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1. I

Why does the employment size distribution of firms look like a Pareto distribution with

Pr[number of firm employees n] n and a tail index 1.05, barely large enough

for the distribution to have a finite mean? Why are there so many large firms and how

did they grow so large?

In the presence of decreasing returns or downward sloping firm demand curves, it is

possible that the highly skewed size distribution entirely reflects a highly skewed pro-

ductivity distribution. Such a productivity distribution can arise from random firm-level

productivity growth, combined with selection of relatively productive firms. Random

growth implies a strict version of Gibrat’s law: firm growth rates are independent of

size. This is widely thought to be a reasonable first approximation to the data. If

incumbent firms become more productive at an average rate that does not exceed the

productivity growth rate of new entrants, and unproductive firms are driven out of busi-

ness, then a stationary size distribution will result. This distribution will have a tail

index just above 1 when there is only a small gap between entrant and incumbent

mean productivity growth rates (Luttmer [2007]).1

But is size really just productivity, and are mean growth rates really constant? At

the very least, it is likely to take time for a firm’s technological advances to be reflected

in its size. Figure I presents some striking evidence on firm growth rates. It shows the

employment histories of 25 large firms with more than 10,000 employees in 2004. The

U.S. Census reports that there were close to a thousand such firms in 2004, and that

firms in this size class accounted for slightly over a quarter of U.S. employment. The

employment data reported in Figure I are from Compustat, filings with the Securities

and Exchange Commission, and company web sites.2 Included, for comparison, is an

artificial non-stochastic growth path for the Procter & Gamble Company that would

1The = 1 asymptote is known as Zipf’s law. See Axtell [2001] for recent evidence on the firm

size distribution showing that slightly above 1 fits the data well. Well-known empirical studies on
Gibrat’s law for firms, based on growth rate regressions that correct for selection, are Evans [1987] and
Hall [1987]. Sutton [1997] surveys the literature. Gabaix [1999] uses Gibrat’s law to interpret the city
size distribution and contains many useful references on the history of the subject. Rossi-Hansberg
and Wright [2006] develop a model of the firm size distribution in which there are many industries and
the firm size in any given industry follows a stationary process, instead of the non-stationary process
implied by Gibrat.

2Davis et al. [2007] point out the di culties associated with self-reported employment statistics such

as these. Chandler [1994, p. 137] shows a pattern very similar to Figure I for gross fixed assets in the
U.S. steel industry over the period 1900-1950.
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have resulted if employment at this company had grown, since its foundation in 1837,

at the U.S. population growth rate. The mean employment growth rate across all firms

reported in Figure I is a little over 18% per annum, and there is considerable variation.

In particular, firm growth rates seem to be persistently much above average when firms

are relatively small. And they decline significantly when firms become large. Most of the

sample paths reported in this figure are unlikely to have been generated by the geometric

random walk implied by Gibrat’s law.3

This paper goes back to, interprets, and builds on the type of growth process initially

proposed by Yule [1925] and Simon [1955]. Yule [1925] was concerned with the number

of species in biological genera, and Simon [1955] with word frequencies, city sizes and

income distributions. Simon and Bonini [1958], Ijiri and Simon [1964], and many others

since studied firm growth. To generate a Pareto-like size distribution, these papers

rely on growth in the number of firms and a weak form of Gibrat’s law: mean growth

rates are independent of size. This is the starting point here as well, but then the

Gibrat assumption is relaxed to account for the evidence shown in Figure I, in a way

that continues to imply a stationary size distribution that matches the empirical size

distribution of U.S. firms. An explicit formula is obtained for the tail index in terms

of the parameters of the growth process of firms.

In the model, firms produce di erentiated commodities using labor and commodity-

specific blueprints. An entrepreneur can set up a new firm by creating a blueprint of a

certain quality. Once set up, the firm can use labor and any of its blueprints to create

new blueprints of the same quality. Individual blueprints can also become obsolete. The

arrival rates of these two events are independent and independent across blueprints.

In the Gibrat version of the model, blueprints are of constant quality until the time

they become obsolete. As a result, the mean growth rate of a firm with more than a

single blueprint is independent of firm size. In this environment, firms with high-quality

blueprints have stronger incentives to replicate their blueprints, and hence grow faster,

than firms with low-quality blueprints.

Whether or not blueprints vary in quality, a setup like this can generate a firm size

distribution with a thick right tail, provided that the aggregate number of blueprints

grows at a strictly positive rate –equal to the population growth rate along the balanced

growth path– and some types of firms gain blueprints at almost this rate. If the

aggregate number of blueprints were constant, then the fact that there is entry would

3Besides Procter & Gamble, the only other firms in Figure I that were founded in the 19th century
are Abbott (1888), GM (1897), and IBM (1889).
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imply that incumbent firms must lose blueprints on average. When the mean growth

rate of firms is constant, this rate must be negative, and few firms can become very large.

The size distribution in Klette and Kortum [2004] has a thin right tail for precisely this

reason.

Calibrating an economy with homogeneous blueprints using the tail index 1.05

and the observed firm entry rate of about 10% per annum implies that the median firm

with 10,000 or more employees is about 750 years old. In U.S. data, the median age of

such firms is about 75 years. Although the Procter & Gamble Company was not built in

a day, or even 75 years, it did not take 750 years. To capture this, it is assumed that a

firm’s blueprints can depreciate in quality without becoming completely obsolete. A new

firm enters as a high-quality firm with a high-quality blueprint. After some random time,

the quality of the firm and all of its blueprints reverts to “normal,” or low quality. As

a result, firms initially choose to grow faster than they will eventually, as appears to be

the case in Figure I. Depending on the shape of the replication technology, these growth

rate di erences can be large even for small di erences in blueprint quality. In contrast

to Luttmer [2007], bounded di erences in quality can lead to unbounded di erences in

firm size. Rapid initial growth is consistent with a stationary size distribution if the

mean duration of the initial growth phase is not too long. A relatively young population

of very large firms arises if firms tend to be large not because of long-term growth rates

that are close to the population growth rate, but because of the very rapid initial growth

of new firms. High observed entry rates imply that growth must be noisy, so that small

firms may exit with a high probability. Importantly, the calibrated regression of firm

growth rates on size is such that only small firms appear to violate Gibrat’s law.

Entry decisions and blueprint replication rates are endogenous in this paper, de-

pending ultimately on the talent distribution of entrepreneurs, the productivity of the

blueprint replication technologies, and the extent to which the replication of any sin-

gle blueprint is subject to decreasing returns. All agents can supply labor or develop

new blueprints, but talented agents have a comparative advantage in producing new

blueprints. If the entrepreneurial talent distribution has unbounded support, then some

entry will take place at any combination of wages and blueprint prices, and the balanced

growth path forces entry and replication rates to be such that the size distribution is

stationary.4 For simple cases, one can examine the dynamics away from the balanced

4In Luttmer [2007], incumbent growth rates are exogenous but a spillover makes the entry and
aggregate productivity growth rates endogenous. There, a weak spillover gives rise to a size distribution
with a thick right tail.
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growth path and confirm that the balanced growth path is stable. The speed of adjust-

ment can be slow and depends on whether the number of blueprints is above or below

the balanced growth path.

As already indicated, this paper solves the thin-right-tail problem in Klette and

Kortum [2004]. It does so in an analytically tractable and inevitably stylized setup.

Lentz and Mortensen [2007] use a version of the Klette and Kortum [2004] economy

with additional and more flexible sources of heterogeneity. They do not address the

thin-right-tail problem but estimate their model using panel data on Danish firms.5 The

Danish firm size data do not appear to exhibit the striking Pareto shape that is found

reliably in U.S. data. The small size of the Danish economy may well account for this–

there are as many firms in the U.S. as there are people in Denmark. When it comes

to examining the right tail of the size distribution, a model economy with a continuum

of firms could simply be a better abstraction for the U.S. than for a small country like

Denmark. In addition, small countries will have fewer very large firms if the replication

of blueprints across national boundaries or outside language areas comes at additional

costs.

Firms in this paper are organizations that operate in (monopolistically) competitive

markets and grow through continuous investment in new blueprints, at a level that is

proportional to the size of the firm. One can alternatively view a firm as a trading

post or network in which agents trade repeatedly. Gibrat’s law and the observed size

distribution arise if there is population growth and agents search for firms by randomly

sampling other agents and matching with the firm with which the agent sampled is

already matched. A simple version of such a model is described in Luttmer [2006].

Related models of network formation are presented in Jackson [2006] and Jackson and

Rogers [2007], and the extensive literature cited therein.

The economy is introduced in Section 2 and its balanced growth path is described

in Section 3, together with two alternative formulations of the role of blueprints in

production. The stationary size distribution is derived in Section 4 and formulas are

given for the tail index in the Gibrat and non-Gibrat cases. Section 5 constructs the

age distribution conditional on size. These results are used in Section 6 to interpret age

and size data on U.S. firms. Section 7 concludes.
5See also Seker [2007] for related work on Chilean establishments.
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2. T E

Blueprints contain ideas and are costly to produce or replicate. In the baseline spec-

ification, a blueprint describes the idea for a final good. Replication is never perfect,

implying that every good is di erent. Final goods producers are monopolistic com-

petitors. A competitive alternative in which blueprints specify plants that are subject

to decreasing returns is discussed later. The equilibria in both economies are Pareto

e cient.

