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Abstract

This paper studies optimal menus of debt contracts such as secured
debentures or bonds, in the presence of diversity of opinions between
borrowers and lenders. We first characterize incentive compatible con-
tracts, then prove the existence of optimal debt contracts. Finally, we
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1 Introduction

The present paper draws upon three lines of research. First, since the seminal
work of Townsend [29], the costly state verification (henceforth, CSV) liter-
ature has received a great deal of attention. A CSV problem is a situation
where investors can only observe the project return by incurring a cost while
the entrepreneur observes it freely. CSV models have notably been useful
to provide a rationale to debt-like financial contracts with costly liquidation
(see for instance [11], [32], [33]). To further explain certain features of real-
world financial contracts such as coupon payments, financial covenants, and
maturity structure of debt, the basic CSV model has been extended along
several lines: moral hazard (see [4], [16]), multi-period contracting problem
(see [3], [9]), stochastic monitoring (see [5], [21]) or macroeconomic models
with aggregate shocks (see [6], [18]). However, a common feature of all these
contributions is to maintain the common prior assumption, which brings us
to the second line of research.

Gul ([13]) and Morris ([22]) have recently challenged the common prior
assumption arguing that none of the arguments in support of the common
prior assumption (expression of rationality, all difference in beliefs result from
difference in information or impossibility of normative approach) are com-
pelling. Relaxing the common prior assumption brings new and interesting
results. In Harrison and Kreps [14], risk neutral traders have heterogenous
prior beliefs, infinite endowment and can retrade their assets but cannot sell
them short. Harrison and Kreps then show that the price of an asset is
always greater than or equal to each individual’s expected value of future
payments of that asset. Their model thus illustrates speculative phenomena,
i.e. investors buy stocks now so as to sell them later for more than they think
they are actually worth. Another interesting contribution is found in Var-
ian [31]. In an Arrow-Debreu single good economy with heterogenous prior
beliefs, Varian has shown that the higher the heterogeneity of beliefs, the
lower the equilibrium asset prices if risk aversion does not decline too rapidly
with increasing income. A measure of the diversity of opinions is thus a good
indicator for ex-post returns. Empirical works are consistent with this theo-
retical finding (see [12]). These two contributions are illuminating examples
of the role of heterogeneity of beliefs in asset pricing theory. For a broader
perspective, see the excellent survey of [22] and all references therein.

Along this line of research, the purpose of our paper is to characterize
optimal menus of debt contracts in the presence of diversity of opinions, that
is, we relax the common prior assumption in an otherwise standard CSV
model. More specifically, within the class of secured simple debt contracts,
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we derive optimal menus of contracts that a borrower offers to a lender. The
borrower and the lender have different beliefs and beliefs are private infor-
mation. Thus the borrower faces an adverse selection problem and wishes
to discriminate among the different beliefs, so-called epistemic types, of the
lender.

Quite naturally, the third line of literature we follow here is the multidi-
mensional screening literature, see for instance [1], [2], [20], [25] and [26] for
an excellent survey. An important result of this literature is that bunching is
a robust phenomenon. First, perfect screening might be ruled out by dimen-
sionality considerations, this is bunching of the first type in the terminology
of [25]. Second, there typically exists a conflict between rent extraction and
second-order compatibility constraint implying that several types will be of-
fered the same contract. This is an example of bunching of the second type
(see [25]). This sharply contrasts with unidimensional screening problems
where perfect discrimination of types is rather the rule than the exception
(however, see [15] for the possibility of bunching in unidimensional problems).

This paper provides a characterization of the set of incentive compati-
ble debt contracts as well as a proof of the existence of optimal menus of
debt contracts in the full generality of the contracting problem. Besides
these general results, we construct an example in order to provide an explicit
characterization of the optimal menus of debt contracts. Notably, we show
that there always exist optimal menus of debt contracts with at most two
contracts offered. This is an extreme case of bunching.

In section 2, we present the model. Section 3 is devoted to the character-
ization of incentive compatible contracts. Section 4 addresses the existence
of admissible SDC incentive compatible contracts. Finally in section 5, we
completely solve the problem in a simple case.

2 The model

2.1 The framework

The framework is adapted from Renou [23]. We consider a static, two-
period economy with a single good used for investment and consumption.
In this economy, there are a unique “borrower/entrepreneur” and a unique
“lender/investor”. The borrower has no initial endowment, but he does have
access to an individual-specific, high return investment project, described
below. Both the borrower and the lender are assumed to be risk-neutral and
to care only about second period consumption.
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Investment can only occur in the first period using one or more of the
following two technologies. First, there is a commonly available, riskless
technology whereby one unit invested in the first period yields r > 1 units
of output in the second period. Second, there is a stochastic technology that
converts current investment into future output. This project requires exactly
one unit of fund to be undertaken in period one and produces ω units in the
second period. The project return ω is drawn from an unknown probability
law, explained later.

Moreover, the return of the project is not freely observable in the sense
that ω is costlessly observable only by the entrepreneur. However, there
exists a technology which can be used by the investor to verify, in the second
period, the realization ω of the project. This state verification technology is
costly to use, requiring a utility cost of γ in the second period.

Finally, only the entrepreneur is endowed with access to the high-return
investment technology and ownership of this investment cannot be traded.
The lender is endowed with 1 unit of the good in the first period. Up to
this point, our framework is similar to a standard costly state verification
problem, see for instance [29], [32] and [33].

2.2 Beliefs

This section constitutes the main point of departure from a standard CSV
model. We therefore present assumptions on beliefs in detail and give intu-
itions beyond the formulation adopted.

