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Abstract

This paper proposes a test for the hypothesis that two samples have the same distri-

bution. The likelihood ratio test of Portnoy (1988) is applied in the context of the

consistent series density estimator of Crain (1974) and Barron and Sheu (1991). It is

proven that the test, when suitably standardised, is asymptotically standard normal

and consistent against any complementary alternative. In comparison with the es-

tablished Kolmogorov-Smirnov and Cramér-von Mises procedures the proposed test

enjoys broadly comparable finite sample size properties, but vastly superior power

properties.



1 Introduction

The problem of testing whether two independent samples are drawn from the same

distribution is ubiquitous in applied statistics. Statistical tests for the two-sample hy-

pothesis are commonly adaptations of tests that an identically and independently dis-

tributed sample has a particular, known, distribution. Examples are the Kolmogorov-

Smirnov and Cramér-von Mises procedures, see Darling (1957) for detailed exposition

in the single sample case and Kiefer (1959) for multi-sample extensions. A fuller ac-

count of these and other procedures can be found in Conover (1999).

This paper instead derives a test for the two-sample problem based upon the

goodness of fit tests of Marsh (2005) and Claeskens and Hjort (2004). Those tests,

although differing in terms of how the null hypothesis is imposed, are essentially

the likelihood ratio test of Portnoy (1988), made non-parametric via the consistent

exponential series density estimator of Crain (1974, 1976 & 1977) and Barron and

Sheu (1991). Consequently it is relatively straightforward to establish the necessary

asymptotic properties; first that the test, when appropriately standardised, is asymp-

totically standard normal and second that it is consistent against any complimentary

alternative.

Of concern in applied research, for any suggested procedure, are three things;

whether implementation is intuitive and straightforward, whether empirically relevant

critical values (i.e. having actual size close to nominal) are readily available and

whether the test offers power against theoretically relevant alternatives.

In terms of implementation, the Kolmogorov-Smirnov and Cramér-von Mises are

based upon criteria utilising the sup and L2 norms on the space of distributions.

In particular the Cramér-von Mises has appeal, see Anderson (1962), in that the

resultant test can be written entirely in terms of the respective ranks of observations

from the two samples within a pooled sample. The proposed test is instead based

upon the Kullback-Leibler (Entropy) distance, on the space of densities. Specifically,

1



it is directly related to a likelihood ratio test for a simple hypothesis in the (albeit

infinite) exponential family. In addition, as will be exposed below, the form of the

statistic actually only depends upon the estimated parameters in that family and the

raw moments of the samples themselves. In practice the proposed test involves only

testing a simple hypothesis in the exponential family, with only the dimension of that

family to be determined. Following Marsh (2005) the data driven selection criteria

of both Akaike (1974) and Schwarz (1978) may be easily applied. Either criterion

delivers test which is relatively straightforward to implement.

Regarding the availability of critical values, for the two-sample Cramér-von Mises

procedure, Anderson (1962) provides a numerical approximation, while Kim (1969)

provides an asymptotic distribution function for the Kolmogorov-Smirnov procedure.

Although theoretically critical values may instead be found through simulation, hav-

ing empirically relevant tabulated values is more convenient for applied problems.

The proposed likelihood ratio statistic, when not standardised with respect to its

degrees of freedom is asymptotically Chi-square. Critical values from standard Chi-

square tables are shown, in this paper, to have finite sample numerical properties not

dissimilar to those tabulated for the established tests. Further numerical evidence

involving comparisons of these two established procedures while others can be found

in Burr (1964) and Dufour and Farhat (2002).

Since all of these tests are distribution free, and hence critical values could be

directly simulated, albeit at considerable numerical cost, we must consider numerical

performance under the alternative. Power is examined by considering alternatives in

which the samples have distributions differing in terms of their moments. Excepting

the case of different means, where the performance is comparable, the proposed non-

parametric likelihood ratio test has significantly more power. For certain alternatives

involving distributions with different variances, skewness or kurtosis the proposed

test may be as much as four or even five times more powerful than either of the

established procedures.
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The plan for the rest of the paper is as follows, the next section provides the

main definitions and results for both the density estimator and the asymptotics for

the resultant two-sample non-parametric likelihood ratio test. Section 3 details the

numerical experiments of the paper and is followed by brief conclusions. An appendix

contains the proof of the theorem containing the asymptotic results as well as tables

containing the numerical results.

