An Introduction to Matlab for Econometrics

John C. Frain

TEP Working Paper No. 0110
February 2010

Trinity Economics Papers
Department of Economics Trinity College Dublin

An Introduction to MATLAB for Econometrics

John C. Frain. *

February 2010

Abstract

This paper is an introduction to MATLAB for econometrics. It describes the MATLAB Desktop, contains a sample MATLAB session showing elementary MATLAB operations, gives details of data input/output, decision and loop structures, elementary plots, describes the LeSage econometrics toolbox and maximum likelihood using the LeSage toolbox. Various worked examples of the use of MATLAB in econometrics are also given. After reading this document the reader should be able to make better use of the MATLAB on-line help and manuals.

Contents

1 Introduction 4
1.1 Preliminaries 4
1.2 The MATLAB Desktop 6
1.2.1 The Command Window 6
1.2.2 The Command History Window 7
1.2.3 The Start Button 8
1.2.4 The Edit Debug window 8
1.2.5 The Figure Windows 9
1.2.6 The Workspace Browser 9
1.2.7 The Help Browser 9
1.2.8 The Path Browser 10
1.2.9 Miscellaneous Commands 11

[^0]2 Vectors, Matrices and Arrays 11
2.1 A Sample MATLAB session 11
2.1.1 Entering Matrices 11
2.1.2 Basic Matrix operations 12
2.1.3 Kronecker Product 14
2.1.4 Examples of number formats 15
2.1.5 fprintf function 16
2.1.6 element by element operations 16
2.1.7 miscellaneous functions 17
2.1.8 sequences 22
2.1.9 Creating Special Matrices 22
2.1.10 Random number generators 23
2.1.11 Extracting parts of a matrix, Joining matrices together to get a new larger matrix 24
2.1.12 Using sub-matrices on left hand side of assignment 25
2.1.13 Stacking Matrices 26
2.1.14 Special Values 26
2.2 Examples 26
2.3 Regression Example 28
2.4 Simulation - Sample Size and OLS Estimates 31
2.5 Example - Macroeconomic Simulation with Matlab 34
3 Data input/output 39
3.1 Native MatLab data files 39
3.2 Importing from Excel 40
3.3 Reading from text files 40
3.4 Exporting data to EXCEL, STATA and other programs 41
3.5 Stat/Transfer 41
3.6 Formatted Output 41
3.7 Producing material for inclusion in a paper 42
4 Decision and Loop Structures. 43
5 Elementary Plots 46
6 Systems of Regresssion Equations 47
6.1 Using Matlab to estimate systems of regression equations 47
6.2 Exercise - Using Matlab to estimate a simultaneous equation systems 59
7 User written functions in MATLAB 59
8 The LeSage Econometric Toolbox 61
9 Maximum Likelihood Estimation using Numerical Techniques 82
10 Octave, Scilab and R 86
10.1 Octave 86
10.2 Scilab 87
10.3 R 87
A Functions etc. in LeSage Econometrics Toolbox 89
A. 1 Regression 89
A.1.1 Programs 89
A.1.2 Demonstrations 90
A.1.3 Support functions 91
A. 2 Utilities 92
A.2.1 Utility Function Library 92
A.2.2 demonstration programs 94
A. 3 Graphing Function Library 94
A.3.1 graphing programs 94
A.3.2 Demonstration Programs 94
A.3.3 Support Functions 94
A. 4 Regression Diagnostics Library 95
A.4.1 regression diagnostic programs 95
A.4.2 Demonstration Programs 95
A.4.3 support functions 95
A. 5 vector autoregressive function library 96
A.5.1 VAR/BVAR functions 96
A.5.2 Demonstration Programs 96
A.5.3 Demonstration Programs - continued 97
A.5.4 Support Functions 97
A. 6 Co-integration Library 98
A.6.1 Co-integration testing routines 98
A.6.2 Demonstration Programs 98
A.6.3 Support functions 98
A. 7 Gibbs sampling convergence diagnostics functions 99
A.7.1 Convergence testing functions 99
A.7.2 Demonstration Programs 99
A.7.3 Support Functions 99
A. 8 Distribution functions library 100
A.8.1 pdf, cdf, inverse functions 100
A.8.2 Random Samples 101
A.8.3 Demonstration and Test programs 102
A.8.4 Support Functions 102
A. 9 Optimization functions library 102
A.9.1 Optimization Functions 102
A.9.2 Demonstration Programs 103
A.9.3 Support Functions 103
A. 10 Spatial Econometrics 103
A.10.1 Functions 103
A.10.2 Demonstration Programs 104
A.10.3 Support Functions 105

1 Introduction

1.1 Preliminaries

These notes are a guide for students of econometrics who wish to learn MATLAB in MS Windows. I define the functions of MATLAB using simple examples. To get the best benefit from these notes you should read them sitting in front of a computer entering the various MATLAB instructions as you read the notes. The material in the first three sections is elementary and will be required by all economists starting with MATLAB. The remaining sections contain some more advanced material and should be read as required.

In these notes I have used a mono-spaced font for MATLAB instructions and for computer input and output. Descriptive material, explanations and commentary on the computer input/output is given in the current font.

While the first aim of these notes is to get the reader started in the use of MATLAB for econometrics it should be pointed out that MATLAB has many uses in economics. In recent years it has been used widely in what has become known as computational economics. This area has applications in macroeconomics, determination of optimal policies and in finance. Recent references include Kendrick et al. (2006), Marimon and Scott (1999), Miranda and Fackler (2002) and Ljungqvist and Sargent (2004).

I do not know of any book on MATLAB written specifically for economics. Creel (2008) is a set of lecture notes on econometrics which can be downloaded from the web. This contains examples of quantitative econometric analysis using GNU Octave which has a syntax similar to Matlab (see section 10.1). LeSage (1999) is a free econometrics toolbox available for download from http://www.spatial-econometrics.com/. This site also contains links to several other MATLAB resources useful in econometrics. A free ARCH/GARCH toolbox is available at http://http://www.kevinsheppard.com/ wiki/MFE_Toolbox. MathWorks, the composers of MATLAB have a list of books using MATLAB for Economics/Finance (see www.mathworks.com). They have also issued a new econometrics toolbox (see http://www.mathworks.com/products/econometrics/). The MathWorks overview of this toolbox indicates that is is targeted at econometric time series in finance. For advanced applications in applied probability Paolella (2006, 2007) are comprehensive accounts of computational aspects of probability theory using MATLAB. Higham and Higham (2005) is a good book on MATLAB intended for all users of MATLAB. Pratap (2006) is a good general "getting started" book. There are also many excellent books covering MATLAB for Engineers and/or Scientists which you might find useful if you need to use MATLAB in greater depth.

These notes can not give a comprehensive account of MATLAB. Your copy of MATLAB comes with one of the best on-line help systems available. Full versions of the manuals are available in portable document format on the web at http:/www.mathworks.com.

MATLAB started life, in the late 70 's, as a computer program for handling matrix operations. Over the years it has been extended and the basic version of MATLAB now contains more than 1000 functions. Various "toolboxes" have also been written to add specialist functions to MATLAB. Anyone can extend MATLAB by adding their own functions and/or toolboxes. Any glance at an econometrics textbook shows that econometrics involves much matrix manipulation and MATLAB provides an excellent platform for implementing the various textbook procedures and other state of the art estimators. Before you use MATLAB to implement procedures from your textbook you must understand the matrix manipulations that are involved in the procedure. When you implement them you will understand the procedure better. Using a black box package may, in some cases, be easier but how often do you know exactly what the black box is producing. Using MATLAB for econometrics may appear to involve a lot of extra work but many students have found that it helps their understanding of both matrix theory and econometrics.

In MATLAB as it all other packages it makes life much easier if you organise your work
properly. The procedure That I use is some variation of the following -

1. Set up a new directory for each project (e.g. s: \Matlab\project1)
2. Set up a shortcut for each project. The shortcut should specify that the program start in the data directory for the project. If all your work is on the same PC the shortcut is best stored on the desktop. If you are working on a PC in a computer lab you will not be able to use the desktop properly and the shortcut may be stored in the directory that you have set up for the project. If you have several projects in hand you should set up separate shortcuts and directories for each of them. Each shortcut should be renamed so that you can associate it with the relevant project.
3. Before starting MATLAB you are strongly advised to amend the options in Windows explorer so that full filenames (including any file extensions allocated to programs) appear in Windows Explorer and any other Windows file access menus.

1.2 The MATLAB Desktop

The MATLAB desktop has the following parts -

1. The Command Window
2. The Command History Window
3. The Start Button
4. The Documents Window (including the Editor/(Debugger) and Array Editor
5. The Figure Windows
6. The Workspace Browser
7. The Help Browser
8. The Path Browser

1.2.1 The Command Window

The simplest use of the command window is as a calculator. With a little practice it may be as easy, if not easier, to use than a spreadsheet. Most calculations are entered almost exactly as one would write them.

```
>> 2+2
ans = 4
>> 3*2
ans = 6
```

The object ans contains the result of the last calculation of this kind. You may also create an object a which can hold the result of your calculation.

```
>> a=3^3
a = 27
>> a
a = 27
>> b=4^2+1
b = 17
>> b=4^2+1;
% continuation lines
>> 3+3 ...
+3
ans = 9
```

Type each instruction in the command window, press enter and watch the answer. Note

- The arithmetic symbols +, -, *, / and ^ have their usual meanings
- The assignment operator $=$
- the MATLAB command prompt >>
- A ; at the end of a command does not produce output but the assignment is made or the command is completed
- If a statement will not fit on one line and you wish to continue it to a second type an ellipsis (...) at the end of the line to be continued.

Individual instructions can be gathered together in an m-file and may be run together from that file (or script). An example of a simple m-file is given in the description of the Edit Debug window below. You may extend MATLAB by composing new MATLAB instructions using existing instructions gathered together in a script file.

You may use the up down arrow keys to recall previous commands (from the current or earlier sessions) to the Command Window. You may the edit the recalled command before running it. Further access to previous commands is available through the command window.

1.2.2 The Command History Window

If you now look at the Command History Window you will see that as each command was entered it was copied to the Command History Window. This contains all commands
previously issued unless they are specifically deleted. To execute any command in the command history double click it with the left mouse button. To delete a commands from the history select them, right click the selection and select delete from the drop down menu.

1.2.3 The Start Button

This allows one to access various MATLAB functions and works in a manner similar to the Start button in Windows

1.2.4 The Edit Debug window

Clearly MATLAB would not be of much use if one was required, every time you used MATLAB, to enter your commands one by one in the Command Window. You can save your commands in an m-file and run the entire set of commands in the file. MATLAB also has facilities for changing the commands in the file, for deleting command or adding new commands to the file before running them. Set up and run the simple example below. We shall be using more elaborate examples later

The Edit Window may be used to setup and edit M-files. Use FilelNewlm-file to open a new m-file. Enter the following in the file \vol_sphere.m

```
% vol_sphere.m
% John C Frain revised 12 November 2006
% This is a comment line
% This M-file calculates the volume of a sphere
echo off
r=2
volume = (4/3) * pi * r^3;
string=['The volume of a sphere of radius ' ...
    num2str(r) , is ' num2str(volume)];
disp(string)
% change the value of r and run again
```

Now Use File|Save As vol_sphere.m. (This will be saved in your default directory if you have set up things properly check that this is working properly).

Now return to the Command Window and enter vol_sphere. If you have followed the instructions properly MATLAB will process this as if it were a MATLAB instruction.

The edit window is a programming text editor with various features colour coded. Comments are in green, variables and numbers in black, incomplete character strings in red and language key-words in blue. This colour coding helps to identify errors in a program.

The Edit window also provides debug features for use in finding errors and verifying programs. Additional features are available in the help files.

1.2.5 The Figure Windows

This is used to display graphics generated in MATLAB. Details will be given later when we are dealing with graphics.

1.2.6 The Workspace Browser

This is an option in the upper left hand window. Ensure that it is open by selecting the workspace tab. Compare this with the material in the command window. Note that it contains a list of the variables already defined. Double clicking on an item in the workspace browser allows one to give it a new value.

The contents of the workspace can also be listed by the whos command

1.2.7 The Help Browser

The Help Browser can be started by selecting the [?] icon from the desktop toolbar or by typing helpdesk or helpwin in the Command Window. You should look at the Overview and the Getting Help entries. There are also several demos which provide answers to many questions.

MATLAB also has various built-in demos. To run these type demo at the command prompt or select demos from the start button

The on-line documentation for MatLab is very good. The MatLab www site (http: /www.mathworks.com gives access to various MatLab manuals in pdf format. These may be downloaded and printed if required. (Note that some of these documents are very large and in many cases the on-line help is more accessible and is clearer.

One can also type help at a command prompt to get a list of help topics in the Command Window. Then type help topic and details will be displayed in the command window.

If, for example, you wish to find a help file for the inverse of a matrix the command help inverse will not help as there is no function called inverse. In such a case one may enter lookfor inverse and the response will be

```
INVHILB Inverse Hilbert matrix.
IPERMUTE Inverse permute array dimensions.
ACOS Inverse cosine, result in radians.
ACOSD Inverse cosine, result in degrees.
ACOSH Inverse hyperbolic cosine.
ACOT Inverse cotangent, result in radian.
ACOTD Inverse cotangent, result in degrees.
ACOTH Inverse hyperbolic cotangent.
ACSC Inverse cosecant, result in radian.
ACSCD Inverse cosecant, result in degrees.
```

```
ACSCH Inverse hyperbolic cosecant.
ASEC Inverse secant, result in radians.
ASECD Inverse secant, result in degrees.
ASECH Inverse hyperbolic secant.
ASIN Inverse sine, result in radians.
ASIND Inverse sine, result in degrees.
ASINH Inverse hyperbolic sine.
ATAN Inverse tangent, result in radians.
ATAN2 Four quadrant inverse tangent.
ATAND Inverse tangent, result in degrees.
ATANH Inverse hyperbolic tangent.
ERFCINV Inverse complementary error function.
ERFINV Inverse error function.
INV Matrix inverse.
PINV Pseudoinverse.
IFFT Inverse discrete Fourier transform.
IFFT2 Two-dimensional inverse discrete Fourier transform.
IFFTN N-dimensional inverse discrete Fourier transform.
IFFTSHIFT Inverse FFT shift.
inverter.m: %% Inverses of Matrices
etc.
```

From this list one can see that the required function is inv. Syntax may then be got from help inv.

1.2.8 The Path Browser

MatLab comes with a large number of M-files in various directories.

1. When MatLab encounters a name it looks first to see if it is a variable name.
2. It then searches for the name as an M-file in the current directory. (This is one of the reasons to ensure that the program starts in the current directory.
3. It then searches for an M-file in the directories in the search path.

If one of your variables has the same name as an M-file or a MatLab instruction you will not be able to access that M-file or MatLab instruction. This is a common cause of problems.

The MatLab search path can be added to or changed at any stage by selecting Desktop Tools|Path from the Start Button. Path related functions include
addpath Adds a directory to the MatLab search path
path Display MatLab search path
parh2rc Adds the current path to the MatLab search path
rmpath Remove directory from MatLab search path

The command cd changes the current working directory

1.2.9 Miscellaneous Commands

Note the following MatLab commands
clc Clears the contents of the Command Window
clf - Clears the contents of the Figure Window
If MATLAB appears to be caught in a loop and is taking too long to finish a command it may be aborted by ${ }^{\wedge}$ C (Hold down the Ctrl key and press C). MATLAB will then return to the command prompt
diary filename After this command all input and most output is echoed to the specified file. The commands diary off and diary on will suspend and resume input to the diary (\log) file.

2 Vectors, Matrices and Arrays

The basic variable in MatLab is an Array. (The numbers entered earlier can be regarded as (1×1) arrays, Column vectors as $(n \times 1)$ arrays and matrices as $(n \times m)$ arrays. MATLAB can also work with multidimensional arrays.

2.1 A Sample MATLAB session

It is recommended that you work through the following sitting at a PC with MATLAB running and enter the commands in the Command window. Most of the calculations involved are simple and they can be checked with a little mental arithmetic.

2.1.1 Entering Matrices

```
>> x=[llllll
x =
    1 2 3 3 4
>> x=[1; 2; 3; 0] % A (4 by 1) (row) vector
x =
```

 2
 3
 4
 >> x=[1,2,3;4,5,6] % (2 by 3) matrix
x =
1 2 3
4 5 6
>> x=[] %Empty array
x = []
%*******************************

```

\subsection*{2.1.2 Basic Matrix operations}
. The following examples are simple. Check the various operations and make sure that you understand them. This will also help you revise some matrix algebra which you will need for your theory.
```

>> x=[11 2;3 4]
x =
1 2
3 4
>> y=[3 7;5 4]
y =
3 7
5 4
>> x+y %addition of two matrices - same dimensions
ans =
4 9
8
>> y-x %matrix subtraction
ans =
5 5
0
>> x*y % matrix multiplication
ans =
13 15
29 37

```

Note that when matrices are multiplied their dimensions must conform. The number of columns in the first matrix must equal the number of rows in the second otherwise MatLab returns an error. Try the following example. When adding matrices a similar error will be reported if the dimensions do not match
```

>> x=[1 2;3 4]
x =
1 2
3 4
>> z=[1,2]
z =
1 2
>> x*z
??? Error using ==> mtimes
Inner matrix dimensions must agree.
>> inv(x) % find inverse of a matrix
ans =
-2.00000 1.00000
1.50000 -0.50000
>> x*inv(x) % verify inverse
ans =
1.00000 0.00000
0.00000 1.00000
>> y*inv(x) % multiply y by the inverse of x
ans =
4.50000-0.50000
-4.00000 3.00000
>> y/x % alternative expression
ans =
4.50000-0.50000
-4.00000 3.00000
>> inv(x)*y pre-multiply y by the inverse of x
ans =

```
```

 1.0e+01 *
 -0.10000 -1.00000
 0.20000 0.85000
 >> x\y % alternative expression - different algorithm - better for regression
ans =
1.0e+01 *
-0.10000 -1.00000
0.20000 0.85000

```

\subsection*{2.1.3 Kronecker Product}
\[
\boldsymbol{A} \otimes \boldsymbol{B}=\left(\begin{array}{rrrr}
a_{11} \boldsymbol{B} & a_{12} \boldsymbol{B} & \ldots & a_{1 m} \boldsymbol{B} \\
a_{21} \boldsymbol{B} & a_{22} \boldsymbol{B} & \ldots & a_{2 m} \boldsymbol{B} \\
\vdots & \vdots & & \vdots \\
a_{n 1} \boldsymbol{B} & a_{n 2} \boldsymbol{B} & \ldots & a_{n m} \boldsymbol{B}
\end{array}\right)
\]
```

x>> x=[ll 2;3 4}
x =
1 2
3
>> I=eye(2,2)
I =
1 0
0 1
>> kron(x,I)
ans =

1	0	2	0
0	1	0	2
3	0	4	0
0	3	0	4

>> kron(I,x)
ans =

```
\begin{tabular}{llll}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 3 & 4
\end{tabular}

\subsection*{2.1.4 Examples of number formats}
```

>> x=12.345678901234567;
>> format loose %includes blank lines to space output
>> x
x =
12.3457
>> format compact %Suppress blank lines
>> x
x =
12.3457
>> format long %14 digits after decimal
>> x
x =
12.34567890123457
>> format short e % exponential or scientific format
>> x
x =
1.2346e+001
>> format long e
>> x
x =
1.234567890123457e+001
>> format short g % decimal or exponential
>> x
x =
12.346
>> format long g
>> x
x =
12.3456789012346
>> format bank % currency format (2 decimals)
>> x

```
\(\mathrm{x}=\)
12.35

\subsection*{2.1.5 fprintf function}
```

>> fprintf('%6.2f\n', x)
12.35
>> fprintf('%6.3f\n', x)
12.346
>> fprintf('The number is %6.4f\n', x)
The number is 12.3457

```

Here fprintf prints to the command window according to the format specification '\%6.4f \(\backslash \mathrm{n}\) '. In this format specification the \(\%\) indicates the start of a format specification. There will be at least 6 digits displayed of which 4 will be decimals in floating point (f). The \(\backslash \mathrm{n}\) indicates that the curser will then move to the next line. For more details see page 41 .

\subsection*{2.1.6 element by element operations}
```

