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Abstract

We develop a model of information acquisition in a network where agents
pay for all the information they acquire including those through indirect
links. The cost of information depends on the value of the information itself
and the distance it traverses in the network. We Þnd that when the costs of
information increase with distance, the complete network is the only Nash
network. When cost of information decreases with distance or delay, all
equilibrium information networks are minimally connected, though not all
trees are Nash. We analyze the popular star and chain networks and identify
strict Nash networks. We show that there is almost no divergence between
the efficient and equilibrium information networks. We explore the implica-
tions of a spatial model and information decay and discuss the relationship
with experimental evidence.

JEL ClassiÞcation: D82, D83
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1 Introduction

Communication forms one of the major pillars of all societies and economic
systems. It leads to the dissemination of information, helping well informed
agents make better decisions. The problem of constructing a rational eco-
nomic order as Hayek (1945) says: �If we possess all the relevant information,
. . ., the problem which remains is purely one of logic.� Often such commu-
nication takes place through a network of bilateral relationships between
the participants. This paper develops a model of the formation of infor-
mation networks where agents pay for all the information acquired through
the network. The actions of agents consists of choosing their link partners
resulting in different network conÞgurations. Network structure determines
the payoffs and hence the set of stable and efficient networks.

Road building in the ancient empires provides the earliest example of
information networks. The legendary Roman roads were intended for the
quick movement of troops, couriers carrying information and government
officials. Casson (1994) attributes the rise of the Assyrians from 900 to
612 B.C. to their network of roads, superior organization and discipline.
The Persian empire which was founded approximately half a century later
greatly surpassed the Assyrian kingdom in its geographic extant. Casson
(1994, pg. 53) explains that one of the secrets of their success was swift and
sure communication between the capital and the most distant centers. Their
�royal road�, maintained primarily for government couriers but open to all,
ran from Sardis near the east coast of the Mediterranean, some 1600 miles
to Susa the Persian capital, not far from the head of the Persian Gulf. The
Persian dispatch service was one of the most efficient arms of the state. The
mounts for the service were supplied by the king, its riders formed an elite
unit, and the administrative head of the service was one of the government�s
high dignitaries.

Governments however, were not the only ones to build these networks.
Medieval trading communities often had their own informal networks for
the dissemination of information. The Cairo geniza documents have pro-
vided a wealth of information about such networks.1 Greif (1993) shows
that the Maghribi traders relied on such a network to obtain information

1Amitav Ghosh in his book In an Antique Land (1994) traces the life of a slave through
letters between merchants in Cairo and Mangalore (India) via Yemen. The bulk of infor-
mation in such letters was about prices, proÞts and execution of orders as the merchants
acted as agents for each other.
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about far-ßung markets and ensure contract enforcement among trade part-
ners located in distant lands. The traders behaved as a coalition that meted
out collective punishment for dishonesty by an agent.

The advent of new means of communication has always resulted in the
growth of economic activity. Railways helped link the two coasts of the
continental United States leading to an increase in trade opportunities (see
for example Stover (1999)). The interlinked system of national highways
dramatically increased the mobility of goods and services in the post-World
War II United States. In her book on the social history of American tech-
nology, Cowan (1997) shows how economic activity received a boost with
the development of the telegraph, telephone, wireless and fax.

Indeed rapid technological advances in recent years such as the Internet
and wireless communication have created a global web which facilitates rapid
transmission of information in a manner that is hitherto unprecedented. The
Internet can be used to make payments, trade stocks, check the weather, ex-
press opinions, listen to music and buy or sell a wide range of products. Law
enforcement officers use it to catch criminals while members of churches,
clubs and community groups keep in touch with each other via email. The
biggest impact on the economy can be attributed to the efficiency gains
from B2B (business to business) and B2C (business to consumers) transac-
tions. In a recent study Litan and Rivlin (2002) Þnd that it has a signiÞcant
impact (0.25-0.5% annually) on US productivity growth while other studies
have shown strong synergies between education, life expectancy, income and
such information networks (International Telecommunications Union, 1999).
Very little of the research in this area however, takes the motivations of the
individual participants in to account. Our paper examines the formation of
information networks by focusing on the incentives of individual agents in
the network.

Information networks were Þrst analyzed by graph theorists in the con-
text of gossip and broadcast problems.2 In a gossip network every individual
posses a unique piece of gossip which needs to be communicated to the others

2The use of networks as an institution to study human interaction was pioneered by
sociologists in the 1960s. Milgram (1967) showed that on average people, regardless of
whether we consider farmers in Nebraska and stockbrokers in Boston, have six degrees of
separation. Since then such models have gained wide acceptance and have been used to
study diverse social phenomena ranging from job-referral networks (Granovetter (1974)
and Montgomery (1991)) to power within groups (Markovsky, Willer and Patton, (1988)).
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(Baker and Shostak (1972)). In the broadcast version on the other hand, one
person wishes to communicate information to all others in the network. A
survey of this literature, including the basic problem and its extensions can
be found in Hedetniemi et al. (1991). The focus of these models is mainly
on some aggregate network criteria such as the minimum number of links
needed to ensure that the gossip reaches everyone, or the minimum num-
ber of rounds required before all members of the network hear the gossip.
Similar considerations predominate the broadcast models. This literature
rarely considered the costs of the links or individual payoffs. In other words,
strategic interactions are conspicuously absent from this work.

