1 , ,j kj kb b β and ˆ o
kβ are positive. Since 1kkb = −  for an 

endogenous variable 1k J∈ , a non-negative value of 1( / )k kk kb b β  implies that 1andk kbβ are of 
opposite sign for such an endogenous variable whenever both are non-zero. If 1andk kbβ  are of 
the same sign for an endogenous variable, the sufficient condition ( / ) 0k kL β ≥  for (26) to be 
negative implies that not only are the remaining 1( / )j kj kb b β  terms non-negative for 

0kj J∈ whenever 0 ΦkJ ≠ , but more strongly that:  
 
                                 

0

2 2
1 1 0( / ) ( / ) 0

k

j kj k j k k k
j J

b b b for k Jβ σ β σ
∈

≥ > ∈∑                                          (28) 

 
so that again there are more stringent implications for the interaction terms when 1andk kbβ  are 
of the same sign for an endogenous variable, than when they are of opposite sign. For a 
predetermined variable k = n + 1,..., n + m, there is no such restriction that 1kkb = − , so that there 
is no such asymmetry when 1andk kbβ  are of the same sign, in the sufficient conditions for (26) 
to be negative. 
 
For any endogenous or predetermined variable k, a negative value of (26) when 0okt >  suggests 
a greater risk of a Type II error in a standard one-sided t-test, of accepting the null hypothesis 
that 0kβ ≤ when this hypothesis is untrue. Similarly, a negative value of (26) when 0okt <  
suggests a greater risk, in a standard one-sided t-test, of the Type II error of accepting the null 
hypothesis that 0kβ ≥ when this hypothesis is untrue. If, in addition,  2 > ( / ) 0k kL β ≥ , 
Proposition 11 also implies that under its stated conditions the absolute value of the t-statistic kt′  
in the presence of endogeneity bias will be less than its absolute asymptotic value in the absence 
of such bias. This in turn suggests a greater risk in these circumstances of a Type II error under a 
standard two-sided t-test, of accepting the null hypothesis that 0kβ =  when this hypothesis is 
untrue, than would prevail if there had been no such endogeneity bias. However, the validity of 
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relying upon standard t-statistics for making inferences regarding the true value of kβ , even with 
large samples, is more generally called into question by the existence of endogeneity bias, since 
the standard proofs of the validity of the associated t-tests (see e.g. [2, 8]) assume a zero 
contemporaneous correlation between the relevant regressors and the disturbance term in the 
estimated equation.  
 
We may also demonstrate from equations (16) and (17) that: 
 
                                        ˆ ( ) /o

k k kLβ β ζ= −                                                                                (29) 
 
Hence we have: 
 
Proposition 12. A necessary and sufficient condition for the asymptotic estimate, ˆ o

kβ , of kβ  to 
be positive (negative, zero) for any k K∈ is that kβ  is greater than (less than, equal to) kL .  
 
Knowledge of simply the sign of the asymptotic estimate, ˆ o

kβ , therefore places an (upper or 
lower) bound on the value of the true coefficient kβ  in terms of the overall interaction effect kL . 
 
Proposition 13. The true value of the coefficient kβ  is related to its OLS asymptotic estimate ˆ o

kβ  
through the equation: 
            
                       ˆ(1 )

o

o
k k k j

j J
L for any k K where aβ ρ β ρ

∈

= + + ∈ ≡ ∑                                           (30)                    

 
with 0ˆ

k kβ β>  whenever 1 0 0
ˆ 0, 0 for all and Φo

k j kjb b j J Jβ > ≥ ∈ ≠ , and ˆ o
k kβ β<  whenever 

1 0 0
ˆ 0, 0 for all and Φ.o

k j kjb b j J Jβ < ≤ ∈ ≠  
 
In contrast to the potential unreliability of standard t-tests in the presence of endogeneity bias, 
Proposition 13 above implies that knowledge of the OLS asymptotic estimate ˆ 0o

kβ >  will itself 
be sufficient to ensure that the true value of the corresponding regression coefficient kβ  will be 

such that ˆ 0o
k kβ β> >  whenever the qualitative condition 1 0j kjb b ≥ for all j = 2,...,n (with not all 

1 jb  = 0) holds. Similarly, knowledge of the OLS asymptotic estimate ˆ 0o
kβ <  will be sufficient to 

ensure that the true value of the regression coefficient kβ  will be such that ˆ 0o
k kβ β< <  

whenever the qualitative condition 1 0j kjb b ≤ for all j = 2,...,n (with not all 1 jb  = 0) is satisfied.  
 
The associated heuristic: 
 
   1 1 1 1

ˆ ˆif 0 and 0 for all (with 0 for some ), then 0o o
k j kj j k kb b j J b j Jβ β β> ≥ ∈ ≠ ∈ > >              (31) 

 
   1 1 1 1

ˆ ˆif 0 and 0 for all (with 0 for some ), then 0o o
k j kj j k kb b j J b j Jβ β β< ≤ ∈ ≠ ∈ < <              (32) 
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holds from Proposition 13 for all {2,...., }k K n m∈ ≡ + , including both endogenous and 
predetermined variables. However, in the case of endogenous variables, we again have 1kkb = −  

for k = 2,...,n. (31) and (32) then require the weakly opposite signs 1
ˆ0 if 0o

k kb β≤ >  and 

1
ˆ0 if 0o

k kb β≥ < in order for the heuristic to be applied to an endogenous variable. In the same 

sign case of 1
ˆ0 and 0,o

k kb β> > where k is an endogenous variable, we may still ensure that 
ˆ 0o

k kβ β> >  when 1 0jb ≠  for some 1j J∈  if there are sufficiently strong positive offsetting 
values of 1 j kjb b  for ( ) 2,...,j k n≠ =  to ensure 0kL ≥  in (27) and (30). Similarly, in the same sign 

case of 1
ˆ0 and 0,o

k kb β< < where k is an endogenous variable, we may still ensure that 
ˆ 0o

k kβ β< <  when 1 0jb ≠  for some 1j J∈  if there are sufficiently strong negative offsetting 
values of 1 j kjb b  for ( ) 2,...,j k n≠ =  to ensure 0kL ≤  in (27) and (30). 
   
We can examine next the benchmark case where the variance in the jth endogenous variable, jx , 
that is due to the influence of the disturbance term 1iu  on the first variable, 1x , is equal to the 
variance in jx  that is due to the residual disturbance term in the jth equation for all 0j J∈ , so that 
we have 01 for allja j J= ∈  in (18). We then have in equation (30): , wheren nρ ′ ′= is the 
number of equations in 0J , i.e. those for which b1j ≠ 0. If, in addition, the interaction effect 

0kL = , Proposition 13 implies that we have simply: 
 
                                      ˆ(1 ) o

k knβ β′= +                                                                                     (33)           
 
so that the true value of the coefficient kβ  is here a precise integer multiple of its OLS 
asymptotic estimate.  
 
