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Abstract

This paper presents a microfounded theory of long-term develop-
ment. We model the interplay between economic variables, namely the
process of human capital formation and technological progress, and
the biological constraint of finite lifetime expectancy. All these pro-
cesses affect each other and are endogenously determined. The model
is analytically solved and simulated for illustrative purposes. The re-
sulting dynamics reproduce a long period of stagnant growth as well
as an endogenous and rapid transition to a situation characterized by
permanent growth. This transition can be interpreted as industrial
revolution. Historical and empirical evidence is discussed and shown
to be in line with the predictions of the model.
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1 Introduction

The past two centuries were characterized by widespread and profound
changes in human living conditions. For aeons, a more or less stable and
unchanged environment prevailed, with a strong preponderance of agricul-
ture and trade of basic goods, rigid social structures with usually a small
ruling class, and comparably poor medical conditions. But suddenly within
just more than two hundred years, that is just a few generations, the eco-
nomic environment mutated utterly: the structure of the economy changed
completely with industrialization breaking its way, reducing the importance
of agricultural activities in favor of the industrial and the service sector.
Personal life changed in every dimension to an extent not seen before or
after. The traditional social environment ceased to exist, as the vast ma-
jority of the population became educated, and acquired knowledge beyond
the working knowledge of performing a few manual tasks inherited by pre-
vious generations. Literacy, which used to be the privilege of a little elite,
became widespread among the population. The process of human capital
accumulation accelerated as more and more people acquired the ability to
innovate, and to use innovations. On the other hand, the spread of new
technologies in turn made it more profitable to acquire knowledge. Also the
biological environment sharply changed. Lifetime duration, which had been
virtually the same for thousands of years, increased sharply within just a few
generations. Mortality fell significantly and fertility behavior changed pro-
foundly, hygienic conditions improved as sanitation became more important
and widespread.

Economists have always had a great interest in understanding the rea-
sons and the mechanics of these dramatic changes, in particular against
the background of the fact that large parts of the world are still under-
developed. Several recent contributions address the issue of the economic
transition from stagnant, Malthusian regimes to permanent growth, like
Komlos and Artzrouni (1990), Goodfriend and McDermott (1995), Tamura
(1996), Hansen and Prescott (1998), Lucas (2002), Galor and Weil (2000),
Galor and Moav (2002b), Jones (2001) and Jones (2002). The driving forces,
which explain the economic transition towards higher growth paths in these
models, are technical progress, physical capital accumulation, population
growth, and, most importantly, the process of human capital accumulation.
The analyzed decision processes also affect fertility behavior and are capa-
ble of producing an endogenous demographic transition towards a regime
of lower population growth. However, in the light of the changes in per-
sonal living conditions that accompanied the economic developments, also
lifetime duration played a crucial role in the process of development. But, as
some authors like Mokyr (1993) already pointed out, two separate strands
of the literature, one about the causes and mechanics of the industrial rev-
olution, and another about the decline in mortality, largely coexist without
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any obvious connection or compatibility between the two.
Some recent contributions explicitly include mortality or lifetime dura-

tion to explain the mechanism of economic development. Kalemli-Ozcan
et al. (2000) develop a general equilibrium model to study the effects of
exogenous changes in mortality on schooling and human capital accumu-
lation. Croix and Licandro (1999), Boucekkine, de la Croix, and Licandro
(2002a) and Boucekkine, de la Croix, and Licandro (2002b) consider endoge-
nous growth models in which life expectancy is exogenous and affects the
level of schooling, which in turn determines growth. Swanson and Kopecky
(1999) present cross-country evidence for the relevance of life expectancy on
growth, and develop a model of human capital accumulation in which indi-
viduals have a finite lifespan. Reis-Soares (2001) explores the link between
life expectancy, educational attainment and fertility choice in the context of
long-run development, and presents cross-country evidence for interactions
between life expectancy, income, schooling levels and fertility.

All these contributions emphasize that lifetime duration plays a crucial
role for human capital investments, which in turn determine growth. More-
over, the empirical evidence they present or cite, strongly supports this view.
However, potential reverse effects of development on lifetime duration have
been largely neglected in this literature. There is now general agreement in
the fields of economic history and demography that economic development
and the level of human capital profoundly affects lifetime duration and liv-
ing conditions. A large body of empirical evidence supports the view that
higher levels of development are correlated with longer life expectancy. This
evidence suggests that traditionally little education and knowledge about
health and means to avoid illness supported the outbreak, propagation and
mal-treatment of diseases and ultimately led to high mortality. However,
an increasing popular knowledge of the treatment of common diseases and
about the importance of hygiene and sanitation, as well as the availability
of respective technologies, helped to increase life expectancy somewhat over
time (see Mokyr, 1993). There is also evidence for an inverse relation be-
tween parents’ schooling and child mortality, suggesting that life expectancy
increases in parents’ human capital. Evidently, a mother’s level of educa-
tion has positive effects on life expectancy of her children (Schultz, 1993).
The invention of new drugs, which depends crucially on the human capi-
tal involved in research, increased life expectancy (see Lichtenberg, 1998).
Blackburn and Cipriani (2002) cite further empirical evidence for the view
that life expectancy depends on economic conditions. Moreover, they de-
velop a model with endogenous life expectancy, in which the economy may
end up in different development regimes, depending on the initial condi-
tions. Similarly, Kalemli-Ozcan (2002) shows the possibility for multiple
equilibria in a model in which individuals decide upon their fertility and the
education of their children, once life expectancy is seen as endogenous and
depending on income per capita. In Tamura (2002), human capital induces
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Figure 1: GDP and Population Size in the U.K.

a falling mortality which eventually induces a demographic transition with
a reduction in fertility.

Hence, there is little dispute in the literature that life expectancy is a
crucial determinant of human capital accumulation and economic develop-
ment, and that the level of human capital and development in general affects
lifetime duration. However, in the context of the early stages of the indus-
trial revolution issues are still largely unsettled. There is still disagreement
among economic historians, see Riley (2001) and Easterlin (2002), about
whether the onset of increases in life expectancy can be precisely dated for
different countries. There is a similar disagreement whether this onset co-
incided with the beginning of the industrial revolution and the transition
to a faster regime of growth, or whether changes in life expectancy pre-
ceeded or followed changes in the economic environment. Figure 1 shows
the pattern of development of GDP and the size of population for the United
Kingdom.1 A long era of little growth in the size of population as well as
output is followed by an acceleration in the development of both variables
during the second half of the 18th century. While GDP seems to grow un-
boundedly ever since, population growth eventually dips after the 1950s,
see Maddison (1991) for detailed data for several countries exhibiting these
patterns. The increase in population size suggests that the reduction in fer-
tility rates, which is studied by a number of recent contributions, is more
than compensated by an increase in lifetime duration: At the same time
as the development takes off, from the 18th century onwards, mortality de-
creased. Boucekkine, de la Croix, and Licandro (2002b) cite evidence from
life tables and parish registers from Geneva and Venice, which show that
life expectancy as measured at age ten already increased between 1640 and

1The data are taken from Maddison (1991) and exclude South Ireland. Missing inter-
mediate values are obtained by linear interpolation. Data for other European countries
exhibit similar patterns.
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Figure 2: Development of Life Expectancy and Literacy

1740 in these urban centers. Moreover, adult mortality seems to have fallen
before child mortality declined substantially. Improvements in knowledge
of deseases and hygiene eventually caused average life expectancy at birth
as well as at lager ages to increase, as illustrated in Figure 2.2 Simultane-
ously to the early developments during the 18th century, literacy began to
spread over the population, as is illustrated in Figure 2 by the ability to
sign documents (see also Boucekkine, de la Croix, and Licandro (2002b)).3

According to Maddison (1991), the average education in 1820 was about two
years for both sexes. By 1989, this number had risen to over eleven years.
This evidence illustrates that not only economic development, as measured
by GDP and GDP per capita accelerated substantially during the industrial
revolution. The level of human development as such greatly improved as
illustrated by life expectancy and education.4

The question, which factor was causally responsible for all these pro-
found changes, is still hotly debated. Some authors explain the decline in
mortality and the increase in life expectancy by increases in household in-
comes and technological progress (see e. g. McKeown, 1977). However, this
view has been criticized on the basis of the empirical evidence, which sug-
gests that technological (medical) progress took off too late to explain early
increases in lifetime duration. Moreover, by and large, the standard of living
in terms of income, housing and nutrition of the majority of the population
hardly changed before 1850, indicating that this explanation does not tell

2Data are taken from Www.Mortality.Org (2002) and Floud and McCloskey (1994).
3Data are taken from Cipolla (1969) and Floud and McCloskey (1994) and contain

literacy for France due to data limitations for England. The pattern of development was
qualitatively similar in both countries with France lagging somewhat behind.

4Authors such as Sen (1977,1985) have questioned the use of economic indicators like
wealth or consumption as a relevant measure for well-being. Rather, economic resources
should be seen as means that allow to improve the individual well being, through better
nutrition, health, education etc.
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the entire story, see Mokyr (1993). Others, like Boucekkine, de la Croix, and
Licandro (2002b) and the references therein, argue that already at the dawn
of the industrial revolution mortality declined. They view this decline as as
an exogenous event, which in turn is argued to have triggered more invest-
ment in human capital and faster growth. Subsequent changes in mortality
are again interpreted as endogenous consequences of economic development.
However, this line of argument leaves the cause of the industrial revolution
essentially unexplained.