% .operations
>> x=[1 2;3 4];
>> y=[3 7;5 4]
>> x .* y %element by element multiplication
ans =
3 14
15 16
>> y ./ x %element by element division
ans =
3.00000 3.50000
1.66667 1.00000
>> z=[3 7;0 4];
>> x./z
Warning: Divide by zero.
ans =
0.3333 0.2857
Inf 1.0000
%mixed scalar matrix operations

```
```

>> a=2;
>> x+a
ans =
3 4
5 6
>> x-a
ans =

-1	0
1	2

>> x*2
ans =
2 4
6
>> x/2
ans =
0.50000 1.00000
1.50000 2.00000
%exponents
% x^a is x^2 or x*x i.e.
>> x^a
ans =
7 10
15 22h
% element by element exponent
>> z = [1 2;2 1]
>> x .^ z
ans =

1	4
9	4

```

\subsection*{2.1.7 miscellaneous functions}

Some functions. Operate element by element
```

>> exp(x)

```
```

ans =
1.0e+01 *
0.27183 0.73891
2.00855 5.45982
>> log(x)
ans =
0.00000 0.69315
1.09861 1.38629

```
```

>> sqrt(x)
ans =
1.00000 1.41421
1.73205 2.00000

```

Using negative numbers in the argument of logs and square-roots produces an error in many other packages. MATLAB returns complex numbers. Take care!! This is mathematically correct but may not be what you want.
```

>> z=[lll}1
z =
1 -2
>> log(z)
ans =
0
0.6931 + 3.1416i
>> sqrt(z)
ans =
1.0000
0 + 1.4142i
>> x-[1 2;3 4]
ans =
0
0 0
>> % determinant
>> det(x)
ans =
-2
>> %trace
> trace(x)
ans =

```

The function \(\operatorname{diag}(\boldsymbol{X})\) where \(\boldsymbol{X}\) is a square matrix puts the diagonal of \(\boldsymbol{X}\) in a matrix. The function \(\operatorname{diag}(\boldsymbol{Z})\) where \(\boldsymbol{Z}\) is a column vector outputs a matrix with diagonal \(\boldsymbol{Z}\) and zeros elsewhere
```

>> z=diag(x)
z =
1
4
>> u=diag(z)
u =
1 0
0 4
% Rank of a matrix
>> a=[24 6 9
3 254
2 1 7 8]
a =

2	4	6	9
3	2	5	4
2	1	7	8

>> rank(a)
ans =
3

```
\(\operatorname{sum}(\boldsymbol{A})\) returns sums along different dimensions of an array. If \(\boldsymbol{A}\) is a vector, \(\operatorname{sum}(\boldsymbol{A})\) returns the sum of the elements. If \(\boldsymbol{A}\) is a matrix, \(\operatorname{sum}(\boldsymbol{A})\) treats the columns of \(\boldsymbol{A}\) as vectors, returning a row vector of the sums of each column.
```

>> x=[llllll
x =
1 2 3 4
>> sum(x)
ans =
10
>> sum(x')
ans =

```

10
```

>> x=[llll
x =
1 2
3 4
>> sum(x)
ans =
4 6

```

The function reshape ( \(\boldsymbol{A}, \mathrm{m}, \mathrm{n}\) ) returns the \(m \times n\) matrix \(\boldsymbol{B}\) whose elements are taken column-wise from \(\boldsymbol{A}\). An error results if \(\boldsymbol{A}\) does not have exactly \(m n\) elements
```

>> x=[11 2 3 ; 4 5 6}
x =
1 2 3
4 5 6
>> reshape(x,3,2)
ans =
1 5
4
2 6

```
blkdiag \((\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}\),\() constructs a block diagonal matrix from the matrices \boldsymbol{A}, \boldsymbol{B} \boldsymbol{c}\) etc.
a \(=\)
\begin{tabular}{ll}
1 & 2 \\
3 & 4
\end{tabular}
>> b=5
b =
            5
>> \(c=\left[\begin{array}{lllllll}6 & 7 & 8 ; 9 & 10 & 11 ; 12 & 13 & 14\end{array}\right]\)
c =
\begin{tabular}{lll}
6 & 7 & 8
\end{tabular}
\(9 \quad 10 \quad 11\)
\(12 \quad 13 \quad 14\)
>> blkdiag (a,b,c)
ans =
\begin{tabular}{rrrrrr}
1 & 2 & 0 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 6 & 7 & 8 \\
0 & 0 & 0 & 9 & 10 & 11 \\
0 & 0 & 0 & 12 & 13 & 14
\end{tabular}

This is only a small sample of the available functions
eigenvalues and eigenvectors
\begin{tabular}{ccc} 
>> \(A=\left[\begin{array}{lll}54 & 45 & 68 \\
45 & 50 & 67 \\
68 & 67 & 95\end{array}\right]\) \\
\(A=\) & & \\
& \\
54 & 45 & 68 \\
45 & 50 & 67 \\
68 & 67 & 95
\end{tabular}
```

>> eig(A)
ans =
0.4109
7.1045
191.4846
>> [V,D]=eig(A)
V =
$0.3970 \quad 0.7631 \quad 0.5100$
0.5898 -0.6378 0.4953
-0.7032 -0.1042 0.7033
D =
0.4109 0 0
0 7.1045 0
0 0 191.4846
>> Test=A*V
Test =
0.1631 5.4214 97.6503
0.2424 -4.5315 94.8336
-0.2890 -0.7401 134.6750
>> Test ./ V
ans =
0.4109 7.1045 191.4846
0.4109 7.1045 191.4846
0.4109 7.1045 191.4846
>>

```

\subsection*{2.1.8 sequences}
colon operator (:) first:increment:last is a sequence with first element first second element first+ increment and continuing while entry is less than last.
```

>> [1:2:9]
ans =
1 3
>> [2:2:9]
ans =
2
4
6
8
>> [1:4]
ans =
1
2
3
4
>> [1:4],
ans =
1
2
3
4
%Transpose of a vector
>> x
x =
1
>> x'
ans =
13
4

```
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 0 & 0 & 0 \\
\hline & 0 & 1 & 0 & 0 \\
\hline & 0 & 0 & 1 & 0 \\
\hline & 0 & 0 & 0 & 1 \\
\hline \multicolumn{5}{|l|}{>> \(\mathrm{x}=\) ones (4)} \\
\hline \multicolumn{5}{|l|}{\(\mathrm{x}=\)} \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 1 \\
\hline \multicolumn{5}{|l|}{>> \(\mathrm{x}=\) ones \((4,2)\)} \\
\hline \multicolumn{5}{|l|}{\(\mathrm{x}=\)} \\
\hline & 1 & 1 & & \\
\hline \multicolumn{5}{|l|}{>> \(\mathrm{x}=\mathrm{zeros}(3)\)} \\
\hline \multicolumn{5}{|l|}{\(\mathrm{x}=\)} \\
\hline & 0 & 0 & 0 & \\
\hline & 0 & 0 & 0 & \\
\hline & 0 & 0 & 0 & \\
\hline \multicolumn{5}{|l|}{>> \(\mathrm{x}=\mathrm{zeros}(2,3)\)} \\
\hline \multicolumn{5}{|l|}{\(\mathrm{x}=\)} \\
\hline & 0 & 0 & 0 & \\
\hline & 0 & 0 & 0 & \\
\hline \multicolumn{5}{|l|}{>> size(x)} \\
\hline \multicolumn{5}{|l|}{ans =} \\
\hline 2 & 2 & 3 & & \\
\hline
\end{tabular}

\subsection*{2.1.10 Random number generators}

There are two random number generators in standard MATLAB.
rand generates uniform random numbers on \([0,1)\)
randn generates random numbers from a normal distribution with zero mean and unit
variance.
```

>> x=rand(5)
x =
0.81551 0.55386 0.78573 0.05959 0.61341
0.58470
0.70495 0.89406 0.11670
0.17658
0.98926 0.90159
>> x=rand (5,1)
x =
0.21558
0.62703
0.04805
0.20085
0.67641
>> x=randn (1,5)
x =
1.29029 1.82176 -0.00236 0.50538

```

\subsection*{2.1.11 Extracting parts of a matrix, Joining matrices together to get a new} larger matrix
```

>> arr1=[[2 4 6 8 10];
>> arr1(3)
ans = 6
>> arr2=[1, 2, -3;4, 5, 6;7, 8, 9]
arr2 =
1 2 -3
4 5 6
7 8 9
>> arr2(2,2)
ans = 5
>> arr2(2,:)
ans =
4
5
6
>> arr2(2,1:2)

```
```

ans =
4
5
>> arr2(end,2:end)
ans =
8 9

```
2.1.12 Using sub-matrices on left hand side of assignment
```

>> arr4=[11 2 3 4;5 6 7 8 ;9 10 11 12]
arr4 =

1	2	3	4
5	6	7	8
9	10	11	12

>> $\operatorname{arr} 4(1: 2,[1,4])=[20,21 ; 2223]$
$\operatorname{arr} 4=$
20

```
>> \(\operatorname{arr} 4=[20,21 ; 2223]\)
\(\operatorname{arr} 4=\)
20
>> \(\operatorname{arr} 4(1: 2,1: 2)=1\)
arr4 =
    \(1 \quad 1\)
    \(1 \quad 1\)

arr4 =
\begin{tabular}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{tabular}
>> \(\operatorname{arr} 4(1: 2,1: 2)=1\)
arr4 =
\begin{tabular}{rrrr}
1 & 1 & 3 & 4 \\
1 & 1 & 7 & 8 \\
9 & 10 & 11 & 12
\end{tabular}

\subsection*{2.1.13 Stacking Matrices}
```

>> x=[1 2;3 4]
x =
1 2
3 4
>> y=[5 6; 7 8]
y =
5 6
7 8
>> z=[x,y,(15:16)'] % join matrices side by side
z =

1	2	5	6	15
3	4	7	8	16

>> z=[x',y',(15:16)']' % Stack matrices vertically
z =

1	2
3	4
5	6
7	8
15	16

```

See also the help files for the MatLab commands cat, horzcat and vertcat

\subsection*{2.1.14 Special Values}
```

>> pi
pi = 3.1416
>> exp(1) %
e = 2.7183
>> clock
ans =
1.0e+03 *
2.00500}00.00100 0.01300 0.02200 0.01100 0.01932
YEAR Month Day hours Minutes Seconds

```

\subsection*{2.2 Examples}

Work through the following examples using MATLAB.
1. let \(\boldsymbol{A}=\left(\begin{array}{cc}3 & 0 \\ 5 & 2\end{array}\right)\) and \(\boldsymbol{B}=\left(\begin{array}{cc}1 & 4 \\ 4 & 7\end{array}\right)\) Use MATLAB to calculate.
(a) \(\boldsymbol{A}+\boldsymbol{B}\)
(b) \(\boldsymbol{A}-\boldsymbol{B}\)
(c) \(\boldsymbol{A B}\)
(d) \(\boldsymbol{A} \boldsymbol{B}^{-1}\)
(e) \(\boldsymbol{A} / \boldsymbol{B}\)
(f) \(\boldsymbol{A} \backslash \boldsymbol{B}\)
(g) \(\boldsymbol{A} \cdot * \boldsymbol{B}\)
(h) \(\boldsymbol{A} . / \boldsymbol{B}\)
(i) \(\boldsymbol{A} \otimes \boldsymbol{B}\)
(j) \(\boldsymbol{B} \otimes \boldsymbol{A}\)

Use pen, paper and arithmetic to verify that your results are correct.
2. Let \(\boldsymbol{A}=\left(\begin{array}{cccc}1 & 4 & 3 & 7 \\ 2 & 6 & 8 & 3 \\ 1 & 3 & 4 & 5 \\ 4 & 13 & 15 & 15\end{array}\right)\) Use the MatLab function to show that the rank of A is three. Why is it not four?
3. Solve \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{a}\) for \(\boldsymbol{x}\) where \(\boldsymbol{A}=\left(\begin{array}{cccc}1 & 4 & 3 & 7 \\ 2 & 6 & 8 & 3 \\ 1 & 3 & 4 & 5 \\ 2 & 1 & 7 & 6\end{array}\right)\) and \(\boldsymbol{a}=\left(\begin{array}{c}14 \\ 8 \\ 10 \\ 18\end{array}\right)\)
4. Generate \(\boldsymbol{A}\) which is a \(4 \times 4\) matrix of uniform random numbers. Calculate the trace and determinant of A. Use MATLAB to verify that
(a) The product of the eigenvalues of \(\boldsymbol{A}\) is equal to the determinant of \(\boldsymbol{A}\)
(b) The sum of the eigenvalues of \(\boldsymbol{A}\) is equal to the trace of \(\boldsymbol{A}\). (You might find the MATLAB functions sum() and prod() helpful - please see the relevant help files). Do these results hold for an arbitrary matrix A.
5. Let \(\boldsymbol{A}\) and \(\boldsymbol{B}\) be two \(4 \times 4\) matrices of independent \(\mathrm{N}(0,1)\) random numbers. If \(\operatorname{tr}(\boldsymbol{A})\) is the trace of \(\boldsymbol{A}\). Show that
(a) \(\operatorname{tr}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{tr}(\boldsymbol{A})+\operatorname{tr}(\boldsymbol{B})\)
(b) \(\operatorname{tr}(4 \boldsymbol{A})=4 \operatorname{tr}(\boldsymbol{A})\)
(c) \(\operatorname{tr}\left(\boldsymbol{A}^{\prime}\right)=\operatorname{tr}(\boldsymbol{A})\)
(d) \(\operatorname{tr}(\boldsymbol{B} \boldsymbol{A})=\operatorname{tr}(\boldsymbol{A B})\)

Which of these results hold for arbitrary matrices? Under what conditions would they hold for non-square matrices?

\subsection*{2.3 Regression Example}

In this Example I shall use the instructions you have already learned to simulate a set of observations from a linear equation and use the simulated observations to estimate the coefficients in the equation. In the equation \(y_{t}\) is related to \(x_{2 t}\) and \(x_{3 t}\) according to the following linear relationship.
\[
y_{t}=\beta_{1}+\beta_{2} x_{2 t}+\beta_{3} x_{3 t}+\varepsilon_{t}, \quad t=1,2, \ldots, N
\]
or in matrix notation
\[
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
\]
where
- \(x_{2}\) is a trend variable which takes the values \((1,2, \ldots 30)\)
- \(x_{3}\) is a random variable with uniform distribution on \([3,5]\)
- \(\varepsilon_{t}\) are independent identically distributed normal random variables with zero mean and constant variance \(\sigma^{2}\).
- \(\beta_{1}=5, \beta_{2}=1\) and \(\beta_{3}=0.1\) and \(\varepsilon_{t}\) are \(\operatorname{iidn}(0, .04)\left(\sigma^{2}=0.04\right)\)
1. Verify that the model may be estimated by OLS.
2. Use MatLab to simulate 50 observations of each of \(x_{3}\) and \(\varepsilon_{t}\) and thus of \(x_{t}\).
3. Using the simulated values find OLS estimates of \(\boldsymbol{\beta}\)
4. Estimate the covariance matrix of \(\boldsymbol{\beta}\) and thus the t -statistics for a test that the coefficients of \(\boldsymbol{\beta}\) are zero.
5. Estimate the standard error or the estimate of \(\boldsymbol{y}\)
6. Calculate the F-statistic for the significance of the regression
7. Export the data to STATA and verify your result.
8. In a simulation exercise such as this two different runs will not produce the same result. Any answers submitted should be concise and short and should contain
9. A copy of the m-file used in the analysis. This should contain comments to explain what is being done
10. A short document giving the results of one simulation and any comments on the results. You might also include the regression table from the STATA analysis. This document should be less than one page in length.

A sample answer follows. First the program, then the output and finally some explanatory notes
```

% example1.m
% Regression Example Using Simulated Data
%John C Frain
%19 November 2006
%values for simulation
nsimul=50;
beta=[5, 1,.1]';
%
% Step 1 Prepare and process data for X and y matrices/vectors
%
x1=ones(nsimul,1); %constant
x2=[1:nsimul]'; %trend
x3=rand(nsimul,1)*2 +3; % Uniform(3,5)
X=[x1,x2,x3];
e=randn(nsimul,1)*.2; % N(0,.04)
y= X * beta +e ; %5*x1 + x2 + . 1*x3 + e;
%
[nobs,nvar]=size(X);
%
% Estimate Model

```

Note that I have named my estimated variables ols.betahat, ols.yhat, ols.resid etc. The use of the ols. in front of the variable name has two uses. First if I want to do two different estimate I will call the estimates ols1. and ols2. or IV. etc. and I can easily put the in a summary table. Secondly this structure has a meaning that is useful in a more advanced use of MATLAB.
```

ols.betahat=(X'*X)\X'*y % Coefficients
ols.yhat = X * ols.betahat; % beta(1)*x1+beta(2)*x2+beta(3)*x;
ols.resid = y - ols.yhat; % residuals
ols.ssr = ols.resid'*ols.resid; % Sum of Squared Residuals
ols.sigmasq = ols.ssr/(nobs-nvar); % Estimate of variance
ols.covbeta=ols.sigmasq*inv(X'*X); % Covariance of beta
ols.sdbeta=sqrt(diag(ols.covbeta));% st. dev of beta
ols.tbeta = ols.betahat ./ ols.sdbeta; % t-statistics of beta
ym = y - mean(y);
ols.rsqr1 = ols.ssr;
ols.rsqr2 = ym'*ym;
ols.rsqr = 1.0 - ols.rsqr1/ols.rsqr2; % r-squared
ols.rsqr1 = ols.rsqr1/(nobs-nvar);

```
```

ols.rsqr2 = ols.rsqr2/(nobs-1.0);
if ols.rsqr2 ~ = 0;
ols.rbar = 1 - (ols.rsqr1/ols.rsqr2); % rbar-squared
else
ols.rbar = ols.rsqr;
end;
ols.ediff = ols.resid(2:nobs) - ols.resid(1:nobs-1);
ols.dw = (ols.ediff'*ols.ediff)/ols.ssr; % durbin-watson
fprintf('R-squared = %9.4f \n',ols.rsqr);
fprintf('Rbar-squared = %9.4f \n',ols.rbar);
fprintf('sigma^2 = %9.4f \n',ols.sigmasq);
fprintf('S.E of estimate= %9.4f \n',sqrt(ols.sigmasq));
fprintf('Durbin-Watson = %9.4f \n',ols.dw);
fprintf('Nobs, Nvars = %6d,%6d \n',nobs,nvar);
fprintf('**\n\n');
% now print coefficient estimates, SE, t-statistics and probabilities
%tout = tdis_prb(tbeta,nobs-nvar); % find t-stat probabilities - no
%tdis_prb in basic MATLAB - requires leSage toolbox
%tmp = [beta sdbeta tbeta tout]; % matrix to be printed
tmp = [ols.betahat ols.sdbeta ols.tbeta]; % matrix to be printed
% column labels for printing results
namestr = ' Variable';
bstring = , Coef.';
sdstring= 'Std. Err.';
tstring = ' t-stat.';
cnames = strvcat(namestr,bstring,sdstring, tstring);
vname = ['Constant','Trend' 'Variable2'];

```

The fprintf is used to produce formatted output. See subsection 3.6
```

fprintf('%12s %12s %12s %12s \n',namestr, ...
bstring,sdstring,tstring)
fprintf('%12s %12.6f %12.6f %12.6f \n',...
, Const',...
ols.betahat(1),ols.sdbeta(1),ols.tbeta(1))
fprintf(%%12s %12.6f %12.6f %12.6f \n',...
, Trend',...
ols.betahat(2),ols.sdbeta(2),ols.tbeta(2))
fprintf(%%12s %12.6f %12.6f %12.6f \n',...
, Var2',...
ols.betahat(3),ols.sdbeta(3),ols.tbeta(3))

```

The output of this program should look like
\begin{tabular}{|c|c|c|c|}
\hline R -squared = & 0.9998 & & \\
\hline Rbar-squared = & 0.9998 & & \\
\hline sigma^2 = & 0.0404 & & \\
\hline S.E of estimate= & 0.2010 & & \\
\hline Durbin-Watson = & 1.4445 & & \\
\hline Nobs, Nvars = & 50, & 3 & \\
\hline \multicolumn{4}{|l|}{****************************************************} \\
\hline Variable & Coef. & Std. Err. & t-stat. \\
\hline Const & 4.804620 & 0.229091 & 20.972540 \\
\hline Trend & 0.996838 & 0.002070 & 481.655756 \\
\hline Var2 & 0.147958 & 0.052228 & 2.832955 \\
\hline
\end{tabular}

Your answers will of course be different

\section*{Explanatory Notes}

Most of your MATLAB scripts or programs will consist of three parts
1. Get and Process data Read in your data and prepare vectors or matrices of your left hand side ( \(\mathbf{y}\) ), Right hand side ( \(\mathbf{X}\) ) and Instrumental Variables (Z)
2. Estimation Some form of calculation(s) like \(\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}^{-1}\right) \boldsymbol{X}^{\prime} \boldsymbol{y}\) implemented by a MATLAB instruction like
betahat \(=\left(\mathrm{X}^{\prime} * \mathrm{X}\right) \backslash \mathrm{X} * \mathrm{y}\)
(where X and y have been set up in the previous step) and estimate of required variances, covariances, standard errors etc.
3. Report Output tables and Graphs in a form suitable for inclusion in a report.
4. Run the program with a smaller number of replications (say 25) and see how the t-statistic on \(y_{3}\) falls. Rerun it with a larger number of replications and see how it rises. Experiment to find how many observations are required to get a significant coefficient for \(y_{3}\) often. Suggest a use of this kind of analysis.

\subsection*{2.4 Simulation - Sample Size and OLS Estimates}

This exercise is a study of the effect of sample size on the estimates of the coefficient in an OLS regression. The x values for the regression have been generated as uniform random numbers on the interval \([0,100)\). The residuals are simulated standardised normal random variables. The process is repeated for sample sizes of 20,100500 and 2500 simulation is repeated 10,000 times.
```