2.1 Consumers

Time is continuous and indexed by t [0, ). There is a growing population of con-

sumers measured by Ht = He t at time t. The dynastic preferences of the representative

consumer over aggregate consumption sequences Ct are determined by

E0
0

e ( + )tHt [Ct/Ht]
1 dt .

The parameters , and are positive and = 1 is interpreted as logarithmic utility.

Markets are complete and consumers face standard budget constraints. The resulting

interest rate in consumption numeraire is

rt = +
DCt
Ct

. (1)

Consumption is a composite good that consists of a continuum of di erentiated com-

modities produced by producers who are of types taken from a countable set Z. There
is a measure Nz,t of producers of type z Z, and all these producers charge the same
price pz,t in equilibrium. Aggregate consumption of a commodity trading at a price p is

Ct(p). The composite good is as in Dixit and Stiglitz [1977],

Ct =
z Z

Ct (pz,t)Nz,t

1/

, (2)

with < 1 restricted to also be positive so that consumers have a preference for variety.

Consumers choose Ct(·) to minimize the cost of acquiring Ct. The resulting demand
functions are

Ct(p) =
p

Pt

1/(1 )

Ct, (3)

where Pt is the price index

Pt =
z Z

p
/(1 )

z,t Nz,t

(1 )/

. (4)
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Note that prices of di erentiated commodities are quoted in some arbitrary numeraire.

All other prices will be expressed in units of the composite commodity.

2.2 Producers

A producer charging a price p must supply Ct(p) and this generates revenues equal to

C1t Ct (p), measured in units of composite consumption. The production of a di erenti-

ated commodity requires a blueprint. Given a type-z blueprint, a producer can use l units

of labor to produce zQtl units of its di erentiated commodity. The labor-augmenting

productivity component Qt is common to all producers and evolves exogenously accord-

ing to Qt = Qe t. One possible interpretation is that Qt is labor-augmenting human

capital that agents choose to accumulate at a constant rate. Alternatively, the model

can be expanded to include vintage equipment as a factor of production. Then Qt would

represent the average quality at time t of equipment used by commodity producers. In

either case, a commodity producer’s type z augments the productivity of inputs that

are used by all producers.

At time t, a type-z producer chooses labor inputs l to maximize C1t (zQtl) wtl.

The solution is

lz,t =
zQt
wt

/(1 )
Ct
wt
. (5)

Measured in units of labor, this yields revenues lz,t, where = (1 )/ . All type-z

producers charge the price pz,t implied by (3) and supply

Ct(pz,t) = zQtlz,t. (6)

units of their di erentiated commodity. Inserting this into (2) and solving for wt gives

wt = Qt
z Z

z /(1 )Nz,t

(1 )/

. (7)

Note that the elasticity of wages with respect to a proportional increase in all Nz,t is .

2.3 New Blueprints

A type-z producer needs a type-z blueprint to produce. Blueprints depreciate in one-

hoss-shay fashion at an average rate z,t. New blueprints can be created by using labor

to replicate existing blueprints, or from scratch by entrepreneurs. The respective rates

at which this occurs in equilibrium are denoted by z,t and z,t. The number of new

type-z blueprints therefore evolves according to

DNz,t = ( z,t + z,t z,t)Nz,t. (8)
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An initial condition determines Nz,0, for each z Z.

2.3.1 Replication of Existing Blueprints

A new blueprint of type z can be created from an existing type-z blueprint. The new

blueprint arrives following an exponentially distributed waiting time with mean z,t =

f(iz,t), where iz,t is labor employed in the replication process. An existing blueprint

is lost following an exponentially distributed waiting time with mean z,t = g(jz,t),

where jz,t is labor used to “maintain” the blueprint. Note that an existing blueprint

generates revenues from its use in the production of a commodity, and as an input in

the production of new blueprints.6 The value vz,t of a type-z blueprint must satisfy the

Bellman equation

rtvz,t = max
f(i)
g(j)

{wt ( lz,t [i+ j]) + ( )vz,t +Dtvz,t} , (9)

together with a transversality condition. The blueprint production function f is increas-

ing and exhibits strictly decreasing returns to scale. The blueprint depreciation function

g is assumed to be strictly decreasing and convex, and g(0) represents the rate at which

blueprints are lost without any e ort. For convenience, both f and g are assumed to

su ciently smooth with unbounded slopes near zero.7 The optimal investment in new

blueprints is determined by

z,t = f(iz,t), z,t = g(jz,t), vz,tDf(iz,t) = vz,tDg(jz,t) = wt. (10)

The technology assumptions ensure that z,t and z,t are increasing in vz,t. High-value

blueprints are replicated more quickly and maintained better than low-value blueprints.

2.3.2 New Designs by Entrepreneurs

New blueprints can also be designed from scratch by agents acting as entrepreneurs,

without the input of an existing blueprint. Not every new blueprint is of the most

6The model of how Wal-Mart has expanded since 1962 described in Holmes [2006] has this feature.
The key assumption here is that K-Mart cannot simultaneously look at a Wal-Mart blueprint to produce
a new blueprint of its own. As in Boldrin and Levine [1999, 2006], and unlike Luttmer [2007], spillovers
are assumed to be of secondary importance in this economy.

7The replication and maintenance technology is the same for all types of blueprints. It is conceptually
straightforward to allow for heterogeneity across types, and this could very well be an important source
of variation in firm growth rates.
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productive type because entrepreneurs must weigh the value of high-quality blueprints

against the cost of the time it takes to design them. At any point in time, every agent

in the economy is endowed with one unit of e ort that can be assigned to various tasks:

supply labor, or attempt to produce a type-z blueprint for some z Z. Every agent
has a skill vector (x, y), where x = {xz}z Z are the rates at which the agent can develop
new blueprints of di erent types and y is the amount of labor the agent can supply per

unit of time. Given wages w and a vector of blueprint prices v = {vz}z Z , define

Xz[v, w] = (x, y) : vzxz = max
z Z

{vz xz } wy

for all z Z, and
Y [v, w] = (x, y) : wy max

z Z
{vz xz } .

Comparative advantage determines occupational choice. Ignoring ties, agents with a

skill vector in Xz[v, w] choose to be entrepreneurs who design type-z blueprints, and

agents with a skill vector in Y [v, w] will choose to be employees. Given prices (v, w), an

agent with skill vector (x, y) earns max{(vzxz)z Z , wy} per unit of time.
There is a time-invariant talent distribution T defined over the set of all possible skill

vectors, as in the Roy model of Rosen [1978]. The resulting per-capita supply of type-z

entrepreneurial e ort is

Ez(vt, wt) =
Xz[vt,wt]

xzdT (x, y) (11)

for z Z. The per-capita supply of labor is

L(vt, wt) =
Y [vt,wt]

ydT (x, y). (12)

Clearly, Ez(·) and L(·) are both homogeneous of degree 1, and the supply of every
activity is increasing in its own price –blueprint price or wage– and decreasing in

all other prices. As in the discrete-choice problem of McFadden [1974] and the trade

model of Eaton and Kortum [2002], suppose skills are independent Fréchet, T (x, y) =

exp( z Z(xz/ z) (y/ y) ). Then the supplies of entrepreneurial e ort (11) and

labor (12) equal (1 1/ ) times z( zvz,t/D[vt, wt])
1 and y( ywt/D[vt, wt])

1, re-

spectively, where is the gamma function and D[vt, wt] = [ ywt] + z Z [ zvz,t]
1/
.

2.4 Equilibrium

Given a per-capita supply of entrepreneurial e ort Ez(vt, wt) and a stock of type-z blue-

prints Nz,t, the rate z,t at which entrepreneurs add new type-z blueprints is determined

9



by

z,tNz,t = HtEz(vt, wt) (13)

for each z Z. Labor market clearing requires that

z Z
Nz,t (lz,t + iz,t + jz,t) = HtL(vt, wt). (14)

The equilibrium is determined by (1)-(14), initial conditions {Nz,0}z Z , and transversal-
ity conditions for {vz,tNz,t}z Z .
Because the product market distortion arising from monopolistic competition is the

same in all markets and at all times, and because agents supply their time inelastically,

it turns out that the equilibrium allocation is Pareto e cient. If there is only one type

of blueprint, then it is possible to characterize the dynamics in terms of only one state

and one costate variable, and construct an equilibrium that converges over time to a

balanced growth path.8

3. B G A F

Along a balanced growth path, the measure of blueprints of every type grows at the rate

, and thus Nz,t = Nze t for some Nz. The allocation of labor per type-z blueprint is

constant at (iz, jz, lz). Because of (2), (6) and (7), per capita consumption and wages

grow at the rate = + . The implied interest rate is r = + . Using (5),

production labor per type-z blueprint can be written as

lz = z
1/ l, z Z, (15)

for some positive l. The resulting revenues per blueprint are necessarily positive and

hence blueprint prices will be positive. The Bellman equation (9) implies that wages

wt = we
t and blueprint prices vz,t = vze t must satisfy the present-value condition

vz
w
=

lz [iz + jz]

r [ z z]
, z Z, (16)

where (iz, jz) and ( z, z) are determined by the optimality requirements

z

z

=
f(iz)

g(jz)
,

vz
w

Df(iz)