The contribution of this paper is to provide a unified framework to an-
alyze the interactions between human capital accumulation, technological
progress and lifetime duration in the context of long term development, in
which all these relevant processes are determined endogenously. The model
to be presented has three basic building blocks. The first block is a micro-
founded model of human capital formation in which overlapping generations
of heterogeneous individuals decide upon the type and the amount of human
capital to acquire during their lives. This optimal choice depends crucially
on their life expectancy and the state of technology. The second block is the
idea that vintage human capital is the primary engine of economic growth.
Human capital affects the state of technology in terms of productivity in
the production process. The resulting technical progress makes future in-
vestments in human capital more profitable. The third block is motivated
by the historical and demographic evidence mentioned above and concerns
the effects of the economic and social environment on lifetime duration. In
particular, the evolution of life expectancy is endogenously linked to the
process of human capital accumulation.

The main mechanism of the model to be presented below can be summa-
rized as follows. Individuals maximize their lifetime utility by their choice
of human capital accumulation. This decision shapes the structure of the
economy during their lives. In their choice, individuals take their expected
lifetime duration as given, and they do not consider the effect of their de-
cision on the life expectancy of future generations. This in turn creates an
externality on future human capital decisions. Moreover, the level of human
capital created by a generation of individuals affects productivity and there-
fore the growth potential of the economy in the future. In principle, there
is a virtuous cycle of human capital accumulation and growth. However,
as long as the biological barrier of low life expectancy is binding, develop-
ment of the economy will be very slow. The economy is virtually trapped
on a slow growth path. Eventually, once average life lifetime duration is
high enough and the level of technology is sufficiently advanced to induce
large proportions of the population to acquire high quality human capital,
growth takes off. A phase of fast development and a profound change in
the structure of economy, which can be interpreted as an industrial revolu-
tion, starts, and the economy converges within a few generations to a new
path with higher growth rates than before. As a consequence of the increase
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in life expectancy, population size grows even though fertility behavior is
unchanged.

The paper is organized as follows. In section 2 we describe the individual
problem of human capital accumulation in the face of given technologies,
as well as the economic environment, and solve for the intragenerational
equilibrium. The intertemporal links between subsequent generations, and
the process of dynamic development are presented in section 3. There, we
also present the main result, a characterization of long-term development.
Section 4contains a simulation of the model to illustrate how it can account
for the long-run development experience. Section 5 concludes. All proofs
are collected in the appendix.

2 The Model

In this section we analyze the process of human capital formation for a given
generation. We introduce the production of final consumption goods and
we study the static equilibrium of the economy. The next section deals with
the links between generations and analyzes the evolution of the dynamic
system.

We start by looking at the individual problem of investing in human
capital. The types of human capital at disposal differ in the way they are
built up, and in the returns individuals receive from them. The main in-
puts in building up human capital are individual ability and time spent for
education. From the individual point of view, the time available is limited
by the expected lifetime duration, which is therefore taken as given by the
individual. The same is true for the returns to human capital, which are
determined on competitive markets at the aggregate level. The role of real
resources as input for the human capital formation process, as well as issues
related to capital market development and public provision of education, is
neglected in this paper. Instead, we focus on changes in the economic and
biological environment creating the necessary and sufficient conditions for
large parts of the population to acquire human capital.5 One distinctive
feature of human capital is that it differs inherently between generations,
since it is formed in a changing technological environment. Aggregate pro-
duction in the economy is the outcome of the use of different vintages of
technology and human capital. The individual problem is then which type
of human capital to acquire and how much of it. The intragenerational equi-
librium is characterized by the interplay of individual optimizing behavior
and aggregate market conditions.

5In the presence of frictions and market imperfections, these conditions might not be
sufficient for development, see e.g. Galor, Moav, and Vollrath (2002), and Galor and Moav
(2002a).
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2.1 Production of Human Capital

The economy is populated by an infinite sequence of overlapping generations
of individuals. Generations will be denoted with subscript t. Every genera-
tion is born l periods after the birth of the respective previous generation.6

In order to isolate the development effects related to lifetime duration and
human capital accumulation, any links between generations through savings
or bequests are excluded. A generation consists of a continuum of agents
with population size normalized to one. Individuals face a lifetime duration
specific to their generation, whose determinants will be discussed below. Ev-
ery individual is endowed with ability a ∈ [a, a] and abilities are exogenously
distributed with a density f (a).7 Any member of a given generation faces a
decision regarding the accumulation of human capital to be described below.
Every generation has to build up the stock of human capital capital from
zero, since the peculiar characteristic of human capital is that it is embodied
in people (even if the production can be easier if the previous generation had
a lot of it).8

In order to make an income, individuals have to spend their ability and
some of their living time to form some human capital. There are several
types of human capital, which differ with respect to their production pro-
cess and the returns they generate. For simplicity, we concentrate on the
simple case of only two types of human capital. Along the lines of growth
theory, one type of human capital is interpreted as high-quality, and growth
enhancing. This type is labelled theoretical human capital and is denoted
by h. This type of human capital is the primary engine of modern economic
growth. It is characterized by a high content of abstract knowledge. This
type of human capital is important for innovation and development of new
ideas, since abstract knowledge helps to solve a problem never faced before
by resorting to known abstract concepts.

The second type is labeled applied human capital, denoted by p, and
can be interpreted as labor capacity. It contains less intellectual quality,
but more manual and practical skills that are important in performing tasks
related to existing technologies.9

Both types of human capital are produced using time e and individual
6Instead of assuming a fixed frequency of births, one could alternatively model the

length of the time spell between the births of two successive generations, hence the timing
of fertility, as a function of the life expectancy of the previous generation. The case
of an economy consisting of non-overlapping, subsequent generations of individuals is a
special case of the presented set-up, where l equals the respective previous generation’s
life duration.

7We assume that the ex ante distribution of innate ability or intelligence does not
change over the course of generations.

8This is essentially the idea behind Becker, Murphy, and Tamura (1990).
9In the language of labor economics, theoretical human capital could be associated

with skilled labor, while applied human capital is associated with unskilled labor.
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ability a as inputs: p = p(e, a), and h = h(e, a). These production processes
are inherently different. The levels of both types of human capital increase
in the time spent in forming them. The main difference lies in the effective-
ness of time. To acquire theoretical human capital h, it is necessary to first
spend time on the building blocks of the elementary concepts without being
productive in the narrow sense. This view of human capital formation is in
line with the mastery learning concept as understood by for example Becker,
Murphy, and Tamura (1990), which states that learning complicated mate-
rials is more efficient when the elementary concepts are mastered. Once the
basic concepts are internalized, the time spent on theoretical human capital
is very productive. On the contrary, the time devoted to acquire applied
human capital p is immediately effective, albeit with a lower overall produc-
tivity. Personal ability is relatively more important in acquiring theoretical
human capital.

Formally, the following production functions exhibit these different char-
acteristics of the processes of building up human capital:

h =
{
α(e− e)a if e ≥ e

0 if e < e
(1)

and
p = βe . (2)

In order to acquire theoretical human capital h, an agent needs to pay
a fix cost e measured in time units while for applied human capital p the
fix cost is smaller and normalized to zero.10 Any unit of time produces α
units of h and β units of p with α ≥ β. Ability is modeled as increasing the
production of human capital h per unit of time.

There is just one consumption good in the economy. Strictly speaking,
agents face an intertemporal problem of maximizing their lifetime utility.
Utility is linear in consumption and there is no discounting. We abstract
from life cycle considerations and normalize the discount factor to zero,
so agents are indifferent with respect to the date of consumption. In this
case, it is sufficient for agents to maximize total lifetime earnings in order to
maximize their individual lifetime utility. This is done by choosing optimally
the type of human capital to acquire and the time e spent producing it.11

Since building up human capital takes time, individuals face an intertem-
poral trade-off between spending time on building human capital and spend-
ing time and using the acquired human capital on working and earning in-

10We abstract from other costs of education, like tuition fees etc. Moreover, the fixed
cost is assumed to be constant and the same for every generation. Costs that increase
or decrease along the evolution of generations would leave the qualitative results of the
paper unchanged.

11Equivalently, concave utility, discounting and perfect capital markets could be intro-
duced to model lifecycle considerations. Without affecting the main results, these issues
are beyond the scope of the current analysis.
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come. While accumulating human capital, agents cannot work. This means
that agents must optimally decide how to split their expected lifetime be-
tween human capital formation and work. We abstract from leisure and
learning on-the-job.

This setting is chosen to catch two crucial features of the human capital
formation process. The first one is that larger lifetime duration induces in-
dividuals to acquire more of any type of human capital. The second feature
is that increasing lifetime duration makes theoretical, high quality human
capital relatively more attractive for individuals of any level of ability. Any
alternative model of human capital formation reproducing these two fea-
tures would be entirely equivalent for the purpose of this paper. Alternative
settings like learning on-the-job could similarly be used to illustrate the
importance of lifetime duration for human capital formation.