% example2.m
% MATLAB Simulation Example
%John C Frain
%19 November 2006
%
\${
The data files x20.csv, x100.csv, x500.csv and x2500.csv
were generated using the code below
\$}
%Generate Data
x20 = 100*rand (20,1)
save('x20.csv','x20','-ASCII','-double')
x100 = 100*rand(100,1)
save('x100.csv','x100','-ASCII','-double')
x500 = 100*rand (500,1)
save('x500.csv','x500','-ASCII','-double')
x2500 = 100*rand (200,1)
save('x2500.csv','x2500','-ASCII','-double')
%}
clear
nsimul=10000;
BETA20=zeros(nsimul,1); % vector - results of simulations with 20 obs.
x=load('-ascii', 'x20.csv'); % load xdata
X=[ones(size(x,1),1),x] ; % X matrix note upper case X
beta = [10;2]; % true values of coefficients
%
for ii = 1 : nsimul;
eps = 20.0*randn(size(X,1),1); % simulated error term
y = X * beta + eps; % y values
betahat = (X'*X)\X'*y; % estimate of beta
BETA20(ii,1)=betahat(2);
end
fprintf('Mean and st. dev of 20 obs simulation %6.3f %6.3f\n'...
,mean(BETA20),std(BETA20))
%hist(BETA, 100)
BETA100=zeros(nsimul,1);
x=load('-ascii', 'x100.csv'); % load xdata
X=[ones(size(x,1),1),x]; % X matrix note upper case X
beta = [10;2]; % true values of coefficients
%
for ii = 1 : nsimul;

```
```

 eps = 20.0*randn(size(X,1),1); % simulated error term
 y = X * beta + eps; % y values
 betahat = inv(X'*X)*X'*y; % estimate of beta
 BETA100(ii, 1)=betahat (2);
 end
fprintf('Mean and st. dev of 100 obs simulation %6.3f %6.3f\n', ...
mean(BETA100),std(BETA100))
BETA500=zeros(nsimul,1);
x=load('-ascii', 'x500.csv'); % load xdata
X=[ones(size(x,1),1),x] ; % X matrix note upper case X
beta = [10;2]; % true values of coefficients
%
for ii = 1 : nsimul;
eps = 20.0*randn(size(X,1),1); % simulated error term
y = X * beta + eps; % y values
betahat = inv(X'*X)*X'*y; % estimate of beta
BETA500(ii,1)=betahat(2);
end
fprintf('Mean and st. dev of 500 obs simulation %6.3f %6.3f\n', ...
mean(BETA500),std(BETA500))
BETA2500=zeros(nsimul,1);
x=load('-ascii', 'x2500.csv'); % load xdata note use of lower case x as vector
X=[ones(size(x,1),1), x] ; % X matrix note upper case X
beta = [10;2]; % true values of coefficients
%
for ii = 1 : nsimul;
eps = 20.0*randn(size(X,1),1); % simulated error term
y = X * beta + eps; % y values
betahat = inv(X'*X)*X'*y; % estimate of beta
BETA2500(ii,1)=betahat(2);
end
fprintf('Mean and st. dev of 2500 obs simulation %6.3f %6.3f\n', ...
mean(BETA2500),std(BETA2500))
n=hist([BETA20,BETA100,BETA500,BETA2500],1.4:0.01:2.6);
plot((1.4:0.01:2.6)',n/nsimul);
h = legend('Sample 20','Sample 100','Sample 500','Sample 2500');

```

The output of this program will look like this. On your screen the graph will display coloured lines.


\subsection*{2.5 Example - Macroeconomic Simulation with Matlab}

\section*{Problem}

This example is based on the macroeconomic system in Example 10.3 of Shone (2002). There are 10 equations in this economic model. The equations of the system are as follows
\[
\begin{aligned}
c_{t} & =110+0.75 y d_{t} \\
y d_{t} & =y_{t}-t a x_{t} \\
t a x_{t} & =-80+0.2 y_{t} \\
i_{t} & =-4 r_{t} \\
g_{t} & =330 \\
e_{t} & =c_{t}+i_{t}+g_{t} \\
y_{t} & =e_{t-1} \\
m d_{t} & =20+0.25 y_{t}-10 r_{t} \\
m s_{t} & =470 \\
m d_{t} & =m s_{t}
\end{aligned}
\]

While the aim in Shone (2002) is to examine the system algebraically, here we examine it numerically. Often this may be the only way to solve the system and Matlab is a suitable tool for this work. The model is too simple to be of any particular use in macroeconomics but it does allow one to illustrate the facilities offered by Matlab for this kind of work.

\section*{Initialise and Describe Variables}
```

N = 15 ; % Number of periods for simulation
c = NaN * zeros(N,1); %real consumption
tax = NaN * zeros(N,1); %real tax
yd = NaN * zeros(N,1); %real disposible income
i = NaN * zeros(N,1); % real investment
g = NaN * zeros(N,1); % real government expenditure
e = NaN * zeros(N,1); % real expenditure
y = NaN * zeros(N,1); % real income
md = NaN * zeros(N,1); % real money demand
ms = NaN * zeros(N,1); %real money supply
r = NaN * zeros(N,1); % interest rate

```

\section*{Simulate}
g and ms are the policy variables.
t=(1:N)'; \% time variable
\(\mathrm{g}=330 * \operatorname{ones}(\mathrm{~N}, 1)\);
\(\mathrm{ms}=470\) * ones ( \(\mathrm{N}, 1\) ) ;
\(y(1)=2000 ;\)

The next step is to simulate the model over the required period. In this case this is achieved by a simple reordering of the equations and inverting the money demand equation to give an interest rate equation. In the general case we might need a routine to solve the set of non linear equations or some routine to maximise a utility function. Note that the loop stops one short of the full period and then does the calculations for the final period (excluding the income calculation for the period beyond the end of the sample under consideration).
```

for ii = 1:(N-1)
tax(ii) = -80 + 0.2 * y(ii);
yd(ii) = y(ii) - tax(ii);
c(ii) = 110 + 0.75 * yd(ii);
md(ii) = ms(ii);
r(ii) = (20 + 0.25* y(ii) -md(ii))/10; % inverting money demand

```
```

 i(ii) = 320 -4 * r(ii);
 e(ii) = c(ii) + i(ii) + g(ii);
 y(ii+1) = e(ii);
 end
tax(N) = -80 + 0.2 * y(N);
yd(N) = y(N) - tax(N);
c(N) = 110 + 0.75 * yd(N);
md(N) = ms(N);
r(N) = (20 + 0.25* y(N) -md(N))/10;
i(N) = 320 -4 * r(N);
e(N) = c(N) + i(N) + g(N);

```

Now output results and save y for later use. note that the system is in equilibrium. Note that in printing we use the transpose of base
```

base = [t,y,yd,c,g-tax,i,r];
fprintf(' t y yd c g-tax i r\n')
fprintf('%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f\n',base')
ybase = y;

```
\begin{tabular}{rrrrrcc}
t & y & yd & c & g -tax & i & r \\
1 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
2 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
3 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
4 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
5 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
6 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
7 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
8 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
9 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
10 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
11 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
12 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
13 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
14 & 2000 & 1680 & 1370 & 10 & 300 & 5 \\
15 & 2000 & 1680 & 1370 & 10 & 300 & 5
\end{tabular}

\section*{Revised Simulation}

We increase \(g\) to 350 and examine the passage to the new equilibrium. Basically we run the same program with a different starting value for \(g\).
```

N = 15 ; % Number of periods for simulation
c = NaN * zeros(N,1); %real consumption
tax = NaN * zeros(N,1); %real tax
yd = NaN * zeros(N,1); %real disposible income
i = NaN * zeros(N,1); % real investment
g = NaN * zeros(N,1); % real government expenditure
e = NaN * zeros(N,1); % real expenditure
y = NaN * zeros(N,1); % real income
md = NaN * zeros(N,1); % real money demand
ms = NaN * zeros(N,1); %real money supply
r = NaN * zeros(N,1); % interest rate
% Policy Variables
g = 350 * ones(N,1);
ms = 470 * ones(N,1);
t=(1:N)';
y(1) = 2000;
for ii = 1:(N-1)
tax(ii) = -80 + 0.2 * y(ii);
yd(ii) = y(ii) - tax(ii);
c(ii) = 110 + 0.75 * yd(ii);
md(ii) = ms(ii);
r(ii) = (20 + 0.25* y(ii) -md(ii))/10; % inverting money demand
i(ii) = 320-4 * r(ii);
e(ii) = c(ii) + i(ii) + g(ii);
y(ii+1) = e(ii);
end
tax(N) = -80 + 0.2 * y(N);
yd(N) = y(N) - tax(N);
c(N) = 110 + 0.75 * yd(N);
md(N) = ms(N);
r(N) = (20 + 0.25* y(N) -md(N))/10;
i(N) = 320 -4 * r(N);
e(N) = c(N) + i(N) + g(N);
policy = [t,y,yd,c,g-tax,i,r];
fprintf(' t y yd c g-tax i r m')
fprintf('%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f\n',policy')
ypolicy =y;

```
\begin{tabular}{rrrrrcc}
t & y & yd & c & g -tax & i & r \\
1 & 2000 & 1680 & 1370 & 30 & 300 & 5 \\
2 & 2020 & 1696 & 1382 & 26 & 298 & 6 \\
3 & 2030 & 1704 & 1388 & 24 & 297 & 6 \\
4 & 2035 & 1708 & 1391 & 23 & 297 & 6 \\
5 & 2038 & 1710 & 1393 & 23 & 296 & 6 \\
6 & 2039 & 1711 & 1393 & 22 & 296 & 6 \\
7 & 2039 & 1712 & 1394 & 22 & 296 & 6 \\
8 & 2040 & 1712 & 1394 & 22 & 296 & 6 \\
9 & 2040 & 1712 & 1394 & 22 & 296 & 6 \\
10 & 2040 & 1712 & 1394 & 22 & 296 & 6 \\
11 & 2040 & 1712 & 1394 & 22 & 296 & 6 \\
12 & 2040 & 1712 & 1394 & 22 & 296 & 6 \\
13 & 2040 & 1712 & 1394 & 22 & 296 & 6 \\
14 & 2040 & 1712 & 1394 & 22 & 296 & 6 \\
15 & 2040 & 1712 & 1394 & 22 & 296 & 6
\end{tabular}

Now we compare results in a table and a graph. Note that income converges to a new limit.
```

fprintf(' t ybase ypolicy\n')
fprintf('%7.Of%7.0f%7.Of\n',[t,ybase, ypolicy]')
plot(t,[ybase,ypolicy])
title('Equilibrium and Shocked Macro-system')
xlabel('Period')
ylabel('Income')
axis([1 15 1995 2045])

```
\begin{tabular}{rcc}
t & ybase & ypolicy \\
1 & 2000 & 2000 \\
2 & 2000 & 2020 \\
3 & 2000 & 2030 \\
4 & 2000 & 2035 \\
5 & 2000 & 2038 \\
6 & 2000 & 2039 \\
7 & 2000 & 2039 \\
8 & 2000 & 2040 \\
9 & 2000 & 2040 \\
10 & 2000 & 2040 \\
11 & 2000 & 2040 \\
12 & 2000 & 2040 \\
13 & 2000 & 2040
\end{tabular}
\begin{tabular}{lll}
14 & 2000 & 2040 \\
15 & 2000 & 2040
\end{tabular}


\section*{3 Data input/output}

\subsection*{3.1 Native MatLab data files}

The instruction Save filename saves the contents of the workspace in the file 'filename.mat'. save used in the default manner saves the data in a binary format. The instruction save filename, var1, var2 saves var1 and var2 in the file filename.mat. Similarly the commands Load filename and load filename, var1, var2. load the contents of 'filename.mat' or the specified variables from the file into the workspace. In general .mat files are nor easily readable in most other packages. They are ideal for use within MATLAB and for exchange between MATLAB users. (note that there may be some incompatibilities between different versions of MATLAB). These .mat files are binary and can not be examined in a text editor.
.mat is the default extension for a MATLAB data file. If you use another extension, say . ext the option Save mat filename.ext should be used with the save and load commands. It is possible to use save and load to save and load text files but these instructions are very limited. If your data are in EXCEL or csv format the methods described below are better

\subsection*{3.2 Importing from Excel}

The sample file g10xrate.xls contains daily observations on the exchange rates of G10 countries and we wish to analyse them with MATLAB. There are 6237 observations of each exchange rate in the columns of the EXCEL file. The easiest way to import these data into MATLAB is to use the Filelimport data wizard and follow the prompts. In this case the import wizard did not pick out the series names from the Excel file. I imported the entire data matrix as a matrix and extracted the individual series in MATLAB. One can save the data in MATLAB format for future use in MATLAB This is illustrated in the code below.
```

USXJPN = data(:,1);
USXFRA = data(:,2);
USXSUI = data(:,3);
USXNLD = data(:,4);
USXUK = data(:,5);
USXBEL = data(:,6);
USXGER = data(:,7);
USXSWE = data(:,8);
USXCAN = data(:,9);
USXITA = data(:,10);
save('g10xrate', 'USXJPN','USXFRA','USXSUI','USXNLD','USXUK','USXBEL','USXGER', ...
'USXSWE','USXCAN','USXITA')

```

Note that I have listed the series to be saved as I did not wish to save the data matrix. The same effect could have been achieved with the uiimport command.

\subsection*{3.3 Reading from text files}

The import wizard can also import many types of text file including the comma separated files we have used in STATA. The missing data code in Excel csv files is \#NA. The version of MATLAB that i am using has problems reading this missing value code and it should be changed to NaN (the MATLAB missing value code) before importing csv data. In this case the import wizard recognised the column names. It is important that you check that all your data has been imported correctly.

The MATLAB functions textscan or textread can read various text files and allow a greater degree of flexibility than that available from uiimport. This flexibility is obtained at a cost of greater complexity. Details are given in the Help files. I would think that most users will not need this flexibility but it is there if needed.

\subsection*{3.4 Exporting data to EXCEL, STATA and other programs}

The command xlswrite('filename', \(\mathbf{M}\) ) writes the matrix \(\mathbf{M}\) to the file filename in the current working directory. If \(\mathbf{M}\) is \(n \times m\) the numeric values in the matrix are written to the first n row and m columns in the first sheet in the spreadsheet. The command csvwrite('filename', \(\mathbf{M}\) ) writes the matrix \(\mathbf{M}\) to the file filename in the current working directory. You can use this file to transfer data to STATA. Alternatively export your Excel file from Excel in csv format.

\subsection*{3.5 Stat/Transfer}

Another alternative is to use the Stat/Transfer package which allows the transfer of data files between a large number of statistical packages.

\subsection*{3.6 Formatted Output}

The MATLAB function fprintf() may be used to produce formatted output on screen \({ }^{1}\). The following MATLAB program gives an example of the us of the fprintf() function.
```

Sample MATLAB program demonstrating Formatted Output
clear
degrees_c =10:10:100;
degrees_f = (degrees_c * 9 /5) + 32;
fprintf('\n\n Conversion from degrees Celsius \n');
fprintf(' to degrees Fahrenheit\n\n');
fprintf(' Celsius Fahrenheit\n');
for ii = 1:10;
fprintf('%12.2f%12.2f\n',degrees_c(ii),degrees_f(ii));
end
%
fprintf(...
'\n\n%5.2f degrees Celsius is equivalent of %5.3f degrees fahrenheit\n', ...
degrees_c(1),degrees_f(1))

```

\title{
Output of Sample MATLAB program demonstrating Formatted Output
}

Conversion from degrees Celsius

\footnotetext{
\({ }^{1}\) fprintf() is only one of a large number of C-style input/output functions in C. These allow considerable flexibility in sending formatted material to the screen of to a file. The MATLAB help files give details of the facilities available. If further information is required one might consult a standard test book on the C programming language
}
\begin{tabular}{rr} 
to degrees & Fahrenheit \\
Celsius & Fahrenheit \\
10.00 & 50.00 \\
20.00 & 68.00 \\
30.00 & 86.00 \\
40.00 & 104.00 \\
50.00 & 122.00 \\
60.00 & 140.00 \\
70.00 & 158.00 \\
80.00 & 176.00 \\
90.00 & 194.00 \\
100.00 & 212.00
\end{tabular}
10.00 degrees Celsius is equivalent of 50.000 degrees fahrenheit

Note the following
- The first argument of the fprintf() function is a kind of format statement included within ' marks.
- The remaining arguments are a list of variables or items to be printed separated by commas
- Within the format string there is text which is produced exactly as set down. There are also statements like \(\% \mathrm{~m} . \mathrm{nf}\) which produces a decimal number which is allowed m columns of output and has n places of decimals. These are applied in turn to the items in the list to be printed.
- This f format is used to output floating point numbers there are a considerable number or other specifiers to output characters, strings, and number in formats other than floating point.
- If the list to be printed is too long the formats are recycled.
- Not the use of \(\backslash \mathrm{n}\) which means skip to the next line. This is essential.

\subsection*{3.7 Producing material for inclusion in a paper}

A considerable amount of the material in this note was produced from MATLAB mfiles using the -File-Publish to- facilities in the MATLAB m-file editor which produces output in WORD, Powerpoint, \(\mathrm{AA}_{\mathrm{E}} \mathrm{X}\), HTML etc. for inclusion in papers, presentations etc. The facilities are described in the help files and may vary from version to version of Matlab.

To Access these facilities you must first turn them on in the Matlab Editor. This is done by - Cell—Enable Cell Mode- in the editor menu. Cell mode enables you to divide your m-file into cells or sections. (Do not confuse cell mode in the editor with cell data structures in Matlab. It is unfortunate that these two different concepts have the same name) Enabling cell mode adds a new set of buttons to the menu bar and enables a set of items in the cell menu item. The menu items allow one to
- Disable cell mode
- Evaluate current cell
- Evaluate current cell and advance
- Evaluate entire file
- Insert Cell Divider
- Insert Cell Dividers around Selection
- Insert Cell Markup
- Cell Title
- Descriptive Text
- Bold Text
- Monospaced Text
- Preformatted Text
- Bulleted Text
- \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) Equation
- Next Cell
- Previous Cell

Section 2.5, including its graph, was subject to very minor editing before being added to this document. I have also used the facility to produce transparencies for lectures on MATLAB.

\section*{4 Decision and Loop Structures.}

There are four basic control (Decision or Loop Structures) available in MATLAB
if statements The basic form of the if statement is
```

if conditions
statements
end

```

The statements are only processed if the conditions are true The conditions can include the following operators
```

== equal
~= not equal
< less than
> greater than
<= less than or equal to
>= greater than or equal to
\& logical and
\&\& logical and (for scalars) short-circuiting
| logical or
| logical or and (for scalars) short-circuiting
xor logical exclusive or
all true if all elements of vector are nonzero
any true if any element of vector is nonzero

```

The if statement may be extended
```

if conditions
statements1
else
statements2
end

```
in which case statements1 are used if conditions are true and statements 2 if false. This if statement may be extended again
```

if conditions1
statements1
elseif conditions2
statements2
else
statements3
end

```
with an obvious meaning (I hope).
for The basic form of the for group is
```

for variable = expression
statements
end

```

Here expression is probably a vector. statements is processed for each of the values in expression. The following example shows the use of a loop within a loop
```