2 A Two-Sample Likelihood Ratio Test

Let {Xi}nXi=1 and {Yi}nYi=1 be i.i.d. samples taken from the random variables X and

Y respectively, having common sample space R. Let F (τ) = Pr[X ≤ τ ] and G(τ) =

Pr[Y ≤ τ ], and suppose we wish to test

H0 : F (τ ) = G(τ ) for all τ ∈ R,

against any complimentary alternative. In order to apply the likelihood ratio test of

Portnoy (1988) in this context we will employ the exponential series density estimator

first employed by Crain (1974, 1976 and 1977) and extended by Barron and Sheu

(1991).

To proceed define the monotone function h(τ) : R→(−a, a), a <∞, so that

xi = h(Xi) and yi = h(Yi),

or generically x = h(X) and y = h(Y ) and denote their density functions as px(h)

and py(h), respectively. The null hypothesis implies that px(h) = py(h) = p(h). Let

φj(h), j = 1, ...,m be a set of linearly independent functions spanning (−a, a) then
according to Barron and Sheu (1991) the exponential series estimator for p(h) is the

maximum likelihood estimator (mle) in the family

ph(θ) = exp

(
mX
j=1

θjφj(h)− ψm(θ)

)
, (1)
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where θ = (θ1, ..., θm)0 and the cumulant function is defined by

ψm(θ) = ln

Z a

−a
exp

(
mX
j=1

θjφj(h)

)
dh. (2)

Details on the implementation of the estimator may be found in Marsh (2005).

To proceed, given samples {xi}nXi=1 and {yi}nYi=1 define the following vectors in Rm

θ̂x :
R a
−a φj(h)ph(θ̂x)dh =

1
nX

PnX
i=1 φj(xi)

θ̂y :
R a
−a φj(h)ph(θ̂y)dh =

1
nY

PnY
i=1 φj(yi)

θ0x :
R a
−a φj(h)ph(θ0x)dh =

R a
−a φj(h)px(h)dh

θ0y :
R a
−a φj(h)ph(θ0y)dh =

R a
−a φj(h)py(h)dh



j = 1, ..,m, (3)

and define the Sobolev space of functions, W r
2 , so that f(x) ∈ W r

2 if the (r − 1)th

derivative of f(.) is absolutely continuous and the rth derivative is square integrable.

The pertinent results of Crain (1973, 1974 and 1976) and Barron and Sheu (1991)

can be summarized in the following lemma:

Lemma 1 Let ln(p(h)) ∈W r
2 with r ≥ 2 and suppose that as nX , nY and m→∞,

nX
nY

= O(1) and
m3

nX
= o(1),

then:

(i) For all nX , nY and m, θ̂x and θ̂y exist and are unique and as m → ∞, θ0x and
θ0y exist and are unique.

(ii) Let D(p1|p2) denote the Kullback-Leibler divergence then

D (ph(θ0x)|px(h)) = Or
¡
m−2r

¢
D
³
ph(θ̂x)|px(h)

´
= Op

µ
m

nX
+m−2r

¶
,
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and similarly for D
³
ph(θ̂y)|p(h)

´
.

(iii) Let |.| be Euclidean distance in Rm, then |θ̂x− θ0x|, |θ̂y− θ0y| are Op
³p

m/nX
´
.

The importance of the set of results comprising Lemma 1 is that we can asymp-

totically approximate the densities px(h) and py(h) by ph(θ0x) and ph(θ0y). Moreover,

since θ0x and θ0y are the unique solutions to lines 3 and 4 of (3) then the two-sample

hypothesis can (asymptotically in m) be reformulated as

lim
m→∞

H∗
0 : θ0x = θ0y vs. H1 : θ0x 6= θ0y. (4)

Consequently, the test statistic can be formulated in terms of likelihood ratio tests

for the (asymptotically) simple hypothesis θ0x = θ0y in the exponential family (1).

That is, rather than being based upon either the sup or L2 norms on distributions

of the Kolmogorov-Smirnov and Cramér-von Mises procedures, here we exploit the

Kullback-Leibler (relative entropy) distance on densities.