An agent can either decide to aquire h or p but not both. Formally,
in his choice, he takes life expectancy Tt as well as the wages for unit of
human capital as given. Denote by wt

h (τ) and wt
p (τ) the wage rate paid

at any moment in time τ to every unit of human capital of type h or p,
respectively, aquired by generation t. Consequently, we can express total
lifetime utility, i.e. total earnings V , of every individual a of generation t
acquiring each type of human capital as:

V t
h(eh, a) =

∫ Tt

eh

hwt
h(τ)dτ

=
∫ Tt

eh

α(eh − e)awt
h(τ)dτ , and (3)

V t
p (ep, a) =

∫ Tt

ep

pwt
p(τ)dτ

=
∫ Tt

ep

βepw
t
p(τ)dτ . (4)

2.2 Aggregate Production

We consider an economy with multiple sectors of production, in which new
technological vintages become available overtime. The stocks of human cap-
ital of both types available in the economy at any moment in time, i.e. em-
bodied in all generations alive at that date, are the only factors of produc-
tion. Wage rates are determined in the macroeconomic competitive labor
market and equal marginal productivities. In particular we model, along
the line of Hansen and Prescott (2002), a one-good-two-sectors economy.12

12The focus of the paper is not on the macroeconomic role of demand for different
consumption goods, so we assume that each sector produces the same good. Alternatively
one could model different sectors as producing differentiated intermediate goods to be
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Sectors are structurally different in their intensity of use of different human
capital. Denote as P the sector using p relatively more intensively andH the
sector using h relatively more intensively. Technology is modeled as total
factor productivity. Technological process takes place in both sectors in the
form of new production technologies characterized by a larger total factor
productivity becoming available over time. Technological improvements are
modeled as vintages since older production functions are still available in
each sector and can potentially be used along with the newest ones.13 De-
note by Av

H(τ) and A
v
P (τ) as the total factor productivites and by Y

P
v (τ) and

Y H
v (τ) the production realized in sector P and H using vintage technology
v at time τ . Then total production at time τ is given by:14

Y (τ) =
∑

v

Y P
v τ) +

∑
v

Y H
v (τ) . (5)

Human capital is inherently heterogenous across generations, because
individuals acquire their human capital in an environmnent characterized
by the availability of different vintages of technologies. Agents of each gen-
eration can acquire human capital, allowing them to use technologies up
to the latest available vintage. Human capital is thus characteristic for
a generation. This implies that a generation’s stock of human capital of
either type is not a perfect substitute of older and younger generations’
human capital and is sold at its own price. Let the respective aggregate
amounts of human capital acquired by generation t be Pt =

∫ a
a pt(a)f(a)da

and Ht =
∫ a
a ht(a)f(a)da. The istantaneous wage rates are given by:

wt
h(τ) =

δY (τ)
δHt

, and (6)

wt
p(τ) =

δY (τ)
δPt

(7)

To make the model analytically tractable, we consider a Cobb-Douglas spec-
ification of the production function and we assume that every vintage of hu-
man capital fully specializes in the respective latest vintage of technology,
so that t = v.15 As a benchmark, we consider the extreme case in which

used in the production of a unique final good.
13This means that different technologies of productions are available at any moment in

time. If we interpret the different sectors e.g. as agricultural and industrial, the production
of corn can then take place using donkeys or modern tractors.

14The specification used by Hansen and Prescott (2002) is contained as the special case
when only the latest vintage can be used.

15In other words, this assumption implies that e.g. a mechanic in the late 20th century
knows how to repair a common rail diesel engine, but not a steam engine. However, as will
become clear below, vintages build upon the advances of previous vintages, e.g. common
rail diesel engines incorporate technological principles that partly derive from the use of
steam engines.
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every sector uses only one type of human capital. The production function
are thus:

Y P
t = At

PP
γ
t , and Y

H
t = At

HH
γ
t , (8)

respectively, with γ ∈ (0, 1) and Av
P (τ), A

v
H(τ) ∈ R+.16

2.3 Intragenerational Equilibrium

Consider the decision problem for members of a given generation t of indi-
viduals. In the following we omit the corresponding subscripts ’t’ as long as
there is no danger of confusion.

To maximizes his lifetime utility, an agent compares the maximum life-
time utility he can get by acquiring one type of human capital or the other.
Consequently, he chooses to acquire p or h depending on whether:

V ∗
p

(
e∗p, a, wp

) >
< V ∗

h (e
∗
h, a, wh) ,

where:

e∗h = argmaxVh (eh, a, wh) = (T − eh)α(eh − e)awh ,

and
e∗p = argmaxVp (ep, a, wp) = (T − ep)βepwp .

The optimal time investments are then given by:

e∗h =
T + e

2
, and e∗p =

T

2
,

respectively.
The individual levels of human capital in the two cases are obtained by

substituting the optimal time investments back:

h∗ (T, a) = α
T − e

2
a , (9)

and
p∗ (T, a) = β

T

2
. (10)

Accordingly, indirect lifetime utilities are given by:
16In principle, both sectors could be characterized by different productivity parameters

γH and γP . This case will be illustrated in the simulations below. However, while the
main results remain unaffected by asserting a common value to both sectors, it simplifies
the analytic tractability of the model considerably. Encorporating both types of human
capital in both sectors of production does not alter the results as long as the difference in
the relative intensities of their use in the respective sector is maintained and no input is
indispensable.
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V ∗
p (p

∗, a, wp) =
T 2

4
βwp , (11)

and

V ∗
h (h

∗, a, wh) = αa
(T − e)2

4
wh . (12)

Obviously, agents with higher ability have a comparative advantage in
the accumulation of H and the lifetime utility for those investing in h in-
creases monotonically in the ability parameter.

An agent is indifferent between acquiring h or p if and only if:

V ∗
p

(
e∗p, a, wp

)
= V ∗

h (e
∗
h, a, wh) . (13)

For every vector of wage rates there is only one level of ability ã for
which the indirect utilities are equal:

ã =
wp

wh

[(
β

α

)
T 2

(T − e)2

]
. (14)

Due to the monotonicity of V ∗
h in ability, all agents with a < ã will

optimally choose to acquire human capital P , while those with ability a > ã
will optimally choose to obtain H. Note that, as previously mentioned, all
individuals with higher ability than ã choosing to acquire theoretical human
capital actually enjoy larger lifetime earnings than those with lower ability
than the threshold and thus choosing to invest in applied human capital.

This fact allows us to simplify notation. In what follows, denote by λ(ã)
the fraction of the population acquiring human capital of type p, and by
(1− λ(ã)) the fraction of the population acquiring human capital h.

In fact, these proportions can be written as:

λ(ã) :=
∫

ea

a
f(a)da (15)

1− λ(ã) :=
∫ a

ea
f(a)da (16)

By inspection of equation (14) and since T − e > 0, one can see that the
fraction 1− λ(ã) increases with lifetime duration T , with the relative wage
wh
wp
and with α

β .
Take for simplicity the case of a uniform distribution of abilities in the

interval [0, 1] . In this case the aggregate levels of theoretical and applied
human capital denoted byH and P , respectively, can be explicitly computed
as:

P (ã) =
∫

ea

0
p (T, a) da = ãβ

T

2
, (17)
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and

H(ã) =
∫ 1

ea
h (T, a) da =

(
1− ã2

2

)
α
T − e

2
. (18)

For computational convenience, we assume uniform distribution of abilities
on the support [0, 1] in the remainder of the paper, unless noted otherwise.17

Factors of production are sold in the competitive market and receive
wages equal to their marginal productivity. The resulting instantaneous
wage rates as defined in (7) that are compatible with the macroeconomic
equilibium are given by:

wh = AHγH
γ−1 , and

wp = APγP
γ−1 .

Given this setting, we define the intragenerational equilibrium of this
economy as follows:

Definition 1. The intragenerational equilibrium is a vector:{
{h∗(T, a)}a∈[a,a] , {p∗(T, a)}a∈[a,a] , H

∗, P ∗, w∗
h, w

∗
p, ã

∗
}

such that, for any given T and distribution f (a) we have:

h∗ (T, a) = α
T − e

2
a , ∀a ≥ ã∗ (19)

p∗ (T, a) = β
T

2
∀a < ã∗ (20)

H∗ =
∫ a

ea∗
h∗ (T, a) f(a)da (21)

P ∗ =
∫

ea∗

a
p∗ (T, a) f(a)da (22)

w∗
h = AHγH

∗γ−1 (23)
w∗

p = AP γP
∗γ−1 (24)

ã∗ =
w∗

p

w∗
h

[(
β

α

)
T 2

(T − e)2

]
(25)

The equilibrium system (19) to (25) defines an implicit function in (ã∗, T )
linking the equilibrium cut-off level of ability ã∗ to lifetime duration T .
Since,

17In fact, the results can be generated in the model with any uni-modal distribution
function of abilities. It is easy to check that the results also go through if a degenerate
ability distribution function with just one ability level for all members of the population
is assumed. However, the process of how individuals sort into equilibrium would be less
clear, since there would be no ability cut-off separating the population, but only a certain
decomposition of the population into the two groups required by equilibrium conditions.
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w∗
p

w∗
h

=
APγP

∗γ−1

AHγH∗γ−1
=

[(
α

β

)
(T − e)2

T 2

]
ã∗ =

w∗
p

w∗
h

. (26)

Substituting for P (ã∗), H(ã∗) from Equation (17) and (18), and remember-
ing that the equilibrium concerns any given generation t, we have:

ã∗t

(
(1− ã∗2t )
2ã∗t

)γ−1

=
AP.t

AH.t

(
β

α

)γ ( Tt

Tt − e

)γ+1

(27)

This relation between the equilibrium ability threshold for the acqui-
sition of abstract human capital and life expectancy T will be of eminent
importance for the analysis of development later on. For notational con-
venience, reformulate Equation (27) by solving for lifetime expectancy as a
function of the ability threshold to get:

T (ã∗) =
e

1− g(ea∗)
Ω

, (28)

with

g(ã∗) =
(1− ã∗2)

1−γ
1+γ

ã
∗ 2−γ

1+γ

k , (29)

k = 2−
1−γ
1+γ , and

Ω =
[(

AH

AP

)(
α

β

)γ] 1
1+γ

: . (30)

It is easy to see that g(ã∗) > 0, ∀ã ∈ [0, 1]. Note that T (ã∗) is defined
for all ã∗ ∈ [ã∗, 1] with ã∗ : g(ã∗) = Ω ⇔ lim

ea∗→ea∗ T (ã∗) = ∞, and that
∀ã∗ ∈ [ã∗, 1] : 1 − g(ea∗)

Ω > 0. The value ã∗ > 0 represents a maximum
fraction of the population that would optimally choose to acquire human
capital H for any given level of relative productivity AH

AP
. This maximum

fraction cannot be exceeded, even if the biological constraint of finite lifetime
duration would disappear (i. e. if T → ∞).