Jackson and Wolinsky (1996) study strategic behavior in networks using
an equilibrium concept called pairwise stability.3 Soon after the notion of
Nash networks was introduced in a paper by Bala and Goyal (2000a; hence-
forth [BG]). The model investigates both static as well as dynamic network
formation. The basic structure is similar to the connections model of Jack-
son and Wolinsky (1996), but relies on Nash equilibrium as the stability
concept.4 Link formation is unilateral with the initiating player incurring
all the costs of establishing the link. Further, a link can only be broken by
the initiating player. As in the previous model, if player i has a link with
player j, then i can access j�s information as well as the information of all
the other players j is linked to without having to pay for the indirect links.
The paper analyzes information ßow in a directed and undirected network
both in the presence and absence of information decay.

Our paper builds on the work on Nash networks by Bala and Goyal
(2000a) and focuses on the structure of an information network with agents
paying for all acquired information. We assume that every agent has a
unique piece of information with some intrinsic value and would like to
gather as much information as possible by linking to other agents. Our
other modeling assumptions however are quite different from those in the
models mentioned above. Unlike much of the earlier work, we incorporate
an element of realism by allowing each agent to have a different endowment

3Aumann and Myerson (1988) is perhaps the Þrst to introduce a strategic version of
the problem but does not provide a complete charecterization of the solution. An excellent
survey of the pairwise stability literature can be found in Jackson (2001). Also, Watts
(2001) and Jackson andWatts (1998) extend the basic model by studying dynamic network
formation.

4A third strand of the literature looks at network formation using cooperative game
theory. For a comprehensive survey see Slikker and van den Nouweland (2001).
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of information. Secondly, information seekers have to pay for all the infor-
mation they acquire through the links. We believe that many of the results
in the earlier papers are due to the fact that information obtained through
indirect links is free. In order to understand the implications of this exter-
nality, we require agents to pay for all the information they receive, including
those acquired through indirect links. Since the externality is stronger in the
case of two-way ßow, we analyze the bi-directional information ßow model.
Third, instead of using an exogenously given link cost, we develop an alter-
native cost formulation with two components. The Þrst component requires
that costs be in direct proportion to the value of information. In other
words, information of higher value costs more. The second component al-
lows costs of information to vary with the distance it travels in the network.5

We consider two possible cases of relating costs with distance. We now
discuss each of these and explain under what situations these possibilities
can arise. One allows information coming from a greater distance to be
more expensive. This is applicable to information networks where physical
distance is relevant for exchanging information. For example, international
phone calls cost more than domestic ones. It is also applicable to the exam-
ples of historical information networks mentioned at the beginning of this
section. Given that merchant ships served as the means of communication
between trading partners, greater distance meant greater costs. The alter-
native cost formulation allows for the cost of information to vary inversely
with distance. This implies longer paths in the network lead to informa-
tion delays or waiting time and hence are cheaper. This cost formulation is
especially appropriate for some types of electronic networks. Network appli-
cations can be characterized by their differing Quality of Service (QoS) re-
quirements from the underlying network architecture, for example Constant
Bit Rate (CBR) traffic streams or Variable Bit Rate (VBR) applications
such as real-time video with high bandwidth and low delay requirements.
While the technological aspects of this problem have been extensively stud-
ied, there is a growing literature on pricing in computer networks (see for
instance Sairamesh et al. (1995)). Recent emphasis has been placed on the
examination of cost formulations that enable users to select from a range
of differentiated services. With the advent of cost based service provision-
ing network users are expected to pay for or at least share the cost of each
network resource they utilize. For example, Herzog, Shenker and Estrin

5Distance based cost functions are also used in a paper by Johnson and Gilles (2000)
who analyze the connections model of Jackson and Wolinsky (1996) in a spatial context.
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(1997) use cooperative game theory to suggest a cost based pricing strategy
for the Internet. Network users can be viewed as independent agents who
are maximizing their payoffs in terms of costs and QoS beneÞts by selecting
appropriate sets of users with whom to share network resources. This situa-
tion is modeled by our second cost formulation where network users depend
on strategic reasoning to form an equilibrium network that maximizes their
payoff. In particular this can be used to determine the equilibrium network
architecture for users subscribing to data transfer services. Data traffic ac-
counts for a signiÞcant proportion of commercial traffic on the Internet. The
vast majority of this traffic is classiÞed as Availiable Bit Rate (ABR) whose
bandwidth requirements are elastic and suitable for applications like email,
Þle transfer or web browsing. These applications cannot tolerate any packet
(or information) loss but have ßexible delay or bandwidth requirements.
Therefore, as in the model, users will accept the routing of their data via
longer paths in exchange for lower costs. The paper investigates the effect
of this property on network architecture.