For cases where 1 0

ˆ ( / ) 0 for allo
k kj jb b j Jβ ≥ ∈ , we will have instead ˆ0 when 0o

k kL β≥ >  and  
ˆ0 when 0o

k kL β≤ < . If, in addition, 1ja ≥  (so that the variance in the jth endogenous variable, 

jx , that is due to the influence of the disturbance term 1iu  on the first variable, 1x , is at least as 
great as the variance in jx  that is due to the residual disturbance term in the jth equation),  with 
at least one of these inequalities being a strict inequality for some 0j J∈ , Proposition 13 implies 
that:  
 
            ˆ ˆ(1 ) 0 if 0o o

k k knβ β β′> + > >  and ˆ ˆ(1 ) 0 if 0o o
k k knβ β β′< + < <                                       (34)                      

 
Thus, if ˆ 0o

kβ ≠ , the true absolute value of the regression coefficient kβ  will here exceed the 
product of the absolute value of its OLS asymptotic estimate and the number of equations 
(including the first) into which the variable 1x enters in a non-zero way. Even stronger (upper or 
lower) bounds on the true value of the regression coefficient as a multiple of its OLS asymptotic 
estimate ˆ o

kβ  are thus generated by equation (30) than is implied by use of the heuristic in (31) 
and (32).    
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Our ability to place such bounds upon the true value of kβ  from Proposition 13 depends inter 

alia upon observing in the OLS multivariate analysis of a sufficiently large sample that ˆ 0o
kβ >  

when we have a priori reasons for believing that the interaction effect 0kL ≥ , or upon observing 
ˆ 0o

kβ <  when we have a priori reasons for believing that 0kL ≤ . If, however, we observe ˆ 0o
kβ >  

when we have a priori reasons for believing that 0kL ≤ , or we observe ˆ 0o
kβ <  when we have a 

priori reasons for believing that  0kL ≥ , the sign of kβ  remains indeterminate in Proposition 13. 
There is then a risk of a Type I error, of rejecting the null hypothesis that 0kβ =  when it is true, 

if we rely simply upon the magnitude of ˆ o
kβ , or its associated t-statistic, for such an inference. 

Such a risk, moreover, may tend to increase with the absolute value of kL  in (30), since a large, 

and seemingly (highly) significant, absolute value of the asymptotic estimate ˆ o
kβ  will still be 

consistent with the null hypothesis of 0kβ = in (30) if the absolute value of the interaction effect, 

kL , is sufficiently large in the opposite direction. Nevertheless, from Proposition 12, we can still 

infer k kLβ >  if ˆ 0o
kβ >  and k kLβ <  if ˆ 0o

kβ < , so that any additional quantitative information on 

kL  remains of value in assessing the true value of kβ . 
 
 
4. The Sensitivity of Cumulative Endogeneity Bias 
 
We have identified in Propositions 1 and 4 above the underlying structural parameters of the 
conceptual model which the extent of the bias kθ  will depend on, and hence be sensitive to. We 
have also identified those upon which the bias will not be dependent, and therefore not be  
sensitive to. In this Section, we assess the direction of the associated sensitivity, and the factors 
which affect the magnitude of the sensitivity, for those parameters to which the bias is  sensitive. 
From (16) and (17) we have: 
 
Proposition 14.   For any given 2 2

0 1and , / ( / ) 1 0k k oj J k K sθ β σ∈ ∈ ∂ ∂ = − <  when 0 ,J ≠ Φ and   
/k kjbθ∂ ∂ = 1( / ) /k k jbθ β∂ ∂ , so that the numerical value of the cumulative bias kθ , ceteris 

paribus, decreases with an increase in kβ , and with an increase in kjb whenever 1 0,jb > but 
increases with an increase in kjb whenever 1 0.jb <  
 
Proposition 15. For any given 2 2

1 1 1
ˆand , / (2 ) / ,o

k j o j k kj jk K j J b s b bθ β σ∈ ∈ ∂ ∂ = − +  so that the 
numerical value of the cumulative bias ,kθ ceteris paribus, increases with a small increase in 1 jb  
from an initial value of 1 0jb = when 0kjb > , and increases with a small decrease in 1 jb  from an 
initial value of 1 0jb = when 0kjb > . More generally, for any initial value of 1 1, /j k jb b (<,=)θ∂ ∂ >  

0 iff 1
ˆ2 o

j k kjb b (>,=)β + < 0. 
 
Thus, while the cumulative bias, kθ , is indeed sensitive to the value of each 1 jb  parameter, there 
are still cases in which the local sensitivity 1/k jbθ∂ ∂  of kθ  to small variations in 1 jb  will be zero. 
It is also of interest to examine how the extent of the cumulative bias varies with the magnitude 
of the variance of the disturbance term in each equation. From (17), we have: 
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Proposition 16. For any given 2 2 2 2

1 1 1 0, / / where 1/ / 1 fork k ok K s Jθ σ θ σ ζ ζ σ∈ ∂ ∂ = = < ≠ Φ , 
so that an increase in the variance of the disturbance term in the first equation results in the same  
proportionate increase in the cumulative bias kθ  for all endogenous and predetermined variables 
k K∈  for which kθ  is non-zero, whenever the set 0J is non-empty and hence 1 0jb ≠  for some 

2,...,j n= . The local sensitivity 2/k jθ σ∂ ∂  of kθ  to a small increase in the variance of the 

disturbance term in the jth equation for any 1j J∈ equals 2 2 4
1 1

ˆ( ) /o
o j k j kj js b b bβ σ+ , and is positive 

(negative, zero) iff  2
1 1

ˆ o
j k j kjb b bβ +  is positive (negative, zero). 

 
The quantitative estimates of 2

os  and ˆ o
kβ  that are available from a (large-sample) OLS analysis 

can therefore be combined with different feasible values of the underlying structural parameters 
2
1 ,σ  2

1 , andj kj jb b σ  in Propositions 14 - 16 to form a quantitative assessment of the sensitivity of 
the magnitude of the cumulative endogeneity bias kθ  to changes in the underlying structural 
parameters 1, andk kj jb bβ  to which it is potentially sensitive. Again a quantitative assessment of 
such sensitivity is an important task for empiricists in the presence of possible endogeneity bias 
in the available OLS parameter estimates. So too is an awareness of changes in the underlying 
structural parameters that would leave the extent of the cumulative bias kθ  unchanged, as in  
Proposition 17 below. 
 
Proposition 17. The cumulative bias kθ  for each k K∈ is invariant under changes in (i) the 
variances of the disturbance terms that leave each ratio 2 2

1/jσ σ unchanged for each 1j J∈ ; (ii) 
the coefficients 1 jb  and in the variances of the disturbance terms for each 1j J∈ that leave the 

ratios 2 2 2
1 1 /j j ja b σ σ≡ and 1/kj jb b  unchanged; and (iii) the sign of 1 jb  that leave its absolute value 

unchanged, whenever 0kjb =  for a given 1j J∈ . 
 
Propositions 16 and 17 highlight the importance of the impact of the relative disturbance 
variances 2 2

1/jσ σ  upon the size of each cumulative bias. If all of these relative variances do not 
change, then ceteris paribus neither will the extent of each cumulative bias kθ . However, a 
larger value of 2

1σ , holding each 2
jσ  constant, will increase the absolute value of each kθ . On the 

other hand, a larger value to 2
jσ  for any given 1j J∈ will make less negative the extent of the 

negative cumulative bias kθ  whenever the OLS asymptotic estimate ˆ o
kβ  is positive and the 

sufficient condition from Proposition 9, that 1 1 00, 0, 0 for allk k j kj kb b b j Jβ> > ≥ ∈ , for kθ  to be 
negative under the stability condition (20), holds. A greater variance in the disturbance term in 
the jth inter-relationship, for j = 2,...,n, will then be positively beneficial in reducing the absolute 
magnitude of the cumulative bias. Such an increased variance, holding that for equation one 
constant, will map out a more extensive set of intersection points with equation one and the other 
inter-relationships in (3) that more accurately traces out the slope parameter kβ  in equation one 
when an OLS multivariate regression plane is fitted to the resultant intersection points.  
 
