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ABSTRACT

The main substantive finding of the recent structural vector autoregression literature with a differ-
enced specification of hours (DSVAR) is that technology shocks lead to a fall in hours. Researchers
have used these results to argue that business cycle models in which technology shocks lead to a rise
in hours should be discarded. We evaluate the DSVAR approach by asking, is the specification de-
rived from this approach misspecified when the data are generated by the very model the literature
is trying to discard? We find that it is misspecified. Moreover, this misspecification is so great that
it leads to mistaken inferences that are quantitatively large. We show that the other popular speci-
fication that uses the level of hours (LSVAR) is also misspecified. We argue that alternative state
space approaches, including the business cycle accounting approach, are more fruitful techniques for
guiding the development of business cycle theory.
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The goal of the structural vector autoregression (SVAR) approach is to identify promis-

ing classes of business cycle models using a simple time series procedure. The idea behind the

procedure is to run vector autoregressions in the data and impose identifying assumptions

to back out impulse responses to various shocks.1 These SVAR impulse responses are then,

typically implicitly, compared with theoretical impulse responses from economic models. Im-

portantly, this literature does not follow the procedure that Sims (1989) advocates, in which

the same VAR is run on data from an actual economy as on data generated from a model

and statistics from the VARs are compared.

We focus on the branch of the literature that studies impulse responses to a technology

shock. We subject the SVAR procedure to a natural economic test. We treat an economic

model as the data-generating mechanism and calculate the population impulse responses

obtained from applying the SVAR procedure to data from the model. We ask whether

the impulse responses identified by the SVAR procedure are close to the model’s impulse

responses. For a large class of parameters, including ones estimated from the data, we find

they are not. In this sense, we provide counterexamples to claims in the literature that, as

long as the model satisfies the key identifying assumptions, the procedure will uncover the

model’s impulse responses. In addition, we show analytically when the SVAR procedure will

produce responses close to the model responses and when it will not.

This technology shock branch of the SVAR literature has two popular specifications,

both of which use data on labor productivity and hours. The differenced specification, called

the DSVAR, uses the first difference in hours, and the level specification, called the LSVAR,

uses the level of hours. Both branches of the SVAR literature make several assumptions to

identify the underlying shocks, often labeled as demand shocks and technology shocks. This

literature views two identifying assumptions as key: (i) demand shocks have no permanent

1See, among others, Shapiro and Watson (1988), Blanchard and Quah (1989), Gali (1999), Francis and
Ramey (2003), Christiano, Eichenbaum, and Vigfusson (2003), Gali and Rabanal (2004), and Uhlig (2004).



effect on the level of labor productivity while technology shocks do, and (ii) the demand and

technology shocks are orthogonal. Both branches estimate a VAR with a small number of

lags, typically four.

The main finding of the DSVAR literature is that a technology shock leads to a fall in

hours. Gali (1999), Francis and Ramey (2003), and Gali and Rabanal (2004) use the DSVAR

procedure to infer that this finding dooms existing real business cycle models as unpromising

and points to other models, such as sticky price models, as a more promising class of models.

In the LSVAR literature researchers report a wide range of results. Francis and Ramey

(2004) argue that the LSVAR evidence shows that real business cycle models are dead. Con-

versely, Christiano, Eichenbaum, and Vigfusson (2003) maintain that their LSVAR results

imply that these models are alive and well, while Gali and Rabanal (2004) assert that their

LSVAR results, by themselves, are inconclusive. As we document below, these sharply con-

trasting results are driven almost entirely by small differences in the underlying data.

We tilt our test in favor of the SVAR procedure by focusing mainly on a stripped-down

business cycle model, referred to as the baseline model, that satisfies the two key identifying

assumptions of the SVAR literature. Most business cycle models do not satisfy these two

assumptions. In this sense our model is a best-case scenario for the SVAR procedure. Our

estimated model shares the feature of second generation business cycle models in that it has

multiple shocks with stochastic processes estimated from the data.

In order to abstract from small sample biases and sampling uncertainty, we mainly

study population impulse responses obtained from applying the SVAR procedure to our model

rather than impulse responses computed from short samples generated by our model. The

population impulse responses from the DSVAR procedure imply that a technology shock

leads to a decline in hours. This conclusion is mistaken because in our model a technology

shock leads to a rise in hours. The population impulse responses from the LSVAR procedure

imply that a technology shock leads to a rise in hours about three times that in the model.
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In this sense the LSVAR procedure also leads to a mistaken conclusion.

We deconstruct the mistaken conclusion and find that the source is a misspecification

of the SVAR. This misspecification arises not because the model fails to satisfy the key

identifying assumptions but because the model’s VAR fails an auxiliary assumption. This

auxiliary assumption is that the stochastic process for labor productivity and hours is well

approximated by an autoregressive representation with a small number of lags.

Our deconstruction rests on four propositions. In our propositions we nest the DSVAR

and LSVAR specifications in a specification called the nested SVAR, in which hours, lt, are

quasi-differenced (with log lt − α log lt−1). The first proposition shows that the VAR of a

standard business cycle model in labor productivity and quasi-differenced hours is of infinite

order and the VAR coefficients decay very slowly. More precisely, after the first lag, the

VAR coefficient matrices at any lag are equal to the product of a fixed decay matrix and the

coefficient matrix of the previous lag. The largest eigenvalue of the decay matrix is close to

one.

In the second proposition we derive key formulas that determine the technology shock

specification error, defined as the difference between the population impulse response for the

nested SVAR and the model’s impulse response to a technology shock. We show that for a

range of parameter values, including our estimated parameter values, this specification error

is large even when the VAR has over 50 lags.

The third proposition shows that the SVAR procedure uncovers the model’s impulse

response in two cases: the economy has no capital or the economy has only one shock. When

the economy has no capital, the coefficients of the model’s VAR associated with technology

shocks are zero and hence are well modeled with a small number of lags. When the economy

has only one shock, the effects of various shocks cannot be confounded with each other and

the SVAR procedure also uncovers the model’s impulse response. More generally, we show

that the technology shock specification error is smaller the less important is capital and the
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less important is the demand shock.

Our finding for the link between the technology shock specification error and the

size of the demand shock implies that the SVAR procedure performs relatively well for first

generation models of the business cycle in which technology shocks account for the bulk of

fluctuations in output and that it performs relatively poorly for second generation models

that emphasize the role of other shocks in accounting for fluctuations in a broader set of

aggregates.

We investigate whether adding other variables to the SVAR, such as the investment-

output ratio or the consumption-output ratio, changes our findings. One motivation for

adding variables to the SVAR is that in the SVAR literature, researchers often investigate

the effects of doing so. When we add other variables to the SVAR, we add other shocks to

the model because the covariance matrix of the observed variables is not singular. When we

add shocks to the model with stochastic processes estimated from the data, the technology

shock specification error remains large. Some intuition for our findings comes from our fourth

proposition, in which we show that the largest eigenvalue of the decay matrix for the three-

and four-variable systems is still close to one.

We show that under extreme circumstances, in which the variances of the added shocks

are much smaller than we find them to be in the data, the technology shock specification

error is small. In higher-dimensional versions of these extreme circumstances, we find that

the SVAR procedure uncovers the model’s impulse response when our singularity rule holds,

namely, the sum of the number of singularities in the decay matrix of the VAR coefficients

and the shock covariance matrix is at least as large as the number of variables in the system.

In order to address small sample bias, sampling uncertainty, and the ability of standard

tests to detect the need for long lags, we also examine the SVAR procedure in samples as long

as in quarterly, postwar U.S. data. We decompose the overall difference between the model’s

impulse response and the mean across short samples of the SVAR impulse responses into
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two parts: the specification error (with four lags), and the small sample bias, the difference

between the population SVAR impulse responses and the mean across short samples of the

SVAR impulse responses.

Consider first the DSVAR specification. With this specification it turns out that

the model’s moving average representation is at the edge of the noninvertibility region. To

overcome this technical problem, we consider a specification that is close to the DSVAR

specification in which the quasi-differencing parameter is close to one so that the moving

average representation is invertible. We call this specification the QDSVAR specification.

With it we find that the small sample bias is small compared to the specification error, so the

overall difference between the model’s impulse response and the mean across short samples

of the SVAR impulse response is large. Here the procedure leads to a mistaken inference in

that standard tests reject that the impulse responses from the QDSVAR coincide with the

model’s impulse responses. We also find that standard lag length tests do not detect the need

for long lags.

Consider next the LSVAR specification. With this specification, the small sample bias

is sizeable and of the opposite sign as the specification error, but the overall difference is still

large. For example, for the impact coefficient, the mean of the short sample impulse is more

than twice as large as that of the model. In terms of the size of sampling uncertainty, the

range of impulse responses across simulations is wide. The associated confidence bands are so

wide that the procedure cannot distinguish between large classes of models, including sticky

price models and real business cycle models. We also find that standard lag length tests do

not detect the need for long lags.

We have shown that the SVAR procedure, as implemented in the literature, is mis-

specified with respect to the very models on which the procedure is meant to shed light. Of

course, statistical procedures are often technically misspecified. Our contribution is to show

that this misspecification is quantitatively large for a range of parameters for a business cycle
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model that meets the key identifying assumptions of the SVAR procedure.