>> for ii = 1:3
for jj=1:3
total=ii+jj;
fprintf(%%d + %d = %d \n',ii,jj,total)
end
end
1 + 1 = 2
1+2 = 3
1+3=4
2 + 1 = 3
2+2 = 4
2+3 = 5
3+1=4
3+2=5
3+3=6

```
while The format of the while statement is
```

while conditions
statements
end

```

The while statement has the same basic functionality as the for statement. The for statement will be used when one knows precisely when and how many times an operation will be repeated. The statements are repeated so long as conditions are true
switch An example of the use of the switch statement follows
```

switch p
case 1
x = 24
case 2
x = 19
case 3
x = 15
otherwise
error('p must be 1, 2 or 3')
end

```

Use matrix statements in preference to loops. Not only are they more efficient but they are generally easier to use. That said there are occasions where one can not use a matrix statement.

If you wish to fill the elements of a vector or matrix using a loop it is good practice to initialise the vector or matrix first. For example if you wish to fill a \(100 \times 20\) matrix, \(\boldsymbol{X}\), using a series of loops one could initialise the matrix using one of the following commands
\(X=\operatorname{ones}(100,20)\)
\(X=z e r o s(100,20)\)
\(\mathrm{X}=\) ones \((100,20) * \mathrm{NaN}\)
X \(=\operatorname{NaN}(100,20)\)

\section*{5 Elementary Plots}

Simple graphs can be produced easily in MatLab. The following sequence
```

%values for simulation
nsimul=50;
beta=[5,1,.1]';
%
x1=ones(nsimul,1); %constant
x2=[1:nsimul]'; %trend
x3=rand(nsimul,1)*2 +3; % Uniform(3,5)
x=[x1,x2,x3];
e=randn(nsimul,1)*.2; % N(0,.04)
y= x * beta +e ; %5*x1 + x2 + . 1*x3 + e;
%
[nobs,nvar]=size(x);
betahat=inv(x'*x)*x'*y %g
yhat = x * betahat; % beta(1)*x1-beta(2)*x2-beta(3)*x;
resid = y - yhat;
plot(x2,resid)
title('Graph Title')
xlabel('Time')
ylabel('Residual')

```

repeats the earlier OLS simulation, opens a graph window, draws a graph of the residuals against the trend in the ols-simulation exercise, puts a title on the graph and labels the x and y axes. The vectors x 2 and resid must have the same dimensions. This graph was saved in eps format and imported into this document.

\section*{6 Systems of Regression Equations}

\subsection*{6.1 Using Matlab to estimate systems of regression equations}

This section contains two examples of the estimation of systems of equations. The first is an examination of the classic Grunfeld investment data set. Many textbooks use this dataset to illustrate various features of system estimation. Green (2000) is the source of the data used here. Later editions of this book also examine these data but in less detail.

The MATLAB output also includes corresponding analysis using the le Sage econometrics package which is covered in section 8 of this note. As an exercise the user might extend the analysis to include various Likelihood Ratio tests of the restrictions imposed by the various estimation procedures.

\section*{Analysis of Grunfeld Investment data}

\section*{Introduction}

The basic system model that we are looking at here is
\[
y_{t i}=\boldsymbol{X}_{t i} \boldsymbol{\beta}_{i}+\varepsilon_{t i}
\]
where \(1 \leq i \leq M\) represents the individual agent or country or item for which we are estimating some equation and \(1 \leq t \leq T\) represents the \(t^{t h}\) measurement on the \(i^{t h}\) unit. We assume that the variance of \(\varepsilon_{t i}, \sigma_{i}^{2}\) is constant for \(1 \leq t \leq T\). Each \(\boldsymbol{X}_{i}\) is \(T \times k_{i}\). We may write these equations
\[
\begin{aligned}
& \boldsymbol{y}_{1}=\boldsymbol{X}_{1} \boldsymbol{\beta}_{1}+\varepsilon_{1} \\
& \boldsymbol{y}_{2}=\boldsymbol{X}_{2} \boldsymbol{\beta}_{2}+\varepsilon_{2} \\
& \ldots \\
& \boldsymbol{y}_{M}=\boldsymbol{X}_{M} \boldsymbol{\beta}_{M}+\varepsilon_{M}
\end{aligned}
\]

In this section we will assume that \(\boldsymbol{X}\) is exogenous. By imposing various cross-equation restrictions on the \(\boldsymbol{\beta}_{i}\) and the covariances of the \(\varepsilon_{t i}\) we obtain a variety of estimators (e.g. Pooled OLS, Equation be Equation OLS, SUR).

The variables included in the Grunfeld analysis are
- FIRM : There are 10 firms
- YEAR : Data are from 1935 to 1954 (20 years)
- I : Gross Investment
- F : Value of Firm
- C : Stock of Plant and Equipment

For more details see Green \((2000,2008)\) or the original references listed there.
- To reduce the amount of detail we shall restrict analysis to 5 firms
- Firm no 1: GM - General Motors
- Firm no 4 : GE - general electric
- Firm no 3: CH - Chrysler
- Firm no 8: WE - Westinghouse
- Firm no 2 : US - US Steel

To start the analysis is use the MATLAB Import data using |File|Import Data]. The test names on the data set are not imported as I wish to define these myself. This sets up a matrix containing data. I save data in Matlab form the first time. Later I use
load data; \%
to reload the data as below

\section*{Load and Generate data}
```

load data
Y_GM = data(1:20, 3); % I
X_GM = [ones(20,1),data(1:20,[4 5])]; % constant F C
Y_GE = data(61:80, 3); % I
X_GE = [ones(20,1), data(61:80,[4 5])]; % constant F C
Y_CH = data(41:60, 3); % I
X_CH = [ones(20,1), data(41:60,[4 5])]; % constant F C
Y_WE = data(141:160, 3); % I
X_WE = [ones(20,1),data(141:160,[4 5])]; % constant F C
Y_US = data(21:40, 3); % I
X_US = [ones(20,1), data(21:40,[4 5])]; % constant F C

```

We now estimate the coefficients imposing various restrictions. Each estimation involves the following steps
1. Set up the required \(\boldsymbol{y}\) and \(\boldsymbol{X}\) matrices.
2. Estimate the required coefficients.
3. Estimate standard errors, t-statistics etc.
4. Report.

\section*{Pooled OLS}

The restrictions imposed by Pooled OLS are that corresponding coefficients are the same across equations. We also assume that the variance of the disturbances is constant across equations. \({ }^{2}\) Thus, in this case \(k_{i}=k\), for all \(i\) We can therefore assume that each observation on each unit is one more observation from the same single equation system. We may write the system as follows
\[
\begin{aligned}
& \left(\begin{array}{c}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2} \\
\ldots \\
\boldsymbol{y}_{M}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{X}_{1} \\
\boldsymbol{X}_{2} \\
\ldots \\
\boldsymbol{X}_{M}
\end{array}\right) \\
& (M T \times 1) \quad \boldsymbol{\beta}+ \\
& (M T \times k)
\end{aligned}(k \times 1) \quad\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\ldots \\
\varepsilon_{M}
\end{array}\right)
\]
or, more compactly, using the obvious notation
\[
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
\]
and \(\boldsymbol{\beta}\) may be estimated by \(\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}\) etc. This is implemented in MATLAB as follows -

\footnotetext{
\({ }^{2}\) We could of course relax this condition and estimate Heteroskedastic Consistent Standard Errors
}
```

Y = [Y_GM', Y_GE', Y_CH', Y_WE', Y_US']'; % leave out ; for testing if
% necessary delete during run or output will be unreadable
X = [X_GM', X_GE', X_CH', X_WE', X_US']';
pols.beta = (X'*X)\X'*Y;
pols.uhat = Y - X*pols.beta ;
pols.sigsq = (pols.uhat'*pols.uhat)/(size(X,1)-size(X,2));%(T-k)
pols.sdbeta = sqrt(diag(inv(X'*X))*pols.sigsq);
pols.tbeta = pols.beta ./ pols.sdbeta;
pols.se = sqrt(pols.sigsq);
label = ['Constant '; 'F '; 'C '];
disp('OLS Results using stacked matrices')
disp(' coef sd t-stat')
for ii=1:size(X,2)
fprintf('%s%10.4f%10.4f%10.4f\n',label(ii,:),pols.beta(ii),pols.sdbeta(ii), pols.tbeta(ii))
end
fprintf('Estimated Standard Error %10.4f\n\n\n',pols.se)
OLS Results using stacked matrices
coef sd t-stat
Constant -47.0237 21.6292 -2.1741
F 0.1059 0.0114 9.2497
C 0.3014 0.0437 6.8915
Estimated Standard Error 128.1429
%
% Verification using Lesage package
%
pooled = ols(Y, X);
vnames= ['I ';
'Constant ';
'F ';
'C '];
prt(pooled,vnames)
\begin{verbatim}
Ordinary Least-squares Estimates
Dependent Variable = I
R-squared = 0.7762
Rbar-squared = 0.7716
sigma^2 = 16420.6075
Durbin-Watson = 0.3533

```
\begin{tabular}{|c|c|c|c|}
\hline Nobs, Nvars & 100, & & \\
\hline \multicolumn{4}{|l|}{****************************************************************} \\
\hline Variable & Coefficient & t-statistic & t-probability \\
\hline Constant & -47.023691 & -2.174080 & 0.032132 \\
\hline F & 0.105885 & 9.249659 & 0.000000 \\
\hline C & 0.301385 & 6.891475 & 0.000000 \\
\hline
\end{tabular}

\section*{Equation by equation OLS}

This section assumes that the coefficients vary across units. (In panel data estimation we assume that only the constant terms vary across units). We also assume that there is no contemporaneous correlation between the disturbances in the system. We may write the system of equations as
\[
\left(\begin{array}{c}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2} \\
\vdots \\
\boldsymbol{y}_{M}
\end{array}\right)=\left(\begin{array}{cccc}
\boldsymbol{X}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{X}_{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{X}_{M}
\end{array}\right) \boldsymbol{\beta}+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{M}
\end{array}\right)
\]
or more compactly using the obvious substitutions
\[
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
\]
where \(\boldsymbol{y}\) and \(\boldsymbol{\varepsilon}\) are \(T M \times 1, \boldsymbol{X}\) is \(T M \times k M\) and \(\boldsymbol{\beta}\) is \(k M \times 1 . \boldsymbol{y}, \boldsymbol{\varepsilon}\), and \(\boldsymbol{\beta}\) are stacked versions of \(\boldsymbol{y}_{i}, \boldsymbol{\varepsilon}_{i}\), and \(\boldsymbol{\beta}_{i}\). The variance of \(\boldsymbol{\varepsilon}\) is given by
\[
\begin{aligned}
\Omega & =E\left[\varepsilon \varepsilon^{\prime}\right] \\
& =\left(\begin{array}{cccc}
\sigma_{1}^{2} \boldsymbol{I}_{T} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \sigma_{2}^{2} \boldsymbol{I}_{T} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \sigma_{M}^{2} \boldsymbol{I}_{T}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & \sigma_{M}^{2}
\end{array}\right) \otimes \boldsymbol{I}_{T}
\end{aligned}
\]

The coding of this example should be relatively clear. Perhaps the most difficult part is the estimation of the variances. The procedure here is very similar to that used in the first step of the SUR estimation procedure except that the contemporaneous correlation is used to improve the estimates. It should be noted that, in this case different variables are likely to be used in different equations, The only change required is in the calculation of the \(\boldsymbol{X}\) matrix.
```

% Y as before
X=blkdiag(X_GM ,X_GE , X_CH , X_WE , X_US);
eqols.beta = (X'*X)\X'*Y;
eqols.uhat = Y - X*eqols.beta ;
eqols.temp = reshape(eqols.uhat,size(X_GM,1),5); %residuals for
% each firm in a column
eqols.sigsq1 =eqols.temp'*eqols.temp/(size(X_GM,1)-size(X_GM,2));
eqols.sigsq = diag(diag(eqols.sigsq1)); % Remove non-diagonal elements
%eqols.sdbeta = sqrt(diag(inv(X'*X)*X'*kron(eye(size(X_GM,1)),eqols.sigsq)*X*inv(X'*X)));
eqols.covarbeta = inv(X'*X)*kron(eqols.sigsq,eye(3));
eqols.sdbeta = diag(sqrt(eqols.covarbeta));
eqols.tbeta=eqols.beta ./ eqols.sdbeta;
eqols.se=sqrt(diag(eqols.sigsq));
%
% Write results
%
disp('OLS equation by equation using stacked matrices')
disp('OLS estimates GE equation')
firm = ['GE';
'GM';
'CH';
'wE';
'US'];
for jj = 1:5 % Loop over firms
fprintf('\n\n\n')
disp(' coef sd t-stat')
for ii=1:3 %Loop over coefficients
fprintf('%10s%10.4f%10.4f%10.4f\n',label(ii), ...
eqols.beta(ii+(jj-1)*3), eqols.sdbeta(ii+(jj-1)*3), ...
eqols.tbeta(ii+(jj-1)*3))
end
fprintf('Standard Error is %10.4f\n',eqols.se(jj));
end
OLS equation by equation using stacked matrices
OLS estimates GE equation

	coef	sd	t-stat
C	-149.7825	105.8421	-1.4151
F	0.1193	0.0258	4.6172

```
\begin{tabular}{|c|c|c|c|c|}
\hline & C & 0.3714 & 0.0371 & 10.0193 \\
\hline \multirow[t]{5}{*}{Standard} & Er & ror is & 91.7817 & \\
\hline & & coef & sd & t-stat \\
\hline & C & -6.1900 & 13.5065 & -0.4583 \\
\hline & F & 0.0779 & 0.0200 & 3.9026 \\
\hline & C & 0.3157 & 0.0288 & 10.9574 \\
\hline \multirow[t]{5}{*}{Standard} & & ror is & 13.2786 & \\
\hline & & coef & sd & t-stat \\
\hline & C & -9.9563 & 31.3742 & -0.3173 \\
\hline & F & 0.0266 & 0.0156 & 1.7057 \\
\hline & C & 0.1517 & 0.0257 & 5.9015 \\
\hline \multirow[t]{5}{*}{Standard} & & ror is & 27.8827 & \\
\hline & & coef & sd & t-stat \\
\hline & C & -0.5094 & 8.0153 & -0.0636 \\
\hline & F & 0.0529 & 0.0157 & 3.3677 \\
\hline & C & 0.0924 & 0.0561 & 1.6472 \\
\hline \multirow[t]{5}{*}{Standard} & & ror is & 10.2131 & \\
\hline & & coef & sd & t-stat \\
\hline & & -49.1983 & 148.0754 & -0.3323 \\
\hline & F & 0.1749 & 0.0742 & 2.3566 \\
\hline & C & 0.3896 & 0.1424 & 2.7369 \\
\hline Standard & Er & ror is & 96.4345 & \\
\hline
\end{tabular}

Verify using le Sage Toolbox
```

olsestim=ols(Y_US,X_US);
prt(olsestim, vnames);
Ordinary Least-squares Estimates
Dependent Variable = I
R-squared = 0.4709

```
\begin{tabular}{lcccc} 
Rbar-squared & \(=\) & 0.4086 & & \\
sigma^2 & \(=\) & 9299.6040 & & \\
Durbin-Watson & \(=\) & 0.9456 & & \\
Nobs, Nvars & 20, & 3 & \\
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) \\
Variable & Coefficient & t-statistic & t-probability \\
Constant & -49.198322 & -0.332252 & 0.743761 \\
F & 0.174856 & 2.356612 & 0.030699 \\
C & 0.389642 & 2.736886 & 0.014049
\end{tabular}

\section*{SUR Estimates}

Suppose that we have a random sample of households and we are have time series data on expenditure on holidays \(\left(y_{i t}\right)\) and relevant explanatory variables. Suppose that we have sufficient data to estimate a single equation for each person in the sample. We also assume that there is no autocorrelation in each equation (often a rather heroic assumption). During the peak of the business cycle it is likely that many of the persons in the sample spend above what they do at the trough. Thus it is likely that there will be contemporaneous correlation between the errors in the system.
\[
E\left[\varepsilon_{t i} \varepsilon_{s j}\right]= \begin{cases}\sigma_{i j} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
\]

Thus we may write the contemporaneous covariance matrix \((\boldsymbol{\Sigma})\) as
\[
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 M} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 M} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{M 1} & \sigma_{M 2} & \cdots & \sigma_{M M}
\end{array}\right)
\]

The total covariance matrix is, in this case, given by
\[
\begin{aligned}
\Omega & =\left(\begin{array}{cccc}
\boldsymbol{\Sigma} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{\Sigma}
\end{array}\right) \\
& =\boldsymbol{\Sigma} \otimes \boldsymbol{I}_{T}
\end{aligned}
\]

If \(\boldsymbol{\Omega}\) were known we would use GLS to get optimum estimates of \(\boldsymbol{\beta}\). In this case we can obtain a consistent estimate of \(\boldsymbol{\Sigma}\) from the residuals in the equation by equation OLS estimate that we have just completed. We can then use this consistent estimate in Feasible GLS.
```

Omega = kron(eqols.sigsq1,eye(20,20)); % Page page 256
eqsur.beta= inv(X'*inv(Omega)*X)*X'*inv(Omega)*Y;
eqsur.yhat = X * eqsur.beta;
eqsur.uhat = Y - eqsur.yhat;
eqsur.temp = reshape(eqsur.uhat,20,5);
eqsur.omega = eqsur.temp' * eqsur.temp /size(X_GM,1); %(size(X_GM,1)-size(X_GM,2));
eqsur.covar = inv(X'*inv(kron(eqsur.omega, eye(20)))*X);
eqsur.sdbeta = sqrt(diag(eqsur.covar));
eqsur.tbeta = eqsur.beta ./ eqsur.sdbeta;
eqsur.se = sqrt(diag(eqsur.omega));
%print results
fprintf('SUR estimates\n');
for jj = 1:5 % Loop over firms
fprintf('\n\n\n')
disp(' coef sd t-stat')
for ii=1:3 %Loop over coefficients
fprintf('%s%10.4f%10.4f%10.4f\n',label(ii), ...
eqsur.beta(ii+(jj-1)*3), eqsur.sdbeta(ii+(jj-1)*3), ...
eqsur.tbeta(ii+(jj-1)*3))
end
fprintf('Standard Error is %10.4f\n',eqsur.se(jj));
end
SUR estimates

		coef	sd	t-stat
C	-168.1134	84.9017	-1.9801	
F	0.1219	0.0204	5.9700	
C	0.3822	0.0321	11.9109	
Standard Error is		84.9836		

		coef	sd	t-stat
C	0.9980	11.5661	0.0863	
F	0.0689	0.0170	4.0473	
C	0.3084	0.0260	11.8766	
Standard Error is				

```
\begin{tabular}{lrrrr} 
& & coef & sd & t-stat \\
C & -21.1374 & 24.3479 & -0.8681 & \\
F & 0.0371 & 0.0115 & 3.2327 & \\
C & 0.1287 & 0.0212 & 6.0728 & \\
\multicolumn{4}{l}{ Standard Error is } & 26.5467
\end{tabular}
\begin{tabular}{lcccc} 
& & coef & sd & t-stat \\
C & 1.4075 & 5.9944 & 0.2348 & \\
F & 0.0564 & 0.0106 & 5.3193 & \\
C & 0.0429 & 0.0382 & 1.1233 & \\
\multicolumn{4}{l}{ Standard Error is } & 9.7420
\end{tabular}
\begin{tabular}{lcccc} 
& & coef & sd & t-stat \\
C & 62.2563 & 93.0441 & 0.6691 & \\
F & 0.1214 & 0.0451 & 2.6948 & \\
C & 0.3691 & 0.1070 & 3.4494 & \\
\multicolumn{4}{l}{ Standard Error is } & 90.4117
\end{tabular}

\section*{SUR in LeSage toolbox}
```