Dg(jz)
=

1

1
, z Z. (17)

8The rate at which blueprint capital is accumulated in this economy depends intricately on the shape
of the production and depreciation functions f and g, and the shape of the talent distribution. It is
possible to generate slow and asymmetric adjustment to the balanced growth path. A detailed analysis
is beyond the scope of this paper.
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Since positive revenues net of replication and maintenance costs are feasible, (16) must

hold with lz > iz + jz and r > z z. The fact that the aggregate number of

blueprints grows at the rate implies that entrepreneurs must contribute new blueprints

at the non-negative rate [ z z]. If Ez(v, w) is positive, then the entrepreneurial

supply of blueprints (13) determines the number of blueprints via

Nz
H
=

Ez(v, w)

[ z z]
, z Z. (18)

Alternatively, Ez(v, w) = 0 and ( [ z z])Nz/H = 0. Along a balanced growth

path, the labor-market clearing condition (14) becomes

z Z

Nz
H
(iz + jz + lz) = L(v, w). (19)

Given some positive scale factor l, the balanced growth conditions (15)-(17) determine

the blueprint prices vz/w, the labor allocations (iz, jz, lz), and the resulting accumulation

rates z and z. The supply of blueprints (18) and the labor-market clearing condition

(19) then pin down the level of l. Note that these equilibrium conditions only depend

on blueprint prices relative to wages. The level of wages follows from (7) and (18).

Aggregate consumption can be obtained from (5).

The present value of aggregate consumption must be finite, and this requires pa-

rameter values so that r > + . Since the number of blueprints grows at the rate

along any balanced growth path, replication of existing blueprints can contribute at

a rate of at most z z , and this will hold for all small enough iz and jz as

long as > f(0) g(0). Together, these inequalities imply r > z z for all

z Z, and this ensures finite present values. The optimality of iz and jz implies that
(r )vz/w lz [iz + jz ] + [ z z ]vz/w for any z Z, and thus

(r [ z z ])(vz vz )/w (lz lz )

for any two z and z in Z. This implies that vz/w is increasing in z, since lz is increasing
in z, by (15). The assumption that f and g are concave then implies the same for z

and z. A similar argument implies that the blueprint prices vz/w that satisfy (15)-

(17) are increasing in l. In turn, the entrepreneurial supply of blueprints is increasing in

blueprint prices. The left-hand side of (19), taking into account (15)-(18), is therefore

increasing in l. In particular, the demand for labor grows without bound as l increases

to a point where z z approaches for the most productive blueprint. The supply

of labor on the right-hand side (19) is decreasing in l, again taking into account how

11



blueprint prices depend on l via (15)-(17). Together these observations can be used to

prove the following.

P 1 Suppose that + > + and > f(0) g(0). Take the set

of blueprint types Z to be finite and suppose that the talent distribution is such that

Ez(v, w) > 0 for all z Z and all strictly positive (v, w). Then (15)-(19) defines a

unique balanced growth path that satisfies > z z for all z Z. The employment
levels iz, jz and lz as well as the accumulation rates z and z are increasing in z.

The assumption that Z is finite is the simplest way to ensure that there is a most

productive type of blueprint. Together with Ez(v, w) > 0 this then implies that the

[ z z] are positive and bounded away from zero. An equilibrium with Ez(v, w) = 0,

possibly for all z Z, can arise if the talent distribution has bounded support. In such
an equilibrium, new blueprints are only produced using replication from an initial stock

of blueprints. Since [ z z] is decreasing in z, it must then be that Nz > 0 and

= z z for the most productive blueprint, and Nz = 0 and > z z for all

other blueprints. These possibilities are ruled out in Proposition 1 by assuming that the

entrepreneurial supply of blueprints is strictly positive at all positive blueprint prices.

3.1 The Blueprint Productivity Distribution

The distribution of productivities across blueprints is determined by (18), and this is

well defined because > z z. Low-z blueprints may be prevalent in the economy,

despite the fact that vz/w is low, simply because many agents in the economy have the

skill to introduce low-z blueprints. But high-z blueprints have the advantage that they

will be replicated at a higher rate. Especially if z z is close to , this can easily

swamp the fact that entrepreneurs introduce high-z blueprints relatively infrequently.

In such a situation, the distribution of productivities can have most of its mass near the

upper end of Z.

3.2 Alternative Blueprint Interpretations

In the setup considered so far, di erent blueprints specify distinct di erentiated com-

modities that are produced subject to constant returns and are sold to all consumers.

The equilibrium conditions for this economy also apply to an economy in which con-

sumers live in many di erent locations and blueprints are location specific. With minor

modifications, the same framework can be used as well to consider competitive final

goods markets and blueprints containing the specifications for production facilities or

12



plants that are subject to decreasing returns. The following elaborates on these two

interpretations. They are benchmarks. Hybrid formulations are more plausible, but also

less tractable.

3.2.1 Sales O ces or Stores

Suppose that at any point in time, consumers are evenly distributed across many loca-

tions. In each location, there are many consumers who can only buy from local stores.

Preferences are as in (2), with Nz,t now denoting the measure of type-z stores in a

particular location. An entrepreneur can create a blueprint for a store in a randomly

selected location. The store sells a new di erentiated product. The blueprint can then

be copied to operate stores selling the same di erentiated product in randomly selected

new locations. There is an economy-wide market for labor services, or, equivalently,

output is produced where workers live and can be shipped to stores at no cost.

Because there are many locations, replicated blueprints are always assigned to new

locations, and every new store sells a commodity that is new to the market in which it

is introduced. Assuming there is a very large number of blueprints that can be copied,

every location receives a constant flow of new stores, and stores are uniformly distributed

across locations. As a result, new stores face the same market conditions everywhere.9

With this, the analysis proceeds as before.

3.2.2 Production Facilities or Plants

Instead of assuming that the output of every producer is unique, suppose there is one

competitive market for final goods. Blueprints are needed to operate plants that are

subject to decreasing returns, and growth in variety is no longer a source of consumption

growth. Each plant can use lt units of labor to produce output yt = (zQtlt) for some

(0, 1). The optimal scale of a type-z plant is lz,t = ( /wt)( zQt/wt) /(1 ) units of

labor. Along a balanced growth path, employment per plant is constant and the number

of plants grows at the population growth rate . It follows that wages grow at the rate

9There must be many more stores than locations. Imagine markets are non-overlapping intervals
of length 1/A in [0, 1], where A N. Each one of the A markets has A consumers and there are
A2 stores that are randomly assigned to points in [0, 1]. The ratio of stores to consumers is / .
As A becomes large, the proportion of all stores assigned to the region [0, x] converges to x. If the

number of stores were A instead, then the number of stores in di erent markets would remain random
and converge to a Poisson distribution. Market conditions would vary across locations, and strategic
considerations would come into play in each market.
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= , reflecting the growth rate of the per-capita e ective labor supply, and the

fact that plants are subject to decreasing returns. In contrast to the standard one-sector

growth model, the cost of producing new capital rises with wages. Blueprints become

more and more expensive to produce or replicate as labor becomes more e cient at

operating plants. As a result, the capital stock, measured in numbers of blueprints, does

not increase fast enough to allow wages to grow at the rate . Of course, the market

value of the per-capita stock of capital does grow at the same rate as wages and output.

4. T S D F

The economy described up to now has agents who consume, supply labor, or act as

entrepreneurs. Everyone can own blueprints and there are no firms. In this section, a

transaction cost argument is used to motivate a definition of what firms are.

4.1 Transaction Costs

Consider an entrepreneur who has just developed a new blueprint. To hire labor to

produce the associated commodity and develop further copies of the same blueprint, the

entrepreneur can set up a firm at no cost. This defines a firm entry. Claims to firms

can be traded freely. But there is a potentially very small cost involved in firms hiring

entrepreneurs to develop new blueprints from scratch, in selling blueprints to firms, and

in merging firms. There are no cost advantages to any of these transactions, and so they

will not occur in equilibrium.10

A firm will therefore only gain new commodities through its use of the technology for

replicating its existing blueprints. A firm only loses commodities as its blueprints become

obsolete.11 A firm that has lost all its commodities is shut down. In this environment,

firms di er only by the number of commodities they produce, and this number can be

used to measure the size of a firm. In the following, the distribution of firm size is

derived assuming that the economy is on a balanced growth path.

10Of course these transactions do occur in the data. This is a familiar and important failure of the
type of model described in this paper. Chatterjee and Rossi-Hansberg [2006] provide an interesting
model of firm size in which adverse selection makes it di cult for firms to hire entrepreneurs.
11Bernard, Redding and Schott [2006] document the importance of turnover in the mix of products

sold by U.S. manufacturing firms. They report that less than 1% of product adds and drops are
associated with mergers or aquisitions.
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4.2 Mechanics

For notational simplicity, assume there is only one type of blueprint, and drop the type

index z. The measure of firms with n commodities at time t is denoted by Mn,t. Since

every commodity is produced by one and only one firm,

Nt =
n=1

nMn,t. (20)

Over time, the change in the number of firms with one commodity is

DM1,t = 2M2,t + Nt ( + )M1,t. (21)

where , , and = ( ) are equilibrium rates that are constant along the balanced

growth path. The number of firms with one commodity increases because firms with

two commodities lose one, or because of entry. The number declines because firms with

one commodity gain or lose a commodity. Similarly, the numbers of firms with more

than one commodity evolve according to

DMn,t = (n+ 1)Mn+1,t + (n 1)Mn 1,t ( + )nMn,t, (22)

for all n 1 N. The joint dynamics of Nt and {Mn,t}n=1 is fully described by (20)-(22).