We Þnd that when information costs increase with distance the only Nash
network is the complete network. But when information costs decrease with
distance, we Þnd that equilibrium information networks have a minimally
connected structure. We investigate these equilibrium trees further using
a speciÞc payoff formulation. We Þnd that the center-initiated star contin-
ues to be Nash along with different types of chains. Chain networks are
strict Nash and the only subgame prefect equilibria. Interestingly, when all
agents have identical values a Nash network will never contain a periphery-
initiated star as a subgraph, although this is possible with heterogeneity in
the agents� information endowment. With heterogeneous information en-
dowments a periphery-initiated star is in equilibrium only when the player
set is small. We also identify the general conditions under which all Nash
networks will be minimally-connected. We Þnd that in the absence of in-
direct link externalities, Nash and efficient information networks have the
same architecture, though the two networks may not coincide.

Section 2 describes the basic model. In section 3 we analyze the stability
and efficiency properties of networks. Section 4 summarizes the main results,
explores alternative formulations and has comments on recent experimental
evidence on network formation.
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2 Model

Let I = {1, 2, . . . n} be the set of agents with n ≥ 3. For ordered pairs
(i, j) ∈ I×I the shorthand notation ij is used. Individuals in the model are
information seekers who gain utility from having more information. Each
individual i ∈ I has an information endowment of value Vi ≥ 0, and Vi 6= Vj .
The possibility that agents can have different values of information is moti-
vated by the idea that not all information has the same value. It describes
the heterogeneity of agents� endowments.6 All agents are aware of the value
of the non-rival information possessed by other agents. Access to the infor-
mation possessed by other agents can be gained by forming links with them
and through links established by other connected agents. Agents simultane-
ously form links with other individuals resulting in a network that allows for
the two-way ßow of information between them. Thus each agent�s strategy
consists of deciding the set of agents with whom to link.

Strategies. Formally, a strategy of agent i ∈ I is a vector gi =
(gi1, gi2, . . . , gii−1, gii+1, . . . , gin) where gij ∈ {0, 1} for each j ∈ I\{i}. If
i forms a link with j, then gij = 1, and if no link exists between i and j
then gij = 0. Links allow information to ßow both ways, i.e., if gij = 1 then
information can ßow from i to j as well as from j to i.7 If there is no link
between two agents, then information does not ßow between them. In this
paper we restrict attention only to pure strategies and fully reliable links.

The set of all strategies of individual i is denoted by Gi with gi ∈ Gi
being the generic member. The set of all possible networks is denoted by
G = ×ni=1Gi. A strategy proÞle represented as g = (g1, g2, . . . ., gn) ∈ G
is equivalent to a (directed) network, where each vertex depicts an indi-
vidual and each link forms an edge with the direction pointing towards the
person with whom the link was established.8 We now introduce some graph-
theoretic deÞnitions used in the paper.

The graph-theoretic concepts deÞned here are based on West (1996) and

6This is contrast to heterogeniety in information. Note that when Vi = V for all
i, making the endowments equal in value, each agent�s information is still unique and
therefore heterogeneous.

7Similarly information also ßows both ways when gji = 1. A directed edge indicates
the initiating agent for a particular link and not the direction of information ßow as in
some directed network models.

8At the risk of abusing notation we will use g to denote both the directed and associated
undirected graph and use other labels to distinguish between different directed graphs.
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are deÞned on the undirected graph. A walk is a sequences of vertices and
edges in a graph such that each vertex belongs only to the preceding and
succeeding edge. In a directed graph this must follow the direction of the
arrows. A (open) walk with no repeated vertices is called a path. A network
g is said to be connected if there is a path between any two agents ij in the
network. We use g(i) to denote the connected subgraph to which player i
belongs. A connected graph with no cycles (or loops) is called a tree.9 A
leaf node is a terminal vertex. Let lij denote the distance from i to j. Then
the diameter D of a graph is the maximum distance lij over vertex pairs ij.
A network is said to be super-connected if it is still connected after the
deletion of any link. We now deÞne some of the common types of networks
that arise in our paper.

An empty network is one where gij = 0 for all pairs ij and a complete
network is a graph in which every player has a direct link to every other
player. A center-initiated star is an acyclic network where one agent (the
central agent) establishes the direct link with all the other (n − 1) agents.
Similarly, a periphery-initiated star is the acyclic network where all the
other (n−1) agents initiate exactly one link − with the central agent, while
a mixed star is a combination of these two types of stars with the central
agent initiating some links and the peripheral agents initiating the others.
A connected acyclic network with exactly one path is called a chain. Fi-
nally, two networks g and g0 are equivalent if g0 is obtained as a permutation
of the strategies of the agents in g. The equivalence relation partitions G
into classes and each class is referred to as an architecture. We next deÞne
the payoff function of each player with players paying for all information −
those obtained through direct as well as indirect links.