The crucial asymptotic results required for the two-sample case follow almost

trivially from the single sample. First, notice that under the null hypothesis (4) and

via the triangle inequality

|θ̂x − θ̂y| ≤ |θ̂x − θ̂x0|+ |θ̂y − θ̂x0| = Op
µr

m

nX

¶
, (5)

while given the additivity of the Kullback-Leibler divergence

D
³
ph(θ̂x)|ph(θ̂y)

´
= Op

µ
m

nX
+m−2r

¶
. (6)

In order to test H∗
0 in (4) define, for a sample h1, .., hn,

pθ̂ (h) = pθ̂ (h1, .., hn) = lim
m,n→∞ ,m3/n→0

sup
θ∈Rm

exp

(
mX
j=1

θj

nX
i=1

φj(hi)− nψm (θ)
)
. (7)

Thus we can write a likelihood ratio

Λhθ1,θ2 = ln

µ
pθ1 (h)

pθ2 (h)

¶
,
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which is, implicitly, a test for the simple null hypothesis θ = θ1 against θ = θ2 using

a sample of size n on h. From this can define our two-sample likelihood ratio test,

Λ
x,y

θ̂x,θ̂y
= Λx

θ̂x,θ̂y
+ Λ

y

θ̂x,θ̂y
= ln

Ã
pθ̂x (x)

pθ̂y (x)

!
+ ln

Ã
pθ̂y
¡
y
¢

pθ̂x
¡
y
¢! . (8)

Alternatively, in terms of Portnoy’s (1988) test we can further decompose so that

Λ
x,y

θ̂x,θ̂y
= ln

µ
pθ̂x (x)

pθ0 (x)

¶
+ ln

Ã
pθ0 (x)

pθ̂y (x)

!
+ ln

Ã
pθ̂y
¡
y
¢

pθ0
¡
y
¢!+ lnÃpθ0 ¡y¢

pθ̂x
¡
y
¢! , (9)

where under the null; θ0 = θ0x = θ0y. That is the decomposition of the likelihood ratio

in (9) implies that the test can be interpreted as the sum of four likelihood ratios for

testing the two hypotheses; θ0x = θ0 and θ0y = θ0 using both of the samples on X

and Y.

Formally we will reject H∗
0 : θ0x = θ0y in favour of H1 : θ0x 6= θ0y if

Λ
x,y

θ̂x,θ̂y
> k, (10)

where k is a suitably chosen critical value. As mentioned in the introduction, there

is a relative dearth of distributional results for nonparametric two-sample tests, par-

ticularly in comparison with their one sample counterparts. Therefore the following

Theorem demonstrates that a standardised version of the test is asymptotically stan-

dard normal under H∗
0 and that under H1 the test is consistent.

Theorem 1 (i) Let

λnX ,nY =
Λ
x,y

θ̂x,θ̂y
−m

√
m

,

then

λnX ,nY →d N(0, 1),

(ii) define kα by Pr[N [0, 1] > kα|H0] = α > 0, then

Pr[λX,Y > kα|H1]→ 1,

as nX , nY &m→∞ and m3/nX → 0.
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In summary, Theorem 1 establishes the necessary asymptotic theory for the two-

sample test. Specifically, and unlike current tests, we have a standard asymptotic

distribution under the null. Moreover consistency follows, almost trivially, from the

properties of likelihood ratio tests in the exponential family.

Implementation of the test is particularly straightforward. From (7) we have

Λ
x

θ̂x,θ̂y
= nX

·³
θ̂x − θ̂y

´0
x̄−

³
ψm(θ̂x)− ψm(θ̂y)

´¸
,

and similarly for Λ
y

θ̂x,θ̂y
, so that from (8), we obtain

Λ
x,y

θ̂x,θ̂y
= nX

·³
θ̂x − θ̂y

´0
(x̄− nY

nX
ȳ)− (1− nY

nX
)
³
ψm(θ̂x)− ψm(θ̂y)

´¸
.

Moreover, in the interesting special case of nX = nY the standardised test simplifies

as

λn =
nX

³
θ̂x − θ̂y

´0
(x̄− ȳ)−m

√
m

→d N(0, 1),

as m,nX →∞ and m3/nX → 0.

3 Numerical Analysis

Theorem 1 demonstrates that asymptotically and under the null hypothesis λnX ,nY

is standard normal. In practice, in order for the asymptotic normal distribution to

serve as a reliable approximation m must be large. This implies a large number of

estimating equations in (3) and hence the potential is for the whole process to become

infeasible. Specifically, other experiments involving the single sample version of the

Portnoy (1988) test, which will not be reported here, suggest that it is only for values

of m above 15 with sample sizes above 500 that the standard normal provides an

acceptable approximation. Instead, as in Portnoy (1988), we can instead utilise the

asymptotic relation

Λm = 2Λ
x,y

θ̂x,θ̂y
→d χ

2
(2m), (11)
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as nX , nY &m → ∞ and m3/nX → 0. That is the Chi-square may be used as a

distributional approximation and, as will be demonstrated numerically, provides a

reasonable approximation to the finite sample distribution of Λm.