The sensitivity of the cumulative bias to a change in the specification of the underlying 
conceptual model through the inclusion or deletion of any given equation 1j J∈ within the 
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model, holding all other parameters constant, is examined in the following Proposition, where kθ  
denotes the extent of the cumulative bias when equation 1r J∈  is included in the model, and r

kθ  
its numerical value when equation r is not included in the model, with all other equations in the 
model and their parameters remaining unchanged. 
 
Proposition 18. For any 1r J∈  and any k K∈ , r

k kθ θ−  is positive (negative, zero) iff 
2

1 1
ˆ o

r k r krb b bβ + is negative (positive, zero), with 1 0rb = being sufficient for r
k kθ θ= . 

 
Thus if the asymptotic OLS estimate, ˆ o

kβ , is positive, and 1rb is non-zero and weakly of the 

opposite sign to krb , we will have 2
1 1

ˆ o
r k r krb b bβ + positive. Proposition 18 then implies that, if the 

bias is negative in the absence of the rth interrelationship, the existence of the rth 
interrelationship will make the extent of the negative cumulative bias even greater. 
 
 
5. Partial Regressions and the Impact of Instruments 
 
The cumulative endogeneity bias that we have analysed so far arises when an OLS multivariate 
regression is carried out using all the endogenous and predetermined variables as explanatory 
variables. The extent of the cumulative endogeneity bias in the estimated coefficient for any 
given included variable will, however, in general depend upon which set of variables is used in 
the regression. One reason to exclude a variable from the OLS multivariate regression is a lack 
of data on this variable. Another is a belief concerning its apparent lack of statistical analysis, for 
which the available t-statistics may not provide a reliable guide, as we have discussed in Section 
3 above. In this section, we therefore extend our analysis to consider the impact on the extent of 
the cumulative bias of excluding some endogenous and/or predetermined variables from the OLS 
multivariate regression. We will examine first the case where only predetermined variables are 
excluded from the OLS regression for the primary equation of interest. 
 
Proposition 19. If the true underlying structural model is that given by equations (1) - (2), but 
only the predetermined variables for {1,..., } wherehz h M m m m′ ′ ′∈ ≡ < , together with the 
endogenous variables kx  for 1 {2,..., }k J n∈ ≡ , are included as regressors in the OLS multivariate 

regression analysis of equation (1), the resulting overall cumulative bias ˆ
k k kplimθ β β′′ ≡ − for 

each for {2,..., '}k K n m′∈ ≡ +  equals: 
 

* ˆo o
k k k k kh n h

h M

θ θ θ θ τ β +
′′∈

′′ ′= + = + ∑    where *o
k kh n h

h M

θ τ β +
′′∈

= ∑ ,  *
k k kh n h

h M

θ θ τ θ +
′′∈

′ = + ∑        (35)                 

 
and where { ' 1,..., }M m m′′ ≡ + . The weights *[ ]khτ ≡ *T  are the asymptotic values of the OLS 
regression coefficients in the regression of each excluded predetermined variable hz  for 
h M ′′∈ on the set of included variables kx  for k K ′∈ . For each k K ′∈ , we have also: 
 

1 1

1
1 1 11 1 1 1 11 1 1 1 1[ ( ) ( )] for [ ] [ ( ) ] ,o o

k kj k j j j j j j
j J J

b b d b v v d b b v v v b v j Jθ β −

∈ ∈

′′ = − + + ≡ + + + ∈∑ ∑    (36)               
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where [ ] for ,jv j J′≡ ≡ + ∈o o o oV V C Ω C , [ ] ,hjc for h M j JoC ′′≡ ∈ ∈ , [ ] for ,h h MoΩ ϖ ′′≡ ∈  
is the ( )m m′− x ( )m m′−  (positive definite) covariance matrix for the m m′− excluded 
predetermined variables, and V is not necessarily diagonal. For the case where oV  is diagonal, 
the cumulative bias also equals: 
 

                    "
11 1 1( ( ) / )

o

k j k j kj jj
j J

v b b b vθ β ξ
∈

= − +∑  where 
1

2
11 1(1 ( / )) 0j jj

j J
v b vξ

∈

≡ + >∑                    (37)                      

 
Proposition 19 implies that the overall cumulative bias, kθ ′′ , for any included endogenous or 
predetermined variable k K ′∈ , when m m′− predetermined variables are excluded from the OLS 
regression, is decomposable into two parts, as in equation (35). The first part, o

kθ , is associated 
with omitted variables bias [2], and equals zero if the coefficients 1n h hcβ + = on the excluded 
predetermined variables in the first equation are zero. The second part, kθ ′ , is associated with the 
simultaneity bias that arises from the multiple relationships that relate the regressor to 
disturbance term in the first equation. As in (35), kθ ′  equals the magnitude of the cumulative 
endogeneity bias kθ  for k K ′∈ when all of the predetermined and endogenous variables are 
included in the OLS regression, plus a weighted sum of the magnitudes of the cumulative 
endogeneity biases n hθ + for the excluded predetermined variables when all of the predetermined 
and endogenous variables are included in the OLS regression. As in equation (35), the overall 
bias when some predetermined variables are excluded from the OLS estimation of the first 
equation also equals the cumulative endogenous bias when they are included in the OLS 
estimation, plus a weighted sum of the OLS asymptotic parameter estimates for the excluded 
variables that are generated when all of the predetermined variables are included in the OLS 
estimation. In each case, the weights are the asymptotic regression coefficients that result from  
OLS multivariate regressions of each excluded predetermined variable on the set of included 
variables. 
 
Parallel conditions to those of Proposition 2 hold for determining the sign of the overall 
cumulative bias, kθ ′′ , in (35) for any included variable k K ′∈ , but with each kjσ  replaced by kjv  
for all , .k j J∈  Similarly, if oV is diagonal, parallel forms of Propositions 5 – 18 hold for the 
overall cumulative bias, kθ ′′ , in (37) when m m′− predetermined variables are excluded from the 
OLS regression as hold for the cumulative bias, kθ , when they are not excluded. However, the 
condition that oV is diagonal is now a stronger one than the earlier condition that V is diagonal. 
Conditions under which oV  will be diagonal are that (i) V is diagonal, (ii) any given excluded 
predetermined variable enters into no more than one of the equations j J∈ , so that for all 
h M ′′∈ : if 0 for somehjc j J′ ′≠ ∈ , then 0 for allhjc j J= ∈ , and (iii) excluded predetermined 
variables that appear in different structural equations are uncorrelated, so that there is a zero 
covariance 0hϖ =  when 0 and 0 for & ,hk jc c k j k j J≠ ≠ ≠ ∈ . Excluding predetermined 
variables that enter into the first equation in a non-zero way will then have the effect of making 
the associated variance 11v  of the resulting residual disturbance term of the first equation greater 
in  (37)  than the original variance 2

1σ  of the disturbance term for the first equation in (17), given 
the positive definitiveness of the covariance matrix oΩ  in (36). As in Proposition 16, this will in 
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turn result in a proportionate increase in the extent of the cumulative bias, if it is initially non-
zero.  
 