BeneÞts. The beneÞts of player i are given by the total information
that she can access from the connected component of the network to which
she belongs, i.e., Bi(g) =

P
j∈g(i)

Vj . The process of information transmis-

sion is assumed to be frictionless − information does not decay as it travels
through the network. Also let

nP
i=1
Vi = Λ, where Λ is Þnite.

Costs of Information. Let dij be the geodesic distance between agent
i and j, i.e., the length of the shortest path between i and j. In other words,

9Note that our deÞnition of a tree coincides with the notion of a minimally connected
network described in [BG] for their two-way information ßow model.

7



distance between agents is measured in terms of the graph itself, and not in
terms of any externally deÞned space.10 The cost paid by agent i to obtain
the information possessed by agent j is given by φi(Vj , dij).11 We now list
the different properties of the cost function.

1. Property HD: We assume information of higher value is more expen-
sive, i.e.,

φi(Vj , dij) > φi(V
0
j , dij) where Vj > V

0
j .

We allow distance to inßuence costs in two possible ways. These two proper-
ties describe alternative notions of distance that are appropriate in different
types of situations.

2. Property LE: Information that comes through longer paths in the
network is more expensive.

φi(Vj , dij + 1) > φi(Vj, dij).

3. Property DC: Information coming through shorter paths in the net-
work is more expensive.

φi(Vj , dij + 1) < φi(Vj, dij).

Property LE is more appropriate in the context of physical distance, where
it is usually more expensive to obtain information from places that are fur-
ther away. International phone calls and mail are usually more expensive
than their domestic counterparts. Property DC serves as a proxy for sit-
uations where distance is correlated with delay. Information that comes
through longer paths involves a longer waiting time and hence is cheaper.
This property is appropriate for information obtained through electronic
networks with ABR traffic. Alternatively it describes the fact that ordinary
mail which is cheaper than express mail is often routed through longer routes
or tickets involving longer travel routes are cheaper.

Our formulation of the costs of information differs signiÞcantly from the
one used in [BG] and Jackson and Wolinsky (1996). Here agents incur a sep-
arate cost for each piece of information they acquire. This cost depends on

10See Johnson and Gilles (2000) for spatial or geometric distance considerations.
11Cowan (1997) provides an interesting historical example of such link costs in the US.

Realizing the importance of roads, while lacking revenues, local governments and often the
citizens themselves in the early 1800s, made roadwork a condition of property ownership.
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the value of the information as well as the distance between agents exchang-
ing information, i.e., on the use of the network by the agents. In the two
papers mentioned above, each direct link has a given (identical) cost that
is independent of the value of information and network distance. Also note
that in our model links themselves are costless. Consequently, an agent�s
strategy has does not have the same implications in our model. Different
network structures affect the cost of each piece of information by altering
the geodesic distance between agents. A strategy in our context thus may
be interpreted as the act of establishing the infrastructure for information
networks and may provide a better interpretation of examples like phone
calls.

Duplication Costs. Since links themselves are costless in the model,
there is no constraint on the duplication of links. These additional links do
not help in the transmission of information. Moreover, they are of no strate-
gic importance and can generate uninteresting multiple equilibria. Link du-
plication will result in undirected architectures that will just be a replica
of the directed equilibrium networks. Consequently, to eliminate situations
where players establish bidirectional links with each other, we impose a
penalty for duplication. Let ∆gi = {j : gij = 1 and gji = 1} be the set of
agents with whom player i has double links in network g. Each double link
imposes a small positive penalty ε > 0 (ε ¿ min{Vi}) on both players.12
Note that the penalty needs to be imposed on both players as strategies are
chosen simultaneously.

Payoffs. The payoffs to player from the network g are given by

Πi(g) =
X
j∈g(i)

(Vj − φ(Vj , dij))− ε |∆gi | (1)

where i 6= j. This payoff will of course depend on how the cost function
varies with distance, i.e., whether it has the DC or LE property. We also
introduce a functional form for the payoff function that will be used to
obtain some results and insights in the paper. The payoff to player i from
the network g according to this simple speciÞcation will be given by

12Although the duplication cost may seem like an artiÞcial construct, their sole purpose
is to rule out equilibria that are strategically uninteresting. Also given our interpretation
of strategies, this may be viewed as penalty for wasting resources to establish infrastruc-
ture that remains unused. Link duplication has interesting consqeuences primarily in the
context of reliability problems (see for instance Bala and Goyal (2000b) and Haller and
Sarangi (2001)).
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Πi(g) =
X
j∈I

Ã
Vj − Vj

dij

!
− ε |∆gi | (2)

where i 6= j.13 Note that this payoff function satisÞes properties HD and
DC. In fact, according to this speciÞcation a direct link always gives a payoff
of zero, while the indirect links yield positive payoffs.14 It is this property
of the above payoff function that allow us to focus directly on the signif-
icance of paying for information obtained through indirect links. Observe
also that the cost of information never exceeds its value. This assumption
is maintained throughout the paper. Finally, note that when the network is
connected every individual is able to acquire the information possessed by
all the other players.