y(1).eq = Y_GM;
y(2).eq = Y_GE;
y(3).eq = Y_CH;
y(4).eq = Y_WE;
y(5).eq = Y_US;
XX(1).eq = X_GM;
XX(2).eq = X_GE;
XX(3).eq = X_CH;
XX(4).eq = X_WE;
XX(5).eq = X_US;
neqs=5;
sur_result=sur(neqs,y,XX);
prt(sur_result)
Seemingly Unrelated Regression -- Equation 1
System R-sqr = 0.8694
R-squared = 0.9207
Rbar-squared = 0.9113

```
\begin{tabular}{lcccr} 
sigma^2 & \(=458183.2995\) & & \\
Durbin-Watson & \(=0.0400\) & & \\
Nobs, Nvars & N & 20, & 3 & \\
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) \\
Variable & Coefficient & t-statistic & t-probability \\
variable 1 & -168.113426 & -1.980094 & 0.064116 \\
variable 2 & 0.121906 & 5.969973 & 0.000015 \\
variable 3 & 0.382167 & 11.910936 & 0.000000
\end{tabular}
\begin{tabular}{lll} 
Seemingly Unrelated Regression -- Equation & 2 \\
System R-sqr & \(=0.8694\) \\
R-squared & \(=0.9116\) \\
Rbar-squared & \(=0.9012\) \\
sigma^2 & \(=8879.1368\) \\
Durbin-Watson & \(=0.0310\) \\
Nobs, Nvars & \(=20\),
\end{tabular}
\begin{tabular}{lrrrr}
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) \\
Variable & Coefficient & t-statistic & t-probability \\
variable & 1 & 0.997999 & 0.086286 & 0.932247 \\
variable & 2 & 0.068861 & 4.047270 & 0.000837 \\
variable & 3 & 0.308388 & 11.876603 & 0.000000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Seemingly Unrelated Regression -- Equation 3} \\
\hline \multicolumn{2}{|l|}{System R-sqr} & \multicolumn{3}{|l|}{0.8694} \\
\hline \multicolumn{2}{|l|}{R -squared} & \multicolumn{3}{|l|}{0.6857} \\
\hline \multicolumn{2}{|l|}{Rbar-squared} & \multicolumn{3}{|l|}{0.6488} \\
\hline \multicolumn{2}{|l|}{sigma^2} & \multicolumn{3}{|l|}{\(=11785.8684\)} \\
\hline \multicolumn{2}{|l|}{Durbin-Watson} & \multicolumn{3}{|l|}{0.0202} \\
\hline \multicolumn{2}{|l|}{Nobs, Nvars} & 20, 3 & & \\
\hline \multicolumn{5}{|l|}{*****************************************************************} \\
\hline Variable & & Coefficient & t-statistic & t-probability \\
\hline variable & 1 & -21.137397 & -0.868140 & 0.397408 \\
\hline variable & 2 & 0.037053 & 3.232726 & 0.004891 \\
\hline variable & 3 & 0.128687 & 6.072805 & 0.000012 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Seemingly Unrelated Regression -- Equation & 4 \\
System R-sqr & \(=0.8694\) \\
R-squared & \(=0.7264\) \\
Rbar-squared & \(=0.6943\)
\end{tabular}
\begin{tabular}{lcccr} 
sigma~2 & \(=2042.8631\) & & \\
Durbin-Watson & \(=\) & 0.0323 & & \\
Nobs, Nvars & \(=\) & 20, & 3 & \\
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) \\
Variable & Coefficient & t-statistic & t-probability \\
variable 1 & 1.407487 & 0.234802 & 0.817168 \\
variable 2 & 0.056356 & 5.319333 & 0.000056 \\
variable 3 & 0.042902 & 1.123296 & 0.276925
\end{tabular}
\begin{tabular}{lll} 
Seemingly Unrelated Regression -- Equation & 5 \\
System R-sqr & \(=0.8694\) \\
R-squared & \(=0.4528\) \\
Rbar-squared & \(=0.3884\) \\
sigma~2 & \(=173504.8346\) \\
Durbin-Watson & \(=0.0103\) \\
Nobs, Nvars & \(=20\),
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & & Coefficient & t-statistic & t-probability \\
\hline variable & 1 & 62.256312 & 0.669105 & 0.512413 \\
\hline variable & 2 & 0.121402 & 2.694815 & 0.015340 \\
\hline variable & 3 & 0.369111 & 3.449403 & 0.003062 \\
\hline
\end{tabular}

Cross-equation \(\operatorname{sig}(i, j)\) estimates
\begin{tabular}{lrrrrr} 
equation & eq 1 & eq 2 & eq 3 & eq 4 & eq 5 \\
eq 1 & 7222.2204 & -315.6107 & 601.6316 & 129.7644 & -2446.3171 \\
eq 2 & -315.6107 & 153.2369 & 3.1478 & 16.6475 & 414.5298 \\
eq 3 & 601.6316 & 3.1478 & 704.7290 & 201.4385 & 1298.6953 \\
eq 4 & 129.7644 & 16.6475 & 201.4385 & 94.9067 & 613.9925 \\
eq 5 & -2446.3171 & 414.5298 & 1298.6953 & 613.9925 & 8174.2798
\end{tabular}

Cross-equation correlations
\begin{tabular}{lrrrrr} 
equation & eq 1 & eq 2 & eq 3 & eq 4 & eq 5 \\
eq 1 & 1.0000 & -0.3000 & 0.2667 & 0.1567 & -0.3184 \\
eq 2 & -0.3000 & 1.0000 & 0.0096 & 0.1380 & 0.3704 \\
eq 3 & 0.2667 & 0.0096 & 1.0000 & 0.7789 & 0.5411 \\
eq 4 & 0.1567 & 0.1380 & 0.7789 & 1.0000 & 0.6971 \\
eq 5 & -0.3184 & 0.3704 & 0.5411 & 0.6971 & 1.0000
\end{tabular}

\subsection*{6.2 Exercise - Using Matlab to estimate a simultaneous equation systems}

Consider the demand-supply model
\[
\begin{align*}
q_{t} & =\beta_{11}+\beta_{21} x_{t 2}+\beta_{31} x_{t 2}+\gamma_{21} p_{t}+u_{t 1}  \tag{1}\\
q_{t} & =\beta_{12}+\beta_{42} x_{t 4}+\beta_{52} x_{t 5}+\gamma_{22} p_{t}+u_{t 2} \tag{2}
\end{align*}
\]
where \(q_{t}\) is the \(\log\) of quantity, \(p_{t}\) is the log of price, \(x_{t 2}\) is the log of income, \(x_{t 3}\) is a dummy variable that accounts for demand shifts \(x_{t 4}\) and \(x_{t 5}\) are input prices. Thus equations (1) and (2) are demand and supply functions respectively. 120 observations generated by this model are in the file demand-supply.csv
1. Comment on the identification of the system. Why can the system not be estimated using equation by equation OLS. For each of the estimates below produce estimates, standard errors and t-statistics of each coefficient. Also produce standard errors for each equation.
2. Estimate the system equation by equation using OLS.
3. Estimate the system equation by equation using 2SLS. Compare the results with the OLS estimates.
4. Set up the matrices of included variables, exogenous variables required to do system estimation.
5. Do OLS estimation using the stacked system and compare results with the equation by equation estimates.
6. Do 2SLS estimation using the stacked system and compare results with the equation by equation estimates.
7. Do 3SLS estimation using the stacked system and compare results with the 2SLS estimates.
8. Comment on the identification of the system.
9. How can the method be generalised to estimate other GMM estimators? Estimate the optimum GMM estimator for the system and compare your results with the previous estimators.

\section*{7 User written functions in MATLAB}

One of the most useful facilities in MATLAB is the facility to write ones own functions and use them in the same way as a native MATLAB functions. We are already familiar with m-files which contain lists of MATLAB instructions. Such files are known as script
files and allow us to do repeat an analysis without having to retype all the instructions. Suppose we wish to write a function that estimates the density function of a normal distribution,
\[
\frac{1}{\sqrt{2 \pi} \sigma} \exp -\frac{(x-\mu)^{2}}{2 \sigma^{2}}
\]
, we have the following on a file normdensity.m
```

function f = normdensity(z, mu, sigma);
% Calculates the Density Function of the Normal Distribution
% with mean mu
% and standard deviation sigma
% at a point z
% sigma must be a positive non-zero real number
if sigma <= 0
fprintf('Invalid input\n');
f = NaN;
else
f = (1/(sqrt(2*pi)*sigma))*exp(-(z-mu)^2/(2*sigma^2));
end

```

Note the following
1. The file starts with the keyword function. This is to indicate that this m-file is a function definition.
2. In the first line the f indicates that the value of f when the file has been "run" is the value that will be returned.
3. The function is called with normdensity (z, mu, sigma) where z mu and sigma are given values in calling the function.
4. The commented lines immediately after the first line are a help system for the function
5. All variables within a function are local to the function. Thus if there is a variable within a function called \(x\) and one in the program with the same name the one in the program is used when the program is in operation. Once the program has been run the value in the program is forgotten and the value outside the program is used.

The use of the function normdensity can be demonstrated as follows Get help for normdensity function.
help normdensity
```

Calculates the Density Function of the Normal Distribution
with mean mu
and standard deviation sigma
at a point z
sigma must be a positive non-zero real number

```

\section*{Evaluate Standard Normal density function at zero}
```

normdensity(0,0,1)
ans =
0.3989

```

Plot standard normal density function
fplot('normdensity( \(x, 0,1\) )', \(\left.\left[\begin{array}{ll}-3 & 3\end{array}\right]\right)\)


\section*{8 The LeSage Econometric Toolbox}

If you are accustomed to using one of the many packages that deal specifically with econometrics you may think that MATLAB takes a long time to do simple things. It is also clear that many or the more difficult tasks are often easier in MATLAB than in these packages. MATLAB is less of a "black box" than many of the other programs. One must really learn and understand the algebra before one can use MATLAB for econometrics. One also knows exactly what one is doing when one has written the routines in MATLAB.

The big problem is the lack of elementary econometric facilities in MATLAB. The LeSage MATLAB econometric package adds many of the required functions. It contains about 300 functions, utilities and demonstration programs. A list is included in Appendix A to this note. Full details are available in the toolbox manual which is available at http:// www.spatial-econometrics.com/. The toolbox is designed to produce documentation, example programs, printed and graphical output across a wide range of econometric procedures.

\section*{Availability on Public Access Computers}

The toolbox has been added to the MATLAB system on all Public Access computers on the TCD network. The functions are available in the same way as the ordinary MATLAB functions. For example, if \(y\) is a \(n \times 1\) vector and \(X\) is a \(n \times k\) matrix, the instruction
```

result = ols(y,X)

```
calculates the regression of \(y\) on \(X\) and various related statistics. The instruction
```

prt_reg(result)

```
produces a summary of the result.
Help is available in the command line in MATLAB. Help on the ols function can be found as follows
```

>> help ols
PURPOSE: least-squares regression
--
USAGE: results = ols(y,x)
where: y = dependent variable vector (nobs x 1)
x = independent variables matrix (nobs x nvar)
RETURNS: a structure
results.meth = 'ols'
results.beta = bhat (nvar x 1)
results.tstat = t-stats (nvar x 1)
results.bstd = std deviations for bhat (nvar x 1)
results.yhat = yhat (nobs x 1)
results.resid = residuals (nobs x 1)
results.sige = e'*e/(n-k) scalar
results.rsqr = rsquared scalar
results.rbar = rbar-squared scalar
results.dw = Durbin-Watson Statistic

```
```

 results.nobs = nobs
 results.nvar = nvars
 results.y = y data vector (nobs x 1)
 results.bint = (nvar x 2) vector with 95% confidence intervals on beta
 SEE ALSO: prt(results), plt(results)

```
Overloaded functions or methods (ones with the same name in other directories)
        help localmod/ols.m

After running the ols function a structure containing the results is available. The variable results.beta contains the estimated \(\beta\)-coefficients, results.tstat their t statistics, results.bint the \(95 \%\) confidence intervals for the estimates and similar for the other variables defined. Each estimation command produces its results in a similar structure. To see how to print a summary of these results
```

>> help prt_reg
PURPOSE: Prints output using regression results structures
USAGE: prt_reg(results,vnames,fid)
Where: results = a structure returned by a regression
vnames = an optional vector of variable names
fid = optional file-id for printing results to a file
(defaults to the MATLAB command window)
NOTES: e.g. vnames = strvcat('y','const','x1','x2');
e.g. fid = fopen('ols.out','wr');
use prt_reg(results,[],fid) to print to a file with no vnames
RETURNS: nothing, just prints the regression results
SEE ALSO: prt, plt

```

Thus to display the results of the previous regression on the screen in MATLAB one would enter \({ }^{3}\)
prt_reg(result)

\footnotetext{
\({ }^{3}\) result in this context is the name of a MATLAB variable and one could substitute for result any valid MATLAB variable name
}

\section*{Availability on other PCs}

The LeSage toolbox is available for download free on the internet. The only requirement on the package web site is that "Anyone is free to use these routines, no attribution (or blame) need be placed on the author/authors." The econometrics package is not available by default when MATLAB is installed on a PC. It may be downloaded from http://www.spatial-econometrics.com/. The toolbox is provided as a zipped file which can be unzipped to the MATLAB toolbox directory on your PC ( C: \ProgramFiles \(\backslash\) MATLAB704\toolbox or my PC - something similar on yours). This should create a subdirectory econometrics in this toolbox directory This econometrics directory will contain a large number of subdirectories containing the various econometric functions. When you next start MATLAB you can access the functions by adding to the path that MATLAB uses to search for functions. You can do the when you next start MATLAB by —File - Set Path - selecting the Add with sub-folders button and navigating to and selecting the econometrics folder. If you select save after entering the directory the functions will be available each time you start MATLAB. If you have the required permissions you can also access the toolbox from the IIS server.

The toolbox provides full source code for each function. Thus if no function provides the capabilities that you require it may be possible the amend the function and add the required functionality. If you do such work you should consider submitting you program for inclusion in a future version of the toolbox. By collaborating in this way you are helping to ensure the future of the project

The programs in the toolbox are examples of good programming practice and have good comments. If you are starting some serious programming in MATLAB you could learn a lot about programming by reading these programs.

\section*{Sample run from the LeSage toolbox}

To illustrate the use of the LeSage toolbox I set out below the output of the demonstration program demo_ reg.m. This program illustrates many of the various univariate estimation procedures available in the toolbox.
```

% PURPOSE: demo using most all regression functions
%
% ols,hwhite,nwest,ridge,theil,tsls,logit,probit,tobit,robust
%---
% USAGE: demo_all
%---
clear all;
rand('seed',10);
n = 100; k=3;

```
```

xtmp = randn(n,k-1);
tt = 1:n;
ttp = tt';
e = randn(n,1).*ttp; % heteroscedastic error term
%e = randn(n,1); % homoscedastic error term
b = ones(k,1);
iota = ones(n,1);
x = [iota xtmp];
% generate y-data
y = x*b + e;
vnames=strvcat('yvar','iota','x1','x2');
% * * * * * * * demo ols regression
reso = ols(y,x);
prt(reso,vnames);
% * * * * * * * demo hwhite regression
res = hwhite(y,x);
prt(res,vnames);
% * * * * * * * demo nwest regression
nlag=2;
res = nwest(y,x,nlag);
prt(res,vnames);
% * * * * * * * demo ridge regresson
rres = ridge(y,x);
prt(rres,vnames);
%******* demo logit regression
n = 24;
y = zeros(n,1);
y(1:14,1) = ones(14,1);
% (data from Spector and Mazzeo, 1980)
xdata = [llllllllllllllll
51 55 25 29 43 44 46 46 51 55 56 58];
iota = ones(n,1);
x = [iota xdata'];

```
```

vnames=strvcat('days','iota','response');
res = logit(y,x);
prt(res,vnames);
%* * * * * * * demo probit regression
n = 32; k=4;
y = zeros(n,1); % grade variable
y (5,1) = 1;
y (10,1) = 1;
y (14,1) = 1;
y(20,1) = 1;
y (22,1) = 1;
y (25,1) = 1;
y(25:27,1) = ones(3,1);
y (29,1) = 1;
y (30,1) = 1;
y (32,1) = 1;
x = zeros(n,k);
x(1:n,1) = ones(n,1); % intercept
x(19:32,2) = ones(n-18,1); % psi variable
tuce = [lll 22 24 12 21 17 17 21 25 29 20 23 23 25 26 19 ...
25 19 23 25 22 28 14 26 24 27 17 24 21 23 21 19];
x(1:n,3) = tuce';
gpa = [2.66 2.89 3.28 2.92 4.00 2.86 2.76 2.87 3.03 3.92 ...
2.63 3.32 3.57 3.26 3.53 2.74 2.75 2.83 3.12 3.16 ...
2.06 3.62 2.89 3.51 3.54 2.83 3.39 2.67 3.65 4.00 ...
3.10 2.39];
x(1:n,4) = gpa';
vnames=strvcat('grade','iota','psi','tuce','gpa');
resp = probit(y,x);
prt(resp,vnames);
% results reported in Green (1997, chapter 19)
%b = [-7.452, 1.426, 0.052, 1.626]

```
```

% * * * * * * * demo theil-goldberger regression
% generate a data set
nobs = 100;
nvar = 5;
beta = ones(nvar,1);
beta(1,1) = -2.0;
xmat = randn(nobs,nvar-1);
x = [ones(nobs,1) xmat];
evec = randn(nobs,1);
y = x*beta + evec*10.0;
Vnames = strvcat('y','const','x1','x2','x3','x4');
% set up prior
rvec = [-1.0 % prior means for the coefficients
1.0
2.0
2.0
1.0];
rmat = eye(nvar);
bv = 10000.0;
% umat1 = loose prior
umat1 = eye(nvar)*bv; % initialize prior variance as diffuse
for i=1:nvar;
umat1(i,i) = 1.0; % overwrite diffuse priors with informative prior
end;
lres = theil(y,x,rvec,rmat,umat1);
prt(lres,Vnames);
% * * * * * * * demo two-stage least-squares regression
nobs = 200;

```
```

x1 = randn(nobs,1);
x2 = randn(nobs,1);
b1 = 1.0;
b2 = 1.0;
iota = ones(nobs,1);
y1 = zeros(nobs,1);
y2 = zeros(nobs,1);
evec = randn(nobs,1);
% create simultaneously determined variables y1,y2
for i=1:nobs;
y1(i,1) = iota(i,1)*1.0 + x1(i,1)*b1 + evec(i,1);
y2(i,1) = iota(i,1)*1.0 + y1(i,1)*1.0 + x2(i,1)*b2 + evec(i,1);
end;
vname2 = ['y2-eqn ',
'y1 var ',
'constant',
'x2 var '];
% use all exogenous in the system as instruments
xall = [iota x1 x2];
% do tsls regression
result2 = tsls(y2,y1,[iota x2],xall);
prt(result2,vname2);
%******** demo robust regression
% generate data with 2 outliers
nobs = 100;
nvar = 3;
vnames = strvcat('y-variable','constant','x1','x2');
x = randn(nobs,nvar);
x(:,1) = ones(nobs,1);
beta = ones(nvar,1);

```
```

evec = randn(nobs,1);
y = x*beta + evec;
% put in 2 outliers
y(75,1) = 10.0;
y(90,1) = -10.0;
% get weighting parameter from OLS
% (of course you're free to do differently)
reso = ols(y,x);
sige = reso.sige;
% set up storage for bhat results
bsave = zeros(nvar,5);
bsave(:,1) = ones(nvar,1);
% loop over all methods producing estimates
for i=1:4;
wfunc = i;
wparm = 2*sige; % set weight to 2 sigma
res = robust(y,x,wfunc,wparm);
bsave(:,i+1) = res.beta;
end;
% column and row-names for mprint function
in.cnames = strvcat('Truth','Huber t','Ramsay','Andrews','Tukey');
in.rnames = strvcat('Parameter','constant','b1','b2');
fprintf(1,'Comparison of alternative robust estimators \n');
mprint(bsave,in);
res = robust(y,x,4,2);
prt(res,vnames);
% * * * * * * * demo regresson with t-distributed errors
res = olst(y,x);
prt(res,vnames);

```
```