More important than the choice of asymptotic benchmark will be how to choose

the dimension of the model, m. Since the likelihood ratios into which the statistic

Λ
x,y

θ̂x,θ̂y
may be partitioned are all likelihood ratio statistics for testing simple hypothe-

ses in the exponential well established data driven selection criteria may be employed.

Specifically, here we will use both the Akaike (1974) information criterion (AIC) as

well as the Bayesian information criterion (BIC) of Schwarz (1978). To implement

these, define the set of integers M = {1, 2, ..., m̄} , and let the estimated dimensions
based upon these criteria be m̂A and m̂B, respectively, then they satisfy

m̂A = argmax
m∈M

h
LX(θ̂x) + LY (θ̂y)− 2m

i
m̂B = argmax

m∈M

h
LX(θ̂x) + LY (θ̂y)−m ln(nXnY )

i
, (12)

where

LX(θ̂x) =

nXX
i=1

mX
k=1

(θ̂x)kφk(xi)− nXψm
³
θ̂x

´
LY (θ̂y) =

nYX
i=1

mX
k=1

(θ̂y)kφk(yi)− nY ψm
³
θ̂y

´
.

Notice that the criteria in (12) impose a common dimension on the estimators for

both samples. It would be possible to optimise separately, however this would merely

introduce an unnecessary complication in terms of using the chi-square distribution

as an approximation. In any case, since both LX(θ) = O(nX) and LY (θ) = O(nY )

for all θ, then

as nX , m̄→∞ , m̄3/nX → 0
m̂A →∞
m̂B →∞

.

That is if we allow m̄ to grow slowly relative to nX then both criteria will deliver a

consistent density estimator for each sample. We shall denote the two resulting test

statistics as Λm̂A
for that based upon the AIC and Λm̂B

for that based upon the BIC.
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The numerical properties of Λm̂A
and Λm̂B

will be compared with those of the

two-sample version of the Kolmogorov-Smirnov and Cramér—von Mises tests, defined

in our notation by

KS =

r
nXnY
nX + nY

sup
i
|FnX (xi)−GnY (yi)| ,

(13)

CM =
nXnY

(nX + nY )
2

"
nXX
i=1

(FnX (xi)− FnX (yi))2 +
nYX
i=1

(GnY (yi)−GnY (xi))2
#
,

where FnX (.) and GnY (.) are the empirical distribution functions of the samples ob-

tained from X and Y respectively. Although these are not the only two-sample tests

currently available, they do enjoy the advantage of having relatively well understood

asymptotic distributions. For the KS test from Kim (1969) as nX , nY →∞ then

Pr[KS ≤ s]→ G(s) = 1− 2
∞X
r=1

(−1)r−1e−2r2s2 ; s > 0.

Asymptotic critical values of nominal size α can be obtained via solution for cKSα of

α = 2
kX
r=1

(−1)r−1e−2r2(cKSα )
2

,

and to 4 decimal places we find

cKS0.05 = 1.358 ; cvKS0.1 = 1.220.

Also from Anderson (1962) CM has the same asymptotic distribution as the single

sample Cramér—von Mises test, as tabulated in Anderson and Darling (1952). Thus

for the CM test we have asymptotic critical values

cCM0.05 = 0.4614 ; cvCM0.1 = 0.3473.

Asymptotic critical values for any Λm test say cvmα , are obtained from Pr[χ
2
m ≤ cvmα ] =

1− α.

The first set of three experiments concern the finite sample performance of the

asymptotic critical values as approximations to the finite sample distribution. For
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the purposes all of the experiments to follow the set M = {3, 4, 5} was optimised
over to construct both the Λm̂A

and Λm̂B
tests, for sample sizes of nX = nY = n =

50, 100, 200, 400.All of the experiments are based upon 5000Monte Carlo replications.

All computations were performed on a Pentium IV 3.0GHz P.C. running Mathematica

4.0. A single replication of all 4 statistics took between 1 and 2 seconds, depending

upon the sample size.

The first experiment consisted of generating samples {Xi}ni=1 and {Yi}ni=1 from
X ∼ Y ∼ N(0, 1), and then samples {xi}ni=1 and {yi}ni=1 lying in (0, 1) via

xi =
3
p
Φ (Xi) ; yi =

3
p
Φ (Yi) (14)

where Φ(.) is the standard normal CDF. The second experiment used the standard

exponential distribution, i.e. X ∼ Y ∼ Exp[1], with then the Exponential CDF

replacing the standard normal in (14). Lastly, the third experiment varies the set up

slightly, in that we assume that {Xi}ni=1 and {Yi}ni=1 are generated from

X ∼ Y ∼
 N(−1, 1) with prob. 0.5

N(1, 1) with prob. 0.5
,

and now xi = F (Xi) where F (.) is the CDF of a N(0, 2) random variable, the yi are

defined similarly.