The lender and the borrower conceive possible futures captured by a
random variable θ, whose realizations influence the project return ω. The
random variable θ is discrete and takes values in Θ := {θ1, . . . , θN}. One
might interpret a realization of θ as a summary of exogenous factors such
as consumers’ confidence or taste, demand factors, weather, macroeconomic
policies, etc. Moreover, we define gn as the probability density of ω condi-
tional on [θ = θn], n = 1, . . . , N . The density gn has full support on [an, bn]
a compact subset of R++.

We impose three assumptions on beliefs. First, we assume that it is
common knowledge that the return ω conditional on [θ = θn] is drawn from
gn. We also suppose that the expected return to undertake the risky project
is strictly greater than the safe return, that is, En :=

∫
ωgn (ω) dω > r for

n = 1, . . . , N.
Second, the borrower and the lender have different opinions about the

likelihood of these exogenous factors. For example, the borrower and the
lender might have a different perception of the consumers’ taste for a new
product (rhubarb wine) or a new selling method (Internet). These exoge-
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nous factors are certainly difficult to evaluate or to forecast, explaining that
the borrower and the lender form different beliefs. Beliefs are subjective or
personalistic. It is in this sense that we capture the diversity of opinions in
the economy. Formally, we define pn (resp. qn) as the subjective probability
of θn for the lender (resp. the borrower), and p := (p1, . . . , pN−1) a point in

ΣN−1 :=
{

(p1, . . . , pN−1) ∈ RN−1
+ :

∑N−1
n=1 pn ≤ 1

}
, the simplex of dimension

N − 1. Similarly, q is the vector of subjective beliefs for the borrower. We
call the vector p of subjective beliefs the epistemic type of the lender.

Third, we assume that epistemic types are not observable. Furthermore,
the borrower believes that the lender epistemic type is drawn from a non-
degenerate probability measure with density ρ with respect to Lebesgue on
ΣN−1. The borrower thus faces an adverse selection problem.

2.3 Secured financial contracts

The first period comprises two stages. In a first stage, the borrower publicly
announces a financial contract specifying repayments in various contingen-
cies. We must think of the contract as a promise to repay:
- a fixed interest rate,
- a variable interest rate contingent on the project return.

In a second stage, the investor accepts or not to fund the borrower. If the
lender is indifferent between accepting or rejecting, he accepts. In the second
period, the investment return is realized. Monitoring takes place or not
(we only consider deterministic monitoring), and repayments occur. When
monitoring takes place, it is perfect in the sense that the true realization of
the return is disclosed. Let us define a menu of secured debt contracts.

Definition 1 A menu of secured debt contracts is a triple of mappings
(R (·, ·) , C (·) , M (·)) where

• R : Ω × ΣN−1 → R+, (ω, p) 7→ R (ω, p) is the variable repayment to
epistemic type p when the return project is ω, with Ω := ∪n [an, bn] ,

• R (ω, p) ≤ ω, ∀ω ∈ Ω, ∀p ∈ ΣN−1,

• M : ΣN−1 → 2Ω, p 7→ M (p) an open subset of Ω which determines the
monitoring states for epistemic type p,

• C : ΣN−1 → R, p 7→ C (p) the secured repayment to epistemic type p.
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Definition 2 A menu of contracts (R (·, ·) , C (·) , M (·)) is truthtelling if and
only if ∀p ∈ ΣN−1, ∀ω ∈ Ω, ∀ω′ /∈ M (p), :

R (ω, p) ≤ R (ω′, p) .

A menu of contract is thus said to be truthtelling when the borrower
has no incentive to misreport the project return. It is a principle of sincerity,
balance sheets and other financial informations disclosed by the entrepreneur
have to correctly reflect the financial situation of the firm. Without loss of
generality (see [30]), we restrict ourselves to the class of truthtelling secured
debt contracts.

If a menu of contracts (R (·, ·) , C (·) , M (·)) is truthtelling then there
exists a threshold function R : ΣN−1 → R such that for all p ∈ ΣN−1,
M (p) :=

{
ω : R (ω, p) < R (p)

}
. Obviously, in non-monitoring states, i.e.,

Ω \ M (p), the borrower repays the less possible i.e., R (ω, p) = R (p) since
the lender does not verify the return realized. The set of all truthtelling
secured debt contracts is therefore fully specified by the triple of mappings(
R (·, ·) , C (·) , R (·)

)
.

The so-called simple debt contracts play a special role in both theory and
practice. A simple debt contract (henceforth, SDC) is defined by a threshold
ω such that the repayment is R (ω) = ω for ω < ω and R (ω) = ω, otherwise.
Assuming a common prior, Gale and Hellwig ([11]) and Williamson ([32])
have shown that simple debt contracts are optimal among the class of secured
debt contracts in the sense that simple debt contracts minimize the resources
destroyed in the monitoring process.

Furthermore, real-world counterparts of (secured) SDCs are (secured)
debentures or bonds, which are increasingly used by corporations. A deben-
ture is a fixed-interest security issued by limited companies in return for
loan. Debenture interest must be paid whether the company makes a profit
or not and in the event of non-payment, debentures holders can force liqui-
dation.1 In what follows, we restrict ourselves to the class of secured SDC
because of their similarities with secured debentures and bonds. However,
it is worth pointing out that in the presence of heterogeneity of beliefs, the
class of secured SDC might not be optimal among the class of secured debt
contracts.

Definition 3 A menu of secured SDC is a pair of mappings (ω (·) , C (·)) :
ΣN−1 → Ω× R.

From Definition 3, a secured SDC comprises two distinct parts. First,
there is a secured repayment C independent of the outcome ω of the project,

1See the International Dictionary of Finance, The Economist book, 1989.
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and second, a contingent repayment. In non-monitoring states Ω \ M , the
entrepreneur promises to repay a return ω and in monitoring states M , the
investor monitors the corporation and seizes all the outcome. Thus our class
of contracts well and truly features the same characteristics as secured deben-
tures.