4.3 The Stationary Size Distribution

Along the balanced growth path, Nt grows at the rate and a stationary firm size

distribution exists if (20)-(22) has a solution that satisfies DMn,t = Mn,t for all n N.

Given that Nt and Mn,t grow at the common rate , one can then define

Pn =
Mn,t

n=1Mn,t

for all n N. This is the fraction of firms that produce n commodities. Analytically

more convenient is the fraction of all commodities produced by firms of size n, which is

given by

Qn =
nMn,t

n=1 nMn,t

for all n N. The mean number of commodities per firm can be written in terms of the

two stationary distributions {Pn}n=1 and {Qn}n=1 as

n=1 nMn,t

n=1Mn,t
=

n=1

nPn =
n=1

1

n
Qn

1

.
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The numerator of the left-hand side adds up to the total measure of commodities in the

economy. This is finite at all times. Hence the mean firm size is well defined and finite

by construction.

Condition (20) corresponds to the requirement that the fractions Qn add up to one,

1 =
n=1

Qn. (23)

Given = ( ) and the definition of {Qn}n=1, (21) can now be written as

Q1 = Q2 + ( ) ( + )Q1, (24)

and (22) implies that

1

n
Qn = Qn+1 + Qn 1 ( + )Qn, (25)

for n 1 N. Any sequence {Qn}n=1 [0, 1] that satisfies (23)-(25) defines a stationary

size distribution {Pn}n=1 via Qn Pn/n. Note that the equations (23)-(25) only depend

on the parameters / and / –the stationary distribution does not depend on the

units in which time is measured.

0 0.5 1 1.5
0

0.5

1

1.5

β
n

β n+
1

n = ∞

 n = 1

λ/μ

F II. The Dynamics of { n}n=1.

Equation (25) is a second-order di erence equation in {Qn}n=1. It comes with two
boundary conditions, (23) and (24). To solve this system, it is convenient to introduce
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a sequence { n}n=1 that reduces (25) to a first-order equation in the variables

Zn+1 =
1

n+1

Qn n+1Qn+1 , (26)

for all n N. Specifically, set 1 = 0 and

n+1 = 1 +
+ n

n
n

1

(27)

for all n N. Then the boundary condition (24) translates into

Z2 =
1
[ ( )] (28)

and (25) can be written as

Zn+1 =
n Zn (29)

for all n 1 N. The recursion (27) is depicted in Figure II for the case > .

Note in particular that the curve defined by (27) shifts upwards as n increases. Using

this observation one can verify that { n}n=1 converges monotonically from 1 = 0 to

min{1, / }.
The sequence {Zn}n=2 is completely determined by (28)-(29). Observe from (26)

that Qn = n+1(Qn+1 + Zn+1). The boundary condition (23) together with the fact

that n 1 implies that QK
K
k=1 k must converge to zero as K becomes large. Thus

one can iterate forward to obtain the solution for {Qn}n=1. The following proposition
presents this solution and provides upper and lower bounds for Qn when n is large.

P 2 Suppose that , , and = ( ) are positive. Define the

sequence { n}n=1 by the recursion (27) and the initial condition 1 = 0. This sequence

is monotone and converges to min{1, / }. The solution to (23)-(25) is given by

Qn =
k=n+1

k

m=n+1

m
k

1 k

m=2

m . (30)

Take any > 0. If > then

(1 + )
1+

n

m=2

m

1

Qn (31)

for all large enough n. If < then

(1 + )
1+

n

m=2

m

1

Qn (32)
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for all large enough n.

The proof is in Appendix C. The distribution {Pn}n=1 follows immediately from Pn

Qn/n.

4.4 The Right Tail

As shown in (31)-(32), the size distribution satisfies

Qn

n

k=2

k (33)

for large n. When > , the properties of this product are quite di erent from what they

are when < . If > , then Qn is bounded above by a multiple of the geometrically

declining sequence ( / )n. On the other hand, if > then n/ 1, and hence

the right-hand side of (33) declines at a rate that is slower than any given geometric

rate. The proof of Proposition 2 shows that the right-hand side of (33) is nevertheless

summable. The following proposition gives a further characterization of the right tail of

the distribution.

P 3 Suppose that > 0, > and > . Then the right tail

probabilities of the stationary firm size distribution satisfy

lim sup
K

Ka

n=K

Pn = 0

for any a smaller than the tail index = /( ).

The proof is in Appendix D. This proposition implies that

ln
n=K

Pn c ln(K) (34)

for some constant c. The limiting tail index = 1 associated with Zipf’s law arises when

the entry rate = ( ) converges to zero.

For comparison, consider the economy of Klette and Kortum [2004]. There, = 0

and < . The resulting firm size distribution is R.A. Fisher’s logarithmic series

distribution, which has Pn ( / )n /n. As a result, right tail probabilities converge

to zero even more quickly than a geometric sequence. To generate a thick right tail,

firms must grow on average, and in the economy described here this requires population
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growth. A tail index close to 1 can only arise if growth in the number of blueprints

is mostly due to incumbents rather than new entrants. It is critical that firms grow

exponentially. If firms accumulate new blueprints at some constant rate , instead of

n, then the size distribution would be Poisson-like, with a geometrically bounded right

tail.

The infinite sum (30) is hard to compute accurately when is close to 1. The

computations below make use of the recursion Qn = n+1(Qn+1 + Zn+1) and the bound

(31) for large n.

4.5 Firm Entry and Exit Rates

The flow of blueprints introduced by new firms is Nt. Each new firm starts with one

blueprint, and so Nt is also the flow of new firms that enters per unit of time. The firm

entry rate as a fraction of the number of incumbent firms, denoted by , is therefore equal

to Nt divided by the number of firms in the economy, n=1Mn,t = Nt/ n=1 nPn. An

alternative way to calculate the firm entry rate is to note that the only firms that can

exit in this economy are firms with one remaining blueprint. The proportion of such

firms is P1, and they exit at a rate . The resulting balance P1 of firms entering

and exiting per unit of time must equal the rate at which the number of firms grows

over time. These two calculations can be summarized as

=
n=1

nPn = + P1. (35)

Clearly, the firm entry rate can be no less than the population growth rate, and this

lower bound is attained only when firms never lose blueprints and therefore never exit.

The two equations given in (35) and Q1 = P1/ n=1 nPn imply / = 1/(1 ( / )Q1).

Together with (30) this yields an explicit formula for the firm entry rate relative to the

population growth rate. In turn this implies an explicit formula for the mean firm size

/ .

4.6 A Convenient Limiting Case

Suppose and are bounded away from zero and let approach from below so that

the rate at which blueprints are introduced by entrepreneurs goes to zero. Observe

that this is exactly when the tail index = /( ) approaches one from above. In the

limit, the recursion (25) for Qn nPn can be written as Pn = (Pn+1 +Xn+1) together

with Xn+1 = n 1
n+1

Xn for all n 1 N. This implies Xn+1 = (2/[n(n + 1)])X2 for all
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n N. Iterating forward on the recursion for Pn and requiring the resulting Pn to add

up to one yields

Pn =
1

ln ( / )
k=n

( / )k+1 n

k(k + 1)
.

This distribution does not have a finite mean. The implied right tail probabilities satisfy

lim
K

K
n=K

Pn = lim
K

1

ln ( / )
m=0

K

K +m

m+1

=
1

ln ( / )

1

/ 1

by the dominated convergence theorem (see Appendix B.) Thus the right tail probabili-

ties behave like 1/K, and the log right tail probabilities expressed as a function of ln(K)

must asymptote to a straight line with slope 1.

At the same time as the rate at which blueprints are introduced by entrepreneurs

goes to zero, the average number of blueprints per firm goes to infinity. But the entry

rate of new firms satisfies = + P1, and this converges to a positive value. A

calculation yields = / ln( / ), and then = gives

=
/ 1

ln ( / )
. (36)

In situations when most blueprints are created by incumbent firms, this allows one to

infer / and / = 1 + / simply from the ratio of the firm entry rate over the

population growth rate / .

4.7 Heterogeneous Blueprint Qualities and Gibrat’s Law

A firm is defined as the collection of blueprints produced by replication from some initial

blueprint. Replication produces blueprints of the same quality and so one can take the

type of a firm to be the uniform quality of its blueprints. Propositions 2 and 3 then

apply to firms of the same type.