There exists a unique pair of expected lifetime duration and ability that
satisfies the conditions for an intragenerational equilibrium:

Proposition 1. There exists exactly one intragenerational equilibrium char-
acterized by the a pair (ã∗, T ∗), with ã∗ ∈ [ã∗ (Ω) , 1] and T ∈ [e,∞), which
satisfies condition (27).

In this context, it is worth noting that the maximum proportion of the
population that would acquire H in the absence of biological constraints,
1 − ã∗ (Ω) , is increasing with the relative productivity of the sector using
theoretical human capital intensively, AH

AP
. This observation will prove useful

later on and is therefore summarized in:

Lemma 1. The lower bound on the support of ability thresholds decreases
as Ω increases, that is ∂ea∗(Ω)

∂Ω < 0.
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2.4 Properties of the Intragenerational Equilibrium

The equilibrium relation between lifetime duration and the proportion of
the population investing in human capital presented in equation (27) will be
a crucial determinant of the dynamic system. This relation is determined
endogenously for a given generation through the interplay of individual op-
timizing behavior and aggregate equilibrium conditions. According to the
following proposition, the ability cut-off is lower for higher expected lifetime
duration, that means that a higher share of the population decides to ob-
tain human capital of type h if they expect to live longer. Moreover, the
function ã∗ (T ), representing the threshold ability defining the proportion
of the population acquiring human capital h, is S-shaped: as lifetime dura-
tion increases the proportion of population choosing h increases first slowly,
then increasingly rapidly, until this increase slows down again as the ability
threshold converges to ever lower levels.

Proposition 2. The cut-off level ã∗ (T ), which identifies the equilibrium
fraction of members of a generation acquiring human capital h, is an in-
creasing, S-shaped function of expected lifetime duration T of this genera-
tion, with zero slope for T −→ 0 and T −→ ∞, and exacly one inflection
point.

The full proof is contained in the appendix. The economic meaning be-
hind the S-shape is easier to grasp when looking at the equilibrium relation
in the (λ, T )-space. The equilibrium locus can be rationalized as follows. For
low lifetime durations, the share of population investing in h is small, and
also relatively large increases in average lifetime duration do not change this
structure of the economy much. The reason for this is that due to the fixed
cost involved with acquiring h, the remaining time to use the acquired h to
earn income is too short for a large part of the population to be worth the
effort. Once average lifetime duration increases sufficiently, the fixed cost
constraint binds for fewer and fewer people, so the structure of the economy
changes more rapidly towards a higher fraction of people acquiring h. How-
ever, the speed of this structural change decreases as an ever larger share
of the population is engaged in h due to decreasing returns in both sectors:
Since only few individuals decide to invest in p the relative wage wh/wp

decreases affecting the individual choice of human capital accumulation.
Having characterized the static behavior of the economy, we now turn

to the dynamic process of development.

3 The Process of Economic Development

In the economy described in the previous section, lifetime duration is consid-
ered as given from the individual viewpoint. The structure of the economy
in every generation is the outcome of individual decisions and depends on
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average expected lifetime duration. On the other hand, in the long run and
from a macroeconomic perspective, lifetime duration is endogenous. Ex-
pected lifetime duration is related to the level of development through the
structure of the economy. This section models the intertemporal interplay
between these two mechanisms characterizing the development path of an
economy starting from an initial situation with low average lifetime dura-
tion.

The first component of the dynamic system governing the development
of the economy is the equilibrium relation between lifetime duration and the
proportion of the population investing in human capital. The condition for
an intragenerational equilibrium for generation t given in equation (27) in
the previous section, defines an implicit relationship between a(t) and T (t),
which, for brevity, can be denoted as:

at = Λ(Tt, At) . (31)

3.1 Links Between Generations

The previous section examined the individual education decision of members
of a given generation. While life expectancy is a parameter which individuals
have to take into account when making their education decisions, we assume
that they cannot directly influence it. Rather, expected lifetime duration of
children may depend on the level of development and the quantity and qual-
ity of human capital of the society at the time of their birth, that is by the
level of knowledge acquired by the previous generation.18 Recent empirical
findings show that the level of GDP and literacy are positively correlated
with average expected lifetime duration (see Swanson and Kopecky, 1999,
and Reis-Soares, 2001 ). Of course, this effect has also an impact on the
children’s decision of which type of human capital to acquire, as will become
clear below.

We formalize this positive externality of the achievements of a gener-
ation for the following generations by making the simple assumption that
expected lifetime duration of a given generation t is an increasing function of
the fraction of the population of the previous generation (t−1) that acquired
theoretical human capital.19 This can be rationalized by the idea that ex-
pected lifetime duration of a generation depends on the level of development

18Admittedly, this is only true to a certain extent. Of course, individuals can effec-
tively influence their life expectancy by their life style, smoking habits, drug and alcohol
consumption, sports and fitness behavior etc. However, for this they have to know which
factors and activities are detrimental and which are advantageous for average life duration.
The picture we have in mind is therefore more general: people born in the 18th century
did not have medical facilities, or knowledge about health and sanitation comparable to
people born in the late 20th century. In our view it is this sort of knowledge that primarily
determines life expectancy and mortality, and this knowledge has to be acquired over time
and is passed-on from generation to generation.

19Clearly, this is just a simplification. Life expectancy might also depend on the share
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at the time of its birth:

Tt = Υ(λt−1) = T + ρ(1− λt−1) , (32)

where (1 − λt−1) = 1 − λ(ã∗t−1) =
∫ a
ea∗

t−1
f(a)da is the fraction of generation

(t−1) that has acquired human capital of type h. Note that by the definition
of λ, life expectancy is a function of the threshold ability level for the decision
to acquire general human capital h of the respective generation:

Tt = Υ(ã∗t−1) , (33)

There is a biological barrier to extending lifetime duration implicitly con-
tained in the specification of equation (32) since by definition of λ the life-
time duration is bounded from above and thus cannot be increased beyond
a certain level. We take this as a commonly agreed empirical regularity (see
also Vaupel, 1998). The minimum lifetime duration without any human
capital of type h is given by T . The precise functional form of this rela-
tion entails no consequences for the main results, and a (potentially more
intuitive) concave relationship would not change the main argument.

The second link between consecutive generations is related to total fac-
tor productivity and follows the tradition of endogenous growth theory. The
level of human capital acquired in a given period increases total factor pro-
ductivity in subsequent periods. As a consequence, the level of development
of an economy exhibits an externality on the subsequent generations. This
interpretation is similar to the idea that the stock of ideas transfers into
the productivity of future generations suggested by Jones (2001). In the
model, we adopt Jones’ specification, which is a generalization of the origi-
nal contribution of Romer (1990). By its nature, theoretical human capital
H is relatively more productivity enhancing than practical human capital
P . Moreover, the positive effect is stronger in the sector H that uses theo-
retical human capital more intensively, since it is the more innovative sector,
applying and implementing new and innovative technologies faster. Conse-
quently, total factor productivity (TFP) growth the sector H is a function of
the stock of H and the level of productivity already achieved in this sector.20

Advances in technology are embodied in the latest vintage of intermediate
input H:

ȦH.t =
AH.t −AH.t−1

AH.t−1
= δHφ

t−1A
χ
H.t−1 , (34)

where δ > 0, φ > 0, and χ > 0. This can be re-written to:

AH.t =
(
δHφ

t−1A
χ
H.t−1 + 1

)
AH.t−1 . (35)

of the total population that has acquired theoretical human capital at the time of birth
of a generation, without qualitatively changing the results.

20In the specification used, this function exhibits decreasing returns, while Romer (1990)
assumed constant returns. The advantage of the present specification is that it is less rigid
and more realistic.
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What is important for the argument of the paper is the relative strength
of these impacts, so there is no loss in constraining the productivity effect
to AH only. Thus, for simplicity we assume ȦP.t = 0 so that total factor
productivity in the first sector is constant and can be normalized to 1: AP.t =
AP.0 = 1 ∀t ∈ [0,∞).21 For notational simplicity, we will denote the relative
total factor productivity of the two sectors as

At ≡
AH.t

AL.t
for every t ∈ {0,∞} . (36)

If we assume that the distribution of abilities is uniform, we can substitute
Ht−1 = α

2 (Tt−1 − e) (1− λt−1) from Equation (18) into (35), and obtain an
explicit expression for the dynamic evolution of relative productivity:

At =
{
δ
[α
2
(Tt−1 − e) (1− λt−1)

]φ
Aχ

.t−1 + 1
}
At−1 = F (At−1, Tt−1, λt−1)

(37)
This specification emphasizes the particular role of theoretical human

capital in the accumulation of knowledge, and subsequently for technolog-
ical progress. The specific functional form has little impact. In fact every,
functional specification alternative to (34), which implies a positive correla-
tion between Ȧt and Ht would yield qualitatively identical results. It is also
worthwhile noting that the qualitative features of the model are unaltered
if technological process is taken to be exogenous, that is if Ȧt = ε > 0.22

These inter-generational linkages close the model.

3.2 Dynamics of Development

The solution of the model laid down so far allows to analyze the process of
development as an interplay of individually rational behavior and macroe-
conomic externalities. The static equilibrium relationship (31) holds for
every generation, while every generation takes life expectancy along equa-
tion (33), and productivity growth according to equation (35) into account.
Thus, the development of the economy is characterized by the trajecto-
ries of lifetime duration Tt, the fraction of the population acquiring human

21In general, both types of human capital can have a positive intertemporal effect on
total factor productivity of both sectors, as long as the technological externality is biased
towards H-type human capital. In the simulations presented below, we actually allow
total factor productivity in the sector using practical human capital intensively to grow
according to:

AP.t =
�
δP HφP

t−1A
χP
P.t−1 + 1

�
AP.t−1 .