Excluding predetermined variables that enter into another equation 1j >  in a non-zero way will, 
however, have the effect of making jjv in (37) greater than 2

jσ  in (17), and be equivalent to an 
increase in the variance of the disturbance term of the jth equation. As in Proposition 16, other 
things being equal, this  will make any initial negative cumulative bias in estimating kβ  for any 

included variable less negative, so long as 2
1 1

ˆ 0o
j k j kjb b bβ + > throughout this change. If this 

condition holds and oV is diagonal, there is scope for reducing the extent of any initial negative 
cumulative bias without increasing the disturbance term for equation one, by excluding 
predetermined variables hz  from the OLS regression whenever we can impose the exclusion 
restriction 1 0hc = when 0hjc ≠ for some 1andh M j J∈ ∈ . This exclusion restriction will in 
particular hold if identifiability of the first equation is secured through imposing restrictions 
upon the structural parameters in andB C , since this involves the associated necessary order 
condition [8, p. 455] that the number of predetermined variables which are excluded from the 
first equation must be at least as great as the number of endogenous variables included in it less 
one. Excluding these predetermined variables from the OLS regression reduces the cumulative 
bias by making the effective variances jjv in (37) of the disturbance terms inclusive of the 
influence of these predetermined variables in the equations in which they do appear greater than 
the corresponding variances 2

jσ  in (17), without at the same time making 11v  greater than 2
1σ in 

the first equation. 
 
We will examine next the case where some endogenous variables, kx  for  { ' 1,..., }k J n n′′∈ ≡ + , 
as well as some predetermined variables, for { ' 1,..., }hz h M m m′′∈ ≡ + , are excluded from the 
OLS multivariate regression for the first equation. We can partition the matrices B, C and V as:  
 

                           11 12

21 22

B B
B

B B
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠

 , 11 12

21 22

C C
C

C C
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠

 , 11 12

21 22

V V
V

V V
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠

                                     (38) 

 
where [ ] for , {1,..., }kjb k j J n11B ′ ′≡ ∈ ≡ , [ ] for ,hjc h M j J11C ′ ′≡ ∈ ∈ , [ ] for ,kj k j J11V σ ′≡ ∈ , and 

22B  is assumed to be non-singular. We can then derive: 
 
Proposition 20. If the true underlying structural model is that given by equations (1) - (2), but 
only the endogenous variables 1for {2,..., } wherekx k J n n n′ ′ ′∈ ≡ < , and the predetermined 
variables hz  for 1,..,h m m′= < , are included as regressors in the OLS multivariate regression 

analysis of equation (1), the resulting overall cumulative bias ˆ
k k kplimθ β β′′′≡ − for each included 

variable k K ′′∈ ≡ {2,..., , 1,..., }n n n m′ ′+ +  equals: 
  

1 1

1
1 1 1 11 1 1 1 11 1 1 1[ ( ) ( )] for [ ] [ ( ) ] ,k kj k j j j j j j

j J J

b b b d b v v d b b v v v b v j Jθ −

′ ′∈ ∈

′′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= − + + ≡ + + + ∈∑ ∑  (39)   

                                          
where [ ] ( ) for , ,kjb k j J11 12 1 oB B A A′′ ′≡ − ∈ ,[ ] ( ) for ,n k jb k M j J11 12 1 oC C A A+′′ ′ ′≡ − ∈ ∈ and V ′′ ≡  
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[ ]kjv′′ 1( ) for , ,o k j J11 12 1 1 21 1 22 2 o 2 oA V V A A V A V A A Ω A A′ ′ ′ ′ ′≡ − − + + ∈       [ / ] for , ,kj j k j JoA δ ϑ ′≡ ∈  

,-1
1 22 21A B B≡ 2 21 22 1A C C A≡ − , kjδ is Kronecker’s delta  and jϑ  is the element  in the jth row and 

jth column of the matrix ( )12 1 11B A B− . If V ′′ is diagonal, we have also: 
  

          
1

11 1 1 1( ( ) / )k j k j kj jj
j J

v b b b b vθ ξ
′∈

′′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= − +∑  where
1

2
11 1(1 (( ) / )) 0j jj

j J

v b vξ
′∈

′′ ′′ ′′ ′′≡ + >∑                      (40)   

 
In addition to the general case considered by Proposition 20, we can examine here the particular 
case where we exclude only a single endogenous variable, nx , together with the omitted 
predetermined variables for 1,...,hz h m m′= + , so that the OLS regression model becomes: 
 

                         
1

1 1
2 1

n m

i k ik n h ih i
k h

x x z uβ β
′−

+
= =

′′= + −∑ ∑                                                                             (41) 

 
where 1iu′′  is the new associated disturbance term for the first equation. If the true underlying 
structural equations (1) - (2) still apply, we have from Proposition 20: 
  
      , ,(( ) / ) ,kj kj kn nj nk nj nk nn nj k j n h k h n j

M h M

v b b b b b b for k j Jσ σ σ σ ϑ ϑ ϖ+ +
′′ ′′∈ ∈

′′ ′′ ′′ ′= + + + + ∈∑ ∑              (42)  

 
   ( ) / 1 {1,..., , 1,..., } &kj kj kn nj j j jn njb b b b and b b for k K n n n m j Jϑ ϑ′′ ′′′ ′ ′ ′= + = − ∈ ≡ + + ∈          (43)              
 
 
with 1nnb22B = = −  if we exclude only the single endogenous variable, nx , and 0jϑ > under 
similar stability conditions to (20) for each j J ′∈ . 
 
The coefficient kjb′′  in (43) reflects the net effect of variable k on jx  taking account of not only 
the influence of variable k on jx in equation j, but also the influence of variable k in equation n 
upon the excluded endogenous variable, nx , and the associated influence of nx  upon jx in 
equation j of the underlying structural model. If more than one endogenous variable is excluded 
from the OLS regression, a similar net effect is involved for each coefficient in 
[ ] ( )kjb 11 12 1 oB B A A′′ ≡ − in (39).  If there is sufficient a priori or other evidence to determine the 
sign pattern of these net effects, then parallel propositions to Proposition 2 and 5 – 18 may be 
derived for the sign and sensitivity of the overall cumulative bias given by equations (39) and 
(40) of Proposition 20 in terms of these net effects. 
 
However, when we exclude one or more endogenous variables from the OLS multivariate 
regression, the conditions for the associated covariance matrix V ′′ to be diagonal become more 
stringent than the conditions for oV  and V to be diagonal. In the case of a single excluded 
endogenous variable, it will nevertheless be sufficient for V ′′ to be diagonal that (i) V is diagonal, 
(ii) that any given excluded predetermined variable enters in a non-zero way into no more than 
one of the equations j= 1,…, n, (iii) that excluded predetermined variables which appear in 
different structural equations are uncorrelated, and (iv) that the excluded endogenous variable 
enters in a non-zero way into no more than one of the equations j = 1,…, n - 1. If  V ′′ is diagonal, 
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and we have knowledge of the sign pattern of the relevant jb′′  net effect parameters, we can apply 
parallel versions of Propositions 5 - 18 to an assessment of the overall cumulative bias kθ ′′ .  
 