Several remarks are in order. First, the contract does not depend on θ
since we assume that it is not contractible.2 Second, the class of contracts
we consider is richer than the standard class of SDC (see for instance [11],
[17], [32]) since the entrepreneur can possibly offer a secured part C to the
investor, while a borrower is not allowed to offer such a secured part in the
standard class of SDC.

3 Incentive compatible secured simple debt

contracts

Let (ω,C) be a contract, we define the expected payoff U (p, ω, C) of the
lender of epistemic type p as

U (p, ω, C) :=
N∑

n=1

pn

(∫ ω

an

(ω − γ) gn (ω) dω +

∫ bn

ω

ωgn (ω) dω

)
+ C

=
N−1∑
n=1

pn (zn − zN) (ω) + zN (ω) + C

with, for n = 1, . . . , N − 1,

zn (ω) :=

(∫ ω

an

(ω − γ) gn (ω) dω +

∫ bn

ω

ωgn (ω) dω

)
. (1)

We denote Z : Ω → RN−1 the map

ω 7→ Z (ω) := ((z1 − zN) (ω) , . . . , (zN−1 − zN) (ω)) ,

and V : ΣN−1 → R the potential associated with the menu (ω(.), C(.))
defined by

V (p) := U (p, ω (p) , C (p)) . (2)

Definition 4 Let (ω (·) , C (·)) be a menu of secured SDC, and define V by
(2). The menu (ω (·) , C (·)) is:

2This assumption is justified if we interpret a realization of θ in a sufficiently broad
sense. Indeed it would be legally difficult to enforce a contract based on consumers’
confidence or taste since these characteristics are not easily verifiable and thus enforceable.
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1. incentive compatible if for all (p, p′) ∈ ΣN−1 × ΣN−1,

V (p) ≥ U (p, ω (p′) , C (p′)) , (3)

2. individually rational if for all p ∈ ΣN−1,

V (p) ≥ r. (4)

The next proposition characterizes incentive compatible contracts in terms
of the associated potential V . In the sequel, we denote ∂nV := ∂V

∂pn
.

Proposition 1 A menu of secured SDC (ω (·) , C (·)) is incentive compatible
if and only if the potential V defined by (2) satisfies:

1. V is convex,

2. ∂nV (p) = (zn − zN) (ω (p)) a.e. for n = 1, . . . , N − 1.

Proof. Necessity. Assume (ω,C) is incentive compatible. Then for all
p ∈ ΣN−1,

V (p) = sup
p′∈ΣN−1

U (p, ω (p′) , C (p′)) , (5)

and U is linear in p, therefore V is convex as the supremum of convex func-
tions. Hence V is differentiable a.e.. For a.e. p ∈ ΣN−1, the Envelope
theorem then yields

∇V (p) =
∂

∂p
U (p, ω (p) , C (p)) ,

meaning ∂nV (p) = (zn − zN) (ω (p)) a.e. for n = 1, . . . , N − 1.
Sufficiency. Let V be a potential satisfying 1-2 of Proposition 1, and

define

C (p) = V (p)−
N−1∑
n=1

pn (zn − zN) (ω (p))− zN (ω (p)) .

Then by convexity of V , for all p, p′ ∈ Σ2
N−1,

V (p) ≥ V (p′) + (p− p′)∇V (p′)

≥ V (p′) +
N−1∑
n=1

(pn − p′n) (zn − zN) (ω (p′))

≥
N−1∑
n=1

pn (zn − zN) (ω (p′)) + zN (ω (p′)) + C (p′) ,

so that (ω,C) is an incentive-compatible contract.
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Proposition 1 gives a very standard characterization of the set of incentive
compatible contracts (for similar results see [7], [24] and [25]). A contract
(ω,C) is incentive compatible if the potential associated with (ω,C) is convex
and its gradient belongs to the image of Z. Formally,

∇V ∈ {Z (ω) , ω ∈ Ω} .

This set is a manifold of dimension one and thus one might expect that
the borrower discriminates different epistemic types in only one dimension.
We can interpret condition 2 ) of proposition 1 as a first-order condition of
incentive compatibility whereas the convexity of V is a second order one.

Two additional remarks are worth making. First, we do not impose (for
the moment) a condition of single-crossing type. Observe that if N = 2, i.e.,
epistemic types are unidimensional, the Spence-Mirlees condition reads:

∂2U (p, ω, C)

∂p1∂ω
= (z1 − z2)

′ (ω)

is of constant sign, implying that (z1 − zN) (·) is injective. In higher dimen-
sions, Carlier [8] generalizes the Spence-Mirlees condition3 to the injectivity
of Z. As in the unidimensional case, an explicit characterization of incentive
compatible contracts crucially rests upon the injectivity of Z. Without such
an injectivity condition, no explicit characterization could be provided. Sec-
ond, the linearity of U in p is not doubtful in our context since p represents
probabilistic beliefs.

4 Optimal contracts: the problem

Without loss of generality, we assume that the borrower offers a contract
that is accepted. For otherwise, the project is not undertaken. Moreover, we
impose the additional constraint that ω (ΣN−1) ⊆

[
δ, δ
]
, a compact subset

of the real line.4 Hence, the borrower’s program consists of maximizing its
total expected profit over the set of admissible contracts, i.e. contracts that
are incentive compatible, individually rational and satisfy ω (ΣN−1) ⊆

[
δ, δ
]
.