This reflects the historical fact that agricultural productivity also increased as produc-
tivity in other sectors went up, e. g. during the industrial revolution, see Streeten (1994).

22As will become clearer below, the only consequence of an exogenous change in relative
productivity Ȧ is the missing re-inforcing feedback effect of endogenous technological
progress after the industrial revolution.
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capital λt, and relative productivity At. For notational simplicity, denote
ã∗ simply as a. Taking into consideration the one-to-one relationship be-
tween λt−1 and at−1, the dynamic path is fully described by the infinite
sequence {at, Tt, At}t∈[0,∞), resulting from the evolution of the three dimen-
sional, nonlinear first-order dynamic system derived from equations (31),
(33) and (37): 

at = Λ(Tt, At)
Tt = Υ(at−1)
At = F (At−1, Tt−1, at−1)

(38)

The development is influenced by the level of human capital of type
H accumulated in the past (reflected in the level of relative TFP and the
average lifetime duration) and by the current generation, and characterized
completely by the respective ability thresholds. The human capital structure
of the economy has two effects, one on productivity in aggregate produc-
tion, which in turn affects relative prices for human capital, and another on
the next generation’s life expectancy. Both effects concern the main deter-
minants of individual education decisions, and thus affect the structure of
human capital accumulation of the subsequent generation, and so on.

The analysis of the dynamic behavior of the economy can be simplified
by looking at the dynamic adjustment of human capital and lifetime du-
ration conditional on the value of the relative productivity. We therefore
concentrate attention on the properties of the following system, which is
conditional on any A > 0: {

at = Λ(Tt, A)
Tt = Υ(at−1)

(39)

This system delivers the dynamics of human capital formation and life ex-
pectancy for any given level of technology. From the previous discussion
we know that the first equation of the conditional system is defined for
at ∈ (at (A) , 1] and T ∈ [e,∞) .

In what follows, we denote the S-shaped locus Tt = Λ−1(at, A) in the
space {T, a}, which results from the intragenerational equilibrium, byHH (A),
and the locus Tt = Υ(at−1) representing the intergenerational externality on
lifetime duration by TT . Any steady state of the conditional system is char-
acterized by the intersection of the two loci HH (A ) and TT :

Definition 2. A dynamic equilibrium of the conditional system given by
(39) is a vector

{
aC , TC

}
with aC ∈ (a (A) , 1] and TC ∈ [e,∞), which

constitutes a steady state solution for the dynamic system (39) such that,
for any A ∈ (0,∞): {

aC = Λ(TC , A)
TC = Υ(aC)
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We are now in a position to characterize the set of steady states of the
conditional system:

Proposition 3. The conditional dynamic system given by (39) can be char-
acterized for any A ∈ (0,∞) and in the ranges a ∈ (a (A) , 1), T ∈ (e,∞) as
follows:

(i) There exists at least one steady state.

(ii) Any steady state is characterized by a strictly positive amount of both
types of human capital: H (A) > 0 and P (A) > 0.

(iii) There exist at most three steady states denoted by

EH (A) ≡
{
aH (A) , TH (A)

}
, Eu (A) ≡ {au (A) , T u (A)} and EL (A) ≡{

aL (A) , TL (A)
}
with the following properties:

(a) aH (A) ≤ au (A) ≤ aL (A) and TH (A) ≥ T u (A) ≥ TL (A);

(b) EH (A) and EL (A) are locally stable;

(c) Eu (A) is locally unstable;

(d) if there is only one steady state, then it is globally stable, and it
can be labeled as H or L according to the curvature of HH (A):
∂2T(aH(A))

∂a2 > 0 and
∂2T(aL(A))

∂a2 < 0.

According to this proposition, there exists at least one dynamic equi-
librium. Given the S-shape of HH(A), the conditional system exhibits at
most three dynamic equilibria, two of which are stable and one unstable.
The two dynamic equilibria at the extremes of the support are locally stable
while the intermediate one is not. The ’high’ equilibrium is characterized by
a relatively large fraction of the population acquiring H and large lifetime
expectancy, and the locus HH (A) is locally convex in aH

t . The ’low’ equi-
librium is characterized by low lifetime duration and correspondingly a little
share of the population acquiring H. The locus HH (A) is locally concave
in aL.

Figure 3 illustrates the dynamic system characterizing the economy,
when there exist three equilibria. The linear curve TT represents the in-
tergenerational externality of a generation’s theoretical knowledge H on the
life expectancy of the next generation, as stated by Equation (33). The
S-shaped locus HH (A) illustrates pairs of ability thresholds and lifetime
durations (a, T ) described by Equation (31), for which the static equilibrium
conditions are fulfilled. Thus, the intersection of the two curves satisfies the
conditions for a dynamic equilibrium.

The analysis of the full dynamic system must account for the evolution
of all the variables at the same time. To do this, it is necessary to study
the behavior of the relative productivity. The objective of this section is to

20



   T

               HH(at,A)

ρ+T

TT(at-1)

  T

  e

       0   a (A) 1       a

Figure 3: Phase Diagram of the Conditional Dynamic System

give a characterization of the different phases of development of an economy
starting from a little productivity A and characterized by a low lifetime ex-
pectancy. We argue that these initial conditions once have been historically
and empirically relevant for all developed countries in the past and still re-
main so in most of the underdeveloped countries today. To this end it is
sufficient to concentrate attention to the main characteristics of the dynamic
evolution of A, while there is no need to characterize its path in detail.

We begin the analysis of development by looking at productivity changes
over the course of generations. Human capitalH helps in adopting new ideas
and technologies, and thus creates higher productivity gains than practical
human capital P . This means that in the long run relative productivity At

will tend to increase, which in turn tends to reinforce the role of theoretical
human capital H. This result is summarized by the following lemma:

Lemma 2. Relative Productivity At increases monotonically over time with
limt−→∞At = +∞.

Therefore, productivity increases faster in the sector using theoretical
human capital H more intensively, so that this sector becomes relatively
more productive over time. As a consequence, H becomes more attractive
to acquire. Note that the strict monotonicity of At over time depends on
the assumption ȦP.t = 0. However, this assumption is not necessary for the
main argument. What is crucial is that relative productivity will eventually
be increasing once a sufficiently large fraction of the population acquires H.
In the simulations below, we allow ȦP.t > 0 starting from large AP.0 and
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small AH.0. Relative productivity At is, in that case, initially decreasing,
reflecting the larger innovative dynamics of sector P in during early stages
of development, but since H is relative more important than P for techno-
logical progress in any sector in the long run, AH leapfrogs AP . Therefore,
At is eventually increasing and keeps increasing from this point on. The
qualitative prediction is totally unchanged, with the only difference that in
early stages of development the high productivity in the P sector reinforces
the tendency to acquire P and, in this way, delays massive human capital
acquisition even further.

As At increases, the fraction of the population investing in H also in-
creases. Lifetime expectancy necessary to make an agent of ability a indif-
ferent between acquiring any kind of human capital tend to decrease and
the locus HH (A) shifts down for any a (excluding the extremes):

Proposition 4. The life expectancy required for any given level of ability to
be indifferent between acquiring h or p decreases, as relative productivity A
increases: the locus HH (A) is such that ∂T (a,A)

∂A < 0, ∀ a ∈ (0, 1).

Then, according to the proposition, the more productive theoretical hu-
man capital becomes relatively to applied human capital, the less restrictive
is the fixed cost requirement of acquiring it, as the break-even of the invest-
ment in education is attained at a lower age.

We are now prepared to analyze full dynamic solution of the system.
Given the results so far, permanent productivity growth implies that for
a given life expectancy the ability threshold for becoming theoretically ed-
ucated decreases, inducing a higher fraction of the population to acquire
theoretical human capital. Of course, this has feedback effects through the
externalities of this increase of the aggregate stock of theoretical knowledge
in the economy on life expectancy and productivity of the subsequent gen-
eration.

We focus on an non-developed economy in which life expectancy at birth
is low, as for example during the middle ages.23 Since the relative productiv-
ity A is low, investing in h is relatively costly for large part of the population
as the importance of the fix cost for education e is large. This means that
the concave part of the HH (A)-locus is large and the conditional system is
characterized by a dynamic equilibrium of type

{
aL (A) , TL (A)

}
, exhibit-

ing low life expectancy and a little class of individuals deciding to acquire
theoretical human capital, as the ability threshold is very high at aL. This
situation is depicted in panel (1) of Figure 4.

In early stages of development, both the relative productivity gains, as
well as the effect on the ability threshold are relatively small. Consequently,

23As will become clear below, starting from this point is without loss of generality. How-
ever, even though the model is also capable of demonstrating the situation of developed
economies, the main contribution lies in the illustration of the transition from low to high
levels of development.
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also the feedback effects on lifetime duration and productivity are close
to negligible, but just not quite negligible. Over time, productivity growth
makes investing in h easier for everybody as h becomes relatively more valu-
able, and life expectancy increases slowly. Graphically, the non-linear locus
HH of pairs of (a, T ) satisfying intragenerational static equilibrium shifts
downwards over time and the importance of the concave part decreases.

After a sufficiently long period of this early stage of development, the
non-linear locus HH exhibits a tangency point, and eventually three inter-
sections rather than one with the linear locus TT of pairs of (a, T ) of the
intergenerational externality on life expectancy. From this point onwards,
in addition to EL, also steady states of type Eu and EH with lower ability
thresholds emerge. The intermediate equilibrium is locally unstable, and the
economy remains trapped in the area of attraction of the L-type equilibria,
as there is no possibility to attain the high life expectancy required for the
economy to settle into a H-type equilibrium. This situation is depicted in
panel (2) of Figure 4.