In this vein, one critique of the DSVAR procedure is that in all economic models,

hours per person is bounded, and therefore the stochastic process for hours per person cannot

literally have a unit root. Hence, the DSVAR procedure is misspecified with respect to all

economic models and thus is useless for distinguishing between broad classes of models. In

our view, this critique is simplistic. We are sympathetic to the view expressed in the DSVAR

literature that the unit root specification is best viewed as a statistical approximation for

variables with high serial correlation. See, for example, Francis and Ramey (2003, p. 6) for

an eloquent defense of this position.2

We are sympathetic to the basic vision of the SVAR approach: to develop simple data

analysis techniques that apply to as broad a class of models as possible and to help select

promising models from that class. We argue that state space methods are relatively simple

techniques that apply to broad classes of models but do not suffer from the deficiencies of

the SVAR procedures.

We are also sympathetic to applications of VARs using the approach advocated by

Sims (1989) and applied by Cogley and Nason (1995), among others. In that approach,

the same VAR is run on the data generated from the model and the data from an actual

economy, and statistics from the two are compared. The crux of the problem with the

SVAR approach is that the results from a regression on the data are not compared with

the analogous regression in the model but are instead compared with theoretical impulse

responses. As we show, the differences between the analogous regression in the model and

the theoretical impulse responses are often quantitatively large.

In our test we use data generated from an economic model because in the model we can

2Moreover, Marcet (2004) proves that even if the data are stationary, estimating a VAR in differences
yields consistent estimates and that standard asymptotic inference is valid. He goes on to argue that in many
cases specifying the VAR in differences is a better alternative than specifying it in levels, even when the
original data are stationary.
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take a clear stand on what constitutes a technology shock. Hence, the question of whether

fluctuations in total factor productivity in U.S. data come from changes in technology or

from other forces is totally irrelevant for our test. We emphasize that our test is a logical

analysis of the inferences drawn from the SVAR procedures and neither asks nor depends on

why productivity in the U.S. data fluctuates.

Our critique builds on those in a number of papers that we discuss below, especially

Sims (1971, 1972), Hansen and Sargent (1980, 1991), and Cooley and Dwyer (1998).

1. The Structural VAR Procedure

We briefly review a version of the Blanchard and Quah (1989) structural VAR proce-

dure recently used by Gali (1999), Francis and Ramey (2003), and Gali and Rabanal (2004).

The procedure starts with a vector autoregression of the form

(1) Xt = B1Xt−1 + . . .+BpXt−p + vt,

where the error terms have variance-covariance matrix Evtv
0
t = Ω and are orthogonal at all

leads and lags, so that Evtv0s = 0 for s < t. The vector Xt is given by (x1t, x2t)0, where x1t =

∆ log(yt/lt) is the first difference of the log of labor productivity and x2t = log lt − α log lt−1,

where lt is a measure of the labor input. We consider two different specifications used in the

literature: in the differenced specification (DSVAR) α equals 1, so x2t is the first difference

in the log of the labor input; in the level specification (LSVAR) α equals 0, so x2t is the log

of the labor input.

This vector autoregression, as it stands, should be thought of as a reduced form of an

economic model. Specifically, the error terms vt have no structural interpretation. Inverting

this vector autoregression is convenient in order to express it in its equivalent moving average
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form,

(2) Xt = C0vt + C1vt−1 + C2vt−2 + . . . ,

where C0 = I, C1 = B1, C2 = B1C1 +B2, C3 = B1C2 +B2C1 +B3, and so on.

The idea behind the structural VAR procedure is to use the bare minimum of economic

theory, together with the reduced form model (2), to back out structural shocks and the

responses to those shocks. To that end, consider the following structural model which links

the variations in the log of labor productivity and the labor input to a (possibly infinite)

distributed lag of two shocks, thought of as a technology shock and a demand shock. The

structural model is given by

(3) Xt = A0εt +A1εt−1 +A2εt−2 + . . . ,

where εt = (εzt ,ε
d
t )
0 represent the technology and demand shocks with Eεtε

0
t = Σ and Eεtε

0
s =

0 for s 6= t. The response of Xt in period t+ i to a shock in period t is given by Ai. From these

responses the impulse responses for yt/lt and lt can be determined. Note that the impulse

responses to a technology shock depend only on the first column of the matrices Ai for i = 0,

1, . . . .

The structural parameters Ai and Σ are related to the reduced form parameters Ci

and Ω by A0ΣA
0
0 = Ω and Ai = CiA0 for i ≥ 1. The structural shocks εt are related to the

reduced form shocks vt by A0εt = vt, so that εt = A−10 vt.

The two assumptions used to identify the structural parameters from the reduced form

parameters are as follows. The first assumption is that technology shocks and demand shocks

are orthogonal. If we interpret the structural shocks as having been scaled by their standard

deviations, we can express this assumption as Σ = I, so that Eεtε0t = I, or equivalently as
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A0A
0
0 = Ω. The second assumption, the long-run restriction, is that

(4)
∞X
i=0

Ai(1, 2) = 0,

where Ai(1, 2) is the element in the first row and second column of the matrix Ai. This

assumption captures the idea that demand shocks cannot affect the level of labor productivity

in the very long run, while technology shocks may be able to do so.

These assumptions determine the shocks up to a sign convention. Our sign convention

is that a technology shock is called positive if it raises the level of labor productivity in the

long run. The impulse responses for a technology shock are invariant to the sign convention

with respect to the demand shock. Since we focus exclusively on the impulse responses for a

technology shock, the sign convention for the demand shock is irrelevant for our results.

In the literature, the impulse responses are computed as follows. The problem of

determining the matrix A0 that satisfies the long-run restriction (4), the sign convention on

the technology shock, and the orthogonality assumption A0A
0
0 = Ω is compactly written

as follows. Let C̄ =
P∞

i=0Ci be the sum of the moving average coefficients and note that

since Ai = CiA0,
P∞

i=0Ai = C̄A0. The long-run restriction is that the (1, 2) element of the

matrix C̄A0 is zero, and the sign convention is that the (1, 1) element of C̄A0 is positive.

The orthogonality assumption is equivalent to (C̄A0)(C̄A0)0 = C̄ΩC̄ 0. The problem reduces

to finding A0 to solve

(5) C̄A0 = L,

where L is a lower triangular matrix with a positive (1, 1) element that satisfies LL0 = C̄ΩC̄ 0.

This procedure uniquely pins down the first column of A0. Since Ai = CiA0 this procedure

also uniquely pins down the first column of Ai and hence the impulse response to a technology
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shock. (This procedure does not uniquely pin down the second column of A0. To do so we

need to impose a sign convention on the demand shock.)

2. An Estimated Multiple Shock Business Cycle Model

Our test uses versions of a business cycle model we think of as second generation

because the model has multiple shocks with stochastic processes estimated from the data.

(See, among a host of others, McGrattan (1994).) We consider a stripped-down version of

the model, called the baseline model, that meets the two key identifying assumptions of

the SVAR procedure, namely that demand shocks have no permanent effect on the level

of labor productivity and that the demand and technology shocks are orthogonal. This

model has two stochastic variables: technology shocks Zt, which have a unit root, and an

orthogonal tax on labor τ lt. It also has a constant investment tax τx and a constant level of

normalized government spending ḡ = gt/Zt. Below we discuss variants of this model in which

the investment tax and government spending are stochastic.

Our choice of the labor tax as the second shock is motivated by an extensive literature

on second generation business cycle models. This literature grew out of the first generation

literature on equilibrium business cycle models. The first generation literature focused on

models in which technology shocks accounted for most of the fluctuations in output. (See, for

example, Kydland and Prescott (1982) and Hansen (1985).) The second generation models

introduced other shocks and were motivated, in part, by the inability of the first generation

models to generate the volatility of hours observed in the data.3

A key feature of the shocks that many of these models introduced is that they effec-

tively distort consumers’ labor-leisure choice. Chari, Kehoe, and McGrattan (2004) show that

many of these models, including sticky price models, are equivalent to a prototype business

3See, for example, Cooley and Hansen (1989), Benhabib, Rogerson, and Wright (1991), Greenwood and
Hercowitz (1991), Bencivenga (1992), Rotemberg and Woodford (1992), Braun (1994), McGrattan (1994),
Stockman and Tesar (1995), Hall (1997), Bernanke, Gertler, and Gilchrist (1999), and Christiano, Eichen-
baum, and Evans (2005.)
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cycle model with a labor wedge that resembles a stochastic tax on labor. They also show that

the labor wedge and the productivity shock account for the bulk of fluctuations in U.S. data.

These considerations lead us to use the labor tax as the second shock. It is worth noting

that, in second generation models technology shocks typically account for a much smaller

fraction of output variability than they do in first generation models. Our estimated models

described below also have this feature.

In our model, consumers maximize expected utility E0
P∞

t=0[β(1 + γ)]tU(ct, lt) over

per capita consumption ct and per capita labor lt, subject to the budget constraint

(6) ct + (1 + τx)[(1 + γ)kt+1 − (1− δ)kt] = (1− τ lt)wtlt + rtkt + Tt,

where kt denotes the per capita capital stock, wt the wage rate, rt the rental rate on capital,

β the discount factor, γ the growth rate of population, δ the depreciation rate of capital, and

Tt lump-sum taxes.