Along the balanced growth path, firm growth rates satisfy Gibrat’s law conditional

on type, and the size distribution of type-z firms will have a tail index /( z z). Since

high-type blueprints are replicated more quickly than low-type blueprints, this implies a

thicker right tail for the distribution of high-type firms. The right tail of the overall size

distribution will inherit the tail index of the highest firm type, which corresponds to the

lowest /( z z). Most firms far out in the right tail of the distribution will be high-z

firms. Since these are the firms with the highest mean growth rate in the economy, this

induces a positive association between firm size and firm growth rates.
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Most empirical studies suggest that Gibrat’s law is violated in the other direction:

small firms tend to have higher growth rates than medium or large firms; see Evans

[1987], Hall [1987], Dunne, Roberts and Samuelson [1989], and the survey of Sutton

[1997]. At the root of the problem is the assumption that firms have one type of blueprint

and that this type is permanent. As a consequence, mean growth rates are permanently

di erent across firms. The data shown in Figure I suggest, instead, that firms initially

grow at rates that far exceed the restriction z z < implied by Proposition 1, and

that these growth rates decline as firms age.

4.8 Firm Type Transitions

A simple way to account for this slow-down in firm growth rates and to examine its

implications for the stationary size distribution is as follows. Suppose that Z = {zL, zH}
for some zL < zH, and that new firms enter as type-zH firms and then transition to type-

zL firms following independent and exponentially distributed waiting times with mean

1/ . When such transitions happen, all blueprints of a firm turn into type-zL blueprints,

permanently. Any new blueprints created by the firm thereafter will be of type zL.

The incentives to invest continue to be determined by (17) along a balanced growth

path. But the present-value condition for blueprint values (16) in the initial phase must

be modified to account for the loss in value that occurs when a blueprint transitions

from high quality to low quality. This yields

vzH
w
=

lzH [izH + jzH ]
vzH
w

vzL
w

r [ zH zH ]
.

In the terminal phase, vzL/w continues to satisfy (16). Along the balanced growth path,

the number of type-zH blueprints is NzH/H = EzH(v, w)/( + [ zH zH ]). Type-

zL blueprints are created by replication and because a flow NzH of type-zH blueprints

depreciate in quality. The resulting number of type-zL blueprints is therefore NzL/H =

(NzH/H) /( [ zL zL ]). Given this, the labor market clearing condition (19) becomes

EzH(v, w)

+ [ zH zH ]
lzH + izH +

[lzL + izL ]

[ zL zL ]
= L(v, w).

If the talent distribution for entrepreneurs is unbounded, EzH(v, w) is positive at all

positive prices. This then implies that + > zH zH and > zL zL in equilib-

rium. Using the first of these inequalities together with r > one can apply the

same argument as before to show that optimality implies that izH > izL and jzH > jzL.

While their quality advantage lasts, type-zH firms have stronger incentives to invest in
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replicating blueprints than type-zL firms. They lose blueprints at a lower rate and gain

new ones at a higher rate. Firms grow faster in the initial phase.

P 4 Suppose firms enter with productivity zH and transition to productivity

zL < zH at a positive rate . Then, along the balanced growth path, zH zL
,

zH < zL, + > zH zH and > zL zL. The stationary size distribution has a

tail index given by

=
+

zH zH

if 1 <
+

zH zH

<
zL zL

+

and

=
zL zL

if 1 <
zL zL

+

zH zH

.

The right tail of the size distribution declines geometrically otherwise.

The fact that the technology implies zH zH zL zL is used in the statement

of this proposition but plays no role in determining the tail index. The actual size

distribution and a proof of Proposition 4 are in Appendix E. If = /( zL zL) then

the fact that all firms eventually grow at a rate that is close to the population growth

rate accounts for the thick right tail observed in the firm size distribution. Alternatively,

if = ( + )/( zH zH), then large firms arise because of the rapid growth of new

firms. This can generate a thick tail even if there is no population growth. In an extreme

example, one can set slightly above zH zH and make both arbitrarily large. New

firms then either exit or become large almost instantaneously.

One possible interpretation for the firm type transitions discussed here is that some

aspect of the environment for which the initial blueprint of a firm was created has

changed permanently.12 Of course, such changes could take place more gradually than

described here. An alternative interpretation for the decline in firm growth rates is that

blueprints are location-specific and that firms initially implement blueprints in the most

profitable locations.

12Atkeson and Kehoe [2006] interpret the observed slow-down in firm growth rates by assuming that
firm productivity growth rates decline with age. Here the interpretation is a decline in the level of
productivity relative to everyone else. A plausible cause for such a decline is competing firms catching
up with a firm’s initial innovation. Although the economics is quite clear, describing this in a way that
yields an analytically tractable growth process is more challenging.
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5. F A S

The early histories of large firms are often known in some detail. This makes the age

distribution among large firms a useful tool for assessing alternative interpretations of

the firm size distribution. This section derives this distribution and the next will use it

to show that Gibrat’s law is inconsistent with the data.

5.1 The Size Distribution of a Cohort

Consider a cohort of firms that enter at the same time, not necessarily with a single

blueprint. As in Section 4, suppose these firms are initially in a “phase one” in which

they gain and lose blueprints at certain rates. Firms that have not exited transition into

a “phase two” following an exponentially distributed waiting time with mean 1/ . Let

s 1(a) denote the fraction of firms in the cohort that have made this transition by age

a and define sn(a) to be fraction of all cohort firms that are in phase one and have n

goods. In phase one, firms with n goods gain new goods at a rate n and lose existing

goods at a rate n. In particular, firms that lose their last good will remain zero-good

firms forever–they exit. Since only firms in phase one that have not yet exited can

transition into phase two,

Ds 1(a) = [1 s 1(a) s0(a)] . (37)

Exits occur when firms lose their last good, and hence

Ds0(a) = s1(a). (38)

The number of firms of a cohort that are still in phase one and that have n goods by

age a must satisfy

Dsn(a) = (n 1) sn 1(a) + (n+ 1) sn+1(a) [ + ( + )n] sn(a) (39)

for all n N. Note that the sn(a) term is not scaled by n, reflecting the assumption

that the transition probability from phase one to phase two is independent of size. The

probability distribution {sn(a)}n= 1 is determined by (37)-(39) and an initial condition

for the size distribution of a cohort at entry.

P 5 For any > 0 and 0 define (a) = (e( )a 1)/(e( )a / ).

Fix some k N and for any 0 define

T 1,k(a) =
a

0

e b 1 (b)
k

db
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and

T0,k(a) = k
a

0

e b 1 (b) (b)
k 1

[1 (b)] db,

as well as

Tn,k(a) = e a

min{n,k}

m=1

k

m

n 1

m 1
1 (a)

m

(a)
k m

[1 (a)]m n m(a),

for all n N. Then sn(a) = Tn,k(a) solves (37)-(39) for the initial condition given by
s1(0) = k and sn(0) = 0 otherwise.

For = 0 and k = 1 this solution can be found and Klette and Kortum [2004]. The

probability generating function for = 0 and k N is in Kendall [1948]. Using the

fact that (a) goes to zero as age goes to zero one can verify that Tk,k(a) 1 as age

goes to zero. The solution for T0,k(a) follows directly from T1,k(a) and integrating (38).
Summing Tn,k(a) over all n N gives 1 T 1,k(0) T0,k(0) = e a(1 [ (b) / ]k) and then

T 1,k(0) follows from integrating (37). The proof of Proposition 5 can be completed by

computing the derivative of Tn,k(a) and checking (39) for any n N. Appendix F gives

a more constructive proof based on the observation that, conditional on no transition

from phase one to phase two, a firm with n goods gains and loses goods with the same

probabilities as does the aggregate of n independent firms with one good each.

Suppose = 0. If < then firms decrease in size on average and T0,k(a) 1 as

the age of a cohort grows without bound. After a long time, virtually all of a cohort of

firms will have exited the economy. On the other hand, if > , then T0,k(a) / .

A fraction 1 / of any cohort of firms survives and grows forever, giving rise to a

thick-tailed size distribution.

5.2 Age Given Size

Now consider the setup of Proposition 4: a cohort of firms initially produces goods with

a blueprint quality zH, and that this quality depreciates permanently to zL following

an exponentially distributed waiting time with mean 1/ . Write TH,n,k(a) and TL,n,k(a)
for the solutions to (37)-(39) associated with ( zH

, zH , ) and ( zL
, zL , 0), respectively.

Then the cohort size distribution {pn(a)}n=0 at age a is given by

pn(a) = TH,k,1(a) +
a

0 k=1

TL,n,k(b)TH,k,1(a b) db (40)
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for all n + 1 N. The infinite sum on the right-hand side of (40) can be calculated

explicitly, as reported in Appendix F. The first term on the right-hand side of (40) ac-

counts for the firms that are still in the initial growth phase. The second term represents

firms that have transitioned into the second phase by age a. A flow TH,k,1(a b) of

firms in the initial growth phase transition into the second phase at age a b. Adding

up over all ages and accounting for their subsequent growth gives the second term. Note

well that (40) includes n = 0, and so the sum of pn(a) over all n N gives the fraction

of firms that have survived up to age a.

Along a balanced growth path, the measure of new firms entering is growing at a

rate . Consider the population of all firms that have entered up to a particular point

in time, including those that have since exited. The exponential rate at which entry

cohort sizes grow implies an exponential age distribution 1 e a for this population.

Because {pn(a)}n=0 includes firms that have exited, the joint distribution of age and size
is e apn(a) among all firms that have ever entered. The age density among all firms

of size n N is then

hN(a) =
n=N e apn(a)

n=N 0
e bpn(b)db

. (41)

In particular, for N = 1 this defines the age density among all surviving firms.