Deliberately neither xi nor yi are constructed to have the uniform distribution on

(0, 1). The reason, as Marsh (2005) highlights, is that for the selection criteria for

the likelihood ratio tests cannot be consistent, since the uniform is embedded within

the exponential with m = 0 and M cannot contain 0. For the tests based upon the

empirical distribution functions this issue is irrelevant.

The Monte Carlo rejection probabilities are presented in, respectively, Tables 1,2

and 3 in the Appendix. The asymptotic critical values forKS are generally undersized

while those for CM are slightly oversized. The asymptotic Chi-square critical values

used for the Λm̂A
and Λm̂B

tests are oversized, having Monte Carlo size slightly closer

to nominal than is the case for those for the KS test, slightly further than those for
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the CM test. Since the Chi-square approximation seems to work better for smaller

m, for a given n, the BIC, which favours parsimony, has a very slender advantage.

However, the only tangible conclusion that may be reached is that the results in Tables

1 through 3 indicate a consistency in performance in a variety of circumstances.

On the sole basis of the finite sample performance of asymptotic critical values

there is very little basis for preferring one procedure over another. However, five

further experiments examine the comparative power of the proposed tests. For each

of these experiments, again assuming nX = nY = n, the i.i.d. sample {Xi}ni=1 was
generated according to

X ∼ N(0, 1),

while alternatives were considered by generating i.i.d. samples {Yi}ni=1 according to

HA
1 : Y ∼ N(µ, 1) ; µ = .1, .2, .3, .4, .5

HB
1 : Y ∼ N(0, (1 + µ)2) ; µ = .1, .2, .3, .4, .5

HC
1 : Y ∼ χ2(v)−v√

2v
; v = 35, 30, 25, 20, 15, 10, 5

HD
1 : Y ∼

q
v−2
v
tv ; v = 12, 10, 8, 6, , 4

HE
1 : Y ∼

 N(−µ, 1) with prob. 0.5

N(µ, 1) with prob. 0.5
; µ = .1, .3, .5, .7, .9,

,

where χ2(v) and tv represent Chi-Square and Student-t random variables on v degrees

of freedom.

The first four alternatives attempt to classify alternatives in terms of departures

in successive moments, the mean, variance skewness and kurtosis, while holding other

moments constant. Notice though that the excess kurtosis of the standardised Chi-

Square is in fact 12/v. The final experiment considers alternatives which are bi-modal.

For alternatives A,B and D, the null hypothesis is satisfied for µ = 0, while for
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alternatives C and D is obtained in the limit as v →∞.
The simulated powers, based upon Monte Carlo critical values at the 5% sig-

nificance level, of the likelihood ratio tests Λm̂A
and Λm̂B

and of the KS and CM

statistics are presented in Tables 3 through 8 in the Appendix. Collectively the pow-

ers of the two likelihood ratio information criteria based tests are similar. Likewise

the KS and CM have similar power properties to each other. For alternative A,

differing means, in fact the established tests have a slight power advantage. However

for all other moment departures the Λm̂A
and Λm̂B

tests enjoy a significant power

advantage. In fact, in many cases, the power is several orders of magnitude higher.

The same is true for the bi-modal alternatives.

As with the one-sample versions of the Kolmogorov-Smirnov and Cramér-von

Mises tests, it would be possible, in principle, to utilise weighting functions, other

than the unit, such as the particular case in Anderson and Darling (1952). For

example, we might expect that tests with weight specifically in one tail or the other

should fair better against skewed alternatives.

However, before concluding that it must therefore be possible to find versions

of the established tests with powers comparable with those proposed here several

limitations must be considered. Such tests are not yet really feasible, although Canner

(1975) has some limited numerical evidence for a particularly weighted version of

the Kolmogorov-Smirnov. Their asymptotic distributions will be nonstandard, and

moreover as in Anderson and Darling (1952) will have to be developed on a case-by-

case basis. Even then, as Marsh (2005) finds in the single sample goodness of fit case,

a particular weighting function might deliver high power against certain alternatives,

but only at the expense of power against other alternatives. Consequently, in the

absence of explicit knowledge of the direction, at least, of the alternative it would be

difficult to justify any particular weighted version of either the Kolmogorov-Smirnov

and Cramér-von Mises tests.