This program can be written as follows :

sup {Π (ω,C) : (ω,C) is admissible} , (6)

3See also the generalized Spence-Mirlees condition of McAfee and McMillan ([20]).
4This is without loss of generality. To see this, suppose that for some epistemic types

p, ω (p) < a = min
n

an, then V (p) = ω (p) + C (p) . The borrower can increase ω (p) to

a, decrease C (p) by a − ω (p), leaving all the constraints satisfied and yielding the same
payoff. A similar argument applies to the case ω (p) > b = min

n
bn. Thus, one might take[

δ, δ
]
⊇ Ω a compact subset of the real line without loss of generality.
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where

Π (ω,C) :=

∫
ΣN−1

(
N∑

n=1

qn

∫ bn

ω(p)

(ω − ω (p)) gn (ω) dω − C (p)

)
ρ (p) dp. (7)

The mathematical formulation of the borrower problem is a constrained
variational problem.

Proposition 2 The borrower’s program (6) is equivalent to the following
problem:

inf {J(ω, V ) : (ω, V ) ∈ A} , (8)

where

J(ω, V ) :=

∫
ΣN−1

(V (p)− p · ∇V (p)− zN(ω(p))) ρ(p)dp

−
∫

ΣN−1

(
N∑

n=1

qn

∫ bn

ω(p)

(ω − ω (p)) gn (ω) dω

)
ρ(p)dp,

(9)

and

A :=
{
(ω, V ) : V convex, V ≥ r, ω ∈ [δ, δ] and ∇V (p) = Z(ω(p)) a.e.

}
.

(10)

Proof. The proof directly follows from the results of section 3.

This problem is a non-standard optimal control problem with the state
variable V and the control variable ω. The state variable is subject to two
constraints: the participation constraint and convexity. The latter is of global
nature and must be understood as a second-order condition of incentive com-
patibility. The next result establishes existence of a solution to program (8).

Theorem 1 Program (8) admits at least one solution.

The proof is given in the appendix.

Now that we know that there exists a solution to program (8), we are in-
terested in characterizing optimal menus. Do they feature bunching? Where?
How does the borrower discriminate among different epistemic types? Is the
participation constraint binding at the bottom? While all these questions
unfortunately cannot be answered in the full generality of our problem, the
next section completely solves the problem in a specific case.
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5 Characterization of optimal contracts and

bunching

This section is devoted to explicitly solving the borrower’s program in a
particular example, namely in the uniform case where the law of the return
conditional to each realization of θ is uniform. We do not know whether the
problem can be explicitly solved in other cases,5 this is doubtful yet, due to
complexity of the constraints in general.

5.1 Assumptions

From now on, we suppose that for each realization θn of θ, the density of the
return ω conditional to [θ = θn], gn, is uniform on [θn − ε, θn + ε], that is

gn :=
1

2ε
1[θn−ε,θn+ε].

Note that with this specification, the variance of the return does not depend
on θ. We assume furthermore that θ1 < θ2 < . . . θn < . . . < θN (means
are ordered), that θ1 ≥ ε (the return is almost surely nonnegative) and
θN − θ1 < 2ε (the intersection of the supports is nonempty).

For the sake of tractability, we impose bounds on feasible contracts as
follows : we restrict our attention to menus of contracts p 7→ (ω(p), C(p))
such that ω(p) ∈ [δ, δ] for all p ∈ ΣN−1, and we assume

[δ, δ] ⊂ [θN − ε, θ1 + ε] =
⋂
n

[θn − ε, θn + ε]. (11)

An explicit computation then yields that for ω ∈ [δ, δ] and for n = 1, . . . , N,
zn (ω), as defined in (1), is given by:

zn (ω) =
1

2ε

[
−1

2
ω2 + ω (θn + ε− γ)− 1

2
(θn − ε)2 + γ (θn − ε)

]
. (12)

It thus follows that for n = 1, . . . , N − 1:

(zn − zN) (ω) = αnω + βn, (13)

with

αn :=
1

2ε
(θn − θN) , (14)

5We have tried other cases in which the law of the return conditional to each realiza-
tion of θ is triangular, exponential or Gaussian, but it gives rise to untractable partial
differential equations.
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and

βn :=
1

2ε
(θn − θN)

[
γ + ε− 1

2
(θn + θN)

]
. (15)

The fact that (zn − zN) (.) is linear (on [δ, δ]) follows from the uniform
assumption and assumption (11). This will considerably simplify the analysis
of the next sections. Notably, as has already been pointed out, our specifica-
tion satisfies the generalized single-crossing condition of [8]. More precisely,
the mapping Z : [δ, δ] → RN−1 with

ω 7→ Z (ω) := (α1ω + β1, . . . , αN−1ω + βN−1) ,

is easily seen to be injective. On the contrary, Z is not injective on the entire
Ω. Thus our bound conditions, that is, ω(p) ∈ [δ, δ] for all p ∈ ΣN−1, plays
the role of a single-crossing condition, and without such an assumption, we
are not able to solve the problem.

For further use, note that each αn is negative, αn increases with n and
that the points (αn, βn), n = 1, . . . , N − 1, lie on a parabola. More precisely,
βn = P (αn) where

P (α) := α (γ + ε− θN − εα) . (16)

5.2 The geometry of admissible contracts

Our first step in solving the borrower’s program consists in characterizing the
set of admissible contracts in our uniform specification. We recall that an
admissible contract is a menu {(ω (p) , C (p)), p ∈ ΣN−1}, which is incentive
compatible, individually rational, and satisfies the bound conditions ω(p) ∈
[δ, δ] for all p ∈ ΣN−1.

5.2.1 Incentive compatibility

As in section 2, with any contract (ω(.), C(.)) we associate its potential V
defined by:

V (p) := U (p, ω(p), C(p)) , for all p ∈ ΣN−1 (17)

Proposition 3 Let (ω(.), C(.)) be any contract and let V be the potential
associated to (ω(.), C(.)) by formula (17), then (ω(.), C(.)) is admissible if
and only if:

• V is convex on ΣN−1,

• V satisfies (in the a.e. sense on ΣN−1) the linear system :

1

α1

(∂1V − β1) = . . . =
1

αN−1

(∂N−1V − βN−1) (18)
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• 1
α1

(∂1V − β1) ∈ [δ, δ] a.e.,

• V ≥ r.