% * * * * * * * demo lad regression
res = lad(y,x);
prt(res,vnames);
% * * * * * * * demo tobit regression
n=100; k=5;
x = randn(n,k);
x(:,1) = ones(n,1);
beta = ones (k,1)*0.5;
y = x*beta + randn(n,1);
% now censor the data
for i=1:n
if y(i,1) < 0
y(i,1) = 0.0;
end;
end;
resp = tobit(y,x);
vnames = ['y ',
'iota ',
'x1var ',
'x2var ',
'x3var ',
'x4var '];
prt(resp,vnames);
% * * * * * * * demo thsls regression
clear all;
nobs = 100;
neqs = 3;
x1 = randn(nobs,1);
x2 = randn(nobs,1);
x3 = randn(nobs,1);
b1 = 1.0;
b2 = 1.0;

```
```

b3 = 1.0;
iota = ones(nobs,1);
y1 = zeros(nobs,1);
y2 = zeros(nobs,1);
y3 = zeros(nobs,1);
evec = randn(nobs,3);
evec(:,2) = evec(:,3) + randn(nobs,1); % create cross-eqs corr
% create simultaneously determined variables y1,y2
for i=1:nobs;
y1(i,1) = iota(i,1)*10.0 + x1(i,1)*b1 + evec(i,1);
y2(i,1) = iota(i,1)*10.0 + y1(i,1)*1.0 + x2(i,1)*b2 + evec(i,2);
y3(i,1) = iota(i,1)*10.0 + y2(i,1)*1.0 + x2(i,1)*b2 + x3(i,1)*b3 + evec(i,3);
end;
vname1 = ['y1-LHS ',
'constant',
'x1 var '];
vname2 = ['y2-LHS ',
'y1 var ',
'constant',
'x2 var '];
vname3 = ['y3-LHS ',
'y2 var ',
'constant',
'x2 var ',
'x3 var '];
% set up a structure for y containing y's for each eqn
y(1).eq = y1;
y(2).eq = y2;
y(3).eq = y3;
% set up a structure for Y (RHS endogenous) for each eqn
Y(1).eq = [];
Y(2).eq = [y1];
Y(3).eq = [y2];

```
```

% set up a structure fo X (exogenous) in each eqn
X(1).eq = [iota x1];
X(2).eq = [iota x2];
X(3).eq = [iota x2 x3];
% do thsls regression
result = thsls(neqs,y,Y,X);
vname = [vname1
vname2
vname3];
prt(result,vname);
%******* demo olsc, olsar1 regression
% generate a model with 1st order serial correlation
n = 200;
k = 3;
tt = 1:n;
evec = randn(n,1);
xmat = randn(n,k);
xmat(:,1) = ones(n,1);
beta = ones(k,1);
beta(1,1) = 10.0; % constant term
y = zeros(n,1);
u = zeros(n,1);
for i=2:n;
u(i,1) = 0.4*u(i-1,1) + evec(i,1);
y(i,1) = xmat(i,:)*beta + u(i,1);
end;
% truncate 1st }100\mathrm{ observations for startup
yt = y(101:n,1);
xt = xmat(101:n,:);
n = n-100; % reset n to reflect truncation
Vnames = ['y ',
'cterm',

```
\[
\begin{array}{ll}
\text { 'x2 ', } \\
\text { 'x3 ']; }
\end{array}
\]
```

% do Cochrane-Orcutt ar1 regression
result = olsc(yt,xt);
prt(result,Vnames);
% do maximum likelihood ar1 regression
result2 = olsar1(yt,xt);
prt(result2,Vnames);
%* * * * * * * demo switch_em, hmarkov_em regressions
clear all;
% generate data from switching regression model
nobs = 100; n1 = 3; n2 = 3; n3 = 3;
b1 = ones(n1,1); b2 = ones(n2,1)*5; b3 = ones(n3,1);
sig1 = 1; sig2 = 1;
randn('seed',201010);
x1 = randn(nobs,n1); x2 = randn(nobs,n2); x3 = randn(nobs,n3);
ytruth = zeros(nobs,1);
for i=1:nobs;
if x3(i,:)*b3 <= 0
y(i,1) = x1(i,:)*b1 + randn(1,1);
ytruth(i,1) = 0;
else
y(i,1) = x2(i,:)*b2 + randn(1,1);
ytruth(i,1) = 1;
end;
end;
result = switch_em(y,x1,x2,x3,b1,b2,b3);
vnames1 = strvcat('y1','x1_1','x1_2','x1_3');
vnames2 = strvcat('y2','x2_1','x2_2','x2_3');
vnames3 = strvcat('x3_1','x3_2','x3_3');
vnames = [vnames1
vnames2

```
prt(result, vnames) ;
Ordinary Least-squares Estimates
Dependent Variable \(=\quad\) yvar
R-squared \(=0.0018\)
Rbar-squared \(=-0.0188\)
sigma^2 \(=3075.1129\)
Durbin-Watson \(=1.9735\)
Nobs, Nvars \(=100\), 3
\begin{tabular}{|c|c|c|c|}
\hline Variable & Coefficient & t-statistic & t-probability \\
\hline iota & -1.899455 & -0.338977 & 0.735360 \\
\hline x1 & -2.301110 & -0.358531 & 0.720725 \\
\hline x 2 & -1.298278 & -0.220027 & 0.826312 \\
\hline
\end{tabular}

White Heteroscedastic Consistent Estimates
Dependent Variable = yvar
R-squared \(=0.0018\)
Rbar-squared \(=-0.0188\)
sigma^2 \(=3075.1129\)
Durbin-Watson \(=1.9735\)
Nobs, Nvars \(=100\), 3
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
\begin{tabular}{lrrr} 
Variable & Coefficient & t-statistic & t-probability \\
iota & -1.899455 & -0.322516 & 0.747756 \\
x1 & -2.301110 & -0.390648 & 0.696914 \\
x2 & -1.298278 & -0.176022 & 0.860644
\end{tabular}
Newey-West hetero/serial Consistent Estimates
Dependent Variable \(=\quad\) yvar
\begin{tabular}{llr} 
R-squared & \(=0.0018\) \\
Rbar-squared & \(=\) & -0.0188 \\
sigma~2 & \(=3075.1129\)
\end{tabular}
Durbin-Watson \(=1.9735\)

Nobs, Nvars \(=100\), 3
\begin{tabular}{lrrc}
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) \\
Variable & Coefficient & t-statistic & t-probability \\
iota & -1.899455 & -0.343861 & 0.731695 \\
x1 & -2.301110 & -0.349591 & 0.727403
\end{tabular}


Logit Maximum Likelihood Estimates
Dependent Variable = days
McFadden R-squared \(=0.1476\)
Estrella R-squared \(=0.1951\)
LR-ratio, 2*(Lu-Lr) = 4.8131
LR p-value \(=0.0282\)
Log-Likelihood \(=-13.8941\)
\# of iterations \(=6\)
Convergence criterion \(=5.2516501 \mathrm{e}-012\)
Nobs, Nvars \(=24,2\)
\# of 0 's, \# of 1's \(=10,14\)
****************************************************************
\begin{tabular}{lrrr} 
Variable & Coefficient & t-statistic & t-probability \\
iota & 3.819440 & 2.081230 & 0.049260 \\
response & -0.086483 & -2.001038 & 0.057876
\end{tabular}

Probit Maximum Likelihood Estimates
\begin{tabular}{llrr} 
Dependent Variable \(=\) & & grade \\
McFadden R-squared & \(=\) & 0.3775 \\
Estrella R-squared & \(=\) & 0.4566 \\
LR-ratio, 2*(Lu-Lr) & \(=\) & 15.5459 \\
LR p-value & \(=\) & 0.0014 \\
Log-Likelihood & \(=\) & -12.8188
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\# of iterations} & 7 & \\
\hline \multicolumn{2}{|l|}{Convergence criterion} & \(2.1719878 \mathrm{e}-010\) & \\
\hline Nobs, Nv & \(=\) & 32, 4 & \\
\hline \# of 0 ' & 1's = & 21, 11 & \\
\hline \multicolumn{4}{|l|}{***************************************************************} \\
\hline Variable & Coefficient & t-statistic & t-probability \\
\hline iota & -7.452320 & -2.931131 & 0.006656 \\
\hline psi & 1.426332 & 2.397045 & 0.023445 \\
\hline tuce & 0.051729 & 0.616626 & 0.542463 \\
\hline gpa & 1.625810 & 2.343063 & 0.026459 \\
\hline
\end{tabular}

Theil-Goldberger Regression Estimates
Dependent Variable \(=\quad\) y
R-squared \(=0.0459\)
Rbar-squared \(=0.0057\)
sigma~2 \(=103.8523\)

Durbin-Watson \(=2.1050\)
Nobs, Nvars \(=100\), 5
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
\begin{tabular}{lrr} 
Variable & Prior Mean & Std Deviation \\
const & -1.000000 & 1.000000 \\
x1 & 1.000000 & 1.000000 \\
x2 & 2.000000 & 1.000000 \\
x3 & 2.000000 & 1.000000 \\
x4 & 1.000000 & 1.000000
\end{tabular}
\begin{tabular}{lrrr} 
**************************************************************** \\
\multicolumn{6}{c}{ Posterior Estimates } \\
Variable & Coefficient & t-statistic & t-probability \\
const & -1.643936 & -2.287731 & 0.024371 \\
x1 & 0.591000 & 0.815968 & 0.416559 \\
x2 & 2.176380 & 2.959987 & 0.003884 \\
x3 & 1.674902 & 2.298068 & 0.023751 \\
x4 & 0.629662 & 0.809268 & 0.420383
\end{tabular}

Two Stage Least-squares Regression Estimates
Dependent Variable \(=\quad\) y2-eqn
R -squared \(=0.7577\)
Rbar-squared \(=0.7552\)
sigma^2 \(=1.4553\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Durbin-Watson \(=1.7741\)} \\
\hline Nobs, Nvars & \(=\) & 200, 3 & & & \\
\hline \multicolumn{6}{|l|}{*****************************************************************} \\
\hline Variable & \multicolumn{2}{|l|}{Coefficient} & t-statistic & \multicolumn{2}{|l|}{t-probability} \\
\hline y1 var & \multicolumn{2}{|r|}{0.849977} & 8.010105 & \multicolumn{2}{|c|}{0.000000} \\
\hline constant & \multicolumn{2}{|r|}{1.192429} & 8.683790 & \multicolumn{2}{|c|}{0.000000} \\
\hline x2 var & \multicolumn{2}{|r|}{0.989913} & 12.700675 & \multicolumn{2}{|c|}{0.000000} \\
\hline \multicolumn{6}{|l|}{Comparison of alternative robust estimators} \\
\hline Parameter & Truth & h Huber t & Ramsay & Andrews & Tukey \\
\hline constant & 1.0000 & 0.9627 & 1.0288 & 0.9558 & 0.9159 \\
\hline b1 & 1.0000 & 1.0588 & 1.0498 & 1.0587 & 1.1143 \\
\hline b2 & 1.0000 & 0.8019 & 0.8862 & 0.8090 & 0.9775 \\
\hline \multicolumn{6}{|l|}{Robust Regression Estimates} \\
\hline \multicolumn{6}{|l|}{Dependent Variable = y -variable} \\
\hline R-squared & \multicolumn{5}{|l|}{\(=0.3012\)} \\
\hline Rbar-squared & \multicolumn{5}{|l|}{\(=0.2868\)} \\
\hline Weighting meth & \multicolumn{5}{|c|}{tukey} \\
\hline Weight param & \multicolumn{5}{|l|}{\(=2.0000\)} \\
\hline sigma^2 & \multicolumn{5}{|l|}{\(=3.8269\)} \\
\hline Durbin-Watson & \multicolumn{5}{|l|}{\(=1.7969\)} \\
\hline Nobs, Nvars & \multicolumn{5}{|l|}{\(=100,3\)} \\
\hline \# iterations & \multicolumn{5}{|l|}{\(=19\)} \\
\hline converg crit & \multicolumn{5}{|l|}{\(=8.0813581 \mathrm{e}-006\)} \\
\hline \multicolumn{6}{|l|}{**************************************************************} \\
\hline Variable & \multicolumn{2}{|l|}{Coefficient} & t-statistic & \multicolumn{2}{|l|}{t-probability} \\
\hline constant & \multicolumn{2}{|r|}{0.939790} & 3.792787 & \multicolumn{2}{|r|}{0.000259} \\
\hline x 1 & \multicolumn{2}{|r|}{1.093821} & 5.003626 & \multicolumn{2}{|r|}{0.000003} \\
\hline x2 & \multicolumn{2}{|r|}{1.062278} & 4.701951 & \multicolumn{2}{|r|}{0.000009} \\
\hline \multicolumn{6}{|l|}{Regression with t-distributed errors} \\
\hline \multicolumn{6}{|l|}{Dependent Variable \(=\quad \mathrm{y}\)-variable} \\
\hline R -squared & \multicolumn{5}{|l|}{\(=0.3096\)} \\
\hline Rbar-squared & \multicolumn{5}{|l|}{\(=0.2953\)} \\
\hline sigma^2 & \multicolumn{5}{|l|}{\(=3.6678\)} \\
\hline Durbin-Watson & \multicolumn{5}{|l|}{\(=1.7974\)} \\
\hline Nobs, Nvars & \multicolumn{5}{|l|}{\(=100,3\)} \\
\hline \# iterations & \multicolumn{5}{|l|}{\(=13\)} \\
\hline converg crit & \multicolumn{5}{|l|}{\(=2.5709227 \mathrm{e}-009\)} \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) \\
Variable & Coefficient & t-statistic & t-probability \\
constant & 0.921545 & 2.331888 & 0.021775 \\
x1 & 1.106885 & 2.969556 & 0.003758 \\
x2 & 0.981229 & 2.540883 & 0.012643
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Dependent Variable = y -variable} \\
\hline R-squared & \multicolumn{3}{|l|}{0.3126} \\
\hline Rbar-squared & \multicolumn{3}{|l|}{0.2984} \\
\hline sigma^2 & \multicolumn{3}{|l|}{3.7647} \\
\hline Durbin-Watson & \multicolumn{3}{|l|}{1.7916} \\
\hline Nobs, Nvars & \multicolumn{3}{|l|}{100, 3} \\
\hline \# iterations & \multicolumn{3}{|l|}{37} \\
\hline convergence & \multicolumn{3}{|l|}{8.8817842e-016} \\
\hline \multicolumn{4}{|l|}{****************************************************************} \\
\hline Variable & Coefficient & t-statistic & t-probability \\
\hline constant & 0.981256 & 131.486643 & 0.000000 \\
\hline x 1 & 1.071320 & 161.392625 & 0.000000 \\
\hline x2 & 0.942192 & 267.374908 & 0.000000 \\
\hline
\end{tabular}

Tobit Regression Estimates
Dependent Variable \(=\quad y\)
R-squared \(=0.9905\)

Rbar-squared \(=0.9901\)
sigma~2 \(=1.4500\)
Log-Likelihood = \(\quad-128.86295\)
\# iterations = 11
optimization \(=\) bfgs
Nobs, Nvars \(=100\), 5
\# of censored \(=32\)
time (in secs) \(=0.2\)
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
gradient at solution
\begin{tabular}{lr} 
Variable & Gradient \\
iota & 0.00023491 \\
x1var & -0.00032300 \\
x2var & -0.00027021 \\
x3var & 0.00025956 \\
x4var & -0.00006834
\end{tabular}
\begin{tabular}{lrrr} 
sigma & 0.00005784 & & \\
& & & \\
Variable & Coefficient & t-statistic & t-probability \\
iota & 0.524686 & 3.558525 & 0.000584 \\
x1var & 0.712329 & 5.060812 & 0.000002 \\
x2var & 0.557483 & 4.419124 & 0.000026 \\
x3var & 0.456688 & 3.354569 & 0.001143 \\
x4var & 0.567654 & 4.046847 & 0.000106
\end{tabular}


Three Stage Least-squares Estimates -- Equation 2
Dependent Variable \(=\quad\) y2-LHS
R -squared \(=0.6531\)

Rbar-squared \(=0.6460\)
sigma^2 \(=2.1255\)

Durbin-Watson \(=2.2631\)
Nobs, Nvars \(=100\), 3
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
\begin{tabular}{lrrr} 
Variable & Coefficient & t-statistic & t-probability \\
y1 var & 1.271276 & 8.565909 & 0.000000 \\
constant & 7.252903 & 4.869941 & 0.000004 \\
x2 var & 1.016608 & 7.700645 & 0.000000
\end{tabular}
Three Stage Least-squares Estimates -- Equation \(\quad 3\)
\begin{tabular}{lll} 
Dependent Variable \(=\) & y3-LHS & \\
R-squared & \(=0.9454\) \\
Rbar-squared & \(=0.9436\) \\
sigma~2 & \(=0.7704\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Durbin-Watso & \multicolumn{3}{|l|}{\(\mathrm{n}=2.2675\)} & \\
\hline Nobs, Nvars & \multicolumn{2}{|r|}{100,} & 4 & \\
\hline \multicolumn{5}{|l|}{*****************************************************************} \\
\hline Variable & Coeff & icient & t-statistic & t-probability \\
\hline y2 var & & 072609 & 15.286953 & 0.000000 \\
\hline constant & & 513420 & 6.070655 & 0.000000 \\
\hline x 2 var & & 884799 & 7.971522 & 0.000000 \\
\hline x 3 var & & 029391 & 18.715601 & 0.000000 \\
\hline \multicolumn{5}{|l|}{Cross-equation sig(i,j) estimates} \\
\hline equation & y1-LHS & y2-LHS & y3-LHS & \\
\hline y1-LHS & 0.8239 & -0.1371 & 0.0736 & \\
\hline y2-LHS & -0.1371 & 2.1238 & 0.9340 & \\
\hline y3-LHS & 0.0736 & 0.9340 & 0.7626 & \\
\hline \multicolumn{5}{|l|}{Cross-equation correlations} \\
\hline equation & y1-LHS & y2-LHS & y3-LHS & \\
\hline y1-LHS & 1.0000 & -0.1036 & 0.0928 & \\
\hline y2-LHS & -0.1036 & 1.0000 & 0.7339 & \\
\hline y3-LHS & 0.0928 & 0.7339 & 1.0000 & \\
\hline
\end{tabular}
Cochrane-Orcutt serial correlation Estimates
Dependent Variable \(=\)
\begin{tabular}{lll} 
Dependent Variable \(=\) & y \\
R-squared & \(=0.6751\) \\
Rbar-squared & \(=0.6683\) \\
sigma~2 & \(=1.0163\) \\
Durbin-Watson & \(=2.0564\) \\
Rho estimate & \(=0.4405\) \\
Rho t-statistic & \(=4.8569\) \\
Rho probability & \(=0.0000\) \\
Nobs, Nvars & \(=99\),
\end{tabular}
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
Iteration information
\begin{tabular}{rrr} 
rho value & convergence & iteration \\
0.440309 & 0.440309 & 1 \\
0.440463 & 0.000154 & 2 \\
0.440464 & 0.000000 & 3
\end{tabular}
***************************************************************
Variable Coefficient t-statistic t-probability
\begin{tabular}{lrrr} 
cterm & 10.109079 & 55.582539 & 0.000000 \\
x2 & 1.008878 & 10.021495 & 0.000000 \\
x3 & 1.117656 & 11.414945 & 0.000000
\end{tabular}

Maximum likelihood ar1 serial correlation Estimates
Dependent Variable \(=\)
Dependent Variable \(=\quad \mathrm{y}\)
R-squared \(=0.7012\)
Rbar-squared \(=0.6950\)
sigma^2 \(=1.0124\)
Durbin-Watson \(=2.0425\)
Rho estimate \(=0.4387\)
Rho t-statistic = 4.8330
Rho probability \(=0.0000\)
Nobs, Nvars = 100, 3
Iterations \(=4\)
Log Likelihood \(=\quad-229.46078\)
Time (in secs) = 0.0
\begin{tabular}{lrrc}
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) \\
Variable & Coefficient & t-statistic & t-probability \\
cterm & 10.131625 & 56.672826 & 0.000000 \\
x2 & 1.009420 & 10.039487 & 0.000000 \\
x3 & 1.125448 & 11.566906 & 0.000000
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{EM Estimates - Switching Regression model Regime 1 equation} \\
\hline \multicolumn{2}{|l|}{Dependent Variable \(=\)} & y1 & \\
\hline R-squared & \(=0.9377\) & & \\
\hline sigma^2 & \(=0.8997\) & & \\
\hline Nobs, Nvars & \(=100\), & 3 & \\
\hline \multicolumn{4}{|l|}{**************************************} \\
\hline Variable & Coefficient & t-statistic & t-probability \\
\hline x1_1 & 1.182283 & 8.051477 & 0.000000 \\
\hline x1_2 & 0.998518 & 6.233840 & 0.000000 \\
\hline x1_3 & 1.038357 & 7.625493 & 0.000000 \\
\hline
\end{tabular}

Regime 2 equation
Dependent Variable \(=\quad\) y2
\begin{tabular}{lll}
R -squared & \(=0.9997\) \\
sigma^2 & \(=1.0544\)
\end{tabular}
\begin{tabular}{lrrr} 
Nobs, Nvars & 100, & \multicolumn{2}{c}{3} \\
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) & \\
Variable & Coefficient & t-statistic & t-probability \\
x2_1 & 5.164178 & 25.388701 & 0.000000 \\
x2_2 & 4.763510 & 29.745264 & 0.000000 \\
x2_3 & 4.909741 & 30.189646 & 0.000000
\end{tabular}

Switching equation
Conv criterion = 0.00099191605
\# iterations = 43
\# obs regime \(1=54\)
\# obs regime \(2=46\)
log Likelihood \(=\quad-395.16724\)
Nobs, Nvars \(=100\), 3
***************************************
\begin{tabular}{lrrr} 
Variable & Coefficient & t-statistic & t-probability \\
x3_1 & 1.027361 & 10.097151 & 0.000000 \\
x3_2 & 1.061341 & 10.089601 & 0.000000 \\
x3_3 & 0.998786 & 11.024366 & 0.000000
\end{tabular}

\section*{9 Maximum Likelihood Estimation using Numerical Techniques}

In many cases of maximum likelihood estimation there is no analytic solution to the optimisation problem and one must use numerical techniques. This basic maximum likelihood algorithm is similar in many econometric packages. In most cases one works with the log-likelihood rather than the likelihood. Note that many packages contain a minimisation routine rather than a maximisation and thus one seeks to minimise the negative of the log-likelihood. The steps involved are as follows -
1. Write a MATLAB function to estimate the log-likelihood.
2. Load and process data.
3. Calculate an initial estimate of the parameters to be estimated. This will serve as starting values for the optimisation routine.
4. Check the defaults for the optimisation routine (e.g. maximum number of iterations, convergence criteria). If your initial attempt does not converge you may have to change these and/or use different starting values.
5. Call the optimisation routine. Optimisation routines are available in the MATLAB optim toolbox or in the Le Sage econometrics package. As the optim package
is an add-on which is not included in standard MATLAB I shall illustrate the routines using optimisation routines taken from the econometrics package
6. Print out results.

I shall illustrate the procedure by replicating the tobit analysis of tobacco expenditure on in Table 7.9 on page 237 of Verbeek (2008). The population is assumed to be censored at \(y=0\). Define
\[
d= \begin{cases}1 & \text { if } y>0 \\ 0 & \text { if } y \leq 0\end{cases}
\]

The log-likelihood can then be written
\[
\sum_{i=1}^{N}\left[d_{i}\left(-\frac{1}{2} \ln 2 \pi-\frac{1}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}}\left(y_{i}-\boldsymbol{x}_{i} \boldsymbol{\beta}\right)^{2}\right)+\left(1-d_{i}\right) \ln \left(1-\Phi\left(\frac{\boldsymbol{x} \boldsymbol{\beta}}{\boldsymbol{\sigma}}\right)\right)\right]
\]

\section*{1. Matlab program to calculate tobit log-likelihood}

This is an amended version of a sample program included with the Le Sage econometrics package
```