Example 1: The following example based on equation (2) explains the
cost model clearly. Let agent i have information of value Vi, i = 1, 2, 3.

Insert Figure 1 here.

The payoffs of the three players are computed as follows:

Π1(g) = V2 − V2
1
+ V3 − V3

2
=
V3
2
.

Similarly, Π2(g) = V3 − V3
1 + V1 − V1

1 = 0 and the payoff of player 3 can be

computed as Π3(g) = V1 − V1
2 + V2 − V2

1 =
V1
2 .

Equilibrium and Efficiency. Given a network g, let g−i denote the
network that remains when all of agent i�s links have been removed. Let
g = gi ⊕ g−i where the symbol ⊕ indicates that g is formed by the union of
links in gi and g−i. A strategy gi is said to be a best response of agent i
to g−i if
13Of course, when gij = 0 (or gji = 0), then no link exists between players i and j and

their beneÞts and costs are both zero.
14Allowing the direct links to have a small positive payoff here does not alter the qual-

itative nature of our results. The crucial assumption here is the fact that shorter paths
cost more. The role of this assumption is discussed in more detail later in the paper.
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Πi(gi ⊕ g−i) ≥ Πi(g0i ⊕ g−i) for all g0i ∈ Gi.

Let BRi(g−i) denote the set of agent i�s best response to g−i. A network
g = (g1, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each
i, i.e., agents are playing a Nash equilibrium. A strict Nash network is one
where agents are playing strict best responses. Also recall that in a Nash
network only the initiating agent can break a link.

The commonly used welfare measure is deÞned as the sum of the payoffs
of all agents. Formally, let W : G → R be deÞned as

W (g) =
nX
i=1

Πi(g) for g ∈ G .

A network g is efficient if W (g) ≥ W (g0) for all g0 ∈ G. We now illustrate
the implications of our cost function through two examples by comparing
the equilibrium outcomes to those of [BG]. Both examples use equation (2)
as the payoff function.

Example 2 (Distance): We Þrst examine the consequences of incor-
porating distance in costs. Hence in this example there is no endowment
heterogeneity or Vi = V for all i.

Insert Figure 2 here.

The above Þgure is a Nash network in the [BG] formulation where each
agent pays a cost 0 < c ≤ V = 1 only for her direct links. However, when

φ(Vj, dij) =
V

dij
, player 3 would be able to minimize her cost by removing

the current link, and choosing either g34 = 1 or g32 = 1, which would keep
one of them at a distance of 3 units. Thus, the above graph is not Nash
for the speciÞed payoff function. But the new tree shown below (Figure 3)
where agent 3 links to one endpoint, is an equilibrium under equation (2)
as well as in [BG]. Thus, even when the value of information is the same for
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all players distance or delay alters the cost of information acquisition and
plays a crucial role in determining the equilibrium.

Insert Figure 3(a) and 3(b) here.

Example 3 (Value of Information): In Þgure 3 assume that Vi = i,
i = 1, 2, 3, 4. We denote the Þrst network by g1 and the second by g2.

First, let the cost of acquiring j�s information be α
1

dij
where α > 0 is a

constant. So, the cost varies only with the distance and not with the value
of information. Under this cost function all players get the same payoff from
both g1 and g2 and each of these graphs denotes an equilibrium network.
Similarly if we apply the cost model of [BG], both these graphs constitute
equilibrium conÞgurations as well.

Now consider equation (2) where higher valued information is costlier.
With this cost function, each player will want to keep the players with larger
values of information as far as possible. The payoff of agent 3 is now higher
in the network g2 where it links to player 2 instead of player 4 because of
the lower costs and the network g1 is no longer an equilibrium, i.e., the fact
that more information costs more is critical. Thus it is easy to see that if
the costs are a function of the value of information and distance traveled
by the information, in equilibrium, the players will have to be careful about
their selection of direct link partners.

3 Equilibrium and Efficiency

This section contains our results. We begin by describing Nash networks.
This is followed by the characterization of efficient networks.

3.1 Equilibrium Outcomes

Our Þrst result pertains to the basic architecture of an equilibrium infor-
mation network. This is followed by an examination of the chain and star
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networks. To obtain a better understanding of the role of value of infor-
mation in network formation we also present results for the case when all
agents have identical endowments of information. Finally we analyze effi-
cient networks. Throughout this section it is assumed that the cost function
satisÞes Property HD.

Theorem 1: Let the payoff function be given by (1). Then, (a) Under
property LE, the (directed) complete graph is the only Nash equilibrium. (b)
Under property DC, every Nash network is either empty or a tree. However,
not every tree is Nash.

Proof: See Appendix.