Proof. This is an immediate consequence of Proposition 1 and of the par-
ticular form of zn − zN given by (13).

To shorten notations, denote by x · y the usual inner product of x and
y in RN−1, and simply write α (respectively β) instead of (α1, · · · , αN−1)
(respectively (β1, · · · , βN−1)).

Due to the linearity of system (18), characteristics are simply hyperplanes
and the previous conditions can be easily simplified. Although it is a simple
application of the method of characteristics we state and prove the following:

Proposition 4 V satisfies the requirements of Proposition 3 if and only if
V ≥ r, and there exists a function f : [α1, 0] → R such that:

V (p) = f(α · p) + β · p, for all p ∈ ΣN−1, (19)

and

• f is convex,

• f ′(t) ∈ [δ, δ] for a.e. t ∈ [α1, 0].

Proof. Assume first that V is Lipschitz, satisfies (18) and define W (p) :=
V (p)− β · p, then we have

1

α1

∂1W = . . . =
1

αN−1

∂N−1W. (20)

Let p and p′ be two points of ΣN−1 such that α · p = α · p′. We have:

W (p)−W (p′) = (p− p′) ·
∫ 1

0

∇W (p′ + t(p− p′))dt.

Since (20) implies that ∇W (p′+ t(p−p′)) is colinear to α, we obtain W (p) =
W (p′). Hence W (p) only depends on α · p. Hence, if V satisfies the re-
quirements of Proposition 3, there exists a function f such that (19) is
satisfied, since the convexity of V is equivalent to that of f. Finally, since
1

α1
(∂1V (p)− β1) = f ′(α · p), we get the desired characterization.

13



5.2.2 Individual rationality

In the previous paragraph, we have shown that feasible contracts are unidi-
mensional in the sense that they only depend on α · p (heuristically, this is
not surprising since the dimension of the adverse selection problem is N − 1
whereas we consider only two components in the class of contracts). Roughly
speaking, the only instrument of the borrower is the unknown function f of
Proposition 4. To make the borrower’s program tractable, however, and to
determine optimal contracts we still have to express the participation con-
straint in terms of the function f .

Proposition 5 Let f : [α1, 0] → R be a Lipschitz function such that f ′ ≥ δ,
then

min
p∈ΣN−1

f (α · p) + β · p ≥ r

if and only if f (α1) ≥ r − β1.

Proof. Let us write the first condition in the proposition as

f(x) + y ≥ r, for all (x, y) ∈ C, (21)

where C := {(α ·p, β ·p), p ∈ ΣN−1}. It is direct to check that C is the convex
hull of the points (0, 0) = (0, P (0)) and (αn, βn)n=1,··· ,N−1 = (αn, P (αn)n=1,··· ,N−1

where P is the concave quadratic function defined by (16). Defining for all
x ∈ [α1, 0]

Γ(x) := min{y : (x, y) ∈ C},

then condition (21) can be rewritten as:

f(x) + Γ(x) ≥ r for all x ∈ [α1, 0] (22)

We claim that Γ is linear, more precisely

Γ(x) =
P (α1)

α1

x for all x ∈ [α1, 0]

First, since (0, 0) and (α1, P (α1)) belong to C, which is convex, (x, P (α1)
α1

x) ∈ C
for all x ∈ [α1, 0] so that Γ(x) ≤ P (α1)

α1
x. Second, let us prove the converse

inequality i.e. y ≥ P (α1)
α1

x for all (x, y) ∈ C. Since it is a linear inequality it is
enough to check it at the vertices of C, for (x, y) = (0, 0) or (x, y) = (α1, β1)
there is nothing to check, for the vertices (αn, P (αn)) the desired inequality
follows from the concavity of P and the fact that αn ∈ [α1, 0].
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Using (16) and since α1 < 0, we have:

P (α1)

α1

= γ + ε− θN − εα1 ≥ γ + ε− θN .

But since f ′ ≥ δ ≥ θN − ε, we obtain that f + Γ is nondecreasing, hence
achieves its minimum at α = α1. It thus follows that the condition f +Γ ≥ r
is equivalent to f(α1) + Γ(α1) ≥ r, and since Γ(α1) = P (α1) = β1 the proof
is achieved.

5.3 Reformulation of the problem

In our uniform case, for any admissible contract, (ω(.), C(.)) , the borrower’s
expected profit whose general expression is given by (6) can be computed as:

Π (ω,C) =

∫
ΣN−1

[
1

4ε
ω2 − 1

2ε

(
N∑

n=1

θnqn + ε

)
ω − C

]
ρ(p)dp

+
1

4ε

N∑
n=1

(θn + ε)2qn.

(23)

On the one hand, defining the potential V associated with (ω(.), C(.)) by
(17) and the function f as in Proposition 4, we have for all p:

ω(p) = f ′(α · p), (24)

V (p) = f(α · p) + β · p, (25)

and, on the other hand,

V (p) =
N−1∑
n=1

pn(αnω(p) + βn) + zN(ω(p)) + C(p), (26)

so that:

C(p) = f(α · p)− (α · p)f ′(α · p)− zN(f ′(α · p)). (27)

Note that C only depends on α ·p, and slightly abusing notations we shall
write in the sequel C(α · p) instead of C(p). Using (27) and replacing zN by
its expression, we get for all t ∈ [α1, 0] :

15



C(t) =
1

4ε
f ′(t)2−

[
t +

1

2ε
(θN + ε− γ)

]
f ′(t)+f(t)+

1

4ε
(θN −ε)(θN −ε−2γ)

(28)

Let us define the probability measure µ on [α1, 0] as the image of ρ(p)dp
by the linear form p 7→ α · p, that is for every continuous function on [α1, 0],
ϕ: ∫ 0

α1

ϕ(t)dµ(t) =

∫
ΣN−1

ϕ(α · p)ρ(p)dp.