The firms’ production function is F (kt, Ztlt), where Zt is labor-augmenting technical

progress. Firms maximize F (kt, Ztlt)− rtkt − wtlt. The resource constraint is

(7) ct + gt + (1 + γ)kt+1 = yt + (1− δ)kt,

where yt and gt denote per capita output and per capita government consumption.

In the baseline model the stochastic process for the two shocks, logZt and τ lt, is

(8) logZt+1 = µz + logZt + σzε
z
mt+1

(9) τ lt+1 = (1− ρl)τ̄ l + ρlτ lt + σlε
d
mt+1,

where εzmt and εdmt are standard normal random variables that we refer to as the technology
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and demand shocks for the model. These variables are independent of each other and i.i.d.

over time. We refer to σzε
z
mt and σlε

d
mt as the innovations to technology and labor. These

innovations have standard deviations σz and σl. The constant µz is the drift term in the

random walk for technology. The parameter ρl is the persistence parameter for the labor tax,

and the mean of the labor tax is τ̄ l.

Our model meets the two key identifying assumptions of the technology shock SVAR

literature. In the steady state of our model, labor productivity is not affected by labor tax

rates but is affected by the level of technology. Thus, a shock to labor taxes has no effect on

labor productivity in the long run, regardless of the persistence of the stochastic process on

labor taxes. Also, by construction, the two shocks are orthogonal.

We use functional forms and parameter values familiar from the business cycle lit-

erature for our quarterly model. We assume that the production function has the form

F (k, l) = kθl1−θ and that the utility function has the form U(c, l) = log c + φ log(1 − l).

We choose the capital share θ = .33 and the time allocation parameter φ = 2.5. We choose

the depreciation rate, the discount factor, and growth rates so that, on an annualized basis,

depreciation is 6%, the rate of time preference is 2%, and the population growth rate is 1%.

In estimating the stochastic processes for our model, we use no direct data on tax

rates. We follow Chari, Kehoe, and McGrattan (2004) in treating tax rates on labor and

investment as unobserved and inferring them from the model’s equilibrium conditions. We

use a standard Kalman filtering approach to estimate our model. To use this approach we

write a log-linearized version of our model in state space form in terms of stationary variables.

To do so we let k̂t = kt/Zt−1 and zt = Zt/Zt−1 and st = (log zt, τ lt). The state in period t

is St = (log k̂t, st, log k̂t−1, st−1, 1). The state’s evolution is determined by the capital stock

decision rule,

(10) log k̂t+1 = γ0 + γk log k̂t + γz log zt + γlτ lt,
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and an exogenous process for the shocks st = (log zt, τ lt), which in matrix form is given by

(11) st+1 = P̄ + Pst +Qεmt+1,

where P̄ = (I − P )S̄ with S̄ = (µz, τ̄ l), P is a matrix with all zeros except the lower right

element P22 = ρl, and the innovation matrix Q is a diagonal matrix with diagonal elements

(σz, σl) and εmt = (ε
z
mt, ε

d
mt).We can stack these equations to give the state transition equation

(12) St+1 = FSt +Gεmt+1.

Let the observable variables Yt = (∆ log yt, log lt,∆ log xt,∆ log gt)
0 denote the growth rate

of output, the log level of labor, the growth rate of investment, and the growth rate of

government spending.4 The decision rule for labor in the model has the form

(13) log lt = ψ0 + ψk log k̂t + ψz log zt + ψlτ lt,

and the decision rule for the growth rate of output has a similar form. We can write the

observed variables Yt = HSt, where H is a matrix of coefficients of the linear decision rules

for the vector Yt. Because we have only two shocks in our model but four observed variables,

we add a small amount of measurement error ut to what is observed and write the observer

equation as

(14) Yt = HSt + ut.

Specifically, we choose the measurement error of each variable in Yt to be independent over

4We measure government spending as the sum of government consumption and net exports. See Chari,
Kehoe, and McGrattan (2005) for the rationale for this measure of government spending.
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time and across variables with variance one-hundredth of the variance of the corresponding

variables in Yt.

We then use the maximum likelihood procedure described in McGrattan (1994) and

in Anderson et al. (1996) to estimate the parameters of the vector AR1 process, (11), using

data on output, hours, investment, and consumption. We report the parameter values for the

stochastic processes for the baseline model in Table 1. The key parameters of the stochastic

process are the serial correlation of the labor tax shock ρl = .95 and the ratio of the variance of

the labor tax innovation to that of the technology shock innovation, σ2l /σ
2
z = 1.09.We consider

several other versions of our maximum likelihood procedure in our sensitivity analysis below.

(In one of them we show that if we choose the measurement error to be one-thousandth of

the variance of the corresponding variables in Yt, we obtain similar parameter estimates. In

others we consider different variables in the observer equation.)

The model’s impulse response of hours to a technology shock is calculated recursively

as follows. Start at a steady state, set the technology shock innovations εzm0 = ∆ > 0, εzmt = 0

for t ≥ 1, and set the labor tax innovations εdmt = 0 for all t. From (9), (10), and (13) we

see that the impact effect, namely the response in period 0, is ψz∆, the effect in period 1 is

ψkγz∆, the effect in period t ≥ 2 is γt−1k ψkγz∆, and so on.

In Figure 1 we plot the model’s impulse response. We see that on impact, a shock to

technology leads to a persistent increase in hours. The left vertical axis follows the business

cycle literature and measures the response to a 1% shock to total factor productivity, while

the right vertical axis follows the SVAR literature and converts this response to a 1 standard

deviation shock in εzmt. In order to relate the two vertical axes, note that 1 unit on the left

vertical axis corresponds to (1− θ)σz units on the right axis. All our impulse response plots

use two axes of this form. We see that on impact a 1% shock to total factor productivity

leads to an increase in hours of .44%.
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3. Testing the SVAR Procedures and Deconstructing Their Failure

We test the SVAR procedures by comparing the model’s impulse responses to the

population impulse responses from the SVAR procedures applied to data from the model. We

focus mainly on population impulse responses rather than impulse responses computed from

short samples for two reasons. First, at least since Hurwicz (1950), estimates of autoregressive

processes have been known to be biased in small samples. Second, we wish to abstract from

any issues regarding sampling uncertainty.

We nest both the DSVAR and the LSVAR procedures by considering the nested SVAR

specification Xt = (∆(yt/lt), lt − αlt−1), where α is between 0 and 1. Note that α = 1

corresponds to the DSVAR specification and α = 0 to the LSVAR specification. With α near

1, this formulation also nests a quasi-differenced specification, referred to as the QDSVAR

specification, which we discuss below.

Figure 2 displays the model’s impulse response and the (population) impulse responses

for the DSVAR and the LSVAR procedures. We follow the literature in setting the lag length p

equal to 4 in (1). This figure shows that both of the SVAR impulse responses are very different

from the model’s impulse response. For example, the impact coefficient from the DSVAR is

both negative and large. The impact coefficient from the LSVAR is almost three times as

large as that of the model and would be extremely difficult to reconcile with essentially any

quantitative business cycle model. In this sense, both SVAR procedures fail our test in a

quantitatively large way.

We turn now to deconstructing the source of this failure. In addition to the main

identifying assumptions, the SVAR procedures make a key auxiliary assumption: in the

models of interest, Xt has an autoregressive representation that is well approximated with a

small number of lags, typically four. This assumption could fail for one of two reasons. First,

such models do not have invertible moving average representations in Xt and therefore do not

have an autoregressive representation. Second, the models do have invertible moving average
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representations, but the associated autoregressive representations are not well approximated

with a small number of lags. Here we argue that the heart of the SVAR’s failure is that the

autoregressive representation is not well approximated with a small number of lags.

The DSVAR specification has one technical difficulty. For our model, specifying the

SVAR in the difference in hours amounts to overdifferencing hours and introduces a root of

1 in the moving average representation, which is at the edge of the noninvertibility region

of roots. To show that this technical difficulty is inessential in our findings, we consider a

QDSVAR specification with α close to 1. As long as α is less than 1, showing that our

model has an invertible moving average representation is easy. When α is close to 1, the

impulse responses of the QDSVAR and the DSVAR are so close as to be indistinguishable.

In what follows we will set the quasi-differencing parameter equal to .99. (Note that the

literature contains several models in which the lack of invertibility of the moving average

representation is not knife-edge. See, for example, Hansen and Sargent (1980), Quah (1990),

and Fernandez-Villaverde, Rubio, and Sargent (2005).)

We now show that the autoregressive representation of Xt is not well approximated

with a small number of lags. To do so, consider the moving average representation of Xt

implied by the model. Let this representation of Xt be denoted as

Xt = Am0εmt +Am1εmt−1 +Am2εmt−2 + . . . ,

where here and throughout, the subscript m signifies the model. Recall that the covariance

matrix of εmt is the identity matrix. This moving average representation can be written in

the form

(15) Xt = vmt + Cm1vmt−1 + Cm2vmt−2 + . . . ,
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where Cmi = Ami(Am0)
−1 and the shocks vmt = Am0εmt have covariance matrix Ωm =

Am0A
0
m0. Let C̄m =

P∞
i=0Cmi. Under appropriate invertibility conditions, the autoregressive

representation of Xt is

(16) Xt = Bm1Xt−1 +Bm2Xt−2 + . . .+ vmt,

where Bm1 = Cm1, Bm2 = Cm2−Bm1Cm1, Bm3 = Cm3−Bm1Cm2−Bm2Cm1, and so on. Proofs

for the following and all subsequent propositions are in the technical appendix (Chari, Kehoe,

and McGrattan (2005)).