By way of illustration, we can examine the case where we exclude a single endogenous variable 

nx  from the OLS regression, conditions (i) – (iv) for V ′′  to be diagonal hold, and nx  only enters 
in a non-zero way into equations 1 and n. Since we then have 0 for 2,..., 1njb j n= = − ,  (43) 
implies that for 2,..., 1kj kjb b j n′′ = = − , for all the included endogenous and predetermined 
variables k K ′′∈ and for 1k = . Knowledge of the sign pattern of these kjb  therefore implies 
knowledge here of the sign pattern of the corresponding net effect kjb′′ .  Proposition 9 then 
provides sufficient conditions for determining the sign of the cumulative bias for any given 
included endogenous and predetermined variables, but now applied to equations 2,..., 1j n= −  
and to the stability condition 1 1 1k kb b′′ <  for 2,..., 1k n= − . Thus if n = 4, and we exclude the 
variable 4x from the OLS regression for the first equation because of lack of data or other 
reasons, we can still here sign the overall cumulative biases 2 3andθ θ′′′ ′′′ , as well as those for the 
coefficients of the predetermined variables that are included in the first equation, when these 
sufficient conditions hold. 
 
If V ′′ is not diagonal, we can no longer rely on parallel versions of Propositions 5 – 18 to derive 
the sign and sensitivity of the overall cumulative bias. Instead, we must satisfy the more stringent 
necessary and sufficient conditions of a parallel version of Proposition 2, as applied to the 
parameters of (39) rather than to those of equations (6) and (7), to be able to determine the 
qualitative sign of the overall cumulative bias kθ ′′′  from qualitative information on the underlying 
structural parameters and the components of V ′′ . If these necessary and sufficient conditions are 
not satisfied, equation (39), like equations (6) and (7), nevertheless provides a means of 
generating the numerical probability distribution of the extent of the overall cumulative bias 
through a process of Monte Carlo numerical simulation ([10]), if there is sufficient information 
upon which to base an assessment of the probability distribution of the underlying parameters 
that enter into these equations.   
 
However, even when V ′′ is diagonal, we can show that replacing an endogenous variable, such as 

nx , by the instrument of a proxy variable that is correlated with nx  but uncorrelated with the 
disturbance term 1iu in the first equation, will not necessarily reduce the absolute magnitude of 
the cumulative bias, but may instead increase it. One such proxy variable is provided by the 
predetermined variable 1z  if the nth equation is of the form: 
 
                               1 1 1, 1in n i n n i inx b x b z u+= + −                                                                               (44) 
 
where 1 1,andn n nb b + are non-zero, and 1z  only enters into the nth equation. We can then compare 
the extent of the cumulative bias kθ ′′′  when nx  is replaced by its instrument 1z  with the extent of 
the bias kθ ′′  that prevails when nx is included as a regressor for the first equation and only its 
proxy 1z  is excluded. Under the assumption that V, and hence here oV , is diagonal,  the extent of 
the bias kθ ′′  is given by equation (37), with 2

jj jv σ= for n = 1,..., n – 1 and 2 2
1, 11nn n n nv bσ ϖ+= + in 
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this case. Under the assumption also that 1 10, 0, 0k k j kjb b bβ< > ≥ for all ( ) 2,...,j k n≠ = , and 
that the stability condition (20) holds, we have from Proposition 9 that 0kθ′′ < . 
 
When we simply replace the endogenous variable nx by its proxy 1z  as a regressor for the first 
equation, the assumption that V is diagonal implies here that V ′′ is also diagonal, with the extent 
of the resulting cumulative bias kθ ′′′  given by equations (40), (42) and (43). Under the above 
assumptions, we now have 2 2 2

11 1 1n nv bσ σ′′ = + , 2 for 2,..., 1jj jv j nσ′′ = = − , 0 , 1kn jn jb b ϑ= = = and 
hence kj kjb b′′ =  for 2,..., 1j n= − and {2,..., 1, 2,..., }ok K n n n m∈ ≡ − + + . For these endogenous 
and predetermined variables ok K∈ , we therefore have from (37) and (40): 
 

              
1

2 2 2 2 2
1 1 1 1 1, 11

2

( / )(( ( ) / ) ) /( )
n

k j k j kj j k k n k n n n
j

b b b where b bθ σ ξ β σ λ λ β σ ϖ
−

+
=

′′ = − + + ≡ +∑            (45)              

                  
1

2
11 1 1 1 1 1 1

2

( / )( (( / ) )) / )
n

k j k j kj j j j n nj
j

v b b b where b b b bθ ξ β ϑ σ
−

=

′′′ ′′ ′′ ′′ ′′ ′′= − + = +∑                       (46) 

 
The substitution of the instrument 1z  for the endogenous variable nx  frees (46) from the positive 
term kλ in (45) that in itself tends to make the absolute value of kθ ′′′  less than that of kθ ′′ . 
However, if 1 0nb ≠ , the substitution of nx  by its imperfect proxy 1z  increases the variance of 
the disturbance term of the associated OLS regression equation, with the result that 11( / )v ξ′′ ′′ > 

2
1( / )σ ξ . If 1 1j jb b′′ > for all j=2,..., n-1 and 1 1 0n nb b ≥ , so that 10 1ϑ< ≤ , the absolute magnitude 

of kθ ′′′  will exceed that of kθ ′′ , despite the positive term kλ in (45), if njb  is sufficiently large for 

each j = 2,…, n - 1. If we choose units for the instrument 1z  so that 1, 1n nb + = in equation (44), we 
can also compare the absolute magnitude of the cumulative bias nθ ′′  in the OLS asymptotic 
estimate of nβ when the endogenous variable nx is included as a regressor, with the bias: 
 
                        1 1 1 1,1

ˆ 0o o
n n n n n n+1 nsince bθ β β θ β β+ + + +′′′≡ − = − = =                                                (47) 

 
associated with the OLS asymptotic estimate 1

ˆo
nβ + of the coefficient of 1z when the instrument 

1z is substituted for nx  in the multivariate regression. From (37) and (40), we have: 
 

              
1

2 2 2
1 1 1 1 1 11

2
( / )(( ( ) / ) ) ( 1) /( )

n

n j n j nj j n n n n n n
j

b b b where b bθ σ ξ β σ λ λ β σ ϖ
−

=

′′ = − + + ≡ − +∑       (48) 

 

                     
1

2
1 11 1 1 1 1 1 1

2

( / )( (( / ) )) / )
n

o
n j n j nj j n j j n nj

j

v b b b where b b b bθ ξ β ϑ σ β
−

+
=

′′ ′′ ′′ ′′ ′′= − + − = +∑         (49) 

 
Again we have 11( / )v ξ′′ ′′ > 2

1( / )σ ξ , so that if 1 1j jb b′′ ≥ for all 2,..., 1j n= −  and 1 1 0n nb b ≥ , the 

absolute magnitude of 1
o
nθ +  will exceed that of nθ ′′ , whenever 2

1( / )n nβ σ ξ λ≥ .    
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Thus even if we can find a proxy variable, such as 1z , that is correlated with the endogenous 
variable nx  and uncorrelated with the disturbance term 1iu  in the primary equation of interest, its 
substitution as an instrument for the endogenous variable nx  on a piecemeal basis when n > 2 
may not reduce the absolute magnitude of the cumulative bias, but instead may increase it, not 
only for the coefficient nβ , but also for the coefficients of all the other endogenous and 
predetermined variables.  
 