First, note that the above theorem holds when all agents have identical
values, i.e., the network distance component is the driving force behind this
intuitive result. Since longer paths are costlier, under property LC, every
agent wants a direct link with every other agent and the result follows. Sim-
ilarly, under property DC, direct links and cycles lead to lower payoffs. So
every agent minimizes the number of links she forms which gives us the tree
architecture. Since every Nash network is a tree we know from Cayley�s
formula (West (1996)) that there are a Þnite number of equilibria. Cay-
ley�s formula states that for a vertex set size n there are nn−2 trees and the
last part of the theorem clearly indicates that this formula only provides an
upper bound on the number of equilibria. Not all trees are Nash because
some agent can get higher payoffs by deviating to form another tree. Hence
we now use equation (2) to investigate the equilibrium properties of certain
popular architectures like the chain and star graphs.

Proposition 1: Let the payoffs be given by equation (2) and assume
that player i has value Vi with V1 ≤ V2 ≤ · · · ≤ Vn. Then the following
chains are the only strict Nash networks for k = 1, 2, . . . , n.

Insert Figure 4 here.

Proof: See Appendix.
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While the above conÞgurations are the only strict Nash networks, the
set of chain networks that are Nash includes some other conÞgurations as
well. Consider for instance the assignment of values described above. Then
a chain given by the links g21 = g23 = 1 and gkk+1 = 1 for all k ∈ I\{1, 2} is
also a Nash. Clearly, when Vi = V for all i, any chain is Nash but only the
chain where each player makes one direct link is strict Nash. The formation
of these chains can be interpreted in an alternative way which allows us to
predict the equilibrium outcome in a sequential version of this game.

Remark 1: In a sequential version of this game, (a) When Vi = V for
all i, the chain is the only subgame perfect equilibrium, (b) Under endowment
heterogeneity, the chain conÞgurations shown above (Fig. 4) are the only
subgame perfect equilibria.

Sketch of Proof : Since the paper does not develop the sequential game
formally, we provide only a sketch of the proof. For (a) consider a player k
for whom |g(k)| = n− 1. By Theorem 1 the last player to join the network
will not add any links. Next let |g(k)| < n−1. If k belongs to the connected
component, then by Theorem 1 player gik = 0 for i ∈ g(k). Recall forming
more than one link reduces payoff and since all players have the same value,
she can form this single link with any j /∈ g(k). Finally, let g(k) = ∅. In this
case player k is better off forming a link to any player in the connected com-
ponent of the network. We now argue that player k will not choose to link
to a player in the middle of the network. Let player k establish a link to a
node j somewhere in the middle of the chain instead of either terminal node.
The chain is now divided into two parts around node j which we denote by
gA and gB. If k severs the link to j and instead connects to the node at the
extreme end of gA (without loss of generality), then the distance to all the
players in gB will be increased while the distance to those in gA will remain
the same. Since, all the values are equal, this change will increase the total
payoff of k and players will always be better off by removing a branch and
forming a bigger chain. Hence the result in (a) follows. The proof of part
(b) is similar.

Chain graphs of the above kind are not the only Nash trees possible.
We now analyze the popular star conÞguration. Their appeal lies in their in
simple structure and fact that not only do they frequently arise in informa-
tion networks, but are also a commonly observed social phenomenon (see
for instance Rogers and Kincaid (1981) and Wellman and Berkowitz (1988)).
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Proposition 2: Let the payoffs be given by equation (2). Then (a) The
center-initiated star network is always Nash. (b) The periphery-initiated
star can never be Nash for n ≥ 6.

Proof: See Appendix.

It is easy to see that the center-initiated star is Nash even if all agents
possess the same value of information. However, it is not strict Nash since
the central agent gets a payoff of zero in equilibrium. The above proposition
also identiÞes a sufficient condition under which periphery-initiated stars
cannot be sustained as equilibrium networks. The intuition for this is fairly
straight-forward. When the number of players in the game increases, the
amount of information at stake also increases and players in the network
now wish to increase their distance from other players in the network. This
creates an incentive to access the center of the star through indirect links,
which increases distance to the other players, thereby increasing payoffs.
However, for n < 6 it is easy to verify that periphery-initiated stars can
indeed be Nash. We show this next through an example.

Example 4:When n < 6, periphery-initiated stars can be Nash. Con-
sider a periphery-initiated star with n = 4. Let V1 = 1, V2 = V3 = V4 = 6.
Player 1 who is the central agent will not add any links. But each of the
peripheral agents can delete their current link and form a link to some other
peripheral agent. Since each peripheral agent has the same value, they will
all behave identically. In the periphery-initiated star, each of them has a cost
of 1+262 = 7. If one of them deviates to the alternative strategy of linking to
another peripheral agent, then the new cost will be 6+ 1

2 +
6
3 = 8

1
2 which is

higher than the previous one. Hence this particular star is in equilibrium.

From Proposition 2 it is also clear that mixed stars networks can only be
Nash when both conditions (a) and (b) of the above proposition are satisÞed
simultaneously. Consequently, the agent with the lowest value must always
be the central agent in such a network and the number of peripheral agents
initiating links must not exceed Þve. We now examine the formation of pe-
riphery initiated stars in a network where all agents have identical values.