Proposition 1. (Infinite Order AR) The autoregressive representation of Xt is infinite

order and satisfies Bmi =MBmi−1 for i ≥ 2, where the decay matrixM = Cm2(Cm1)
−1−Cm1,

and has eigenvalues equal to the quasi-differencing parameter λ1 = α and λ2 = (γk−γlψk/ψl−
θ)/(1− θ), where γk, γl, ψk, and ψl are the coefficients of the decision rules in (10) and (13)

and θ is the capital share.

Given our parameters for the QDSVAR specification (including the quasi-differencing

parameter α = .99), the eigenvalues are λ1 = .99 and λ2 = .96. For the LSVAR specification

the eigenvalues are λ1 = 0 and λ2 = .96. Since the rate of decay is, at least asymptotically,

determined by the largest eigenvalue, these eigenvalues suggest that an autoregression with

a small number of lags is a poor approximation to the infinite order autoregression.

For illustrative purposes we consider an autoregression with one lag for which we

can obtain an analytical expression for the impulse response coefficients. (Note that, quan-

titatively, the one-lag VAR and the four-lag VAR give similar impulse responses.) This

autoregression is of the form

(17) Xt = B1Xt−1 + vt with Evtvt
0 = Ω.
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Let C̄ =
P∞

i=0Ci be the associated sum of the moving average coefficients. Recall that for

an autoregression of the form (1) with an arbitrary number of lags, (5) implies that the

impact coefficients depend only on the covariance matrix and the sum of the moving average

coefficients. The following proposition relates the population estimates for the covariance

matrix, Ω, and the sum of the moving average coefficients, C̄, derived from a regression with

one lag of the form (17), to the covariance matrix Ωm of the innovations of Xt and the sum

of the moving average coefficients in the model C̄m, associated with (15) and (16).

Proposition 2. (Error in Population Estimates from Specification Error) Given Xt

from our model, the population estimate of the covariance matrix in (17) is

(18) Ω = Ωm +M
¡
Ωm − ΩmV (Xt)

−1Ωm

¢
M 0

and the (inverse of the) sum of the moving average coefficients associated with (17) is

(19) C̄−1 = (C̄m)
−1 +M(I −M)−1Cm1 +M(Ωm − V (Xt))V (Xt)

−1,

where V (Xt) is the covariance matrix of Xt.

Consider a researcher who incorrectly specifies that the autoregressive representation

of Xt has only one lag and uses the SVAR procedure to uncover the associated impulse

responses. This researcher would infer that the covariance matrix of innovations is Ω and

that the sum of the moving average coefficients is C̄. The impact coefficients for a technology

shock can then be computed using (5). Since the Ω and C̄ derived from the one-lag VAR

generally differ from the model’s Ωm and C̄m, the impulse responses will typically differ as

well. (Of course, since our model has an invertible moving average representation, if this

researcher had specified an infinite number of lags, the autoregression would have recovered

the model’s covariance matrix Ωm, the sum of the model’s moving average coefficients C̄m,
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and hence would have correctly uncovered the model’s impulse responses.)

We next ask how many lags are needed in practice to obtain a good approximation

of the model’s impulse response. Figure 3 displays the QDSVAR responses for lag lengths

p ranging from 4 to 300. Notice that even with 20 lags, the QDSVAR procedure gives

a poor approximation to the model’s impulse response. From these figures we note that

the convergence to the model’s impulse response function is not monotonic. Finally, note

that we need over 200 lags for the QDSVAR to well approximate the model’s autoregressive

representation.

Figure 4 shows the impulse responses from the LSVAR for lag lengths p ranging from

4 to 100. As with the QDSVAR, we see that the impulse response from the LSVAR is a

good approximation to the model only for extremely long lag lengths. Accurately estimating

VARs with such long lag lengths is infeasible in practice.

We argue that the need for a large number of lags when we run the VAR stems from

the presence of capital in our model and the absence of capital in the VAR specification as

well as from the presence of multiple shocks in our model. One way to understand the role

of capital in the failure of the SVARs to uncover the model’s impulse response is to drive the

capital share to zero in the model. In this case, even when the SVARs have only one lag,

the model’s impulse response to a technology shock coincides with the population impulse

response of the SVARs.

When only the technology shock is present, so that the variance of the labor tax τ l

is zero, MΩmM
0 = MΩmV (Xt)

−1ΩmM
0. From (18) we then have that the covariance Ω in

(17) is equal to that in the model Ωm. Interestingly, because Ωm is singular in this case, the

two impulse responses coincide even though the moving average coefficients from the one-lag

specification Ci do not equal the model’s moving average coefficients Cmi.

We formalize this discussion in the following proposition.
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Proposition 3. (Two Special Cases) When either the capital share θ is zero or the

variance of the labor tax innovation στ is zero, the SVAR procedures with one lag recover

the model’s impulse response.

Proposition 3 considers the limiting case when the model has no capital or no variability

in labor taxes. We now consider the ability of the SVAR to uncover the model’s impulse

response away from the limit as we vary the capital share. In the next section we consider

the SVAR’s impulse response as we vary the stochastic process governing the shocks.

We focus on the specification error for the impact coefficient, defined as the percent

error in the SVAR impact coefficient relative to that of the model. Figure 5A displays the

specification error for the impact coefficient for the QDSVAR and the LSVAR specifications.

We see that as the capital share decreases from its baseline value of .33, so does the specifi-

cation error. Even with a capital share of only .2, the specification error is about 100% for

both specifications.

In order to capture the shape of the impulse response, we also report on the half-life

of the impulse response for the LSVAR specification. Figure 5B shows that the half-life for

the LSVAR impulse response is typically less than that for the model, indicating that the

LSVAR response decays more rapidly than the model’s response. (Both here and later, for

the most part, we do not report the half-life statistics for the QDSVAR impulse response; the

impulse response coefficients are typically negative, so the half-life statistic is less interesting

than it is for the LSVAR.)

We also experimented with increasing the depreciation rate as another way of reducing

the importance of capital. We found that when the depreciation was so high that capital

essentially depreciated completely within a year, the model and the SVAR impulse responses

were close.
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4. Sensitivity Analysis to the Stochastic Process

We next investigate the importance of the stochastic process governing shocks for the

performance of the SVAR procedures. We report on how our findings change as we change

the key parameters for our stochastic process for the shocks: the serial correlation parameter

ρl and the ratio of the innovation variances σ
2
l /σ

2
z. (Note that since equilibrium of the model

is computed by linearizing the first order conditions, only the ratio of the innovation variances

matters for the impulse responses to a 1% shock.)

Figure 6A displays the specification error for the impact coefficient for the QDSVAR

and the LSVAR specifications as we vary the ratio of the labor tax innovation variance to the

technology shock innovation variance. We see that as the relative variability of the labor tax

declines from its baseline value of 1.09, so does the specification error. In this sense, for first

generation models in which technology shocks play a dominant role, the SVAR procedures

perform relatively well. In terms of second generation models, however, note that even with a

relative variability of half of its estimated value, the specification error is over 100% for both

specifications. Figure 6B displays the half-life of the LSVAR impulse response as we vary the

innovation variance ratio. This figure indicates that for a wide range of values of this ratio,

the LSVAR impulse response decays more rapidly than the model’s impulse response.

Figure 7A shows that for any given value of the innovation variance ratio, the specifi-

cation error for the impact coefficient changes very little as we vary ρl from a relatively low

value of .90 to a relatively high value of .99. The half-life of the impulse responses, however, is

sensitive to ρl. Figure 7B displays the half-life of the LSVAR impulse response as we vary the

innovation variance ratio for two values of the serial correlation parameter: the relatively low

value of .90 and the relatively high value of .99. The figure shows that as the serial correlation

rises, so does the half-life.

Figures 6 and 7 show that the SVAR impulse responses depend on the parameters of

the stochastic process governing the labor tax shocks. Of course, in the model the impulse

21



response to a technology shock is independent of the parameters governing the labor tax shock.

The dependence of the SVAR impulse responses arises because the SVAR is misspecified with

respect to the number of lags and therefore confounds the effects of the technology shock and

the labor tax shock.

We also investigated the sensitivity of our findings to three other ways of estimating

the model. In the low measurement error version of the model, we set the measurement error

of each variable at one-thousandth of the variance of the corresponding variables in Yt. We

estimated the key parameters to be ρl = .95 and σ2l /σ
2
z = 1.06. Note that these parameters

are close to those in the baseline model and, as shown by Figures 6 and 7, so are the results.

In the restricted observer version of the model, we let the observable variables be

Yt = (∆ log yt, log lt)
0, and since there are two variables in the observer equation and two

shocks in the model, we set the measurement error to zero. Here the key parameters are

given by ρl = .998 and σ2l /σ
2
z = .48. For this version of the model, the specification errors

for the impact coefficient of the QDSVAR and the LSVAR are 77% and 64%, respectively.