Notice also that under the assumptions of the paper the two-sample hypothesis
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can be parameterised in terms of an infinite exponential family. Save for the use of

the density estimator the test is essentially the Portnoy (1988) test applied to the

problem of testing the simple hypothesis H∗
0 : θ0x = θ0y. Although no nonparametric

test, in this setting, can claim optimality, at least in the asymptotic regimem,n→∞,
m3/n→ 0 the proposed test will be coincident with a point optimal test for H∗.

0 .

4 Conclusions

This paper has proposed nonparametric two-sample tests based upon the criteria of

Portnoy (1988), exploiting the series density estimator of rain (1974) and Barron and

Sheu (1991). The asymptotic distribution of the test is standard under the null and

diverges under the alternative, ensuring consistency. Numerical evidence suggests

the finite sample performance of asymptotic critical values for the test is at least

equivalent to those for the Kolmogorov-Smirnov test, slightly worse than those for

the Cramér—von Mises tests. On the other hand evidence is presented which indicates

a clear power superiority for the tests proposed in this paper.
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Appendix
Proof of Theorem 1.

Proof. For part (i) we shall consider the likelihood ratios based on the two samples

separately. Define x̄ = 1
nX

PnX
i=1 φ

x
i , where φxi = (φ1(xi), ..,φm(xi))

0 , and so for the

sample on X we have the series density estimator

pθ̂x (x) = exp
n
nX

³
θ̂0xx̄− ψm

³
θ̂x

´´o
,

where θ̂x is the solution to the first line in (3). On basis of this estimated density we

can define the (log-)likelihood ratio by,

Λx
θ̂x,θ̂y

= ln

Ã
pθ̂x (x)

pθ̂y (x)

!
= nX

n
(θ̂x − θ̂y)

0x̄−
³
ψm(θ̂x)− ψm(θ̂y)

´o
,

where θ̂y now solves the second line in (3). The expansions given in equations (2.1)-

(2.3) of Portnoy (1988) hold for any two values in Rm, and so we can write

ψ0m
³
θ̂x

´
= ψ0m

³
θ̂y

´
+ (θ̂x − θ̂y)

0ψ
00
m

³
θ̂y

´
+
1

2
Eθ̂y

·³
(θ̂x − θ̂y)

0Ux
´2
Ux

¸
+ Λ(θ̃), (15)

where Λ(.) is a remainder and θ̃ lies on a line segment joining θ̂x and θ̂y and Ux =

Vx − Eθ̂y
[Vx] , Vx ∼ ph

³
θ̂y

´
and Vx is distributed independently of X.

Since Λx
θ̂x,θ̂y

is a likelihood ratio it is invariant to reparametrisations of the form

θ → α + βθ, which will be exploited here. Moreover, pθ̂x (x) is in the exponential
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family and hence so is pθ̂x (a+ bx) , consequently and without loss of generality we

can assume that x̄ is standardised in that

ψ0m
³
θ̂y

´
= 0 and ψ

00
m

³
θ̂y

´
= Im. (16)

Therefore, and since by definition ψ0m
³
θ̂x
´
= x̄ we can rewrite (15) as

(θ̂x − θ̂y) = x̄− 1
2
Eθ̂y

·³
(θ̂x − θ̂y)

0Ux
´2
Ux

¸
+ Λ(θ̃). (17)

Multiplying (17) first by x̄0 we have

(θ̂x − θ̂y)
0(θ̂x − θ̂y) = (θ̂x − θ̂y)

0x̄− 1
2
Eθ̂y

·³
(θ̂x − θ̂y)

0Ux
´3¸

+ (θ̂x − θ̂y)
0Λ(θ̃) (18)

while instead multiplying (17) by (θ̂x − θ̂y)
0 we get

(θ̂x − θ̂y)
0x̄ = x̄0x̄− 1

2
Eθ̂y

·³
(θ̂x − θ̂y)

0Ux
´2
(x̄0Ux)

¸
+ x̄0Λ(θ̃). (19)

Thus subtracting (19) from (18) yields

|(θ̂x − θ̂y)
0 − x̄| = 1

2
Eθ̂y

·³
(θ̂x − θ̂y)

0Ux
´2 ³

x̄− (θ̂x − θ̂y)
´0
Ux

¸
+
³
(θ̂x − θ̂y)− x̄

´0
Λ(θ̃).