As in Proposition 16, unless all endogenous variables have been effectively eliminated, so that 
the set 0J is empty, the absolute magnitude of any initial cumulative bias for any coefficient kβ   
increases ceteris paribus with the variance of the disturbance term in the first equation. The 
substitution of an imperfect proxy variable for nx  in effect increases this variance, and thereby 
risks increasing the absolute magnitude of the cumulative bias for all of the coefficients kβ , if 
there still remain some endogenous variables, and even though the instruments that are used are 
uncorrelated with the original disturbance term in the first equation. If the instruments used are 
correlated with this disturbance term, as in Nakamura and Nakamura [12], there is an additional 
source of risk that their use may increase the magnitude of the endogeneity bias. The use of 
Instrumental Variable (IV) estimation, in contrast, depends upon finding a whole set of n - 1 
valid instruments to substitute for all of the n – 1 endogenous variables, to secure the elimination 
of the cumulative endogeneity bias for any given coefficient, such as nβ . The task of finding 
such a complete set of instruments is typically more difficult than finding a single instrument for 
any given endogenous variable that may be of prime policy or decision-making interest. 
Moreover, even if such a complete set of instruments is available, IV estimators will in general 
still remain biased in finite samples (see [8, p. 365]). 
 

 
6. Conclusion 
 
If a complete set of valid instruments is not available for all of the endogenous variables, the use 
of instruments as proxy variables for a subset of the endogenous variables may result in an 
increase in the absolute magnitude of the cumulative bias in each of the estimated regression 
coefficients. In the absence of a complete set of valid instruments, it becomes important to 
understand more fully the underlying factors to which the direction and extent of cumulative bias 
in each of these coefficients are sensitive, and those to which they are not sensitive. In 
highlighting these factors, we have also established conditions under which it is possible to 
predict the sign of the cumulative bias associated with OLS parameter estimates, and to place 
upper or lower bounds upon the true values of the underlying parameters based upon the OLS 
asymptotic estimates. 
 
In interpreting the results of OLS multivariate analyses, such as in meta-studies (e.g. [4, 5]) of 
the many existing empirical studies that have deployed OLS to estimate parameters of policy or 
decision-making importance, there is a need to go beyond an examination of the primary  
equation of interest, to consider wider evidence on the sign and magnitude of those factors to 
which the extent of cumulative bias is sensitive, and which enter into other relevant 
interrelationships. Armed with such wider evidence, there is scope for progress to be made in 
assessing the direction and extent of the cumulative bias, and hence in drawing conclusions on 
the true values of the key parameters of interest. 
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Appendix 
 

Proof of Proposition 1. Using (4), we may write: 
 

X = [x, X0] where x /[xi1],   X0 /[xik] for i =1,..., p; k = 2,..., n                               (A.1) 
 

          Y / [X ,  Z] / [yik] for i=1,..., p; k = 1,...,n + m,  Y0 / [X0 , Z]                                 (A.2) 
  
Using (3), the first structural equation in (4) is of the form: 
        

         0x Y β υ= +                                                                                                            (A.3) 
 
where [ ]kβ β≡  for k = 2, ..., n + m   and υ  / [-ui1] for i =1,..., p. From [8], we have the OLS 
estimator of the coefficients of (A.3) given by: 
 

     1
0 0

ˆ ( )0β Y Y Y−′ ′= x   = 1
0 0( )0 0Y Y Y Y β−′ ′  + 1

0( )0 0Y Y Y υ−′ ′   = 1
0( )0 0β Y Y Y υ−′ ′+                     (A.4)  

 
with the asymptotic bias given by: 
 
                1ˆ[ ] - ( )plim plim k 0 0 0θ β β Y Y Y υθ −′ ′= ≡ =                                                                  (A.5) 
                      
Using (A.2), we may write: 
 

            0 0Y Y′  = 
′ ′⎛ ⎞

⎜ ⎟′⎝ ⎠
0 0 0

0

X X X Z
Z'X Z Z

  with 1( )0 0

P Q
Y Y

R S
− ⎛ ⎞′ ≡ ⎜ ⎟

⎝ ⎠
                                                       (A.6) 

 
where P is (n-1) x (n-1), Q is (n -1) x m, R is m x (n –1), and S is m x m. From [3, p. 109], we 
have: 
 
  1 1 1 1, , ( )where 0 0 0 0 0 0P H H X X X Z(Z Z) Z X Q PX Z(Z Z) R Z Z Z X P− − − −′ ′ ′ ′ ′ ′ ′ ′= ≡ − = − = −     (A.7)                
 
        1 1 1 1 1 1( ) ( ) , ( ) , ( )0 o o o oS Z Z Z Z Z X Q X X P QS R X X X Z QS− − − − − −′ ′ ′ ′ ′ ′= − = − = −                (A.8)                       
 
Using (3) and (4), we may write: 

             1 1 11
with and− − −−⎛ ⎞ ⎛ ⎞

= − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠0

α µ γ
X UB ZCB B B

B Fϕ φ
                                  (A.9) 

 
where 1 1[ ] for 2,..., , [ ] [ ] for 2,..., , [ ] for , 2,...,j k k kjb j n b k n b k j nβ≡ = ≡ = = ≡ =0α φ B , and where 
µ is 1x1, ( is 1x(n – 1), N is (n-1)x1, and F is (n – 1)x(n – 1). From [3, p. 109]: 
 

           1( ) , , ,0F B α F F−= = =+ α = −1ϕ φ ϕ γ µ αφ                                                  (A.10) 
 

Let             [ , ] [ , ]G γ F F α I′ ′ ′ ′ ′≡ =                                                                                  (A.11) 
 
using (A.10).Then from (A.1), (A.9) and (A.11):                              
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 1 1, , ( ) ( )0 0 0X UG ZCG X Z G U Z G C Z Z X Z Z Z G C Z Z Z Z G C− −′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − = − = −            (A.12) 
 

,0 0 0Z X Z UG Z ZCG X X G U UG G C Z UG G U ZCG G C Z ZCG′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − = − − +             (A.13)                     
 

1 1( ) ( )0 0X Z Z Z Z X G U Z Z Z Z UG G U ZCG G C Z UG G C Z ZCG− −′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − +                (A.14) 
 
Hence from (A.7), (A.12) – (A.14): 
 

             1( )H G U UG G U Z Z Z Z UG−′ ′ ′ ′ ′ ′= −                                                                    (A.15) 
 
Since the disturbance terms and the predetermined variables in (4) are uncorrelated, we have: 
  
         1 1 1( ) , ( ) , ( )plim p plim p plim pU Z 0 Z U 0 Z υ 0− − −′ ′ ′= = =                                                (A.16) 
 
Hence from [8, pp. 269 – 271], (A.11), (A.15) and (A.16): 
 