As generations pass, the dynamic equilibrium induced by initially low life
expectancy moves along TT . The consecutive downward shifts of HH (A),
however, eventually lead to a situation in which the initial dynamic equilib-
rium lies in the tangency of the two curves, as shown in panel (3) of Figure 4.
In the neighborhood of this tangency, the static equilibrium locus lies below
the linear curve, such that the equilibrium is not anymore stable. Already
the following generation faces a life expectancy that is high enough to induce
a larger fraction to acquire human capital than in the previous generation.
At this point a unique EH steady state exists, as is shown in panel (4)
of Figure 4. A period of extremely rapid development is triggered, during
which life expectancy virtually explodes, and the human capital structure of
the population changes dramatically towards theoretical, h-type education.
This phase of rapid change in general living conditions and the economic
environment reflects what happened during the industrial revolution.

This phase of fast development lasts for a few consecutive generations.
Relative Productivity A is eventually sufficiently large to render investing in
h optimal for the majority of individuals. The reason is that the individual
fix cost e is relatively low for all individuals endowed with at least some low
level of ability.

In later stages, after the transition to the high conditional dynamic equi-
librium, steady but small increases in life expectancy and in the fraction
of the population acquiring human capital are observed. Eventually, the
economy ends up in a series of dynamic equilibria characterized by high
expected lifetime duration and a low ability requirement for the adoption
of theoretical knowledge, EH . Life expectancy and the share of the pop-
ulation acquiring Human capital h keep increasing. However, the extent
of this late growth is very moderate. Life expectancy converges slowly to
some (biologically determined) upper bound ρ+T , which is never achieved.
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Once the majority of the population is theoretically educated, ever further
technological progress cannot sustain the growth in highly innovative human
capital, and living conditions improve less and less rapidly. Some fraction of
the population will always acquire applied knowledge, as the ability thresh-
old never reaches zero. This is what happened after the dramatic changes
during industrial revolution, and what still happens today. The following
section presents a simulation of the model, which illustrates the evolution
of the main variables of the model.

In the following proposition, we summarize this process of development.
The evolution of the system is given by the infinite sequence of ability thresh-
olds, life expectancies and relative productivities {at, Tt, At}t∈[o,∞), starting
in a situation of an undeveloped economy:

Proposition 5. (Development Path of the Economy) Consider an undevel-
oped economy with initially A0 being small such that, without loss of gener-
ality, the conditional system (39) is characterized by a unique steady state of
type EL as formalized in Proposition 3. The solution of the dynamic system
(38) exhibits the following features:

(i) There exists a unique t1 ∈ [0,∞) such that ∀t <
(
t1 − 1

)
the condi-

tional system (39) is characterized by a unique equilibrium EL (At):
aL (At) > aL (At+1) and TL (At) < TL (At+1).

(ii) At t = t1, the conditional system exhibits two steady state equilibria:
Eu (At1) and EL (At1). The economy remains situated in the area of
attraction of the conditional steady state EL(At1).

(iii) There exists a unique t2 ∈
(
t1,∞

)
such that ∀t > t1 ∧ t < t2 the

conditional system is characterized by three steady states: EH (At) ,
Eu (At) and EL (At) with the economy situated in the area of attraction
of EL(At1): aL (At+1) < aL (At) and TL (At+1) > TL (At).

(iv) At t = t2, the conditional system displays two steady state equilibria:
EH (At) and Eu (At).

(v) For any t > t2, the conditional system (39) is characterized by a se-
ries of unique and globally stable equilibrium of type EH (At) with:
aH (At+1) < aH (At) and TH (At+1) > TH (At).

It is important to note that the actual trajectory of the system depends
on the initial conditions and cannot be precisely identified in general. Propo-
sition 5 in fact states that the system moves period by period in the area
of attraction of the locally stable conditional state EL during phases (i) to
(iv). In phase (v), the system converges to a series of globally stable steady
states EH .
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Figure 4: The Process of Development
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In historical terms, the model therefore exemplifies the different stages
of development. Europe could be thought of as being trapped in a sequence
of EL equilibria during ancient times and the middle ages. At some point
during the late 18th century development took off, as the multiplicity of
equilibria vanished, and the economies were no longer trapped in the bad
equilibrium with low human capital and low life expectancy. Living condi-
tions changed dramatically, and one could think that European economies
today are in dynamic EH equilibria. However, one could also think that e. g.
African economies are still trapped today in dynamic equilibria character-
ized by low life expectancy and little theoretical knowledge (like literacy).

According to this model, an industrial revolution was inevitable, and
its timing depended on the particular parameters and the initial conditions.
This feature of the model depends on the type of technological progress that
is in line with the tradition of endogenous growth theory. Essentially, tech-
nological progress is the accumulation of knowledge over time as in Romer
(1990). An alternative view of technological progress with stochastic ele-
ments, as destruction of knowledge, forgetting and non-continuous, periodic
improvements, could imply different predictions about the inevitability of
the industrial revolution. For example, one could easily introduce random
shocks affecting life expectancy and/or the stock of theoretical human cap-
ital in the economy, representing events exogenous to the economic system
such as wars. These might prolong or even completely prevent the economic
and biological transitions characterized in this paper. In this sense, an in-
dustrial revolution would not be inevitable anymore, but due to reasons that
lie beyond the mechanisms described here. Different views about the struc-
ture of technological progress clearly would also imply different conclusions
about the scope for development enhancing policies.

4 A Simulation of the Development Process

This section presents a simulation of the model to illustrate its capability
to replicate this phenomenon. We simulate the model using parameters
reflecting empirical findings where possible. However, note that these simu-
lations do not claim utmost realism, and we do not calibrate and fine-tune
the model in order to achieve an optimal fit with real world data. Rather,
the simulations are meant as an illustration of the workings of the model.
Table 1 contains the values of the parameters and initial conditions used for
the baseline specification of the model.
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Table 1: Parameter Values for Simulation

α = 0.5; δP = 0.05; ρ = 75.0; AP (0) = 1.6;
β = 0.5; φH = 0.95; e= 15.0 ; ã(0)= 0.9911;
γ = 0.6; φP = 0.95; T= 25.0 ; .

δH = 0.11; χ = 0.75; AH(0) = 1.0 ; .

Marginal productivity of time spent in education, given a specific level
of ability, is assumed to be the same in the production of both types of
human capital. The macro-economic returns to human capital production
are decreasing in both sectors (γ). In the simulation we assume that TFP
is growing with the stock of theoretical human capital of the preceeding
generation, Ht−1 in both sectors, albeit at a faster rate in the sector using
theoretical human capital more intensively (δH > δP ). Both sectors exhibit
the same extent of decreasing returns to this stock of human capital. We
assume the total scope of extending life expectancy by research, medical
inventions and the like as 75 years (ρ). The baseline life expectancy is 25
years, which is in line with Streeten (1994) who cites evidence that average
life expectancy in central Europe was even lower than 25 before 1650. This
means that even if the entire population would engage in accumulating the-
oretical knowledge, a life expectancy of 100 years could not be exceeded.
The minimum requirement of lifetime with respect to accumulating theoret-
ical human capital is 15 years. Moreover, we start initially from a situation
in which total factor productivity is 1.6 times higher in the applied human
capital sector. This reflects the fact that at this point in time already a large
number of generations has acquired applied knowledge that has increased
TFP over time. Finally, we assume that in the first period of the simulation
0.89 percent of the population pay the fixed cost in terms of time spent for
education and accumulate theoretical human capital. We simulate the econ-
omy over 250 generations. If one wanted to directly test the predictions for
the industrial revolution, the simulation period comprises roughly a horizon
from 1000 to 2250, interpreting every 5 years as the beginning of a new
generation.

Simulation results for life expectancy and the fraction of the popula-
tion acquiring theoretical human capital are depicted in Figure 5. Life ex-
pectancy remains at a low level for many generations, before at a certain
point (around 1760) a period of rapid growth in average lifetime duration
begins. In fact, even before this period of rapid growth life expectancy is
increasing over time, but with very little increments over the generations.
However, then life expectancy increases from mid-20 to over 60 within just
a few generation. Eventually, the increments decrease, and the growth of
life expectancy slows down again, but never actually stops or gets nearly as
small as before the transition. Accordingly, just when life expectancy starts
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Figure 5: Simulation of Life Expectancy T and the Proportion of the Pop-
ulation with Theoretical Education, λ
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to take off, the social structure of the economy starts changing rapidly, as
ever larger proportions of the population acquire theoretical human capital.
This is reflected in a rapid decrease of the ability threshold for abstract ed-
ucation. However, also this evolution slows down from its initial rapidness,
as the share of educated people exceeds roughly three quarters of the popu-
lation. When more than 90 percent accumulate theoretical knowledge, this
fraction hardly grows anymore. Nevertheless, due to the permanent growth
in TFP, the aggregate stock of theoretical human capital keeps increasing,
even after the transition, albeit at a somewhat slower rate.