The shape of the responses is quite different from that of the model in that, relative to the

model, the QDSVAR decays very rapidly and the LSVAR decays very slowly. For example,

the half-lives of the impulse responses are 6 and 158 quarters, respectively, compared to a

half-life in the model of about 18 quarters.

In the government consumption model, we add a third orthogonal shock. This shock

is normalized government spending ĝt = gt/Zt, which follows an autoregressive process of the

form

(20) log ĝt+1 = (1− ρg) log ḡ + ρg log ĝt + σgε
g
mt+1,

where εgmt, together with our earlier shocks ε
z
mt and εdmt, are jointly normal, independent of

each other, and i.i.d. over time. For this version, we reestimated the parameter values for
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the technology process and the labor tax process when we estimated the parameter values

for the government spending process. We set the measurement error to be one-hundredth of

the variance in the observed variables. The key parameter estimates are ρl = .92, σ2l /σ
2
z =

1.04, ρg = .97, and σg = .02. For this version of the model, the specification errors for the

impact coefficient of the bivariate QDSVAR and the bivariate LSVAR are —293% and 162%,

respectively. The associated half-lives are 67.5 quarters and 9.8 quarters, compared to a

half-life in the model of about 18 quarters.

We experimented with a variety of other ways to estimate the stochastic processes and

found results similar to those reported here: the specification error for the impact coefficient

was very high, or the half-life was very far off from that in the model, or both.

5. Adding Other Variables

So far we have focused on the SVARs with two variables: the log difference of labor

productivity and a measure of the labor input. In the SVAR literature, researchers often

check how their results change when they include one or more extra variables in the SVAR.

Here we investigate the effects of adding other variables to the SVARs. We show that when

we add stochastic processes estimated from the data, our results do not change significantly.

We go on to show that under extreme circumstances, in which the variances of the added

shocks are much smaller than they are in our estimates, the impulse response from the SVAR

procedure is approximately the same as the model’s impulse response. We argue that the

ability of the SVAR procedure to uncover the model’s impulse response is related to the

number of singularities in the decay matrix M and the covariance matrix of innovations Ωm

for the model.

Our discussion of Proposition 3 suggests that one of the problems with the SVAR

specification is that it does not include a capital-like variable. In the model, the relevant state

variable is k̂t = kt/Zt−1. Since Zt−1 is not observable, we cannot include k̂t itself. We consider
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several stationary capital-like variables: the capital-output ratio kt/yt, the investment-output

ratio xt/yt, and the growth rate in the capital stock log kt+1 − log kt. One conjecture is that
including such variables might diminish the need for estimating long lags in the SVARs.

Hence, the short lag specification should yield accurate measures of the model’s response to

a technology shock. Here we show that the conjecture is, in general, incorrect.

As we show in the technical appendix (Chari, Kehoe, and McGrattan (2005)), when

we add the capital-output ratio or the growth rate of the capital stock to the list of variables

in the VAR, we find that the model’s moving average representation of these variables is not

invertible. In both specifications the autoregressive coefficients Bmi in (16) derived from the

moving average coefficients of the model have decay matrixM, similar to that in Proposition

1. When we add the capital-output ratio one of the eigenvalues of M is −∞, while when we
add the growth rate of the capital stock one of the eigenvalues is 1. Since both specifications

suffer from the type of invertibility problems discussed in Hansen and Sargent (1991), we do

not investigate them here.

In practice most researchers prefer using the investment-output ratio as a capital-like

variable rather than measures that use the capital stock directly because they feel that the

capital stock is poorly measured. The combination of invertibility and measurement issues

leads us to use the investment-output ratio to capture the influence of the capital-like variable.

We find, however, that adding such a variable does not diminish the need for long lags in the

VAR.

A. Same Number of Shocks and Variables

Consider a SVAR with three variables and three shocks. The third variable is the log

of the investment-output ratio xt/yt, where xt = (1 + γ)kt+1 − (1 − δ)kt. The third shock

is normalized government spending ĝt = gt/Zt, which follows an autoregressive process of

the form in (20). We use maximum likelihood to estimate the parameters of the stochastic
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process. To make comparisons between the SVARs in this model and those in the baseline

model easier, in this estimation we set the rest of the parameters, including those of the

other stochastic processes, as in the baseline model. We refer to this version as the baseline

model with government consumption and report the estimated parameters in Table 1. We

also considered the government consumption model described above in which we estimated

all of the parameters of the stochastic process.

We focus on the population impulse responses of the SVARs. Figure 8 compares the

three-shock model’s impulse response for labor against the population impulse response from

a three-variable LSVAR withXt = (∆(yt/lt), lt, xt/yt) and with four lags. Clearly, the LSVAR

procedure does not uncover the model’s impulse response. (We found that the three-variable

QDSVAR procedure on the model with three shocks also does not uncover the model’s impulse

response.) For comparison purposes we also repeat the plot of the impulse response for the

two-variable LSVAR from Figure 2. We see that adding xt/yt does not significantly improve

the performance of the LSVAR. We found similar results for the government consumption

model.

In the baseline model with investment tax, we let the investment tax be the third shock.

We assumed that taxes on investment follow the autoregressive process

(21) τxt+1 = (1− ρx)τ̄x + ρxτxt + σxε
x
mt+1,

where εxmt, together with our earlier shocks ε
z
mt and εdmt, are jointly normal, independent

of each other, and i.i.d. over time. We estimate the parameters of (21) using maximum

likelihood. Again, in this estimation we set the rest of the parameters as in the baseline

model. We report the estimated parameters in Table 1. Figure 8 displays the resulting

population impulse response for this three-shock model from a three-variable LSVAR with

Xt = (∆(yt/lt), lt, xt/yt) and with four lags. Clearly, the LSVAR procedure does not uncover
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the model’s impulse response.

Some intuition for why adding a third variable does not significantly improve the

performance of the SVARs is contained in the following analog of Proposition 1. Using

analogous notation to that proposition we have the following.

Proposition 4. Consider a three-shock model with either government spending or

investment taxes as the third shock. In both cases, the autoregressive representation of Xt

is infinite order and satisfies Bmi = MBmi−1 for i ≥ 2, where the decay matrix M has

eigenvalues equal to the quasi-differencing parameter λ1 = α, λ2 = (1 − δ)/(1 + gy), and

λ3 = 0.

Here gy is the growth rate of (total) real output. Given our parameters, the eigenvalue

λ2 is .98. This large eigenvalue helps provide intuition for why an autoregression with a small

number of lags is a poor approximation to the infinite order autoregression. Interestingly,

the largest eigenvalue of the decay matrix M is roughly the same in the two- and the three-

variable SVARs. In this sense, adding a variable such as the investment-output ratio does

not reduce the need for long lags.

We also experimented with four-variable SVARs and four shocks. Relative to the

baseline model, we added shocks to government consumption and the tax on investment. In

the SVAR specifications, we added the investment-output ratio and the consumption-output

ratio as variables. The analog of Proposition 4 applies to this case with the four eigenvalues

of the decay matrix given by α, (1− δ)/(1 + gy), 0, and 0. In terms of the impulse responses,

we found that adding these variables did not significantly improve the ability of the SVARs

to reproduce the model’s responses to technology shocks.

We then examined the state space representation, similar to (12) and (14), of the

three-shock model and asked if we could find a third variable for which the SVAR specification

mimics the state space representation. In the LSVAR specification we found that if we added
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kt+1/yt, namely, the ratio of the capital stock in period t+1 to output in period t, the SVAR

representation mimics the state space representation. In this exceptional case, the LSVAR

procedure uncovers the model’s impulse response. This finding does not imply that adding

kt+1/yt is a general prescription for success for the SVAR procedure. For example, when

we add kt+1/yt to the QDSVAR specification, the SVAR representation does not mimic the

state space representation and the SVAR procedure does not uncover the model’s impulse

response.

More generally, it may well be true that across models a careful examination of the

state space representation for each model could lead to a different SVAR specification for

each model which mimics the state space representation. If so, it seems both safer and more

transparent to estimate the state space representation directly as we discuss below.

In sum, we have shown that, other than in one exceptional case, when stochastic

processes on shocks are estimated using data, adding variables and an equal number of shocks

does not improve the performance of the SVAR procedure.

B. More Variables than Shocks: The Singularity Rule

One question is whether any circumstances exist under which adding more variables

to the SVAR will improve its performance. One possibility that Proposition 3 suggests is

that the performance of the SVAR procedure will improve if we add more variables with-

out adding more shocks. In this vein, we consider three-variable SVARs in which we add

either the investment-output ratio or the consumption-output ratio with only two shocks–to

technology and to the labor tax. We find that the population impulse response from the

LSVAR procedure with one lag coincides with the model’s impulse response, while that of

the QDSVAR procedure does not. We also consider four-variable SVARs with both three

shocks and two shocks. In both cases, the LSVAR procedure uncovers the model’s impulse

response. The DSVAR procedure uncovers the impulse response only in the two-shock case.
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Our experiments suggest that the ability of the SVAR procedure to uncover the model’s

impulse response is related to the number of singularities in the system. The number of

singularities is the sum of the number of zero eigenvalues of the decay matrix M in the AR

representation, denoted s(M), and the number of zero eigenvalues of the model’s innovation

covariance matrix Ωm, denoted s(Ωm). The following singularity rule holds in all of the

examples we have considered with two or more shocks: the SVAR procedure, even with one

lag, uncovers the model’s impulse response if and only if the number of singularities is at

least as large as the number of variables, so

s(M) + s(Ωm) ≥ n,

where n is the number of variables in the VAR. When the model has only one shock, con-

founding the effects of various shocks is not possible and, under weak conditions, the SVAR

procedure uncovers the model’s impulse response.