Proposition 3: When Vi = V for all i, and equation (2) is satisÞed,
a Nash network will never contain a periphery-initiated star (Fig. 5) as a
subgraph.15

15We consider a graph to be a star if there are at least 3 peripheral nodes connected to
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Insert Figure 5 here.

Proof: See Appendix.

From Proposition 3, we know that Vi = V for all i, Nash networks can
consist only of center-initiated stars and chains. One such equilibrium net-
work is a the caterpillar. A caterpillar is a tree in which each vertex has at
most two non-leaf neighbors. Note that under endowment heterogeneity, the
chain subgraph of the caterpillar will have to satisfy the conditions identiÞed
in Proposition 1. However, not all concatenations of center-initiated stars
and chains will be in equilibrium. The network shown below is composed of
chains and center-initiated star and yet is not in equilibrium.

Insert Figure 6 here.

In Figure 6 player a would be better off by linking to player b. Due to this
new link, the number of agents that are at maximum distance from agent
a is maximized and the of number agents at minimum distance is minimized.

3.1.1 Costly Direct Links

Suppose we now assume that each direct link has cost c > 0 along with
property HD and LE or DC. The resulting model will be a merger of Bala
and Goyal and our proposed model. Let µdi (g) be the set of agents with
whom player i has a direct link. Then the payoff to player i from the
network g is given by

Πi(g) =
X
j∈g(i)

(Vj − φ(Vj , dij))− c
¯̄̄
µdi (g)

¯̄̄
(3)

a central node.
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We can write a similar version of equation (2) with direct link costs as

Πi(g) =
X
j∈I

Ã
Vj − Vj

dij

!
− c

¯̄̄
µdi (g)

¯̄̄
. (4)

Remark 2: Relationship between equations (1-2) and payoffs with costly
direct links. Note that the payoff functions above do not require a duplica-
tion penalty since each direct link is now costly. Since the proofs are similar,
we only state which of our current results hold under the new payoff speci-
Þcation. We Þnd that Theorem 1(b) still holds and Theorem 1(a) holds as
long as 0 < c < φ(V, 2)−φ(V, 1).16 Our result about periphery-initiated star
still holds while a center-initiated star will no longer be Nash. Similarly as
long as links formation is beneÞcial our result about chain networks is also
valid. Next we identify general properties of networks under which a Nash
network will always be a tree.

Remark 3: Consider any model where the cost of information never
exceeds its value and links are fully reliable. The (undirected) Nash network
will always be a tree if (1) the information ßow is two-way, and (2) the cost
of information is more if it comes via a shorter path. Since the cost of infor-
mation never exceeds its value, a player�s total payoff never decreases as she
gets more information. This ensures that every Nash graph is connected.
The two-ßow and full link reliability ensure that no links need be duplicated.
Next suppose that the Nash network g is a tree but the cost of information
is less if it comes through a shorter path. In this case it is easy to see that
every node will form a direct link with every other node leading to a com-
plete network in which no player can be worse off. Clearly, the network g
could not have been Nash. Thus a Nash network will not contain any cycles.
Hence every Nash network satisfying the above two conditions will be a tree.

While these conditions apply to our model, they also hold for other spec-
iÞcations of the payoff function including the one in [BG]. In their model
direct links are costly while indirect links are free, i.e., information that
comes through the shorter path is more expensive. Note that the class of
Nash networks in [BG] would be much more restricted if the costs of di-
rect links would vary proportionately with different values of information.
On the other hand in Bala and Goyal (2000b) we Þnd super-connected net-
works when the size of the player set increases and the costs of information

16Thus the minimally connceted nature of Nash networks shown in [BG] seems to be a
fairly robust phenomenon.
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are not very high. Here too information obtained through indirect links is
free, but links are prone to failure with a constant probability. As the size
of the networks increases, the value of information coming through shorter
paths now decreases instead of being constant as in [BG]. This leads to the
super-connected networks. Therefore it is also not surprising that in Haller
and Sarangi (2001) where links can have different failure probabilities, such
super-connected networks may not arise. Alternatively as the cost of infor-
mation increases with distance, i.e., expected indirect beneÞts decrease when
the size of society increases as in Bala and Goyal (2000b), super-connected
networks will emerge. Hence in Theorem 1 as longer paths always increase
the cost of information, we get the limiting case of super-connectedness −
the complete network.

3.2 Efficient Networks

We now examine network structures that maximize the sum of the payoffs
of all agents.

Theorem 2: Let the payoff function be given by (1). Then, (a) Under
property LE, the (directed) complete graph is the only efficient network. (b)
Under property DC, the chain is the only efficient network.

Proof : See Appendix.

The above statements are also true for the case when Vi = V for all i ∈ I.
In order to better characterize the chains obtained under Theorem 2(b), we
now introduce a multiplicative cost function. Let φ(Vj , dij) = ρ(Vj)γ(dij),
where ρ(.) is an increasing function of V and γ(.) is a decreasing function of
dij. Hence the payoff function can be written as

Πi(g) =
X
j∈g(i)

[Vj − (ρ(Vj)γ(dij))]− ε |∆gi | . (5)

Clearly, the payoff function described in (2) is a special case of this. Using
(5) we can obtain a chain which allows us to specify the precise location of
the agents in the network.