Simulation results for TFP, aggregate income and population size are
shown in Figure 6. TFP in the theoretical sector is about ten times higher
after a time comparable to 250 years since the beginning of the industrial
revolution. Also the stock of applied knowledge increases further, thanks to
the externality of theoretical human capital on TFP also in the P -sector,
and is about three to four times higher after 250 years since industrialization
started. Aggregate income grows only very slowly before the industrial
revolution. But then it virtually explodes, and keeps growing rapidly, even
when growth in life expectancy and the fraction of theoretically educated
ebbs away.
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Figure 6: Simulation of Income, Productivity and Population Size

The assumption of fixed frequency of reproduction while life expectancy
is endogenous implies that, at the same time, several generations can pop-
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ulate the economy. The number, and thus population size, depends on the
respective life expectancies the generations are endowed with. Hence, the
size of the population can grow, even though individual fertility behavior
is assumed to be constant and the same throughout generations. In the
simulation, the frequency in which new generations are born is taken to be
five years. Thus, children do not build on the knowledge of their parents,
but on the knowledge of their immediately preceeding generation, whose in
turn depends on that of older generations, etc. The development of the
size of the population along the dynamic equilibrium path is illustrated in
the lower panel of Figure 6 Holding fertility constant, the population size
almost triples as life expectancy increases in the process of economic de-
velopment. Population growth slows down again once the growth in life
expectancy slows down.24 A final observation is the endogenous structural
transition illustrated by the decline in the share of income generated using
applied knowledge and the inverse increase in the income share of theoretical
knowledge in Figure 7.
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Figure 7: Simulation of Income Shares YP /Y (...) and YH/Y (-)

5 Concluding Remarks

One major puzzle, which economic explanations for the industrial revolu-
tion have to address, is the apparently long stagnancy of economic condi-
tions and life expectancy, which is suddenly followed by a period of fast and
dramatic changes in both these dimensions. Previous contributions model
the experience of the industrial revolution as the transition from a primi-
tive, stagnant to a developed regime exhibiting permanent growth. What
eventually triggered this rapid transition is the topic of a lively discussion
within the profession. This paper offers an explanation which is not based
on the existence of different regimes of the economy, but interprets long-

24The non-smooth, jagged development of the population size follows from the fact that
the number of populations alive at each point in time is an integer.
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term development including the experience of the industrial revolution as
the continuous evolution of the dynamic system of the economy.

We present a simple microfoundation of human capital accumulation
that allows to explain patterns in long-term economic development, explic-
itly taking complex interactions between economic, social and biological
factors into account, and model economic development and changes in life
expectancy as endogenous processes. An implication of this view is that
even during the apparently stagnant environment before the industrial rev-
olution, economic and biological factors affected each other. There is thus
no need to explain a change in regimes, or a driving shock that triggered
the transition.

Life expectancy is the crucial state variable in the individual education
decision. In turn, this education decision has implications for the education
decision of future generations, both through life expectancy and productiv-
ity changes. This means that advances in technological progress, human
capital formation and lifetime duration reinforce each other. However, the
peculiarity of human capital is that every generation has to acquire it anew.
But the costs for human capital formation are prohibitively high for large
parts of the population when the level of development is still low and ex-
pected lifetime duration is short. However, at a certain point in time the
entire system is sufficiently developed so that the positive feedback loop has
enough momentum to overcome the retarding effects of costs for human cap-
ital formation. The resulting development path exhibits an S-shape, with a
long period of economic and biological stagnation, followed by a relatively
short period of dramatic change in living conditions and the economic and
social environment. The mechanism presented in this paper is able to repro-
duce the observed patterns of long-term economic development without the
need of relying on some exogenous events and strict temporal causalities. By
simulating the model for illustration purposes, we show that the long-run
behavior of income, income growth, productivity, lifetime duration, popula-
tion size and other key indicators of development implied by the model is in
line with empirical evidence and stylized facts.
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A Appendix

Proof of Proposition 1:

Proof. Consider Equation (28). For notational simplicity, denote ã∗ simply as a, e
as e. By standard calculus,

T ′(a) =
e g′(a)

Ω[
1− g(a)

Ω

]2 < 0 , (40)

since g′(a) = − g(a)
1+γ

[
2−γ−γa2

2a2(1−a2)

]
< 0, ∀a ∈ [0, 1]. Therefore, we conclude that for a

given set of parameters γ ∈ (0, 1), A = AH

AP
, for every a ∈ [a, 1] there is one and

only one T > 0 such that (28) is satisfied.

Proof of Lemma 1:

Proof. The claim follows from the definition of ã∗ (Ω), and the fact that g(ã∗) is
strictly decreasing in ã∗.

Proof of Proposition 2:
The intuition of the proof proceeds as follows: We solve equilibrium condition

(27) for T as a function of ã∗ and investigate the behavior of this function. Due
to the fact that T (ã∗) is strictly monotonically decreasing within the admissible
support the function is invertible within this range of support. We then show that
there exists one and only one ã∗ for which the second derivative of this function
equals zero. Since the condition for the second derivative to equal zero cannot
readily be solved for ã∗, we decompose it into two components and show that one
is strictly monotonically increasing within the support while the other is strictly
monotonically decreasing, such that there must exist one and only one ã∗ for which
the condition is satisfied by the intermediate value theorem. But if T (a) has a
single inflection point and is invertible, also a(T ) has a single inflection point and
is therefore S-shaped.

Proof. Consider again Equation (28). We use the notational shorthands as in proof
of Proposition 1. Using standard calculus, one can now show that:

T ′(a) =
e g′(a)

Ω[
1− g(a)

Ω

]2 , (41)

and

T ′′(a) =
e g′′(a)

Ω

[
1− g(a)

Ω

]
+ 2e [

g′(a)]2
Ω2[

1− g(a)
Ω

]3 . (42)

Due to the fact that T ′(a) < 0 ∀a ∈ [a, 1], we note that the function T (a) is
invertible in the range a ∈ [a, 1] of the support. Note also that T (a) ≥ T ∀a ∈ [0, 1],
so the inverse function a(T ) is strictly monotonically decreasing for all positive T .

It will prove useful to substitute a2 with b and to re-write g(a) ≡ h(b) =
(1−b)

1−γ
1+γ

b
2−γ

2(1+γ)
k, g′(a) ≡ h′(b), and g′′(a) ≡ h′′(b), where b = (a)2. Thus define T (a) =
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T (b), so the derivatives T ′(a) = T ′(b) and T ′′(a) = T ′′(b) can be re-written in
terms of b:

T ′(b) = − [T (b)]
2

e

h′(b)
Ω

Existence of an inflection point can already be inferred from a closer examination.
Since

h′(b) = − k

2(1 + γ)
(1− b)

−2γ
1+γ b

−1
1+γ (2− γ − γb) = − k

1 + γ
h(b)B(b) < 0 ∀b ∈ [b, 1]

(where B(b) = 1−γ
1−b

2−γ
2b ), we know that also T ′(b) < 0 ∀b ∈ [b, 1]. Moreover, one

immediately sees that limb→1 h
′(b) = −∞ ⇔ lima→1 T

′(a) = −∞, such that T has
infinitely negative slope at both boundaries of the admissible support, suggesting
that there must exist at least one inflection point. From these arguments it is
also clear that the slope of the inverse function, a′(T ), converges to zero at both
boundaries of the support.

Analysis of the second derivative T ′′(b) allows to show existence and uniqueness
of an inflection point. In particular, T ′′(b) = 0 requires:

h′′(b)
(
1− h(b)

Ω

)
= − 2

Ω
(h′(b))2

⇔ kh(b)
1 + γ

[
B2(b)
1 + γ

−B′(b)
](
1− h(b)

Ω

)
= − 2kh(b)

Ω(1 + γ)
B2(b)

⇔
(

−1
1 + γ

+
B′(b)
B2(b)

)
=

2k
Ω(1 + γ)

(
h(b)

1− h(b)
Ω

)
. (43)

(LHS ) = (RHS)

Noting that
B′(b)
B2(b)

=
−2γb2 + 4b(2− γ) + 2(γ − 2)

(2− γ − γb)2
,

one finds that

∂
(

B′(b)
B2(b)

)
∂b

=
8(2− γ)(1− γ)
(2− γ − γb)3

> 0, ∀γ ∈ (0, 1), b ∈ [0, 1] .

This implies that the LHS of the condition for an inflection point (T ′′(b) = 0),
equation (43), is strictly monotonically increasing in b. Furthermore, applying
calculus one can also verify that the RHS of condition (43) is strictly monotonically
decreasing in b on the support [0, 1]:

∂

(
h(b)

1−h(b)
Ω

)
∂b

=
h′(b)(

1− h(b)
Ω

)2 < 0, ∀b ∈ [b, 1] .

In order to ensure that there is a value of b for which (43) is satisfied, it remains
to be shown that the value of the LHS is smaller than that of the RHS for b = b
and larger for a = b = 1. Noting that LHS(b = 1) = −1

1+γ +
1

1−γ > 0 and that
RHS(b = 1) = 0 since h(1) = 0, one sees that the latter claim is true. The facts
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that h′(b) < 0 ∀b ∈ [0, 1], and that limb↓b h(b) = ∞ indicate that h(b) exhibits a
saltus at b = (b). Since LHS(0) = −1

1+γ − 2
2−γ < 0 and due to the fact that the LHS

is strictly monotonically increasing ∀b ∈ [0, 1], the values of LHS and RHS can only
be equal for one single value of a. These arguments are illustrated in Figure 8. This

  RHS 

1/(1-γ)>1 

0   
b (=a2) 

-2/(2-γ)<0 LHS 

RHS 

b(=a2) 1 
Inflection Point 

Figure 8: Existence and Uniqueness of an Inflection Point

means that there exists one and only one level of b ∈ [b, 1] such that T ′′(b) = 0.
From the fact that the function is invertible in this range of the support, and since
there is a one-to-one relationship between a and b, we conclude that the function
a(T ) also exhibits exactly one inflection point.

Proof of Proposition 3:

Proof. Note: As long as there is no danger of confusion, we suppress the subscripts
’t’ for generation t for notational convenience (e. g. Tt(at) = T (a), etc.).

Ad (i): Existence of a dynamic equilibrium for the conditional system. Recall
that the locus TT is linear with slope −ρ and values T (a = 0) = T + ρ and T (a =
1) = T . From the proof of Proposition 2 we know that, for any A > 0, the locus
HH (A) is such that lima↓a(A) Tt(a,A) = ∞, and that its value is monotonically
decreasing ∀a > a (A). Hence, if the value of this non-linear relation at a = 1 is
smaller than that of the linear relation of the intergenerational externality, there
must exist at least one intersection by the intermediate value theorem. However,
note that T (1) = e ∀t, and that by assumption e < T . That means the fixed cost for
theoretical education is always lower than any minimum life expectancy, otherwise
theoretical education would never be an alternative, not even for the most able
individual in the world. Hence a dynamic equilibrium exists for every generation t.