We think of our singularity rule as a rule of thumb that holds in the class of business

cycle models we have considered. An open question is whether similar rules hold in other

classes of business cycle models. Clearly, our singularity rule does not apply to all models.

For example, the SVAR procedure does not necessarily uncover the model’s impulse response

for models with invertibility problems of the type discussed in Hansen and Sargent (1991)

even when such models satisfy our singularity rule.

In terms of applying our singularity rule, we note that, with one exception, in all the

models with capital that we have examined, the decay matrix M has at least one nonzero

eigenvalue, so s(M) ≤ n − 1. Hence, in such models if the number of shocks is equal to the
number of variables, so Ωm has no singularities, the SVAR procedure with a small number

of lags will not uncover the model’s impulse response. (In the exceptional case when we add

kt+1/yt to the VAR, it turns out that in the LSVAR specification, the decay matrix M has
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all zero eigenvalues and, as our singularity rule implies, the LSVAR procedure uncovers the

model’s impulse response.)

Our singularity rule suggests that, absent exceptional cases, the SVAR procedure in

practice is unlikely to uncover the model’s impulse response. To see why, note that in the data,

estimated covariance matrices Ω from VARs, as in (17), are never singular. It follows from

the singularity rule that if the estimated covariance matrix Ω equals the model’s innovation

covariance matrix Ωm, the SVAR procedure will uncover the model’s impulse response only

for exceptional cases in which s(M) = n.

One might interpret our singularity rule as suggesting that the SVAR procedure will

approximately uncover the model’s impulse response as long as a relatively small number

of shocks (or “factors”) accounts for the bulk of fluctuations in the data. This reasoning

presumes that in this case, the estimated covariance matrix Ω from a VAR would be approx-

imately singular.

We show that this presumption is faulty. In our estimated models with three or four

shocks, we find that the added shocks contribute little to the fluctuations in variables such

as output, labor, and investment. For example, fluctuations in government consumption

(measured as the sum of government spending and net exports) account for about 3.4% of

the fluctuations in the growth rate of output. Even though the shocks are small in this

sense, the resulting SVAR does not perform well because in order for the SVAR procedure

to uncover the impulse responses, the variances of the added shocks must be extraordinarily

small.

For the three-variable LSVAR procedure with three shocks, we computed the LSVAR

specification error for the impact coefficient, namely, the percentage difference between the

population impulse response for the LSVAR and the model impulse response. At the esti-

mated shock variances for government consumption and the investment tax, the specification

errors are over 100% and close to 200%, respectively. Figure 9A displays the specification
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error for the impact coefficient, defined as above, against the variance of the third shock for

both the government consumption case and the investment tax case. Even for small shock

variances, the specification error is large. For example, when the shock variances are one-

half their estimated values, the specification error is still over 75% in both cases. Figure 9B

displays the half-life of the LSVAR impulse responses as we change the variance of the third

shock. The figure indicates that for a large range of values of these variances, the LSVAR

impulse response decays more rapidly than the model’s. In sum, in order for the SVAR pro-

cedure to perform well, the shock variances must be much smaller than we find them to be

in the data.

We have shown that even when the contributions to the added shocks to fluctuations

are as small as they are in the data, the estimated VAR covariance matrix Ω is sufficiently

far away from being singular that the SVAR procedure does not perform well. Hence, while

the conditions under which the SVAR procedure uncovers the model’s impulse response are

mathematically intriguing, we find them to be of little applied interest.

6. Small Sample Issues

Thus far, we have focused on population moments in order to abstract from small sam-

ple issues. We have shown that the specification error in the lag length leads to quantitatively

large differences between the SVAR impulse responses in the population and the model’s im-

pulse responses. Here, in order to address small sample bias, sampling uncertainty, and the

ability of standard tests to detect the need for long lags, we examine the SVAR procedures

for samples of the same length as in the U.S. data.

We decompose the overall difference between the model’s impulse response and the

mean across short samples of the SVAR impulse responses into two parts. One part, the

specification error, is the difference between the population SVAR impulse responses (with

four lags) and the model’s impulse responses. The other part, the small sample bias, is
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the difference between the population SVAR impulse responses and the mean across short

samples of the SVAR impulse responses.

A. The QDSVAR Procedure in Small Samples

Our implementation of the QDSVAR procedure in small samples is as follows. We

treat the model as the data-generating process and draw 1,000 sequences of roughly the

same length as our data length, namely, 180 quarters. We run the QDSVAR procedure on

each sequence and report on features of the impulse responses of hours to technology shocks.

The left panel of Figure 10A displays a histogram of the impact coefficients over the 1,000

sequences. The histogram shows that almost all of the impact coefficients are negative. The

right panel of Figure 10A reports the range of estimated impulse responses over these 1,000

sequences for 12 periods. We construct this range by discarding the largest 2.5% and the

smallest 2.5% of the impulse response coefficients in each period and report the range of the

remaining 95% of the impulse response coefficients. Figure 10B displays the mean impulse

response across these 1,000 sequences as well as the mean of the bootstrapped confidence

bands across the same sequences.

In comparing Figures 2 and 10B, we see that the small sample bias for the QDSVAR

is quite small relative to the specification error. Hence, the overall difference between the

model’s impulse response and the short sample QDSVAR impulse response is large. We next

ask, suppose for each of the 1,000 sequences a researcher tested the hypothesis that the impact

coefficient of the QDSVAR equals the theoretical impact coefficient at the 5% significance

level. We find that such a researcher would mistakenly infer that the data did not come from

our real business cycle model essentially 100% of the time.

Next we ask whether standard lag length tests uncover the need for more lags. For

each simulation we compute the Akaike information statistic for each lag. We found the

Akaike criterion selects a lag length of four or fewer for over 98% of the simulations. We
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also found that a likelihood ratio test did not reject four lags in favor of five in 93% of the

simulations. We experimented with other lag length tests and found similar results. Overall,

we found that with samples of roughly the same length as U.S. data, standard lag tests do

not uncover the need for long lags.

The reason the Akaike-like lag length tests do not detect the need for more lags is as

follows. These tests balance the gain in the fit of the model from adding more parameters

against a fixed penalty for doing so. As we add more parameters, the gain in the fit of the

model is smaller than the penalty.

We also implemented the QDSVAR procedure as follows. For each sequence we let

a lag length criterion determine the appropriate lag length of the VAR and then compute

impulse responses. Our results were unchanged.

Finally, we experimented with a short-run sign convention in which a technology shock

is called positive if it raises the level of labor productivity on impact. We found that our

results were the same.

B. The LSVAR Procedure in Small Samples

We implement the LSVAR procedure in the same fashion as we did the QDSVAR

procedure.

Figures 11A and 11B, the analog of Figures 10A and 10B, indicate that the range of

impulse response coefficients is very wide. For example, 95% of the impact coefficients lie

between −.45 and 1.94. Figure 11A suggests that the LSVAR procedure is not useful for

distinguishing between, for example, sticky price models and real business cycle models. In

sticky price models, the responsiveness of hours to a technology shock depends on the extent

to which the monetary policy accommodates the shock. For example, Gali, Lopez-Salido, and

Valles (2003) construct a simple sticky price model in which the monetary authority follows

a Taylor rule and show that hours rise in response to a technology shock. They also show
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that if monetary policy is not at all accommodative, hours fall in response to a technology

shock. The range of responses for hours to a technology shock in sticky price models is well

within our 95% range in Figure 11A.

In comparing Figure 11B to Figure 2, we see that the small sample bias for the LSVAR

is sizeable and of the opposite sign as the specification error. Nevertheless, the overall differ-

ence between the model’s impulse response and the mean of the short sample LSVAR impulse

response is substantial. For example, for the impact coefficient, the mean of the short sample

impulse is more than twice as large as that of the model.

We next ask, suppose for each of the 1,000 sequences a researcher tested the hypothesis

that the impact coefficient of the LSVAR equaled the model’s impact coefficient at the 5%

significance level. We find that such a researcher would essentially never reject this hypothesis.

We then ask, suppose the researcher tested the hypothesis that the impact coefficient of the

LSVAR equaled zero at the 5% significance level. Such a researcher would essentially never

reject this hypothesis either. These findings suggest that with the kind of data generated by

our model, the LSVAR is incapable of differentiating between models with starkly different

impulse response functions.

We conducted lag length tests parallel to those we conducted for the QDSVAR pro-

cedure. We found the Akaike criterion selects a lag length of four or fewer for over 99% of

the simulations. We also found that a likelihood ratio test did not reject four lags in favor

of five in 94% of the simulations. We experimented with other lag length tests and found

similar results. As in the QDSVAR case, we found that with samples of the same length as

U.S. data, standard lag tests do not uncover the need for long lags.