Substitution of (24) and (28) in (23) enables us to write Π = Π (ω,C) as a
function of f :

Π =

∫ 0

α1

[(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
f ′(t)− f(t)

]
dµ(t) + k, (29)

where k is the constant

k :=
1

4ε

(
N∑

n=1

(θn + ε)2qn − (θN − ε)(θN − ε− 2γ)

)
.

At this point it is worth pointing out that Π is linear with respect to f ;
once again this is very specific to the uniform assumption (quadratic terms
in f ′ vanish) and assumption (11). This linearity will of course dramatically
simplify the structure of optimal contracts.

Let us assume for simplicity that µ has a density gµ
6 and denote by Gµ

the cumulative function of µ. Then an integration by parts in (29) yields:

Π = −f(α1)+

∫ 0

α1

[
Gµ(t)− 1 +

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
gµ(t)

]
f ′(t)dt+k

Using Propositions 4 and 5, the borrower’s program is equivalent to max-
imizing the previous quantity (linear in f) in the set of functions{

f : [α1, 0] → R, f is convex , f ′ ∈ [δ, δ] a.e. and f(α1) ≥ r − β1

}
.

Any solution f obviously is such that the participation constraint is binding
at the bottom : f(α1) = r − β1 and taking u := f ′ as new unknown (which
is natural since u(α · p) = f ′(α · p) = ω(p)), we have

6It can be shown that µ is absolutely continuous with respect to Lebesgue measure,
and that its density gµ is continous if ρ is continuous on the simplex. Moreover, it can
be checked that this density vanishes at endpoints gµ(0) = gµ(α1) = 0. These facts are
proved in the appendix.
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Proposition 6 The borrower’s program is equivalent to

max
u∈K

L(u) (30)

where L is the linear form

L(u) =

∫ 0

α1

h(t)u(t)dt,

with

h(t) := Gµ(t)− 1 +

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
gµ(t), (31)

and
K :=

{
u : [α1, 0] → [δ, δ], u is nondecreasing

}
.

The proof immediately follows from previous computations and proposi-
tions 4 and 5. Note that K is convex and compact, say for instance in the
weak (or even strong) Lp topology (p ∈ (1, +∞)). And since h is continuous
and bounded, the maximum of (30) is achieved.

5.4 The geometry of optimal solutions

Since the borrower program is a simple linear program, the maximum is
achieved in at least one extreme point of K. Moreover Krein-Millman’s
Theorem (see [28]) and compactness of K in Lp imply that the set of solutions
of (30) (which is a face of K) is the closed convex hull of the set of extreme
points which also solve (30). We shall therefore focus on solutions in the set
of extreme points of K.

The next result characterizes extreme points of K: these are the non-
decreasing functions which take values only in {δ, δ}. Although it is quite
classical, we give a proof for the sake of completeness. In the sequel, without
loss of generality we normalize nondecreasing functions so as to be right-
continuous.

Lemma 1 The set of extreme points of K, ext(K) is given by:

ext(K) = {δ1[α1,t) + δ1[t,0], t ∈ [α1, 0]}.

Proof. First it is obvious that if u is of the form δ1[α1,t) + δ1[t,0], u is an
extreme point of K.
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To prove the converse inclusion let us proceed as follows. Let u ∈ ext(K).
Define a and b by a = u(α1), a + b = u(0) (δ ≤ a ≤ a + b ≤ δ) and define

Ka,b := {v ∈ K : v(α1) = a, v(0) = a + b}.

Ka,b can also be parametrized with probability measures as follows :

Ka,b = {v : v(t) = a + b

∫ t

α1

dν, for some probability measure ν on [α1, 0]}

Hence we write u in the form:

u(t) = a + b

∫ t

α1

dν. (32)

Obviously u is an extreme point of Ka,b. We claim that this implies that ν in
(32) is a Dirac mass δt for some t ∈ [α1, 0]. If not, ν would not be an extreme
point of the set of probability measures (see Meyer [19]), hence there would
exist probabilities ν1 and ν2 with ν1 6= ν2 and ν = 1

2
(ν1 + ν2). Defining for

i = 1, 2:

ui(t) = a + b

∫ t

α1

dνi,

we would have u = 1
2
(u1+u2) with u1 6= u2 and (u1, u2) ∈ K2, a contradiction

with the extremality of u. We have therefore proved that u is of the form
u = a1[α1,t) + (a + b)1[t,0] for some t ∈ [α1, 0]. Finally, it is easy to prove that

extremality of u implies that either t ∈ (α1, 0) and (a, a + b) = (δ, δ), or u is
constant with value δ or δ. This ends the proof.

As a first easy consequence, we have:

Corollary 1 Program (30) admits at least one solution which only takes
values δ and δ.

The economic interpretation of this result is that there always exists an
optimal menu of contracts with at most two contracts. Moreover, let us
define

F (t) := δ

∫ t

α1

h (s) ds + δ

∫ 0

t

h (s) ds for all t ∈ [α1, 0],

so that the extreme function u = δ1[α1,t) + δ1[t,0] is a solution of (30) if and
only if t maximizes F . Finding the solutions of (30) that belong to ext(K)
reduces then to solve the one dimensional problem:

max{F (t), t ∈ [α1, 0]}. (33)

18



Let us denote by A the set of solutions of (33). Since h is continuous, A is
a nonempty compact subset of [α1, 0]. The set of solutions of (30), hence
of optimal contracts, is fully determined by A as expressed by the following
statement:

Proposition 7 The set of solutions of (30) is the closed convex hull (say in
the Lp topology, p ∈ (1, +∞)) of {δ1[α1,t) + δ1[t,0], t ∈ A}.