Ad (ii): From the proof of (i) and noting that any steady state is characterized
by an interior solution with a < 1, since T (a = 1) = T > e, which in turn implies
that Ht > 0 and Pt > 0 for any t > 0.

Ad (iii): The claims follow from Proposition 2: We know that HH (A) has
always a unique turning point and takes values above and below TT at the extremes
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a (A) and 1. Hence the two curves can intersect at most three times, while they
intersect at least once by (i). Claim ( a) follows from the negative slopes of both loci
that allow to rank steady states. Claims (b) and (c) are true since, in the extreme
equilibria EH and EL, HH (A) intersects TT from above, which means that the
system is locally stable, while the opposite happens in the intermediate equilibrium
Eu, since HH (A) must cut TT from below. Thus Eu is locally unstable. Claim
(d) follows from the fact that if only one steady state exists it must be stable
since HH (A) starts above TT and ends below so it must cut from above. The
concavity/convexity of HH (A) in the stable equilibria is used to identify them
since in case of multiplicity one must be in the concave and the other in the convex
part.

Proof of Lemma 2

Proof. By assumption, δ > 0, φ > 0, and χ > −1 in equation (35), such that
ȦH.t > 0, and AH.t > AH.t−1 ∀t. At−1 and At are linked in an autoregressive way,
and equation (37) is of the form At = (ct−1 + 1)At−1 = dt−1At−1 , where dt−1 =
δHφ

t A
χ
.t−1 + 1 > 1 for any t, since from Proposition 3 Ht > 0 for any t and δ > 0.

This means that the process is positive monotonous and non stationary. Starting
with any A0 > 0 we can rewrite At =

(∏t
i=1 di−1

)
A0, where

(∏t
i=1 di−1

)
> 1 and

limt−→∞
(∏t

i=1 di−1

)
=∞.

Note: If there is TFP growth also in the P -sector, it is sufficient for the
argument to hold to assume that δ > δP ≥ 0, φ ≥ φP and χ ≥ χP in equation (35)
and footnote 21. Then, the relative increment to TFP each period is larger in the
H-sector, and the claim holds for identical initial values. For higher initial values
of AP it only holds after sufficiently many periods (generations) have passed.

Proof of Proposition 4

Proof. As in the proof of Proposition 2, solve equation (27) for T (a) to get:

Tt(at) =
e

1− g(at)
Ωt

. (44)

The claim follows by partial derivation of equation (44), ∂
∂Ωt

Tt(at) = − g(at)e

(Ωt−g(at))
2 <

0 ∀at ∈ [at, 1].

Proof of Proposition 5:

Proof. Claims (i) and (ii): Consider Equation (44), and denote denote the deriva-
tive HH ′(A) = ∂Tt(at,At)

∂at
. From proposition 2 we know that HH ′(A) is U-shaped

and takes infinite value at the extremes of the support {a (At) , 1}, with a unique
minimum corresponding to the inflection point of HH (At). Existence of at least
one dynamic equilibrium has been shown in Proposition 3. Hence, there exists an
initial level A0 sufficiently small such that only one equilibrium EL (A0) exists. To
see that this equilibrium is of type L, note that if A0 −→ 0, then the loci HH (A)
and TT (which has slope equal to ρ) can cross only once for a level a close to 1
since: limA0−→0 a (A0) = 1. Also along HH (A) the limA0−→0

∂T0
∂a0

= ∞ > ρ; thus
∀a0 ∈ [a (A0) , 1] and HH ′ (A0) has value always larger than ρ. This is illustrated
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in Figure 9. Remember that δTt(at,At)
δaAt

< 0 ∀at ∈ [a (At) , 1]. As time passes, rel-
ative productivity At increases, as shown in Lemma 2. Hence, ∀t > 0 the locus
HH (At) lies below the locus HH (A0) while the locus TT is unchanged. Both
curves necessarily intersect for aL (At+1) < aL (At).

For illustrative purposes, continue with the Proof of Claim (v): The locus
HH (A) becomes L-shaped as A gets large, and exhibits infinite value at a = 0 and
value e elsewhere. The limA−→∞ T (a,A) = e, ∀a ∈ (0, 1]. Since a (∞) = 0, and
T (a,A) =∞ for any A, then T (0,∞) =∞. This means that, eventually there will
be a unique equilibrium with aH

t close to zero. Existence of another equilibrium
can be ruled out by contradictions since it would imply that HH (At) > ρ for
some a < aH

t which is impossible due to the previous limits. Hence, from a certain
generation onwards there exists a unique high type equilibrium EH .

  |HH’| 
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   at
1(ρ) at’

I  at
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Figure 9: Emergence of Multiple Equilibria

Proof of Claims (iii) and (iv): Obviously, the transition from a unique dynamic
equilibrium EL to a unique dynamic equilibrium EH , the system must pass a phase
characterized by multiple steady state equilibria. As generations pass we have from
(41):

∂

∂Ωt

∣∣∣∣∂Tt(at, At)
∂at

∣∣∣∣ = −Ωt + g(at)− 1(
1− g(at)

Ωt

)3

Ω3
t

g′(at)e
1
Ωt

< 0 ∀at ∈ [at (At) , 1] . (45)

Also limA−→∞
(

∂Tt(at,At)
∂at

)
= 0 ∀a �= 1 and a �= 0. Hence, as shown in Figure 9, the

locus HH ′ (A) shifts down monotonically. Its value eventually converges to zero in
the interior of the bounded support as A −→ ∞. From Proposition 2 we know that
the locus HH ′ (A) has a unique minimum corresponding to the inflection point of
HH (A). Denote the ability threshold of the inflection point as aI

t for any t.
Thus the full system passes from a series of unique equilibria EL, character-

ized by concavity of HH (A) to a series of unique equilibria EH , characterized by
convexity of HH (A). By continuity the dynamic equilibrium must, at the certain
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point be characterized by the tangency between the two loci in the inflexion point
of HH (so that HH (A) is locally concave and convex).

Since as a consequence of Lemma 2 A grows monotonically and without bound
as generations go by, and due to the resulting downward shift of HH ′ (A), there ex-

ists a t′ < ∞ such that: ∂Tt′ (a
I
t′ ,At′ )

∂at′
= HH ′(at′ , At′) = ρ. For any t > t′ there exist

two levels of a: a1
t (ρ) < aI

t < a2
t (ρ) such that:

∂Tt(a
1
t (ρ),At)
∂at

= HH ′(a1
t (ρ), At) =

∂Tt(a
2
t (ρ),At)
∂at

= HH ′(a2
t (ρ), At) = ρ. Hence, the locus HH (A) is convex in a1

t (ρ)

and concave in a2
t (ρ) . Also, as the locus HH ′(a,A) shifts down, da1

t (ρ)
dt < 0

and da2
t (ρ)
dt > 0 (see also Fig. 9). Finally, note that limA−→∞ a1

t (ρ) = 0 and
limA−→∞ a2

t (ρ) = 1 since HH
′(·,∞) takes value zero in the interior of the support

as shown previously.
By continuity, as the locus HH(a,A) shifts downward, there exists a t1 such

that:
∂Tt′ (a

1
t1 (ρ),At1 )

∂at′
= HH ′(at1 , At1) = ρ and that HH(at1 , At1) = TT . At t1, a

new locally unstable steady state emerges in which a1
t1 (ρ) = au

t1 , but the system
remains trapped in the locally stable low equilibrium. For any t > t1 the locus
HH (A) shifts further downwards and exhibits three intersections with locus TT .
Now define ∆(t) = a2

t (ρ) − aL
t with ∆(t1) > 0. Now note that a2

t (ρ) < aL
t for

any t > t′, and that ∂a2
t (ρ)
∂t > 0 and limA−→∞ a2

t (ρ) = 1. From the proof of Claims

(i) and (ii) above we know that ∂aL
t

∂t < 0. Hence, ∂∆
∂t < 0 and therefore there ∃

t2 > t1: ∆(t2) = 0 such that: a2
t2 (ρ) = aL

t2 = au
t2 .

During the life of generation t2 there exist only two dynamic steady state equi-
libria with EL

t2 = Eu
t2 . For this generation, HH (at2 , At2) is tangent to TT so that

HH (at2 , At2) is both concave and convex in the equilibrium. However, due to con-
dition (45), the static equilibrium locus HH keeps shifting down, and hence and
∂a2

t (ρ)
∂t < 0 also for t > t2. From this point onwards the concave part of HH (A)

lies entirely below TT , and only one dynamic equilibrium EH remains. For any
t > t2 the dynamic system converges, at a decreasing speed, to a sequence of EH

t

equilibria where aH (At+1) < aH (At) and TH (At+1) > TH (At) since the locus
HH (at+1, At+1) lies always below the locus HH (at, At) while the locus TT re-
mains unchanged. The dynamic equilibrium for t > t2 is characterized by much
lower levels of a and much higher levels of T than before t2. As a consequence, the
adjustment involves rapid reductions in a and increases in T for a few generations
after t2, but the growth rate eventually slows down as the system gets closer to
EH .

Note: The dynamics of the full system necessarily follows the stages described
in the proposition and the actual path just depends on the initial value of A0. If
A0 is large enough for the conditional system to display three steady states, then
the convergence to one of the stable ones would depend just on the initial value
of lifetime duration. If lifetime duration is long enough to bring the system to
the EH equilibrium right from the beginning, then we are considering an economy
that already escaped the low life expectancy equilibrium. Clearly the empirically
relevant initial conditions suggest to choose initial T0 in the area of attraction of
EL.
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