As in our analysis of the QDSVAR procedure, we also let a lag length criterion de-

termine the appropriate lag length of the VAR and then computed impulse responses. Our

results were unchanged.

Finally, we experimented with the short-run sign convention and found that the 95%
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range analogous to that in Figure 11B widens significantly and includes many more negative

values.

C. Putting Our Findings in Context

In order to put our findings in context, we apply the SVAR procedures to three pop-

ular U.S. data sets used in the SVAR literature: Francis and Ramey (2004), Christiano,

Eichenbaum, and Vigfusson (2003), and Gali and Rabanal (2004). All three data sets use

conceptually similar measures of productivity and hours. We find that when the quasi-

differencing parameter is close to one, the procedure gives similar results: in all three data

sets, a technology shock leads to a fall in hours on impact.

Here we focus on the impulse responses and the associated confidence bands obtained

by running the LSVAR specification with four lags on these data sets. We find that the

LSVAR procedure yields sharply differing results for the three data sets. On impact a tech-

nology shock leads to a fall in hours in one, leads to a rise in hours in another, and leaves

hours roughly unchanged in the third. These large differences in findings across similar data

sets are likely to be connected to our finding regarding the wide range of LSVAR impulse

responses across simulations from our model.

For the first series we use the data that Francis and Ramey (2004) constructed to

estimate an LSVAR for the period 1948:1—2002:4. Their measure of productivity is the Bureau

of Labor Statistics (BLS) series “Index of Output per Hour, Business.” They construct a new

measure of hours by adjusting the BLS series “Index of Hours in Business” for government

employment and for demographic changes. Figure 12A illustrates that an innovation resulting

in a 1% increase in total factor productivity leads to a persistent decline in hours. On impact

the decline is 1.9% and is significantly different from zero at the 5% level.

For the second series, we follow Christiano, Eichenbaum, and Vigfusson (2003), who

use the DRI Basic Economics database to estimate an LSVAR for the period 1948:1—2001:4.
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Their measure of productivity is business labor productivity (mnemonic LBOUT), and their

measure of hours is business hours divided by civilian population over the age of 16 (mnemon-

ics LBMN and P16). Figure 12B shows that a positive technology shock leads to a persistent

rise in hours. On impact a 1% increase in total factor productivity results in a .5% increase

in hours. Notice that while the impact coefficient is not significantly different from zero, the

response coefficients are significant from lag three onward.5

For the third series we follow Gali and Rabanal (2004) and use data from 1948:1—

2002:4. Their measure of productivity is business labor productivity constructed as the ratio

of nonfarm business sector output to hours of all persons in the nonfarm business sector. For

hours they use the ratio of nonfarm hours to civilian population over the age of 16. The

source is the Haver USECON database with mnemonics for output, hours, and population

of LXNFO, LXNFH, and LNN, respectively. Figure 12C indicates that a positive technology

shock leads to a persistent but statistically insignificant rise in hours. On impact the rise is

essentially zero and is not significantly different from zero at the 5% level.

These sharply contrasting results lead researchers in the SVAR literature to draw

sharply contrasting inferences. Francis and Ramey (2004) argue that this evidence shows

that real business cycle models are dead. Christiano, Eichenbaum, and Vigfusson (2003)

maintain that the models are alive and well. Gali and Rabanal (2004) assert that these

results, by themselves, are inconclusive. Gali and Rabanal prefer the alternative DSVAR

specification, which, they argue, shows that real business cycle models are also dead.

Interestingly, all three of these studies use very similar conceptual measures of pro-

ductivity, and Christiano, Eichenbaum, and Vigfusson and Gali and Rabanal use very similar

conceptual measures of hours. The sensitivity of the LSVAR results to seemingly minor dif-

5Christiano, Eichenbaum, and Vigfusson (2003) use an instrumental variables procedure that Shapiro and
Watson (1988) proposed, rather than our OLS procedure, and they compute Bayesian confidence intervals
rather than our bootstrapped confidence intervals. Comparing our Figure 11B with Figure 2 in their paper,
we see that our results are essentially the same.

35



ferences in measuring productivity and hours raises some questions about the reliability of

the LSVAR procedure for drawing inferences about underlying models.

7. State Space Approaches as Alternatives

We have pointed out difficulties with using SVAR procedures to guide the development

of economic theory. Here we discuss an alternative state space approach that is safer and

more transparent and uses more economic theory.

As we have shown, standard business cycles such as ours have the state transition

equation St+1 = FSt + Gεmt+1 and the observation equation Yt = HSt + ut. The state

transition equation and the observation equation form a standard linear state space system

that is easy to estimate by standard statistical methods. The parameters of F, G, and H are

all functions of the original structural parameters of the model. (In our baseline model, the

structural parameters include those of preferences and technology, such as β, θ, δ, φ, along

with the parameters of the shock processes.) The standard procedure is to estimate the

structural parameters using the cross-equation restrictions implied by the theory.

An alternative approach imposes many fewer restrictions than the theory. Under this

approach, we estimate the (reduced form) parameters F, G, and H directly rather than the

structural parameters. This approach requires that we impose only the minimal identifying

assumptions to estimate F, G, and H. As long as these minimal identifying assumptions

are consistent with the model generating the data, standard estimation procedures, such as

maximum likelihood, will, in population, recover the state space parameters. Hence, the

population impulse responses from the state space system will coincide with those from the

model.

Consider applying this alternative approach to data from our baseline model. Specif-

ically, consider using demeaned data from our baseline model to construct population esti-

mates of the parameters of the state space system, F, G, and H. We let the state of the
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system St equal (log k̂t, log zt, τ lt, log k̂t−1, τ lt−1) after subtracting their means. Showing that

this state is minimal is easy. We choose the observed variables Yt = (∆ log(yt/lt), log lt) to

be the same as those in the LSVAR specification. We normalize the units of all the shocks so

that their variances are unity. We also normalize the coefficient on the response of the capital

stock to a technology shock to be unity. This normalization is a choice of the units in which

we measure k̂t. In our state space system, in addition to the normalizations we impose three

other types of restrictions: the variables that enter the state of the system are stationary,

the state is minimal, and the stochastic processes are the same as in our baseline model. We

then have the following proposition.

Proposition 5. (Identification of the State Space Parameters) The parameters of the

state space system are identified.

The key step in the proof of this proposition is to show that the similarity transforma-

tion conditions in Burmeister, Wall, and Hamilton (1986) that guarantee identification are

satisfied in our case. Clearly, then, the population impulse responses obtained from maximum

likelihood will coincide with the model’s impulse responses. An open question is how well

this procedure will work in small samples.

This state space procedure can be applied more broadly. In other applications, if we

wanted to claim that the impulse responses from such a procedure coincided with those from a

broad class of models, including models with sticky prices, models with financial frictions, and

so on, we would have to find a state space representation and a set of identifying assumptions

that nested the class of models of interest. Note that estimating the state space system is very

similar to a number of alternative statistical strategies including estimating the appropriately

specified VARMA specification.

An approach that is closely related to this state space approach but imposes more

restrictions is the business cycle accounting approach of Chari, Kehoe, and McGrattan (2004).
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8. Related Literature

In the literature, critiques of the SVAR approach are not new. They can be broadly

divided into critiques based on invertibility problems, critiques using economic models as tests,

critiques of circular specification searches, and critiques based on deep inference problems

when the parameter spaces are infinite dimensional.

In a pair of insightful but often-neglected papers, Hansen and Sargent (1980, 1991)

point out that invertibility problems may plague the type of Box—Jenkins methods that under-

lie the SVAR literature. (See also Fernandez-Villaverde, Rubio, and Sargent (2005).) They

show that interesting economic models could have noninvertible moving average represen-

tations and that this noninvertibility could cause problems for simple statistical procedures

that do not use enough economic theory. Lippi and Reichlin (1993), along the lines of Hansen

and Sargent (1991), analyze how invertibility problems could lead to mistaken inferences in

the Blanchard—Quah procedure. Blanchard and Quah (1993) argue that while such prob-

lems may arise for some examples, they typically have not arisen in most applied models.

They also argue that even when they do arise, the resulting inference problems may not be

quantitatively large. As we have argued, our critique is different from the Hansen—Sargent

invertibility critique.

Cooley and Dwyer (1998) lucidly critique the SVAR procedure using economic models

as tests in a manner broadly similar to ours. One important difference between our work

and theirs, however, is that they mainly focus on models that violate the key assumptions of

the SVAR approach either by not having a unit root in the technology shock or by having

correlated shocks. We focus on models that satisfy the key assumptions of the SVAR approach

and show through a series of propositions that even then the SVAR approach may fail to

uncover the model’s impulse responses. Another difference is that we focus on the main

conclusion of the recent SVAR literature, namely, that technology shocks lead to a fall in

hours, whereas they focus on a variety of other issues. See also McGrattan (2004) for work
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similar in spirit to that of Cooley and Dwyer.

Erceg, Guerrieri, and Gust (2004) also test the SVAR procedure using economic mod-

els. In contrast to our focus on mistaken inferences using theoretical propositions about

population moments, their main focus is on small sample bias in SVARs, and they conclude

that the small sample bias problem in models is modest. Most important, they conclude,

“Overall, Gali’s methodology appears to offer a fruitful approach to uncovering the results of

technology shocks”(p. 4). We conclude the opposite.