Noting that from (5) under H∗
0 we have |θ̂x− θ̂y| = Op

³p
m/nX

´
and moreover since

the elements of Ux are bounded the moment condition required for Theorem 3.1 of

Portnoy (1988) are automatically satisfied, then as there it is true that³
(θ̂x − θ̂y)− x̄

´0
Λ(θ̃) = Op

Ãµ
m

nX

¶2!
. (20)

Using the inequality¯̄̄̄
Eθ̂y

·³
x̄− (θ̂x − θ̂y)

´0
Ux

³
(θ̂x − θ̂y)

0Ux
´2¸¯̄̄̄

≤ Eθ̂y

"µ³
x̄− (θ̂x − θ̂y)

´0
Ux

¶2#1/2
Eθ̂y

·³
(θ̂x − θ̂y)

0Ux
´4¸1/2

,

we then find,¯̄̄̄
1

2
Eθ̂y

·³
(θ̂x − θ̂y)

0Ux
´2 ³

x̄− (θ̂x − θ̂y)
´0
Ux

¸¯̄̄̄
= Op

Ãµ
m

nX

¶2!
,
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similar to equation (3.7) of Portnoy (1988), although it should be noted that this

applies for our standardising coordinates implying (16).

If instead we substitute (19) into (18) rather than subtracting then on account of

(20) we also obtain

|(θ̂x − θ̂y)
0(θ̂x − θ̂y)− x̄0x̄| = Op

Ãµ
m

nX

¶2!
.

Again noting (16) the likelihood ratio permits a Taylor expansion with remainder of

the form,

2Λx
θ̂x,θ̂y

= 2
n
ln
¡
pθ̂x (x)

¢− ln³pθ̂y (x)´o
= nX

(
(θ̂x − θ̂y)

0(θ̂x − θ̂y) +
1

3
Eθ∗

"µ³
θ̂x − θ̂y

´0
Ux∗

¶3#)
,

where θ∗ ∈
³
θ̂x, θ̂y

´
and Ux∗ = Vx∗ −Eθ∗ [Vx∗] , while also noting that again since Ux∗

is a bounded random variable, then

Eθ∗

"µ³
θ̂x − θ̂y

´0
Ux∗

¶3#
= Op

³
|θ̂x − θ̂y|3

´
= Op

Ãµ
m

nX

¶3/2!
,

and so

2Λx
θ̂x,θ̂y

= nX x̄
0x̄+Op

Ãs
m3

nX

!
.

Since
2Λx

θ̂x,θ̂y
−m

√
2m

=
nX x̄

0x̄−m√
2m

+Op

Ãs
m2

nX

!
,

and given the martingale central limit theorem, for example Theorem 9.3.1 of Chow

and Teicher (1988), which implies that

nX x̄
0x̄−m√
2m

→d N(0, 1),

so that noting m2/nX → 0 then

2Λx
θ̂x,θ̂y
−m

√
2m

∼ N(0, 1) + op(1).
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To complete part (i) consider the sample {yi}ni=1 derived form Y , then proceeding

exactly as above, for

Λ
y

θ̂x,θ̂y
= nY

n
(θ̂y − θ̂x)

0ȳ −
³
ψm(θ̂y)− ψm(θ̂x)

´o
,

we can reparameterise according to θ→ γ = a+ bθ, so that now

ψ0m (γ̂x) = 0 and ψ
00
m (γ̂x) = Im.

Proceeding exactly as above and noting the invariance of the likelihood ratio we will

have,
2Λ

y

θ̂x,θ̂y
−m

√
2m

=
nX x̄

0x̄−m√
2m

+Op

Ãs
m2

nY

!
∼ N(0, 1) + op(1).

Then since X and Y are independent, adding the likelihood ratios gives

λ =
2
³
Λx
θ̂x,θ̂y

+ Λ
y

θ̂x,θ̂y

´
− 2m

√
2m

→d N(0, 2) + op(1),

which proves part (i).

For part (ii) put θ0x = θ0 6= θ0y under H1. Though θ̂x and θ̂y still exist and are

unique, now |θ̂x − θ0| and |θ̂y − θ0| are Op (m) . The uniqueness of θ0x and θ0y and

convexity of the exponential density imply that

θ0y 6= θ0x ⇒ ψm(θ0x) 6= ψm(θ0y),

and hence

nX (ψm(θ0x)− ψm(θ0y)) = O(nX).

Further, since the x0is and hence the φk(xi)
0s are i.i.d. with mean zero, the individual

elements of
√
nX x̄ satisfy

1√
nX

Ã
nXX
i=1

φk(xi)

!
= Op(1),

which follows from a standard central limit theorem. Differentiability of ψm(.) over

Rm ensures that under H1

2Λx
θ̂x,θ̂y

= nX
n
(θ̂x − θ̂y)

0x̄−
³
ψm(θ̂x)− ψm(θ̂y)

´o
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→ pnX {(θ0x − θ0y)
0x̄− (ψm(θ0x)− ψm(θ0y))}

=
√
nX

mX
k=1

³
θ
(k)
0x − θ

(k)
0y

´ 1√
nX

nXX
i=1

φk(xi) +O(nX)

= Op(m
√
nX + nX).