6. U.S. E F
U.S. Internal Revenue Service statistics contain more than 26 million corporations, part-

nerships and non-farm proprietorships. Business statistics collected by the U.S. Census

consist of both non-employer firms and employer firms. In 2002 there were more than

17 million non-employer firms, many with very small receipts, and close to 6 million

employer firms.

In the following, Census data on employer firms assembled by the U.S. Small Business

Administration (SBA) will be considered. For employer firms, part-time employees are

included in employee counts, as are executives. But proprietors and partners of unincor-

porated businesses are not (Armington [1998, p.9]). This is likely to create significant

biases in measured employment for small firms. The SBA reports firm counts for 24

size categories, ranging from 1 to 4 employees to 10, 000 and more employees, as well as

the number of employer firms with no employment in March but some employment at

other times during the year. Over the 1990’s, SBA data show that the number of firms

grows roughly at the population growth rate of about 1% per annum, as predicted by

the model.
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Age data on firms with more than 10,000 employees in 2006 are also used below. Two

measures of firm age are reported. One is based on the date a firm was incorporated.

Corporate restructuring can cause this measure of age to be much below the age of

the underlying organization that constitutes the firm. An alternative measure uses the

earliest date a firm or any of its components are known to have been in operation.

A more detailed description of how this data was collected is given in Appendix A.

Clearly, the complicated genealogy of many large corporations is not captured by the

models described in this paper.

6.1 Gibrat Implies 750 Year Old Firms

Panels (i) and (ii) of Figure III show the fitted employment size distribution assuming

there is only one growth phase. The fractions #{firms with employment n}/#{all
firms} and #{firms with employment n}/#{all firms} observed in the data are dis-
played after merging the category of employer firms with no employment in March with

the category of 1 to 4 employees. The right-tail of the size distribution, shown in panel

(ii), is clearly well approximated by n , and the slope of the log tail probabilities with

respect to n is about 1.05. Note that this estimate does not depend on the units in

which firm employment is measured. U.S. population growth is around 1% per annum.

The formula for the tail index = /( ) then implies that firms grow at a rate

= / .95% per annum.

To decompose , consider first the Yule process obtained by setting = 0

and = .0095. The only remaining free parameter is then the number of employees

per blueprint i + j + l. Changing this parameter causes parallel shifts in the curves

representing the model shown in panel (ii) of Figure III. The close fit of the right tail

shown in panel (ii) is obtained by setting i + j + l = 2. Panel (i) shows that the left

tail is also well approximated. The stationary size distribution of a Yule process fits

the empirical size distribution quite well. But this model of firm growth has deficiencies

that show up very clearly in dynamic data. The Yule process predicts a firm entry rate

= + P1 = , and this equals only about 1% per annum. Instead, the SBA reports

a firm entry rate of about 10% per annum over the 1990’s. Actual firms do decline and

exit, and entry rates are much higher than the population growth rate.

To match the evidence on firm entry along with the shape of the right tail of the size

distribution, one can raise and subject to the constraint = / .0095 until

the implied entry rate reaches the .1 value observed in the data. Solving the 1

approximation (36) of the firm entry rate gives = .3615 and = .3615. A precise
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calculation for = 1.05 gives = .3695 and = .36. Choosing the number of employees

per blueprint to match the right tail of the size distribution now gives i + j + l = .25.

The associated left and right tails are again shown in panels (i) and (ii) of Figure III.

The increased transition probabilities and raise the variance ( + )/n of the growth

rate of a firm with n blueprints, and this implies that surviving firms are more likely

to have many blueprints. Fitting the right tail of the employment distribution therefore

requires fewer employees per blueprint than in the case of a Yule process. But then the

left tail of the size distribution no longer fits well. The higher variance cuts down, too

much, on the number of small firms–they either exit or grow large.

The age distributions displayed in the upper panel of Figure IV show a much more

dramatic failure of the one-phase model of firm growth. At = .3695, = .36 and

i + j + l = .25, the median age of firms with more than 10,000 employees is about 750

years. The Yule process fitted above implies a median large firm that is a couple of

centuries older still. In the data, the median age of these large firms is closer to 75

years. Given Gibrat’s law, firms all grow at the same average rate, and this must be

equal to = / .0095. At this pace, it takes a very long time for a firm to grow

from its initial size of i+ j + l = .25 employees to one with 10, 000 employees–perhaps

not quite the ln(40,000)/.0095 1,115 years implied by deterministic growth, but still,

a very long time.13

6.2 Rapid Initial Growth

As Figure I suggests, many large firms started out small and became large during rela-

tively short periods of rapid growth, at rates far exceeding the population growth rate.

This can account for the fact that the median large firm is only 75 years old. Proposition

4 indicates how this can also be made consistent with the observed right tail of the size

distribution. Firms can grow initially at a high rate H H and then transition at a

rate to a regime with a growth rate L L that must be below . If the tail index

is determined by the e ects of initial rapid growth, then = ( + )/( H H). Given

1.05 and .01, this implies that H H must be close to . An initial phase

13The back-of-the-envelope age of 1,115 years can be reduced to 485 years by assuming that firms
enter with 100 employees and grow deterministically. This still implies large firms that are much too
old. In Luttmer [2007], Gibrat’s law holds in a strong form: both the mean and the variance of firm
growth rates are independent of size. The fact that the variance does not decrease with size makes it
easier for selection to produce large firms. But it takes annual growth rates with a standard deviation
as high as 40% per annum, implausibly high for all but the smallest firms, to account for the observed
age distribution of large firms.
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with very rapid growth is possible as long as this phase is of su ciently short average

duration. The fact that transition times are exponentially distributed implies that some

firms grow rapidly for much longer than the average duration. This results in relatively

young large firms.
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F V Growth by Size

Panels (iii) and (iv) of Figure III and the lower panel of Figure IV show the size and

age distributions when H = .8575, L = .5925, and H = L = .6, together with = .25

and employee numbers per blueprint equal to iH+ jH+ lH = .30 and iL+ jL+ lL = .275.

These parameters give rise to a firm entry rate of 10% and a median age among firms

with more than 10, 000 employees of 75 years. The parameters were chosen to match

these two features of the data, and to approximate the left and right tails of the size

distribution, subject to the theoretical restrictions implied by the model. Roughly, the

mean growth rates H H and L L are important for the median age, and the

variance parameters H + H and L + L are important for the entry rate. Increasing

H H lowers the median age while increasing L L causes the median age to rise as

firms that have become large stay around longer. Increases in H+ H and L+ L raise

the entry rate as firms spread out and exit more quickly. If iH+ jH+ lH and iL+ jL+ lL
are reduced along with these increases to keep the frequency of large firms in line with

the data, then the median age of large firms does not change much.
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The two-phase model introduces variation in mean growth rates that is correlated

with firm size. Figure V shows the mean and standard deviation of firm growth condi-

tional on size, with size measured by the number of blueprints employed by the firm.

A logarithmic scale is used to accentuate variation over the full range of the data. The

graph shows that beyond 300 blueprints, or about 100 employees, the implied mean firm

growth rate is essentially constant. This can explain why many researchers have found

that Gibrat’s law is a good approximation for firms that are not too small (e.g. Hall

[1987] and Evans [1987].) Small firms grow much faster on average, and the model also

predicts an intermediate size range in which firms are most likely to be in the low-growth

phase.

Over short intervals of time, the variance of firm growth in regime i is ( i + i)/n

for a firm with n blueprints. The resulting estimated standard deviation of a firm with

n blueprints is about 1.21/ n in the high-growth phase and 1.09/ n in the low-growth

phase. A firm with 30 employees has around 100 blueprints, and hence the standard

deviation of its growth rate will be in the 10% 12% range. For firms with more than

10,000 employees, these standard deviations are on the order of .5% to .6%, numbers

that are small even relative to aggregate employment fluctuations in the U.S. economy.

As emphasized by Klette and Kortum [2004], the empirical evidence suggests that the

variance of firm growth rates declines more slowly than 1/n. Hymer and Pashigian [1962]

compared standard deviations of firm growth rates across size quartiles and found that

firms in the largest quartile were significantly more volatile than predicted by the 1/n

rule. More recently, Stanley et al [1996] and Sutton [2002] find that the variance of the

growth rate of Compustat firms behaves like 1/n1/3. Tentative interpretations are given

in Stanley et al [1996] and Sutton [2002, 2007].

6.3 What Could Those Blueprints Be?

For the Yule process, i + j + l = 2 is the level of employment per blueprint that best

fits the empirical employment size distribution. If and are increased to match the

observed firm entry rate, then employment per blueprint drops to i+j+ l = .25. Similar

estimates of employment per blueprint are obtained if there is an initial growth phase.