function like = to_liked(b,y,x);
% PURPOSE: evaluate tobit log-likelihood
% to demonstrate optimization routines
%---
% USAGE: like = to_liked(b,y,x)
% where: b = parameter vector (k x 1)
% y = dependent variable vector (n x 1)
% x = explanatory variables matrix (n x m)
%--
% NOTE: this function returns a scalar equal to the
% negative of the log likelihood function
% or a scalar sum of the vector depending
% on the value of the flag argument
% k ~}=m\mathrm{ because we may have additional parameters
% in addition to the m bhat's (e.g. sigma)
%---
% error check
if nargin ~= 3,error('wrong \# of arguments to to_like1'); end;
[m1 m2] = size(b);
if m1 == 1
b = b';
end;

```
```

h =.000001; % avoid sigma = 0
[m junk] = size(b);
beta = b(1:m-1); % pull out bhat
sigma = max([b(m) h]); % pull out sigma
xb = x*beta;
llf1 = -0.5*log(2*pi) - 0.5*log(sigma^2) - ((y-xb).^2)./(2*sigma^2); %amended
xbs = xb./sigma; cdf = .5*(1+erf(xbs./sqrt(2))); %amended
llf2 = log(h+(1-cdf));
llf = (y > 0).*llf1 + (y <= 0).*llf2;
like = -sum(llf); % scalar result

```

\section*{2. Load and process data}
clear;
load cigarette
\% set up variables
y = sharetob;
[nobs, dump] = size (tobacco) ;
\(\mathrm{X}=\) [ones(nobs,1), age, nadults, nkids, nkids2, lnexp, age.*lnexp, nadults.*lnexp]; [nobs, k]=size(X);

\section*{3. Estimate starting values using OLS}
```

beta0 = (X'*X)\X'*y ;
sd = sqrt((y-X*beta0)'*(y-X*beta0))/(nobs-1);
parm = [beta0
sd];

```

4 . Set up dfp_min defaults - change maximum number of iterations
info.maxit = 1000;

\section*{5. Call optimisation routine}
```

result2 = dfp_min('to_liked', parm, info, $y, X)$;

```

Extract results and print
```

% Extract results
beta = result2.b;
sdbeta = sqrt(diag(inv(result2.hess)));

```
```

zstat = beta ./ sdbeta;
%row names
rnames = 'b1';
for i=2:k;
bstring = ['b' num2str(i)];
rnames = strvcat(rnames,bstring);
end;
rnames = strvcat(rnames,'sigma');
disp('Estimates of tobit')
disp(' coef sd t-stat')
for ii=1:k+1
fprintf('%s%10.5f%10.5f%10.5f\n',rnames(ii,:),beta(ii),sdbeta(ii),zstat(ii))
end

Estimates of tobit			
	coef	sd	t-stat
b1	0.58932	0.06228	9.46266
b2	-0.12572	0.02313	-5.43565
b3	0.01570	0.00000	0.00000
b4	0.00427	0.00132	3.23039
b5	-0.00997	0.00547	-1.82376
b6	-0.04438	0.00465	-9.55517
b7	0.00881	0.00170	5.17910
b8	-0.00062	0.00000	0.00000
sigma	0.04800	0.00020	237.12802

```

This example of numerical optimisation works well. You can check that you get a similar answer from the tobit function in any econometric package. In many real cases it will not be that easy. You will be using numerical routines because your econometric package does not have a function to do the required analysis. There are many pitfalls that lie in wait for the economist trying to do numerical optimisation. One should never be satisfied with just one run as above. I did check the results with Verbeek (2008) and another package and did have to do some amendment to the original programs. In all cases of non-linear optimisation you should
1. Ensure that the process has converged. The results from a model that has not converged are totally useless, no matter how good they look.
2. Is there a corresponding published analysis that you can duplicate. Failure to replicate may indicate a problem with the published data. Can you simulate a data set with the statistical properties of your real data set? Can you estimate correctly the model underlying the simulated data.
3. If you have problems getting your estimates to converge it may be worth while rescaling your data so that the means and standard deviations are similar.
4. Is your likelihood surface flat close to the optimum - Your model may be overelaborate for your data.
5. The likelihood function may have multiple local maxima. Unless your mathematics tells you that thee is only one local maximum you should check that you have found the true optimum. Does an alternative set initial values lead to a different optimum.

\section*{10 Octave, Scilab and R}

MATLAB is an excellent program and is widely used in finance, science and engineering. It has a very good user interface. There may be occasions when you do not have access to MATLAB and require urgent access. For security reasons, your employer may place various restrictions on the programs you can use on a work computer. If you want to use MATLAB you may need local management approval, IT management approval and purchase through a central purchasing unit. By the time you get MATLAB you may find that the need has passed. In such a case, you might consider Octave or Scilab which are two free programs with similar functionality to MATLAB.

\subsection*{10.1 Octave}

Octave is largely compatible with MATLAB. Up to recently there were considerable problems running Octave on windows and it could be recommended only for those with considerable expertise in MS Windows and some knowledge of a Unix based systems. The new version 3 of Octave has solved these problems. The interface is different to the MATLAB interface but this should not lead to any great problems.

A program for base MATLAB will run in Octave with at most minor changes and, in all likelihood with none. The original drafts of these note were completed with Octave as I had no easy access to MATLAB at the time. Programs written in Octave may not run in base MATLAB as base Octave contains many functions similar to those in add-on MATLAB toolboxes. These make Octave a better package for econometrics than base MATLAB. Creel (2008) is a set of econometrics notes based with applications in Octave. Examples, data-sets and programs are available on the web with the notes.

It is claimed that the LeSage package runs in Octave. I have tested some of the packages and they are compatible but have not installed the entire toolbox.

\subsection*{10.2 Scilab}

Scilab is another free matrix manipulation language available from www.scilab.org. Scilab has the same basic functionality as MATLAB but its syntax is a little different. The functionality of both language is so similar that anyone accustomed to programming in MATLAB should have no problems reading Scilab programs but Scilab programs will need editing before they could be used in MATLAB. Scilab contains a utility for translating MATLAB programs to Scilab. This utility works well. Campbell et al. (2006) is a good introduction to Scilab and contains a lot of tutorial material. There is also an econometrics toolbox for Scilab called GROCER. While this package is partly derived from the LeSage package it has a lot of extra features that might be useful.

One may well ask which is the best program. MATLAB is definitely the market leader in the field. It is very much embedded in the scientific/engineering fields with branches in Finance. It has applications in advanced macroeconomics and is a suitable tool for empirical research. Octave is very similar to MATLAB but has only recently made the transition to MS Windows. Octave has better facilities than base MATLAB. The combination of Scilab and GROCER makes a most interesting tool for economics. If I was working in a MATLAB environment where good support was available in-house I would not try anything else. If I wanted a program to run my MATLAB programs at home and did not want to go to the expense of acquiring a licence for basic MATLAB and tools I would try Octave first. If I was just interested in some private empirical research Scilab would be worth trying. Experience gained in programming Octave or Scilab would transfer easily to MATLAB.

\subsection*{10.3 R}

Faced with these alternatives my personal choice has been R. R is "GNU S", a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. More information is available from The Comprehensive R Archive Network (CRAN) at http: //www.r-project.org/ or at one of its many mirror sites. Not only does R cover all aspects of statistics but it has most of the computational facilities of MATLAB. It is the package in which most academic statistical work is being completed. There is a large amount of free tutorial material available on CRAN and an increasing number of textbooks on R have been published in recent years.

If it can not be done in basic \(R\) then one is almost certain to find a solution in one of the \(1600+\) "official packages" on CRAN or the "unofficial packages" on other sites. R is regarded as having a steep learning curve but there are several graphical interfaces that facilitate the use of R. Summary information of the use of R in economics and finance can be seen on the Task views on the CRAN web site or on one of its many mirrors. Kleiber and Zeileis (2008) is a good starting point for econometrics in R.

\section*{References}

Campbell, S. L., J.-P. Chancelier, and R. Nikoukhah (2006). Modeling and Simulation in Scilab/Scicos. Springer.

Creel, M. (2008). Econometrics. http://pareto.uab.es/mcreel/Econometrics/.
Green, W. H. (2000). Econometric Analysis (fourth ed.). Prentice Hall.
Green, W. H. (2008). Econometric Analysis. Pearson Prentice Hall.
Higham, D. J. and N. J. Higham (2005). MATLAB Guide. Society for Industrial and Applied Mathematics.

Kendrick, D. A., P. Mercado, and H. M. Amman (2006). Computational Economics. Princeton University Press.

Kleiber, C. and A. Zeileis (2008). Applied Econometrics with R. Springer.
LeSage, J. P. (1999, October). Applied econometrics using MATLAB.
Ljungqvist, L. and T. J. Sargent (2004). Recursive Macroeconomic Theory (Second edition ed.). Princeton University Press.

Marimon, R. and A. Scott (Eds.) (1999). Computational Methods for the Study of Dynamic Economies. Oxford University Press.

Miranda, M. J. and P. L. Fackler (2002). Applied Computational Economics and Finance. Princeton University Press.

Paolella, M. S. (2006). Fundamental Probability: A Computational Approach. Wiley.
Paolella, M. S. (2007). Intermediate Probability: A Computational Approach. Wiley.
Pratap, R. (2006). Getting Started with MATLAB 7 : A Quick Introduction for Scientists and Engineers. Oxford University Press.

Shone, R. (2002). Economic Dynamics (Second ed.). Cambridge.
Verbeek, M. (2008). A Guide to modern Econometrics (Third ed.). Wiley.

\section*{A Functions etc. in LeSage Econometrics Toolbox}

\section*{A. 1 Regression}

The regression function library is in a subdirectory regress.

\section*{A.1.1 Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline ar_g & Gibbs sampling Bayesian autoregressive model \\
bma_g & Gibbs sampling Bayesian model averaging \\
boxcox & Box-Cox regression with 1 parameter \\
boxcox2 & Box-Cox regression with 2 parameters \\
egarchm & EGARCH(p,q)-in-Mean regression model \\
emhergott & EM estimates of Hamilton's markov switching model \\
garchs & garchs(1,1,1) model using non-central t-distribution \\
hmarkov_ em & Hamilton's markov switching model \\
hwhite & Halbert White's heteroscedastic consistent estimates \\
lad & least-absolute deviations regression \\
lm_test & LM-test for two regression models \\
logit & logit regression \\
mlogit & multinomial logit regression \\
nwest & Newey-West hetero/serial consistent estimates \\
ols & ordinary least-squares \\
ols_g & Gibbs sampling Bayesian linear model \\
olsar1 & Maximum Likelihood for AR(1) errors ols model \\
olsc & Cochrane-Orcutt AR(1) errors ols model \\
olst & regression with t-distributed errors \\
probit & probit regression \\
probit_g & Gibbs sampling Bayesian probit model \\
ridge & ridge regression \\
robust & iteratively reweighted least-squares \\
rtrace & ridge estimates vs parameters (plot) \\
sur & seemingly unrelated regressions \\
switch_ em & switching regime regression using EM-algorithm \\
theil & Theil-Goldberger mixed estimation \\
thsls & three-stage least-squares \\
tobit & tobit regression \\
tobit_ g & Gibbs sampling Bayesian tobit model \\
tsls & two-stage least-squares \\
waldf & Wald F-test \\
\hline
\end{tabular}

\section*{A.1.2 Demonstrations}
\begin{tabular}{|c|c|}
\hline program & description \\
\hline ```
ar_ gd
bma_ gd
boxcox-
boxcox2_
demo_ all
egarchm_ d
garchs_ d
hmarkov_ emd
hmarkov_ emd2
hwhite_d
lad_ d
lm_ test_ d
logit_ d
mlogit_ d
nwest_ d
ols_ d
ols_ d2
ols_ gd
olsar1_ d
olsc. d
olst_ d
probit_ d
probit_ gd
ridge_ d
robust_ d
sur_d
switch_ emd
theil_ d
thsls_ d
tobit_ d
tobit_ d2
tobit_ gd
tobit_ gd2
tsls_ d
waldf_ d
``` & \begin{tabular}{l}
demonstration of Gibbs sampling ar_ g demonstrates Bayesian model averaging demonstrates Box-Cox 1-parameter model demonstrates Box-Cox 2-parmaeter model demos most regression functions demos egarchm function demos garchs function demos Hamilton's model another demo of Hamilton's model \\
H. White's hetero consistent estimates demo demos lad regression demos lm_ test demonstrates logit regression demonstrates multinomial logit demonstrates Newey-West estimates demonstrates ols regression \\
Monte Carlo demo using ols regression demo of Gibbs sampling ols_ g \\
Max Like AR(1) errors model demo \\
Cochrane-Orcutt demo olst demo probit regression demo demo of Gibbs sampling Bayesian probit model ridge regression demo demonstrates robust regression demonstrates sur using Grunfeld's data demonstrates switching regression demonstrates theil-goldberger estimation three-stage least-squares demo tobit regression demo tobit right-censoring demo demo of Gibbs sampling Bayesian tobit model Bayesian tobit right-censoring demo two-stage least-squares demo demo of using wald F-test function
\end{tabular} \\
\hline
\end{tabular}

\section*{A.1.3 Support functions}
\begin{tabular}{|c|c|}
\hline program & description \\
\hline ar1_ like & used by olsar1 (likelihood) \\
\hline bmapost & used by bma_ g \\
\hline box_ lik & used by box_ cox (likelihood) \\
\hline box_ lik2 & used by box_ cox2 (likelihood) \\
\hline chis_ prb & computes chi-squared probabilities \\
\hline dmult & used by mlogit \\
\hline egarchm_ lik & likelihood used by egarchm \\
\hline garchs_ llf & likelihood used by garchs \\
\hline herg- llf & likelihood used by emhergott \\
\hline herg_ llf2 & likelihood used by emhergott \\
\hline hmarkov_ llf & likelihood used by hmarkov_ em \\
\hline hmarkov_ llf2 & likelihood used by hmarkov_ em \\
\hline fdis_ prb & computes F-statistic probabilities \\
\hline find_ new & used by bma_g \\
\hline grun.dat & Grunfeld's data used by sur_ d \\
\hline grun.doc & documents Grunfeld's data set \\
\hline hessian & used by tobit to determine numerical hessian \\
\hline lo_ like & used by logit (likelihood) \\
\hline mcov & used by hwhite \\
\hline mderivs & used by mlogit \\
\hline mlogit_ lik & used by mlogit \\
\hline nmlt_ rnd & used by probit_ g \\
\hline nmrt_ rnd & used by probit_ g, tobit_ g \\
\hline norm_ cdf & used by probit, pr_ like \\
\hline norm_ pdf & used by prt_ reg, probit \\
\hline olse & ols returning only residuals (used by sur) \\
\hline plt_ eqs & plots equation systems \\
\hline plt_ reg & plots regressions \\
\hline pr_ like & used by probit (likelihood) \\
\hline prt_ eqs & prints equation systems \\
\hline prt_ gibbs & prints Gibbs sampling models \\
\hline prt_ reg & prints regressions \\
\hline prt. swm & prints switching regression results \\
\hline sample & used by bma_ \\
\hline stdn_ cdf & used by norm_ ccif \\
\hline stdn_ pdf & used by norm_ pd \\
\hline tdis_ prb & computes t-statistic probabilities \\
\hline to_ like & used by tobit (likelihood) \\
\hline
\end{tabular}

\section*{A. 2 Utilities}

The utility functions are in a subdirectory util.

\section*{A.2.1 Utility Function Library}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline accumulate & accumulates column elements of a matrix \\
blockdiag & creates a block diagonal matrix \\
ccorr1 & associates obs \# with time-series calendar \\
ccorr2 & correlation scaling to normal column length \\
cols & correlation scaling to unit column length \\
crlag & returns the \# of columns in a matrix or vector \\
cumprodc & retcular lag function cumulative product of each column of a matrix \\
cumsumc & returns cumulative sum of each column of a matrix \\
delif & select matrix values for which a condition is false \\
diagrv & replaces main diagonal of square matrix with vector \\
findnear & finds matrix element nearest a scalar value \\
fturns & finds turning-points in a time-series \\
growthr & converts time-series matrix to growth rates \\
ical & associates time-series dates with obs \# \\
indexcat & extract indices equal to a scalar or an interval \\
indicator & converts a matrix to indicator variables \\
invccorr & inverse for ccorr1, ccorr2 \\
invpd & makes a matrix positive-definite, then inverts \\
kernel_ n & normal kernel density estimates \\
lag & generates a lagged variable vector or matrix \\
levels & generates factor levels variable \\
lprint & prints a matrix in LaTeX table-formatted form \\
lprintf & enhanced lprint function \\
matadd & adds non-conforming matrices, row or col compatible. \\
matdiv & divides non-conforming matrices, row or col compatible. \\
matmul & multiplies non-conforming matrices, row or col compatible. \\
matsub & divides non-conforming matrices, row or col compatible. \\
mlag & generates a var-type matrix of lags \\
mode & calculates the mode of a distribution \\
mprint & prints a matrix \\
mprint3 & prints coefficient, t-statistics matrices \\
\hline
\end{tabular}

\section*{Utility Function Library - continued}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline mth2qtr & converts monthly to quarterly data \\
nclag & generates a matrix of non-contiguous lags \\
plt & wrapper function, plots all result structures \\
prt & returns product of each column of a matrix \\
recserar & wrapper function, prints all result structures \\
recsercp & recursive AR series (like Gauss) \\
roundoff & rounds matrix to fixed number of decimal digits \\
rows & returns the \# of rows in a matrix or vector \\
sacf & sample autocorrelation function estimates \\
sdiff & seasonal differencing \\
sdummy & generates seasonal dummy variables \\
selif & select matrix values for which a condition is true \\
seqa & a sequence of numbers with a beginning and increment \\
shist & plots spline smoothed histogram \\
spacf & sample partial autocorrelation estimates \\
stdc & std deviations of columns returned as a column vector \\
sumc & returns sum of each column \\
tally & computes frequencies of distinct levels \\
tdiff & time-series differencing \\
trimc & trims columns of a matrix (or vector) like Gauss \\
trimr & trims rows of a matrix (or vector \()\) like Gauss \\
tsdates & time-series dates function \\
tsprint & print time-series matrix \\
unsort & unsorts a sorted vector or matrix \\
vec & turns a matrix into a stacked vector \\
vech & matrix from lower triangular columns of a matrix \\
xdiagonal & spreads x \((n \times k)\) out to X \((n * n \times n * k)\) diagonal matrix \\
yvector & repeats y \((n \times 1)\) to form Y \((n * n \times 1)\) \\
\hline
\end{tabular}

\section*{A.2.2 demonstration programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline cal_d & demonstrates cal function \\
fturns_d & demonstrates fturns and plt \\
ical_d & demonstrates ical function \\
lprint_d & demonstrates lprint function \\
lprintf_d & demonstrates lprintf function \\
mprint_d & demonstrates mprint function \\
mprint3_d & demonstrates mprint3 function \\
sacf_d & demonstrates sacf \\
spacf_d & demonstrates spacf \\
tsdate_d & demonstrates tsdate function \\
tsprint_d & demonstrates tsprint function \\
util_d & demonstrated some of the utility functions \\
\hline
\end{tabular}

\section*{A. 3 Graphing Function Library}

A set of graphing functions are in a subdirectory graphs.