Finally, since by assumption m3/nX → 0, then

2Λx
θ̂x,θ̂y

= Op (nX) ,

and by an identical argument also 2Λ
y

θ̂y ,θ̂x
= Op (nY ) , which is sufficient for consis-

tency under H1.

Tables 1-3: Monte Carlo rejection probabilities of the asymptotic critical

values.

Table 1: H0 : X ∼ Y ∼ N(0, 1)
sample size

Test sig. level 50 100 200 400

Λm̂A
0.10 0.126 0.124 0.118 0.108

0.05 0.087 0.078 0.070 0.060

Λm̂B
0.10 0.128 0.123 0.117 0.107

0.05 0.081 0.077 0.072 0.058

KS 0.10 0.068 0.073 0.077 0.087

0.05 0.033 0.036 0.039 0.042

CM 0.10 0.110 0.108 0.105 0.104

0.05 0.056 0.055 0.055 0.053
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Table 2: H0 : X ∼ Y ∼ Exp(1)
sample size

Test sig. level 50 100 200 400

Λm̂A
0.10 0.133 0.125 0.118 0.110

0.05 0.088 0.075 0.068 0.057

Λm̂B
0.10 0.131 0.123 0.116 0.105

0.05 0.083 0.072 0.060 0.055

KS 0.10 0.065 0.069 0.077 0.087

0.05 0.033 0.035 0.038 0.041

CM 0.10 0.115 0.110 0.107 0.105

0.05 0.058 0.055 0.054 0.054

Table 3: H0 : X ∼ Y ∼
 N(−1, 1) with probability 0.5

N(1, 1) with probability 0.5

sample size

Test sig. level 50 100 200 400

Λm̂A
0.10 0.123 0.120 0.114 0.111

.05 0.084 0.075 0.064 0.059

Λm̂B
0.10 0.123 0.113 0.111 0.108

0.05 0.081 0.066 0.063 0.053

KS 0.10 0.069 0.082 0.086 0.083

0.05 0.036 0.038 0.040 0.043

CM 0.10 0.114 0.110 0.108 0.106

0.05 0.058 0.055 0.054 0.054
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Tables 4-8: Monte Carlo rejection probabilities under the alternative

hypotheses.

Table 4: HA
1 : Y ∼ N(µ, 1)

µ

Test 0.1 0.2 0.3 0.4 0.5

Λm̂A
0.125 0.357 0.670 0.919 0.986

Λm̂B
0.119 0.329 0.643 0.897 0.981

KS 0.137 0.410 0.718 0.922 0.991

CM 0.149 0.442 0.771 0.945 0.996

Table 5: HB
1 : Y ∼ N(0, (1 + µ)2)

µ

Test 0.1 0.2 0.3 0.4 0.5

Λm̂A
0.160 0.482 0.806 0.938 0.992

Λm̂B
0.163 0.477 0.799 0.932 0.988

KS 0.066 0.139 0.274 0.413 0.624

CM 0.053 0.096 0.231 0.465 0.708

Table 6: HC
1 : Y ∼ χ2(v)−v√

2v

v

Test 35 30 25 20 15 10 5

Λm̂A
0.192 0.209 0.251 0.295 0.393 0.619 0.928

Λm̂B
0.171 0.198 0.234 0.274 0.394 0.620 0.922

KS 0.077 0.098 0.103 0.117 0.151 0.204 0.373

CM 0.075 0.083 0.094 0.113 0.133 0.175 0.349
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Table 7: HD
1 : Y ∼

q
v−2
v
tv

v

Test 12 10 8 6 4

Λm̂A
0.141 0.174 0.299 0.552 0.964

Λm̂B
0.139 0.172 0.307 0.565 0.969

KS 0.050 0.056 0.073 0.077 0.213

CM 0.050 0.053 0.057 0.064 0.141

Table 8: HE
1 : Y ∼

 N(−µ, 1) with probability 0.5

N(µ, 1) with probability 0.5

µ

Test .1 .3 .5 .7 .9

Λm̂A
0.055 0.124 0.426 0.846 0.994

Λm̂B
0.062 0.130 0.419 0.853 0.996

KS 0.050 0.068 0.117 0.321 0.740

CM 0.050 0.055 0.076 0.182 0.542
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