Uhlig (2004) criticizes the circularity of searching over specifications until a certain

pattern is found and then arguing that the data showed that finding such a pattern is strong

evidence for a certain theory.

Faust and Leeper (1997) discuss inference problems in infinite-dimensional VARs that

underlie the SVAR approach. They argue that “unless strong restrictions are applied, con-

ventional inferences regarding impulse responses will be badly biased in all sample sizes”

(p. 345). They show that under a long-run identifying scheme, any test of the magnitude

of an impulse response coefficient has a significance level greater than or equal to its power.

Faust and Leeper’s results build on a pair of seminal papers by Sims (1971, 1972), who shows

that in infinite-dimensional spaces, unless severe restrictions are imposed on the parameters,

standard methods cannot be used to make asymptotically valid confidence statements.

9. Conclusion

Simple data analysis techniques that reliably point us toward quantitatively promising

models can be highly useful in applied economic analysis. The SVAR literature argues that

the SVAR procedure is a robust technique for guiding the development of theory. Specifically,

this literature claims that as long as the model satisfies the key identifying assumptions, the

procedure will uncover the model’s impulse response. We have provided counterexamples to

this claim by showing that for a large set of parameters the procedure does not uncover the

39



model’s impulse response. Furthermore, we show that this large set of parameters includes

those estimated from data.

We have shown analytically that the SVAR procedure performs better the less impor-

tant are the demand shocks. In this sense, the SVAR procedure performs relatively well in

first generation models in which technology shocks account for the bulk of fluctuations in out-

put. This procedure performs relatively poorly for second generation models that emphasize

the role of other shocks in accounting for fluctuations in a broader set of aggregates. Since

most current business cycle research is focused on developing second generation business cycle

theories, our findings do not augur well for the ability of the SVAR procedures to guide the

development of such theories.

Our study reinforces the point that Hansen and Sargent (1991) made over a decade

ago: the main problem with the SVAR approach is that it uses too little a priori economic

theory. Without more economic theory it seems impossible to determine the answers to

basic issues such as the ones discussed here: For what questions will a short lag length be

reasonable? For what type of stochastic processes on the shocks will the procedure do better

and for what type will it do worse? What variables should we include in the VAR?

We have shown that simply adding more variables to the VAR will not necessarily

lead the SVAR procedure to uncover the model’s impulse response. Typically, in the data,

estimated covariance matrices from VARs are not singular, so models must have at least as

many shocks as variables. In such situations, our singularity rule implies that the SVAR

procedure will not uncover the model’s impulse response. We have also shown that even if

the variances of some of the shocks are much smaller than they are in the data, the SVAR

procedure leads to mistaken conclusions.

A much safer and more transparent approach is to use economic theory to guide the

specification. The state space approach, which uses more economic theory than that used

in the SVAR procedures, is likely to be fruitful. This approach begins by recognizing that
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business cycle models have state space representations and involves three steps. The first is

to write down a state space representation that nests the class of models of interest. The

second is to prove a theorem that a common minimal set of identifying assumptions applies

to all models in this class. The third is to estimate the parameters of the resulting state space

model.

Elsewhere, in Chari, Kehoe, and McGrattan (2004), we have argued that the business

cycle accounting approach, which is related to the state space approach but uses more theory,

is useful in guiding the development of business cycle theories. This approach has the same

goal as the SVAR approach–namely, to quickly shed light on which of a class of models is

promising–but it suffers from fewer of the shortcomings.
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TABLE 1

Parameters of the Stochastic Processes

For Baseline Model a

µz = 0.00516 (0.000333), σz = 0.0131 (0.000598)

τ̄l = 0.243 (0.00199), ρl = 0.952 (0.000955), σl = 0.0136 (0.000598)

For Baseline Model with Government Consumption b

ḡ = 0.17, ρg = 0.969 (0.00244), σg = 0.0206 (0.00106)

For Baseline Model with Investment Tax c

τ̄x = 0.3, ρx = 0.98, σx = 0.0123 (0.00146)

Note: Parameters were estimated using maximum likelihood with quarterly data on output,

hours, investment, and government consumption for the period 1959:1–2004:3. Numbers in

parentheses are standard errors. Sources of basic data are the Bureau of Economic Analysis
(National Income and Product Accounts) and the Bureaus of Labor Statistics and the Census

(Current Population Survey).
a Parameters for technology and the labor tax used in our bivariate examples were estimated

jointly, holding government consumption and the investment tax constant. For our trivariate

examples, we hold estimates of technology and labor tax processes fixed at the values reported
in this table and conditionally estimate parameters of either government consumption or the

tax on investment.
b The parameter ḡ was set so that the steady state share of government consumption was 20%.
c Parameter τ̄x is not identified and was fixed at its reported value. To ensure stationarity of

the tax on investment, we had to constrain the parameter ρx.



Figure 1

Model Impulse Response of Hours to a Technology Shock
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Figure 2

Impulse Responses of Hours for the Model and Population Responses
for the DSVAR and LSVAR Procedures with Four AR Lags
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Figure 3

Impulse Responses of Hours for the Model and Population
Responses for the QDSVAR Procedure with Various AR Lags
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Figure 4

Impulse Responses of Hours for the Model and Population
Responses for LSVAR Procedure with Various AR Lags
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Figure 5A

Specification Error in the Impact Coefficient for the Four-Lag
SVAR Procedures, Varying the Capital Share
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NOTE: The specification error is defined to be the percent error in the SVAR response
of hours to technology on impact relative to the model’s theoretical response.



Figure 5B

Half-Lives of the Impulse Responses for the Four-Lag
LSVAR Procedure, Varying the Capital Share
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Figure 6A

Specification Error in the Impact Coefficient for the Four-Lag
SVAR Procedures, Varying the Ratio of Innovation Variances

Ratio of Innovation Variances (σl
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NOTE: The specification error is defined to be the percent error in the SVAR response
of hours to technology on impact relative to the model’s theoretical response.



Figure 6B

Half-Lives of Impulse Responses for the Four-Lag
LSVAR Procedure, Varying the Ratio of Innovation Variances
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Figure 7A

Specification Error in the Impact Coefficient for the Four-Lag
SVAR Procedures, Varying the Ratio of Innovation Variances and

the Serial Correlation of the Labor Tax Rate
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of hours to technology on impact relative to the model’s theoretical response.



Figure 7B

Half-Lives of Impulse Responses for the Four-Lag LSVAR
Procedure, Varying the Ratio of Innovation Variances and

the Serial Correlation of the Labor Tax Rate
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Figure 8

Impulse Responses of Hours for the Model and Population Responses
for Two- and Three-Variable, Four-Lag LSVAR Procedures
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Figure 9A

Specification Error in the Impact Coefficient for the Three-Variable,
Four-Lag LSVAR Procedure, Varying the Variance of the Third Innovation

Multiple of Estimated Innovation Variance

P
er

ce
nt

E
rr

or

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

Shock to g

Shock to τx



Figure 9B

Half-Lives of Impulse Responses for the Three-Variable, Four-Lag
LSVAR Procedure, Varying the Variance of the Third Innovation

Multiple of Estimated Innovation Variance
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Figure 10A

Histogram of Initial Impulse Response of Hours and 95% Bounds on
Responses Across 1,000 Applications of Four-Lag QDSVAR Procedure

to Model Simulations of Length 180
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Figure 10B

Mean Impulse Response of Hours (solid line) and Mean of 95% Bootstrapped
Confidence Bands (dashed lines) Averaged Across 1,000 Applications

of the Four-Lag QDSVAR Procedure to Model Simulations of Length 180
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Figure 11A

Histogram of Initial Impulse Response of Hours and 95% Bounds on
Responses Across 1,000 Applications of Four-Lag LSVAR Procedure

to Model Simulations of Length 180
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Figure 11B

Mean Impulse Response of Hours (solid line) and Mean of 95% Bootstrapped
Confidence Bands (dashed lines) Averaged Across 1,000 Applications

of the Four-Lag LSVAR Procedure to Model Simulations of Length 180
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Figure 12A

Impulse Response of Hours to a Technology Shock (solid line)
and Confidence Bands (dashed lines) Using the Four-Lag LSVAR

Procedure with U.S. Data Set of Francis and Ramey (2004)

Quarter Following Shock

R
es

po
ns

e
to

1%
T

F
P

S
ho

ck

R
es

po
ns

e
to

1%
T

ec
hn

ol
og

y
In

no
va

tio
n

0 1 2 3 4 5 6 7 8 9 10 11 12
-5

-4

-3

-2

-1

0

1

2

-1.5

-1

-0.5

0

0.5



Figure 12B

Impulse Response of Hours to a Technology Shock (solid line)
and Confidence Bands (dashed lines) Using the Four-Lag LSVAR Procedure

with U.S. Data Set of Christiano, Eichenbaum, and Vigfusson (2003)
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Figure 12C

Impulse Response of Hours to a Technology Shock (solid line)
and Confidence Bands (dashed lines) Using the Four-Lag LSVAR

Procedure with U.S. Data Set of Gali and Rabanal (2004)
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