Increasing employment per blueprint and increasing the variance of the firm growth

process both cause the stationary employment distribution to spread out. The observed

dispersion of employment therefore puts tight restrictions on employment per blueprint

and the variance of the firm growth process. If the employment per blueprint is high,

then the variance of the growth rate must be low, and vice versa. The Yule process has
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the lowest variance consistent with the observed tail index, and hence the highest level

of employment per blueprint.
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Therefore, if the model is to fit the distribution of all firms in the SBA collection

of firms, employment per blueprint can be at most 2. Such a low number rules out

several a priori plausible interpretations of what blueprints could be. Plants, organi-

zational departments, or geographically distinct subsidiaries typically have more than

two employees. Projects, tasks, sales accounts, or individual job descriptions might be
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better interpretations. Strictly within the model, blueprints are associated with di eren-

tiated commodities, and the small number of employees assigned to each di erentiated

commodity suggests an extremely di erentiated set of commodities.

Figure VI shows an alternative way to interpret part of the SBA data. The empirical

distribution displayed in this figure is the distribution of all firms with at least five

employees. That is, firms with 0 employees in March and those with 1-4 employees are

not included. Within the context of the model, one could interpret these small employer

firms as intermediaries that supply labor services to organizations that are classified as

firms–those that have more than five employees. Conditioning on firms with at least

five employees causes the log of the empirical right tail frequencies reported in panel

(ii) to shift up by a constant. This is what allows one to match the data with a larger

number of employees per blueprint. In Figure VI, this is taken to be the minimum size

of 5 employees. As before, = .25 H H, but H + H and L + L now have

to be smaller to match the right tail of the distribution. Panel (iii) shows that the

median large firm is now younger than the observed 75 years, while other percentiles are

above what is found in the data. The overall age distribution is still in the range of the

empirical age distribution.

7. C

Data on U.S. firms show (i) a size distribution with many small firms and a very thick

right tail, (ii) high firm entry and exit rates, (iii) relatively young large firms, and (iv)

growth rate variances that decline with size more slowly than the inverse of firm size.

Luttmer [2007] and the current paper provide alternative interpretations of (i). Large

amounts of randomness or high transitory growth rates are required to account for (ii)

and (iii). The two models seem to be on opposite sides of the data when it comes to

(iv). In one case all shocks are firm-wide, while in the other independent within-firm

shocks average out. But neither model has industry or aggregate shocks. Evidence on

the slow decline of the variance of firm growth rates tends to come from sources, such as

Compustat, that do not include very small firms. It is possible that this misses a rapid

initial decline with size in the growth rate variance of these firms.

Skewed firm size distributions are interpreted as reflecting skewed productivity dis-

tributions in Hopenhayn [1992], Atkeson and Kehoe [2006], and Luttmer [2007], among

many others. The current paper attributes size di erences not only to productivity

di erences but also to stochastic variation in the number of markets in which a firm

operates, as in Klette and Kortum [2004], Lentz and Mortensen [2007], and Arkolakis
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[2007]. Bounded productivity di erences may give rise to unbounded size di erences.

In Lucas [1978], all variation in firm size is determined by heterogeneity in managerial

talent. In Holmes and Schmitz [1995], Gabaix and Landier [2008] and Tervi
..
o [2007],

both firm-specific productivity and managerial productivity play a role. Much remains

to be done to sort out the relative importance of each these aspects of firm heterogeneity.

Figure I and the relative young age of large firms are interpreted here using a two-

phase pattern of growth in which all new firms start out with a high-quality blueprint

and become firms with all low-quality blueprints after some random time. This is an

abstraction that helps to illustrate the type of growth mechanism that can explain the

size and age distribution of large firms. One expects more gradual declines in relative

quality to work as well. Of course, not all new firms have high-quality blueprints. The

framework set out in this paper allows for heterogeneous quality in the blueprints of

start-up firms, and this can account for small firms that linger and never “take o .”

A natural extension would allow for start-up blueprints that are initially of uncertain

quality. This would bring in the selection considerations emphasized by Jovanovic [1982].

If blueprints are location specific, and locations are known to di er in how profitable

they can be, then firms with new ideas will initially implement these in the more prof-

itable locations, and only then expand, at a slower pace, into less attractive locations.

This could be an alternative interpretation of the growth patterns shown in Figure I,

although it remains to be seen how this can account for the observed size distribution.

One possibility is suggested by static models of Pareto-like size distributions. A well-

known example is the Beckmann [1958] model of hierarchies of cities. More recently,

Hsu [2007] describes an equilibrium model of hierarchies of firms and cities that produces

Zipf’s law. These static models could be viewed as long-run equilibrium conditions for

a dynamic economy, and then the rapid initial growth shown in Figure I would simply

reflect the fact that setting up a large firm is not quite instantaneous but still very fast.

A close examination of the early histories of large U.S. corporations, such as those

shown in Figure I and the ones described in Appendix A, shows that mergers, acqui-

sitions, and spin-o s are by no means infrequent. Along the lines of Jovanovic and

Rousseau [2004], it is possible to interpret a small acquisition as the production of a new

blueprint, but other interpretations are perhaps more natural. Spin-o s can give rise to

firms that enter with a relatively large initial size, instead of the common minimum size

assumed in this paper. It would be interesting to know how these aspects of firm growth

can be incorporated in a model of the size distribution. And of course, these phenomena

can shed light on what keeps the components of a firm together.
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A F A D

The firm age data for large firms used in Section 7 is collected from several sources.

Large firms are taken to be all Compustat firms with more than 10,000 employees,

about 600 companies, together with about 300 firms in that same size category that

appear on a list of large private companies published by Forbes magazine. For these

firms, two age measures were collected. One is the incorporation date obtained from

the Mergent data base. The second measure is the earliest reference to the company,

or any of its predecessor companies, that can be found in any of three di erent sources:

Mergent (formerly Moody’s manual), Dun and Bradstreet, and company web sites. A

predecessor company can be a company that was broken up into parts, or it can be a

component of the company that was initially independent. For firms that are in the

Mergent database, fairly extensive histories are reported, and these histories contain

information about predecessor companies. Company web sites of large corporations

often include extensive company histories that tend to emphasize the very old roots of

the company. The company age data together with the source for each age observation

are available at www.luttmer.org.

B T L C 1

Iteration gives

Pn =
k=n

( / )k+1 n

k(k + 1)

for some . Note that

1

n=K

Pn =
n=K k=n

( / )k+1 n

k(k + 1)

=
m=0

m+1

n=K

1

(m+ n)(m+ n+ 1)
=

m=0

m+1
1

m+K
.

For K = 1 this gives

1

n=1

Pn =
m=1

1

m

m

= ln 1 .

Since = it follows that = 1/ ln(1 / ) = 1/ ln( / ). The firm entry rate

is then

= + P1 = +
ln 1 k=1

( / )k

k(k + 1)
= ,
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which is the result reported in (36).

C P P 2

Write the candidate solution (30) as

n

m=2

m

1

Qn =
k=n+1

k

m=n+1

m
k

1 k

m=n+1

m

Since n min{1, / } this implies the upper bounds in (31) and (32). Take some
> 0. The lower bounds rely on n min{1, / }. If > , then eventually n

( / )/(1 + ), and this gives the lower bound in (31). If < , then n 1/(1 + )

for all large enough n, and this implies (32). Thus the sums defining {Qn}n=1 converge
and (31) and (32) hold. By construction, the candidate solution satisfies (24)-(25). It

remains to prove the adding-up condition (23).

Define F1 = 1 and

Fn = n
n

k=2

k ,

for all n 1 N. Note from the bounds (31)-(32) that the sequence {Qn}n=1 is sum-
mable if and only if {Fn/n}n=1 is summable. This summability and Fn F = 0 are

immediate for < . Define

Xn = n 1 n

for all n N. The recursion (27) for n is equivalent to

Xn+1 =
1 + 1

n
Xn +

+ 1
n
Xn +

. (42)

Starting from X1 = 1, this converges monotonically to /( ) > 1 if > . Raabe’s

test then ensures that {Fn/n}n=1 is summable. The inequality Xn+1 > 1 is equivalent
to Fn+1 < Fn, and so Fn F for some F 0. Hence

K

k=1

1

k
Fk F

K

k=1

1

k

for all K. Since the left-hand side is summable, it must be that F = 0.

Write (24) as Q1 = [Q2 Q1] + ( ) Q1 and (25) as

Qn = n [Qn+1 Qn] n [Qn Qn 1] ,
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for n 1 N. Adding up gives over all n gives

n=1

Qn = ( ) +
n=1

n [Qn+1 Qn] Q1 +
n=2

n [Qn Qn 1] . (43)

Note that n[Qn+1 Qn] = (n + 1)Qn+1 nQn Qn+1 and n[Qn Qn 1] = nQn

(n 1)Qn 1 Qn 1, and observe that F = 0 ensures that the candidate solution (30)

satisfies limn nQn = 0. Using summation-by-parts for the two sums on the right-hand

side of (43) one obtains

n=1

n [Qn+1 Qn] = Q1 +
n=2

n [Qn Qn 1] =
n=1

Qn. (44)

Together with > , (43) and (44) imply that the sequence {Qn}n=1 adds up to 1.

D P P 3

Recall that Pn Fn/n
2 and define RK = k=K Fk/k

2. Observe

KaRK =
k=K

K

k

a

ka 1
k

m=2

m

k=K

ka 1
k

m=2

m .

If the sum on the right-hand side is finite, then limK KaRK = 0. A su cient condition

for this sum to converge is a version of Raabe’s test, limn Yn > 1, where

Yn = n
n 1

n

a 1

n

1 .