If the set A where F achieves its maximum is not reduced to a single-
ton, say (t, t′) ∈ A2 with t < t′ then both step functions δ1[α1,t) + δ1[t,0]

and δ1[α1,t′) + δ1[t′,0] are solutions of (30), and any convex combination of
those step functions is also optimal. Taking convex combinations amounts
to adding an intermediate third value to the function. In the case where a
menu with three or more contracts yields the same profit as a simpler menu,
the borrower is more likely to offer the simplest one (remember we abstract
from writing cost). For simplicity, we only consider those simplest menus.

Since h is explicitly given by (31), we may be more precise. Note first
that F is differentiable and its derivative can be computed explicitly:

F ′(t) = (δ−δ)h(t) = (δ−δ)

(
Gµ(t)− 1 +

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

)
gµ(t)

)
.

(34)
Hence, since gµ(0) = gµ(α1) = 0, Gµ(0) = 1 and Gµ(α1) = 0 we have

F ′(α1) = (δ − δ) > 0, and F ′(0) = 0. This proves indeed that α1 /∈ A, i.e.
the constant function u ≡ δ is not a solution of (30). Note also that if the
condition

θN −
N∑

n=1

θnqn ≤ γ (35)

is satisfied, then F is increasing, hence A = {0} and the only optimal menu
of contracts is a single contract such that ω ≡ δ.

Proposition 8

• The constant function u ≡ δ is not a solution of (30),

• If (35) is satisfied, then (30) admits as unique solution the constant
function u ≡ δ.

• If, in addition, gµ is nonincreasing in a neighborhood of 07, and that
(35) does not hold then u ≡ δ is not a solution of (30), hence every
solution of (30) takes at least two values.

7It can be checked that these assumptions are satisfied if ρ is smooth and strictly
positive. These fact are proved in the appendix.
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Proof. Only the last statement has not been established yet. Assume then
that:

θN −
N∑

n=1

θnqn > γ.

It is enough to prove that F does not achieve its maximum at 0. For α1 <
t < 0 compute

F ′(t)

(δ − δ)gµ(t)
=

(
1−Gµ(t)

gµ(t)
−

(
t +

1

2ε
(θN −

N∑
n=1

θnqn − γ)

))

Since

0 ≤ 1−Gµ(t)

gµ(t)
=

∫ 0

t
gµ

gµ(t)
,

our assumption implies that for t close to 0

0 ≤ 1−Gµ(t)

gµ(t)
≤ −t hence lim

t→0−

F ′(t)

(δ − δ)gµ(t)
< 0.

This implies that F ′(t)/gµ(t) < 0 for t close to 0 so that 0 /∈ A. This ends
the proof.

5.5 Economic interpretation

In this paragraph, we summarize and interpret the results obtained in the
above example, paying special attention to bunching.

Our first result (proposition 4) is that the borrower is able to discrimi-
nate epistemic types of lenders in only one dimension. The only dimension
in which screening may occur can be interpreted in terms of the expected
return of the project

∑N
n=1 θnpn. More precisely, we have shown that two

epistemic types p and p′ such that α · p = α · p′ are offered the same con-
tract and a simple computation shows that this condition is equivalent to∑N

n=1 θnpn =
∑N

n=1 θnp
′
n. Note that this property only follows from the in-

centive compatibility constraint. Unidimensional discrimination reflects the
fact that perfect screening is ruled out by dimensionality considerations. In-
deed, in our model, the type space is N−1 dimensional while the instrument
space is unidimensional. Hence the dimensionality of the problem implies
that perfect discrimination is impossible : bunching of the first type occurs
(see [25]).
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Second, Proposition 4 implies that if a menu (ω(.), C(.)) is incentive com-
patible then ω(.) is nondecreasing in the reduced type α·p, this feature allows
a natural interpretation. The more optimistic or confident the lender (i.e.
the higher α · p ) the higher ω, i.e. the more often monitoring occurs. More-
over, Proposition 5 expresses that the participation constraint is binding at
the bottom, i.e. the most pessimistic lender (with epistemic type assigning
probability one to θ1) receives no informational rent.

Third, since the profit is linear with respect to the instrument ω with our
specifications, the borrower’s program turns out to be of linear programming
type. Solving such a problem amounts to finding extreme points of the ad-
missible set. This argument together with Lemma 1 implies that there always
exist very degenerate optimal menus. Our second important result indeed
establishes the existence of optimal menus with at most two contracts. Put
differently, optimal menus of contracts always exist where the borrower offers
at most two contracts. Therefore, our specific case highlights an extreme case
of bunching of the second type, in the terminology of [25].

Finally, Proposition 8 gives a necessary and sufficient condition under
which it is optimal to offer a single contract ω ≡ δ (complete bunching).
Condition (35) means that the difference between the highest expected return
θN and the expected return from the borrower’s viewpoint

∑
θnqn is less than

the monitoring cost γ. If (35) holds, then offering the low contract ω ≡ δ
is optimal. Put differently, if opinions are not too diverse, no discrimination
occurs and the monitoring set is as small as possible. If (35) is violated,
then optimal menus include both the low (ω ≡ δ) and the high contract
(ω ≡ δ). In that case the epistemic type space is split into two regions:
optimistic types with high expected value of the return who get the high
contract, and pessimistic types with low expected value of the return who
get the low contract.

6 Appendix

6.1 Proof of Theorem 1

First, note that obviously, A defined in (10) is nonempty and the value of
program (8) is finite.