          1 1( ) ( ) [ ] ,kjplim p where plim p for k j JH G VG U U V σ− −′ ′= ≡ ≡ ∈                             (A.17)   
                                       
    1 11 1 1 1 1 1( , ) ( , ) [ ( ) ] ,k j j k j kjwhere b b b for k j JF EF E α I V α I σ σ σ σ′ ′ ′ ′= ≡ = + + + ∈        (A.18)
  
From (A.7), (A.18) and ([8], p. 271): 
 
       1 1 1 1 1( ) ( ) ( ) [ ]jplim p plim p where d*P P H F D F D E− − − − −′≡ = = ≡ ≡                           (A.19) 
 
From (A.7), (A.13), (A.16) and (A.19): 
 
  1 1( ) ( )p p p p pR Z Z Z U G P CG P− −′ ′= − + , 1 1( ) ( )plim p* *R R CGP CGF D F− −′≡ = =           (A.20)               
 
From (A.2), (A.4), (A.6),  (A.11), (A.12) and (A.16):  
 

ˆ( ) [ ] 2,...,k kwhere for k n1 0 1ψ PX υ QZ υ P G U υ G C Z υ QZ υ ψ β β′ ′ ′ ′ ′ ′ ′ ′+ = − + ≡ − ==          (A.21) 

      ˆ( ) [ ] 1,...,n h n hwhere for h m2 0 2ψ RX υ SZ υ R G U υ G C Z υ SZ υ ψ β β+ +′ ′ ′ ′ ′ ′ ′ ′= + = − + ≡ − =    (A.22) 
 

         1
11 1( ) ( ,..., )nplim p whereU υ ω ω σ σ− ′ ′= ≡ −                                                                 (A.23) 

 
   1

1 11 1 1( ) [ , ] [ ]plim p where b for J0 0 0X υ Gω Fω ω α I ω σ σ− ′ ′ ′ ′ ′= = ≡ = − + ∈                  (A.24)                       
 
Hence from (A.5), (A.9) - (A.11), (A.16), (A.19) – (A.24): 
 

1 1 1( , ) ' ( ) ( ) ( ) [ , ]for plimo oo o *
1 0θ θ ' θ ' θ ψ P G ω F D F Gω B D F F α I ω− − −′ ′ ′ ′ ′ ′= ≡ = = = +ϕα (A.25)                      

                                    1 1 11 1
2 2

( ) [ ( ) ( )]
n n

kj k j j
j

b b d b0 0B α Dω
= =

= − + +∑ ∑= + ϕ β σ σ                    (A.26)                      

 



 24

  1 1( ) [ , ] [ , ]oo plim where*
2 0 0 0ψ R G ω CGF D F F α I ω C Dω C C α I− −′ ′ ′ ′ ′ ′≡ = = ≡θ =             (A.27)                      

 

      1 1 1 11 1 , 1 1 11 1
2 2 2 2

[ ( ) ( )] [ ( ) ( )]
n n n n

hj h j j n h j n h j j
j j

c c b d b b b d bσ σ β σ σ+ +
= = = =

= − + + = − + +∑ ∑ ∑ ∑        (A.28)                      

 
 
Proposition 1 follows directly from (A.25) - (A.28) and (A.18) - (A.19).  
 
Proof of Proposition 2. Since the covariance matrix V associated with eqn (4) is symmetric and 
positive definite: 
 
 w’Vw > 0 for all w ≠ 0, including w = ("’, I)’y  for all y ≠ 0; hence y’E y > 0 for all y ≠ 0   (A.29) 
 
using (A.18), so that the matrix E ≡ [ekj] is also symmetric and positive definite. The matrix – E  
therefore has negative diagonal elements, and is a stable matrix (see [13, p. 165]), since 

E E′− − is negative definite. By setting kk kke gη = − + for all k J∈ with ' 'k kg e χ= + , where ' 'k ke  
is the maximal diagonal element of E and χ  is a positive constant, and by setting kj kjeη = − for 
all off-diagonal elements, we may express –E in the form E N gI− = − , where [ ]kjN η≡  is a 
Morishima matrix (see [1, p. 12]) under conditions (8) and (9).  If E is also indecomposable, it 
follows from [13, pp. 213-215], that the elements jd  of 1[ ]jdD E −≡ ≡  are positive when 

1,j J ′∈  and when 1,j J ′′∈ , and negative when 1 1&j J J′ ′′∈ ∈ and when 1 1&j J J′′ ′∈ ∈ .  
Moreover when E  has all non-zero elements and is not a 2x2 matrix, it follows from [12, p. 215] 
that conditions (8) and (9) are also necessary for the sign pattern of D  to be determinate, given 
only the sign pattern of E. Proposition 2 then follows from (7) in Proposition 1. 
 
Proof of Proposition 3. From (A.3) and (A.4), we have: 
 
                        ˆ ˆ ˆˆ ˆ ˆ( ) ( )o for 0 0υ υ υ υ υ Y β β υ x Y β υ Y β β′ ′ ′= − − ≡ − = − −                                 (A.30) 
 
Hence using (A.2), (A.5), (A.16), (A.23) - (A.26):  
 
 2 2ˆ ˆ ˆ/ ) ( )) /( )oplim s plim(1+(n/(p-n)))(plim( /p) - plim( p plim for s p nυ υ υ Y β - β υ υ′ ′ ′= ≡ −   (A.31) 
  
              2 2

1 1 0 0where foro
0 0 o 0 o oω Fθ ω Dω ω Dω ω′ ′ ′= − = − > ≠σ σ                                    (A.32) 

 
with E in (A.29), and hence D in (A.19),  positive definite. Eqn (16) in Proposition 3 follows 
from (A.32) and (A.24), and eqn (17) from (A.32) and (A.33) - (A.34) below when V is diagonal.  
 
Proof of Proposition 4. We may show using (A.18) that if [ ] for all ,kj jj k j JV = ∈δ σ , where δkj 
is Kronecker’s delta, so that V is a diagonal matrix: 
 
        E = ("’σj

2" + V0) and 1 2 2 2 2
1 1 1[( / ) (( / ))]kj k j k j kb bD E δ σ σ σ σ ζ−≡ = −                             (A.33) 
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           2 2 2
0 1 1 1

2

[ ] , (1 ( / ))
n

kj jj j j
j

where for k j J and bV δ σ ε ζ σ σ
=

≡ ≡ + ∑ >0                               (A.34) 

 
with D("’σj

2 "  + V0 ) = I, given (A.9). From (A.23)-(A.24), (A.33) and (A.34), if V is diagonal: 
 
     T /!(F1

2 , 0, ..,0)’, 2
1 1 1[ ]b for J0ω σ ε′= − ,  2 2

1 1 1[ / ]j jb for j J0Dω σ ζσ ε′= −             (A.35)                        
 
Hence from (A.5), (A.25) – (A.28) and (A.36):  
 

         
1

2
21

1 1
ˆ ( ) / 2,...,k k k j k j kj j

j J
plim b b b for k n mσθ β β β σ

ζ ∈

≡ − = − + = +∑                             (A.36) 

 
Proof of Propositions 5 – 10. These follow directly from (A.34), (A.36) and the stability 
condition (20).  
 