The recursion (27) for n is equivalent to

Yn+1 An+1 =
n

n+ 1

a 2

+
Yn An
1 + 1

n
Yn

where

An = n 1
1

n

a 1

1 .

Observe that limn An = 1 a. The limiting recursion for Yn is therefore

Yn+1 [1 a] + (Yn [1 a]) ,

and this has the unique fixed point Y = 1+ a. One can verify that Yn does indeed

converge to Y . Thus a < guarantees convergence.
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E P P 4

In this Appendix, write ( H, H) for ( zH
, zH) and ( L, L) for ( zL

, zL).

LetMH,n,t andML,n,t denote the measures of firms with n blueprints in the high- and

low-growth regimes, respectively. As before, Nt = n=1 n(MH,n,t+ML,n,t) measures the

number of blueprints, and Nt is the flow of blueprints introduced by new firms. The

evolution of MH,n,t is determined by the di erential equations (21) and (22), modified

to include an additional term MH,n,t on the right-hand side. Note that this term is

not scaled by n, since the transition probability from high to low growth is assumed

to be independent of size. The di erential equations for ML,n,t are (21) and (22), with

an additional term + MH,n,t on the right-hand side, and without the term Nt that

appears in (21). All entering firms are assumed to start out in the high-growth regime.

Starting from an initial condition {MH,n,0,ML,n,0}n=1, the resulting system of di erential
equations determines the joint distribution of firms by size and growth regime at all

times.

Along a balanced growth path, [MH,n,t,ML,n,t, Nt] = e t[MH,n,ML,n, N ], where is

the population growth rate. Given ( H, H) and ( L, L), the entry parameter must be

such that the flow of new commodities introduced by new and incumbent firms equals

Nt. This implies

= + ( H H) + (1 )( L L), (45)

where

=
1

N
n=1

nMH,n

is the fraction of all blueprints employed by firms in the high-growth phase. The steady

state distribution of blueprints by firm size is determined by and the conditional

distributions QH,n nMH,n and QL,n nML,n. The di erential equations for MH,n,t

and ML,n,t imply

( + )QH,1 = HQH,2 + ( H + H)QH,1 (46)

and
1

n
( + )QH,n = HQH,n+1 + HQH,n 1 ( H + H)QH,n (47)

for all n 1 N, as well as

QL,1 = LQL,2 ( L + L)QL,1 + 1
QH,1 (48)

and

n
QL,n = LQL,n+1 + LQL,n 1 ( L + L)QL,n + 1

1

n
QH,n (49)
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for all n 1 N. In addition, {QH,n}n=1 and {QL,n}n=1 must be probability distributions,

n=1

QH,n =
n=1

QL,n = 1. (50)

The balanced growth distribution of blueprints across firms is now defined by a fraction

(0, 1), an entry parameter > 0, and a non-negative sequence {QH,n, QL,n}n=1 that
satisfy (45)-(50).

Observe that (46)-(47) and (50) exactly match the one-regime conditions (23)-(25)

with and replaced by / and + , respectively. It must therefore be that / =

+ ( H H). Combining this with (45) gives the solution for and ,

=
( L L)

+ ( L L)
, = + ( H H).

The equilibrium conditions for a balanced growth path ensure (0, 1) and > 0. As

in the one-regime case, define H,1 = L,1 = 0 and

H,n+1 = 1 +
+ + Hn

Hn
H H,n

H

1

, L,n+1 = 1 +
+ Ln

Ln
L L,n

L

1

,

for all n N. As in Proposition 2, H,n min{1, H/ H} and L,n min{1, L/ L}.
Proposition 2 and the solution for / then imply

QH,n =
+ ( H H)

H k=n

1

H,k+1

k+1

m=n+1

H,m

k+1

m=2

H H,m

H
(51)

for all n N, Furthermore, (48) and (49) correspond to QL,n = L,n+1 (QL,n+1 + ZL,n+1)

and

ZL,n+1 =
L L,n

L
ZL,n +

1

L 1

1

n
QH,n

for all n N, starting from ZL,1 = 0. This last recursion and its initial condition

determine {ZL,n}n=1. Solving the recursion for QL,n forward then gives

QL,n =
1

L 1 k=n

1

L,k+1

k+1

m=n+1

L,m

k

l=1

k+1

m=l+1

L L,m

L

1

l
QH,l. (52)

The overall firm size distribution is determined by [ QH,n+(1 )QL,n]/n and (51)-(52).

The rate at which the right tail of this distribution decays is determined by the

slowest rate of decay of QH,n/n and QL,n/n. For the high-growth regime, Proposition 3
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shows that the size distribution has a tail index ( + )/( H H) if H > H. It remains

to determine the properties of the right tail of QL,n/n.

The bounds given in Proposition 2 imply that there are positive Q > Q so that

QL,n Q,Q
k=n

k+1

m=n+1

L,m

k

l=1

1

l

l+1

m=2

H H,m

H

k+1

m=l+1

L L,m

L

for all n N. By replacing 1/l with 1/k and either keeping only the l = 1 term or only

the l = k term one obtains the lower bound

QL,n

n

m=2

I I,m

I
×Q

k=n

1

k

k+1

m=n+1

L,m

k+1

m=n+1

I I,m

I
,

for I {L,H} and some positive Q. Proposition 2 and its proof can be used to argue
that the infinite sum on the right-hand side of this inequality is finite and bounded away

from zero. Define

n = max
L L,n

L
,

H H,n

H
.

An upper bound for QL,n is then

QL,n

n

m=2

m ×Q
k=n

k

l=1

1

l

k+1

m=n+1

m

for some positive Q. Note that k
l=1 1/l 1+ln(k). The infinite sum converges because

ln(k) k
m=1 m is summable, which in turn follows because k

k
m=1 m is summable for

some small enough > 0. This can be shown along the lines of the proof of Proposition

3.

These upper and lower bounds on QL,n imply that its tail behavior is determined

by n
m=2 m. This is geometrically bounded if H < H and L < L. If H > H and

L < L then the tail index is ( + )/( H H); if H < H and L > L then it is

/( L L). For the case H > H and L > L, define

BH,n = n 1
H H,n

H
, BL,n = n 1

L L,n

L
.

One can use the recursions for H,n and L,n to set up recursions for BH,n and BL,n.

These show that BH,n ( + )/( H H) and BL,n /( L L). Hence

lim
n

n
H H,n

H

L L,n

L
= lim

n
(BL,n BH,n) =

L L

+

H H
.

When the two tail indices are not the same, this implies n = L L,n/ L or n =

H H,n/ H for all but finitely many n, and from this the proposition follows.

40



F P P 5

6.1 Preliminaries

Suppose {Xi, Yi}ki=1 are 2k independent random variables with Pr[Xi = n] = (1 ) n 1,

n N, Pr[Yi = 0] = , and Pr[Yi = 1] = 1 . Define Zk =
k
i=1XiYi and let

Kk =
k
i=1 Yi.

As can be verified using moment generating functions, the sum of i.i.d. geometrically

distributed random variables has a negative binomial distribution, given by

Pr
m

i=1

Xi = n =
n 1

m 1
(1 )m n m

for all m N and n+ 1 m N. In view of the independence assumptions,

Pr [Zk = n] = Pr
k

i=1

XiYi = n =

min{k,n}

m=1

Pr
m

i=1

Xi = n Pr [Kk = m]

for all n N. Using the binomial distribution of Kk, this implies

Pr [Zk = n] =

min{k,n}

m=1

k

m

n 1

m 1
(1 )m k m(1 )m n m (53)

for all n N. The complementary probability is Pr[Zk = 0] =
k since Zk = 0 if and

only if all Yi are zero.

Now suppose that K is drawn from the geometric distribution (1 ) k 1, k N.

Then the distribution of ZK is determined by

(1 )
k=1

k 1 Pr [Zk = n] =
(1 ) n

(1 )

n

m=1

n 1

m 1

(1 )(1 )

(1 )

m

(54)

for all n N. The right tail probabilities of this distribution are

(1 )
n=N k=1

k 1 Pr [Zk = n] =
1

1

(1 ) + (1 )

1

N 1

(55)

for all N N. For N = 1 this yields Pr[Zk = 0] = (1 ) /(1 ).

6.2 Sketch of Proof and Computation

Suppose = 0. Consider a firm that starts out with one blueprint. As reported in

Klette and Kortum [2004], by age a such a firm will have exited with probability s0(a) =
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(a). Conditional on survival, its size distribution is the geometric size distribution

sn(a)/[1 s0(a)] = [1 (a)] n 1(a). This can be verified directly by checking (38)-

(39). The size distribution at age a of a firm that starts out with k blueprints is simply

the distribution of the aggregate of k independent firms that start with one blueprint.

Applying (53) gives {Tn,k(a)}n=1 for the case = 0. Now suppose > 0. Transitions

from the first to the second phase occur at a rate , as long as no exit has taken place.

This means that only a fraction e a of surviving firms remain in the initial phase.

This determines {Tn,k(a)}n=1. The formulas for T 1,k(a) and T0,k(a) then follow from
integrating (37)-(38), as described in the text.

The infinite sums needed in (40) and (41) follow from (54) and (55). Age densities

(distributions) can then be computed using a univariate (bivariate) numerical integra-

tion.
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