Second, note that the set

B := {Z(ω) : ω ∈ [δ, δ]}
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is compact, hence there exists a constant M such that for every (ω, V ) ∈ A,
V is M -Lipschitz. Let us write the functional J as follows:

J(ω, V ) :=

∫
ΣN−1

(V (p)− p · ∇V (p))) ρ(p)dp−
∫

ΣN−1

h(ω(p))ρ(p)dp,

where

h(ω) := zN(ω) +
N∑

n=1

qn

∫ bn

ω

(ω − ω) gn (ω) dω.

Let (ωn, Vn)n ∈ AN be a minimizing sequence of (8). Since h(ωn) is uniformly
bounded and ∇Vn is uniformly bounded (bounded for the L∞ norm), we
deduce that

∫
Vnρ is bounded, which, using the fact that the Vn are uniformly

Lipschitz, implies that Vn is uniformly bounded. Using Ascoli’s Theorem, and
taking a subsequence if necessary, again denoted Vn, we may assume that Vn

converges uniformly to some function V . Since the Vn are convex functions,
we also have a.e. convergence of∇Vn to∇V (see Rockafellar [27]). Obviously
V is convex, V ≥ r, ∇V ∈ B, a.e. and

lim
n

∫
ΣN−1

(Vn − p · ∇Vn)) ρ =

∫
ΣN−1

(V − p · ∇V )) ρ. (36)

Since ∇V ∈ B, a.e. then for all p ∈ ΣN−1, ∂V (p)∩B 6= ∅ (where ∂V stands
for the subdifferential of V ). Define then for all p the two set-valued maps:

p 7→ ΦV (p) := {ω ∈ [δ, δ] : Z(ω) ∈ ∂V (p)},

and
p 7→ ΨV (p) := {ω ∈ ΦV (p) : h(ω) = maxω′∈ΦV (p)h(ω′)}.

Notice that both ΦV and ΨV are nonempty compact valued and have a
closed graph. Let ω be a measurable selection of ΨV (cf. Ekeland-Temam
[10] Th.1.2 ch VIII for the existence of such a measurable selection). By
construction (ω, V ) ∈ A and one can prove (see [7] for details) that∫

ΣN−1

h(ω(p))ρ(p)dp ≥ limsupn

∫
ΣN−1

h(ωn(p))ρ(p)dp (37)

Finally, (36) and (37) prove that (ω, V ) is a solution of (8).

6.2 Computation and properties of the density gµ

In the sequel for x := (x1, · · · , xN−1) ∈ RN−1 we shall simply write x :=
(x1, x

′). Taking a test-function ϕ ∈ C0([α1, 0], R), using the change of vari-
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ables p = (p1, p
′) 7→ (α · p, p′) and Fubini’s formula we get:∫

ΣN−1

ϕ(α · p)ρ(p)dp = −
∫ 0

α1

ϕ(t)

α1

(∫
Σt

ρ(
t

α1

−
N−1∑
n=2

αn

α1

pn, p
′)dp′

)
dt,

where:

Σt :=

{
p′ ∈ ΣN−2 : (

t

α1

−
N−1∑
n=2

αn

α1

pn, p
′) ∈ ΣN−1

}
.

This proves that µ is absolutely continuous with respect to Lebesgue’s mea-
sure on [α1, 0] and admits the density:

gµ(t) = − 1

α1

∫
Σt

ρ(
t

α1

−
N−1∑
n=2

αn

α1

pn, p
′)dp′.

gµ is trivially positive since α1 is negative. We shall write gµ in a more
compact way as:

gµ(t) =

∫
Σt

σ(t, p′)dp′ with σ(t, p′) = − 1

α1

ρ(
t

α1

−
N−1∑
n=2

αn

α1

pn, p
′).

If ρ is continuous so is gµ (use Lebesgue dominated convergence theorem
and the fact that, if tn converge to t, the indicator function of Σtn converges to
that of Σt a.e. with respect to the N − 2 dimensional Lebesgue’s measure).
Since Σ0 = Σα1 = 0RN−2 , we have gµ(0) = gµ(α1) = 0. Moreover, if ρ is
strictly positive on the interior of ΣN−1, so is gµ on (α1, 0).

Lemma 2 If ρ ∈ C1(ΣN−1, R) and ρ is strictly positive on ΣN−1, then there
exists a neighborhood of 0 on which gµ is nonincreasing.

Proof. First, note that Σt can be written as

Σt =

{
p′ ∈ ΣN−2 :

N−1∑
n=2

αnpn ≥ t and
N−1∑
n=2

(1− αn

α1

)pn ≤ 1− t

α1

}
.

For t sufficiently close to 0, the requirements p′ ∈ RN−2
+ and

∑
αnpn ≥ t

imply
∑N−1

n=2 (1 − αn

α1
)pn ≤ 1 − t

α1
and

∑N−1
n=2 pn ≤ 1 so that there exists t0

such that for t0 ≤ t < 0

Σt =

{
p′ ∈ RN−2

+ :
N−1∑
n=2

αnpn ≥ t

}
= −tA0, (38)
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where A0 is the (fixed) set

A0 :=

{
p′ ∈ RN−2

+ :
N−1∑
n=2

αnpn ≥ −1

}
.

Hence, for t ∈ (t0, 0), gµ(t) can be computed as

gµ(t) = (−t)N−2

∫
A0

σ(t,−tq)dq.

Differentiating this expression yields:

ġµ(t) = −(N − 2)(−t)N−3

∫
A0

σ(t,−tq)dq

+(−t)N−2

∫
A0

(∂tσ(t,−tq)− ∂qσ(t,−tq) · q)dq

so that ġµ(t) < 0 for sufficiently close to 0.
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