Proof of Proposition 11. The OLS t-statistic for testing the null hypothesis that 0kβ =  is given 
(see e.g. [8, p. 182]) by: 
 
                      0.5 0.5ˆ ˆ/( ) /( )o

k k kk k k k o kk ot s with t plim t s for s plim sβ ς β ς′= ≡ = ≡                          (A.37) 
 
for any given set of observations Y0 and the associated diagonal elements kkς of 1

0( )0Y Y −′ , with 

kk kkplimς ς≡ . If the OLS estimates were unbiased, we would have: 
 
                             0.5

1 1
ˆ /( )o

k k o k ok k kkand s with plim t tβ β σ β σ ς= = = ≡                                 (A.38) 
 
However, eqns (16), (17), (27) and (29) imply that for 0kβ ≠ , when 0J ≠ Φ : 
 

0

0.5 0.5 0.5 2 2 0.5
1 1 1

ˆ ˆ/( ) ( / ) / (1 ( / )) /o o
k k k kk k ok k k j kj k j

j J
plim t t with t t b bβ ζ σ ς β ζ β σ β σ ζ

∈

′ ′= = = = − ∑     (A.39) 

 
implying that the asymptotic proportionate bias, ( ) /k ok okt t t′ −  is given by (26) in Proposition 11.   
 
Proof of Propositions 12 – 13. These follow directly from eqns (16), (17), (27) and (29).  
 
Proof of Propositions 14 – 17. These follow from eqn (16) and differentiation of eqn (17). 
 
Proof of Proposition 18. If we define r

kθ  as the value of the bias ˆ
k kplim β β−  when equation 

1r J∈  is not included in the set of simultaneous equations in (4), with { }1 1rJ J r≡ − , we have 
from (A.36), (27) and (29): 
 
                2 2

1 1 1( ( ) ( ( ) / )) /r
k k k k r r k r kr r rb b b∆ θ θ θ ζ ζ σ β σ ζ≡ − = − − +                                         (A.40) 
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1

2 0 2 2 2 2
1 1 1 1 1

ˆ( ) /( ) (1 ( / )) 1
r

r r k kr r r r j j
j J

b b b where bσ β ζ σ ζ σ σ
∈

= − + ≡ + >∑                           (A.41) 

 
Proposition 18 follows directly from (A.40) – (A.41)  
 
Proof of Proposition 19. Let 1Z  be the matrix composed of the first m′  columns of Z , 2Z  the 

matrix composed of the last m m′−  columns of Z ,  [ , ]≡1 1Y X Z  and ˆ′′β  the OLS estimate of 
[ ]β′′ ≡ kβ  for k = 2,..., n + m′ , with [ ]β′′′ ≡ kβ  for k = n + m +1,..., n + m′ . We then have: 

 
           1 1

1 1 1
ˆ ( ) ( ) ( )plim plim plim− −′′ ′ ′ ′′ ′′′ ′′ ′′′ ′ ′= + + = *

1 1 2 1 1β Y Y Y Y β Z β υ β + T β + Y Y Y υ               (A.42) 
                                 
for 1

1( )plim −′ ′≡*
1 1 2T Y Y Y Z . Since from (A.2), [ , ]≡0 1 2Y Y Z : 

 

    ′0 0Y Y =
⎛ ⎞′ ′
⎜ ⎟⎜ ⎟′⎝ ⎠

1 1 1 2

2 1 2 2

Y Y Y Z
Z 'Y Z Z

with 1
1( ) and hence − ⎛ ⎞′ ′ ′≡ + =⎜ ⎟

⎝ ⎠
1 1

0 0 1 1 1 2 1
1 1

P Q
Y Y   Y Y P Y Z R I

R S
            (A.43)                      

 
where 1P  is ( n m′+ )x( n m′+ ), 1Q   is ( n m′+ )x( m m′− ), 1R   is ( m m′− )x( n m′+ ),  and 1S is 
( m m′− )x( m m′− ). Since the predetermined variables in 2Z  are uncorrelated with υ , plim ′2Z υ . 
= 0 . Hence from (A.42) and (A.43): 
 
 1

1( ) ( ), ( )plim +  where  plim plim− ′ ′′ ′ ′ ′= ≡ + ≡o * oo o oo
1 1 1 1 1 2 1 1 1 2Y Y Y υ θ T θ θ PY υ Q Z υ  θ R Y υ+ S Z υ (A.44)     

 
From (A.5) and (A.43), oθ corresponds to the first 1n m′+ −  rows, and ooθ to the last 
m m′− rows, of the asymptotic bias θ  in (A.5) that results when all n m+ variables are included 
in the OLS regression. (A.42) and (A.44) in turn imply equation (35) in Proposition 19. 
 
We may re-write equation (4) in the form: 
 
                           where+ = ≡ −1 1 o o 2 oXB Z C U U U Z C                                                      (A.45) 
 

1C  consists here of the first m′ rows, and oC  of the last m m′− rows, of C . The covariance 

matrix associated with oU is ′≡ +o o o oV V C Ω C , where oΩ  is the ( )m m′− x ( )m m′−  (positive 
definite) covariance matrix for the m m′− excluded predetermined variables. (A.45) is now of the 
same form as (4), but with a new covariance matrix oV  in place of the original covariance matrix  
V  for the RHS disturbance terms, and with the last m m′− predetermined variables excluded 
from the LHS of the first equation and all other equations. Eqns (36) and (37) of Proposition 19 
then follow from a parallel application of Propositions 1 and 4 respectively to this transformed 
equation system. 
 
Proof of Proposition 20. Using (38), we may express eqn (4) in the form: 

 
          ,+ + + = + + + =1 11 2 21 1 11 2 21 1 1 12 2 22 1 12 2 22 2X B X B Z C Z C U X B X B Z C Z C U               (A.46) 
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where 1U  contains the first n′  rows of U and 2U  the remaining n n′−  rows of U ,  and 1X  
contains the first n′  , and 2X  the remaining, n n′− columns of X .  Hence:  
                              = − − − +-1 -1 -1 -1

2 1 12 22 1 12 22 2 22 22 2 22X X B B Z C B Z C B U B                                      (A.47) 
  
 if 22B  is non-singular. Substituting (A.47) into the first part of (A.46) yields: 
 
  11 1 1( ( ) )where for′′ ′′ ′′ ′′+ = ≡ − − − ≡ -1

1 1 11 1 1 2 21 22 1 2 1 0 22 21X B Z C U U U Z C C A U A A A B B           (A.48)  
 
              ,[ ] ( ) for , ,k jb k j J′′ ′′ ′≡ ≡ − ∈11 11 12 1 oB B B A A 11 ( )′′ ≡ −11 12 1 oC C C A A                           (A.49) 
 
and post-multiplication by [ / ] for ,kj j k j Jδ ϑ ′≡ ∈oA , where jϑ  is the element  in the jth row 
and jth column of the matrix ( )12 1 11B A B− , ensures that 1 for all 2,...,jjb j n′′ ′= − = . (A.48) is 
now of the same form as (4), but with an associated covariance matrix for 1′′U given by ′′V  in 
(39). We can now apply parallel versions of Proposition 1, and of Proposition 4 if  ′′V  is 
diagonal, to (A.48), yielding Proposition 20. 
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