\section*{A.3.1 graphing programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline tsplot & time-series graphs \\
pltdens & density plots \\
pairs & scatter plot (uses histo) \\
plt & plots results from all functions \\
\hline
\end{tabular}

\section*{A.3.2 Demonstration Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline tsplot_d & demonstrates tsplot \\
pltdens_d & demonstrates pltdens \\
plt_ turnsd & demonstrates plt_ turns \\
pairs_d & demonstrates pairwise scatter \\
plt_d & demonstrates plt on results structures \\
\hline
\end{tabular}

\section*{A.3.3 Support Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline histo & used by pairs \\
plt_ turns & used by plt to plot turning points \\
\hline
\end{tabular}

\section*{A. 4 Regression Diagnostics Library}

A library of routines in the subdirectory diagn contain the regression diagnostics functions.

\section*{A.4.1 regression diagnostic programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline arch & ARCH(p) test \\
bkw & BKW collinearity diagnostics \\
bpagan & Breusch-Pagan heteroskedasticity test \\
cusums & Brown,Durbin,Evans cusum squares test \\
dfbeta & BKW influential observation diagnostics \\
diagnose & compute diagnostic statistics \\
plt_dfb & plots dfbetas \\
plt_ dff & plots dffits \\
plt_ cus & plots cusums \\
recresid & compute recursive residuals \\
rdiag & graphical residuals diagnostics \\
studentize & standardisation transformation \\
unstudentize & reverses studentize transformation \\
qstat2 & Box-Ljung Q-statistic \\
\hline
\end{tabular}

\section*{A.4.2 Demonstration Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline arch_d & demonstrates arch \\
bkw_d & demonstrates bkw \\
bpagan_d & demonstrates bpagan \\
cusums_d & demonstrates cusums \\
dfbeta_d & demonstrates dfbeta, plt_ dfb, plt_ dff \\
diagnose_d & demonstrates diagnose \\
recresid_d & demonstrates recresid \\
rdiag_d & demonstrates rdiag \\
unstudentize_d & demonstrates studentize, unstudentize \\
qstat2_d & demonstrates qstat2 \\
\hline
\end{tabular}

\section*{A.4.3 support functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline plt_ cus & plots cusums test results \\
plt_ dff & plots dffits \\
../util/plt & plots everything \\
../regress/ols.m & least-squares regression \\
\hline
\end{tabular}

\section*{A. 5 vector autoregressive function library}

The vector autoregressive library is in a subdirectory var_ bvar.

\section*{A.5.1 VAR/BVAR functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline becm_ g & Gibbs sampling BECM estimates \\
becmf & Bayesian ECM model forecasts \\
becmf_ g & Gibbs sampling BECM forecasts \\
bvar & BVAR model \\
bvar_ g & Gibbs sampling BVAR estimates \\
bvarf & BVAR model forecasts \\
bvarf_ g & Gibbs sampling BVAR forecasts \\
ecm & ECM (error correction) model estimates \\
ecmf & ECM model forecasts \\
irf & impulse response functions \\
lrratio & likelihood ratio tests for lag length \\
recm & ecm version of rvar \\
recm_ g & Gibbs sampling random-walk averaging estimates \\
recmf & random-walk averaging ECM forecasts \\
recmf_ g & Gibbs sampling random-walk averaging forecasts \\
rvar & Bayesian random-walk averaging prior model \\
rvar_ g & Gibbs sampling RVAR estimates \\
rvarf & Bayesian RVAR model forecasts \\
rvarf_ g & Gibbs sampling RVAR forecasts \\
var & VAR model \\
varf & VAR model forecasts \\
\hline
\end{tabular}

\section*{A.5.2 Demonstration Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline becm_ d - & BECM model demonstration \\
becm_g & Gibbs sampling BECM estimates demo \\
becmf_d \(^{\text {becmf_ gd }}\) & becmf demonstration \\
bech \(^{\text {bibar_d }}\) & BVAR model demonstration \\
bvar_gd & Gibbs sampling BVAR demonstration \\
bvarf_ d & bvarf demonstration \\
bvarf_ gd & Gibbs sampling BVAR forecasts demo \\
ecm_d & ECM model demonstration \\
\hline
\end{tabular}

\section*{A.5.3 Demonstration Programs - continued}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline ecmf_d & ecmf demonstration \\
irf_ d & impulse response function demo \\
irf_ d2 & another irf demo \\
lrratio_d & demonstrates lrratio \\
pftest_d & demo of pftest function \\
recm_ d & RECM model demonstration \\
recm_ gd & Gibbs sampling RECM model demo \\
recmf_ d & recmf demonstration \\
recmf_ gd & Gibbs sampling RECM forecast demo \\
rvar_d & RVAR model demonstration \\
rvar_ gd & Gibbs sampling rvar model demo \\
rvarf_ d & rvarf demonstration \\
rvarf_ gd & Gibbs sampling rvar forecast demo \\
var_d & VAR model demonstration \\
varf_d & varf demonstration \\
\hline
\end{tabular}

\section*{A.5.4 Support Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline johansen & used by ecm,ecmf,becm,becmf,recm,recmf \\
lag & does ordinary lags \\
mlag & does var-type lags \\
nclag & does contiguous lags (used by rvar,rvarf,recm,recmf) \\
ols & used for VAR estimation \\
pftest & prints Granger F-tests \\
pgranger & prints Granger causality probabilities \\
prt & prints results from all functions \\
prt_ coint & used by prt_ var for ecm,becm,recm \\
prt_ var & prints results of all var/bvar models \\
prt_ varg & prints results of all Gibbs var/bvar models \\
rvarb & used for RVARF forecasts \\
scstd & does univariate AR for BVAR \\
theil_ g & used for Gibbs sampling estimates and forecasts \\
theilbf & used for BVAR forecasts \\
theilbv & used for BVAR estimation \\
trimr & used by VARF,BVARF, johansen (in /util/trimr.m) \\
vare & used by lrratio (vare uses /regress/olse.m) \\
\hline
\end{tabular}

\section*{A. 6 Co-integration Library}

The co-integration library functions are in a subdirectory coint.

\section*{A.6.1 Co-integration testing routines}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline johansen & carries out Johansen's co-integration tests \\
adf & carries out Augmented Dickey-Fuller unit root tests \\
cadf & carries out ADF tests for co-integration \\
phillips & carries out Phillips-Peron co-integration tests \\
prt_ coint & prints results from adf,cadf,johansen \\
\hline
\end{tabular}

\section*{A.6.2 Demonstration Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline johansen_d & demonstrates johansen \\
adf_d & demonstrates adf \\
cadf_d & demonstrates cadf \\
phillips_d & demonstrates phillips \\
\hline
\end{tabular}

\section*{A.6.3 Support functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline c_s sja \(^{c_{-} \text {sjt }}\) & returns critical values for SJ maximal eigenvalue test \\
ztcrit & returns critical values for SJ trace test \\
rztcrit & returns critical values for adf test \\
detrend & used by johansen to detrend data series \\
ptrend & used by adf to create time polynomials \\
trimr & /util/trimr.m (like Gauss trimr) \\
cols & /util/cols.m (like Gauss cols) \\
rows & /util/rows.m (like Gauss rows) \\
tdiff & /util/tdiff.m differences \\
\hline
\end{tabular}

\section*{A. 7 Gibbs sampling convergence diagnostics functions}

The Gibbs convergence diagnostic functions are in a subdirectory gibbs.

\section*{A.7.1 Convergence testing functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline apm & Geweke's chi-squared test \\
coda & convergence diagnostics \\
momentg & Geweke's NSE, RNE \\
raftery & Raftery and Lewis program Gibbsit for convergence \\
\hline
\end{tabular}

\section*{A.7.2 Demonstration Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline apm_d & demonstrates apm \\
coda_d & demonstrates coda \\
momentg_d & demonstrates momentg \\
raftery_d & demonstrates raftery \\
\hline
\end{tabular}

\section*{A.7.3 Support Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline prt_ coda & prints coda, raftery, momentg, apm output (use prt) \\
empquant & These were converted from: \\
indtest & Rafferty and Lewis FORTRAN program. \\
mcest & These function names follow the FORTRAN subroutines \\
mctest & \\
ppnd & \\
thin & \\
\hline
\end{tabular}

\section*{A. 8 Distribution functions library}

Distribution functions are in the subdirectory distrib.

\section*{A.8.1 pdf, cdf, inverse functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline beta_ cdf & beta(a,b) cdf \\
beta_ inv & beta inverse (quantile) \\
beta_ pdf & beta(a,b) pdf \\
bino_ cdf & binomial(n,p) cdf \\
bino_ inv & binomial inverse (quantile) \\
bino_ pdf & binomial pdf \\
chis_ cdf & chisquared(a,b) cdf \\
chis_ inv & chi-inverse (quantile) \\
chis_ pdf & chisquared(a,b) pdf \\
chis_ prb & probability for chi-squared statistics \\
fdis_ cdf & F(a,b) cdf \\
fdis_ inv & F inverse (quantile) \\
fdis_ pdf & F(a,b) pdf \\
fdis_ prb & probabililty for F-statistics \\
gamm_ cdf & gamma(a,b) cdf \\
gamm_ inv & gamma inverse (quantile) \\
gamm_ pdf & gamma(a,b) pdf \\
hypg_ cdf & hypergeometric cdf \\
hypg_ inv & hypergeometric inverse \\
hypg_ pdf & hypergeometric pdf \\
logn_ cdf & lognormal(m,v) cdf \\
logn_ inv & lognormal inverse (quantile) \\
logn_ pdf & lognormal(m,v) pdf \\
logt_ cdf & logistic cdf \\
logt_ inv & logistic inverse (quantile) \\
logt_ pdf & logistic pdf \\
norm_ cdf & normal(mean,var) cdf \\
norm_ inv & normal inverse (quantile) \\
norm_ pdf & normal(mean,var) pdf \\
pois_ cdf & poisson cdf \\
pois_ inv & poisson inverse \\
pois_ pdf & poisson pdf \\
\hline
\end{tabular}
pdf, cdf, inverse functions - continued)
\begin{tabular}{|l|l|}
\hline program & description \\
\hline stdn_ cdf & std normal cdf \\
stdn_ inv & std normal inverse \\
stdn_ pdf & std normal pdf \\
tdis_ cdf & student t-distribution cdf \\
tdis_ inv & student t inverse (quantile) \\
tdis_ pdf & student t-distribution pdf \\
tdis_ prb & probabililty for t-statistics \\
\hline
\end{tabular}

\section*{A.8.2 Random Samples}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline beta_ rnd & random beta(a,b) draws \\
bino_ rnd & random binomial draws \\
chis_ rnd & random chi-squared(n) draws \\
fdis_ rnd & random F(a,b) draws \\
gamm_ rnd & random gamma(a,b) draws \\
hypg_ rnd & random hypergeometric draws \\
logn_ rnd & random log-normal draws \\
logt_ rnd & random logistic draws \\
nmlt_ rnd & left-truncated normal draw \\
nmrt_ rnd & right-truncated normal draw \\
norm_ crnd & contaminated normal random draws \\
norm_ rnd & multivariate normal draws \\
pois_ rnd & poisson random draws \\
tdis_ rnd & random student t-distribution draws \\
unif_ rnd & random uniform draws (lr,rt) interval \\
wish_ rnd & random Wishart draws \\
\hline
\end{tabular}

\section*{A.8.3 Demonstration and Test programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline beta_d & demo of beta distribution functions \\
bino_d & demo of binomial distribution functions \\
chis_d & demo of chi-squared distribution functions \\
fdis_d & demo of F-distribution functions \\
gamm_d & demo of gamma distribution functions \\
hypg_d & demo of hypergeometric distribution functions \\
logn_ d & demo of lognormal distribution functions \\
logt_d & demo of logistic distribution functions \\
pois_d & demo of poisson distribution functions \\
stdn_d & demo of std normal distribution functions \\
tdis_d & demo of student-t distribution functions \\
trunc_d & demo of truncated normal distribution function \\
unif_d & demo of uniform random distribution function \\
\hline
\end{tabular}

\section*{A.8.4 Support Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline betacfj & used by fdis_ prb \\
betai & used by fdis_ prb \\
bincoef & binomial coefficients \\
com_ size & test and converts to common size \\
gammalnj & used by fdis_ prb \\
is_ scalar & test for scalar argument \\
\hline
\end{tabular}

\section*{A. 9 Optimisation functions library}

Optimisation functions are in the subdirectory optimiz0e.

\section*{A.9.1 Optimization Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline dfp_min & Davidson-Fletcher-Powell \\
frpr_min & Fletcher-Reeves-Polak-Ribiere \\
maxlik & general all-purpose optimisation routine \\
pow_ min & Powell conjugate gradient \\
solvopt & yet another general purpose optimization routine \\
\hline
\end{tabular}

\section*{A.9.2 Demonstration Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline optim1_d & dfp, frpr, pow, maxlik demo \\
optim2_d & solvopt demo \\
optim3_d & fmins demo \\
\hline
\end{tabular}

\section*{A.9.3 Support Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline apprgrdn & computes gradient for solvopt \\
box_ like1 & used by optim3_d \\
gradt & computes gradient \\
hessian & evaluates hessian \\
linmin & line minimization routine (used by dfp, frpr, pow) \\
stepsize & stepsize determination \\
tol_ like1 & \begin{tabular}{l}
used by optim1_ d, optim2_d \\
updateh
\end{tabular} \\
updates hessian
\end{tabular},

\section*{A. 10 Spatial Econometrics}

A library of spatial econometrics functions is in the subdirectory spatial.

\section*{A.10.1 Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline casetti & Casetti's spatial expansion model \\
darp & Casetti's darp model \\
far & 1st order spatial AR model \(-y=p W y+e\) \\
far_g & Gibbs sampling Bayesian far model \\
gwr & geographically weighted regression \\
bgwr & Bayesian geographically weighted regression \\
lmerror & LM error statistic for regression model \\
lmsar & LM error statistic for sar model \\
lratios & Likelihood ratio statistic for regression models \\
moran & Moran's I-statistic \\
sac & spatial model - \(y=p * W 1 * y+X * b+u, u=c * W 2 * u+e\) \\
sac_g & Gibbs sampling Bayesian sac model \\
sar & spatial autoregressive model \(-y=p * W * y+X * b+e\) \\
sar_g & Gibbs sampling Bayesian sar model \\
sarp_ g & Gibbs sampling Bayesian sar Probit model \\
sart_ g & Gibbs sampling Bayesian sar Tobit model \\
sem & spatial error model \(-y=X * b+u, u=c * W+e\) \\
sem_g & Gibbs sampling Bayesian spatial error model \\
\hline
\end{tabular}

\section*{Functions - continued}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline semo & spatial error model (optimization solution) \\
sdm & spatial Durbin model \(y=a+X * b 1+W * X * b 2+e\) \\
sdm_g & Gibbs sampling Bayesian spatial Durbin model \\
walds & Wald test for regression models \\
xy2cont & constructs a contiguity matrix from x-y coordinates \\
\hline
\end{tabular}

\section*{A.10.2 Demonstration Programs}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline casetti_ d & Casetti model demo \\
darp_d & Casetti darp demo \\
darp_d2 & darp for all data observations \\
far_d & demonstrates far using a small data set \\
far_d2 & demonstrates far using a large data set \\
far_ gd & far Gibbs sampling with small data set \\
far_ gd2 & far Gibbs sampling with large data set \\
gwr_d & geographically weighted regression demo \\
gwr_d2 & GWR demo with Harrison-Rubinfeld Boston data \\
bgwr_d & demo of Bayesian GWR \\
bgwr_d2 & BGWR demo with Harrison-Rubinfeld Boston data \\
lmerror_d & lmerror demonstration \\
lmsar_d & lmsar demonstration \\
lratios_d & likelihood ratio demonstration \\
moran_d & moran demonstration \\
sac_d & sac model demo \\
sac_d2 & sac model demonstration large data set \\
sac_ gd & sac Gibbs sampling demo \\
sac_gd2 & sac Gibbs demo with large data set \\
sar_d & sar model demonstration \\
sar_d2 & sar model demonstration large data set \\
sar_ gd & sar Gibbs sampling demo \\
sar_ gd2 & sar Gibbs demo with large data set \\
sarp_ gd & sar Probit Gibbs sampling demo \\
sart_ gd & sar Tobit model Gibbs sampling demo \\
sdm_d & sdm model demonstration \\
sdm_d2 & sdm model demonstration large data set \\
sdm_ gd & sdm Gibbs sampling demo \\
sdm_ gd2 & sdm Gibbs demo with large data set \\
sem_d & sem model demonstration \\
sem_d2 & sem model demonstration large data set \\
\hline
\end{tabular}

\section*{Demonstration Programs - continued}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline sem_gd & sem Gibbs sampling demo \\
sem_gd2 & sem Gibbs demo with large data set \\
semo_d & semo function demonstration \\
semo_d2 & semo demo with large data set \\
walds_d & Wald test demonstration \\
xy2cont_d & xy2cont demo \\
\hline
\end{tabular}

\section*{A.10.3 Support Functions}
\begin{tabular}{|l|l|}
\hline program & description \\
\hline anselin.dat & Anselin (1988) Columbus crime data \\
boston.dat & Harrison-Rubinfeld Boston data set \\
latit.dat & latittude for HR data \\
longi.dat & longitude for HR data \\
c_ far & used by far_ g \\
c_s sem \(^{\text {c_s sar }}\) & used by sem_ g \\
c_s sdm \(_{\text {c_s }}\) & used by sar_ g \\
darp_ lik1 & used by sdm_ g \\
darp_ lik2 & used by darp \\
used by darp \\
elect.dat & Pace and Barry 3,107 obs data set \\
ford.dat & Pace and Barry 1st order contiguity matrix \\
f_ far & far model likelihood (concentrated) \\
f_ sac & sac model likelihood (concentrated) \\
f_ sar & sar model likelihood (concentrated) \\
f_ sem & sem model likelihood (concentrated) \\
f_ sdm & sdm model likelihood (concentrated) \\
f2_ far & far model likelihood \\
f2_ sac & sac model likelihood \\
f2_ sar & sar model likelihood \\
f2_ sem & sem model likelihood \\
f3_ sem & semo model likelihood \\
f2_ sdm & sdm model likelihood \\
normxy & isotropic normalization of x-y coordinates \\
prt_ gwr & prints gwr_ reg results structure \\
prt_ spat & prints results from spatial models \\
scoref & used by gwr \\
wmat.dat & Anselin (1988) 1st order contiguity matrix \\
\hline
\end{tabular}```

[^0]: * Comments are welcome. My email address is frainj at tcd.ie