Proposition 4: Let the payoff function be given by (5) and assume that
player i has value Vi with V1 ≤ V2 ≤ · · · ≤ Vn. Then the chain shown below
(Fig. 7) is efficient.
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Insert Figure 7 here.

Proof : See Appendix.

Theorem 2(b) tells us that efficient networks are also chains. The sim-
ilarity between the strict Nash and efficient architectures stems from the
fact that in our model every agent pays for all the information they acquire.
The crucial difference with the earlier models is the fact that the externality
derived from the free indirect links is absent in our formulation. Therefore
depending on the cost function we Þnd that efficient networks, like Nash net-
works, are either complete or minimally connected. Further, when all agents
have identical values of information, the set of Nash networks is the same as
the efficient networks and when agents have different values of information,
the two sets do not always coincide because the value of information affects
the location of agents.

4 Discussion

In this section we summarize the main Þndings of this paper and explore
some further modeling ramiÞcations. We also compare our model with some
recent network experiments.

Our Þrst conclusion is that even in the absence of free indirect beneÞts
there can be a conßict between stability and efficiency. Although the chain
architecture is both stable and efficient, due to the heterogeneity of agent
endowments, the two networks are not identical. Hence when all agents have
the same value of information the Nash network coincides with the efficient
one. Second, we Þnd that the properties LE and DC lead to completely
opposite equilibrium networks. Hence we examine an alternative distance
metric by introducing a spatial formulation.

Spatial Considerations. Following Johnson and Gilles (2000) we will
now assume that the agents have a Þxed location on R. Player i ∈ I is
located at xi and the set X = {x1, . . . , xn} ⊂ [0, 1] with x1 = 0 and xn = 1
represents the spatial distribution of players. Without loss of generality as-
sume that xi < xj if i < j. This implies that for all i, j ∈ I the distance
between players i and j is given by dij = |xi − xj| ≤ 1. Thus, instead of a
network based distance metric, we now have costs dependent on the spatial
distance between players. The results obtained under property DC remain
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unaltered since incentives of agents do not change. Next consider the cost
function with the LE property. Since the agents are arranged on R, for any
three agents i < j < k, we have dij + djk ≥ dik. Consequently, the complete
graph will still be Nash but other networks like the chain can now also be
supported as Nash. The large set of stable networks in Johnson and Gilles
can therefore be attributed to the indirect link externality. We next discuss
the role of agent heterogeneity for the model.

Endowment Heterogeneity. The value of the endowment clearly
plays no role when costs satisfy the LE property. For the DC cost model,
when the set of players is large, it turns out that there is no qualitative
difference between assuming heterogeneous endowments or Vi = V for all
i ∈ I. Heterogenous endowments only affect the location of agents in the
efficient and stable networks and at best can eliminate the co-ordination
problem associated with the equal value of information model. However,
when the player set is small, under the DC cost model the value of en-
dowments seems to play a role. When Vi = V , we Þnd that a periphery
initiated star can never be Nash, but with heterogenous endowments it is a
possibility as shown in Example 4. This is because under certain values of
heterogeneous endowments it is possible to sustain the periphery-initiated
star as a Nash by assigning the role of the central agent to the lowest value
agent, a possibility that does not exist is the context of the equal values
model.17 However, as the player set increases, increasing the total value of
net beneÞts at stake, agents no longer wish to have all the other agents at
a distance of two units. Longer path lengths can be used to reduce total
costs (by increasing the distance to other high valued agents), leading to a
break down of the periphery initiated star. This is similar to the argument
in Bala and Goyal (2000b) where in the presence of uniform probabilities for
link failure equilibrium networks become super-connected with an increase
in the player set. The intuition there is that as the value of information
at stake increases, agents try to insure themselves against link failure by
forming alternate paths.

Information Decay. We now examine the implications of information
decay, i.e., the value of information decreases as it traverses through the
network. Clearly, this will create an incentive for the agents to form shorter
paths. Under the LE property, information decay reinforces every agent�s
incentive to establish a direct link to all the other agents leading to the

17Note that Example 4 is also not valid for V < 3
2
.
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complete network. To study the impact of information decay for the DC
cost model we now introduce a variation of the payoff function in given by
equation (2). Let

Πi(g) =
X
j∈I

Ã
Vj(1− δdij)− Vj

dij

!
− ε |∆gi | (6)

where δ ∈ (0, 1) is the decay parameter. A direct link now yields a payoff of
−δVi and as before this functional form enables us to focus on the indirect
links.18 In contrast to our earlier Þnding we now show that under equation
(6) a periphery-initiated star will indeed be a Nash over a range of the decay
parameter.

Proposition 5: Let the payoffs be given by (6). Then the periphery-
initiated star with the central agent having minimum value is Nash for
1/6 < δ ≤ 1/4.

Proof : See Appendix.

In the absence of decay, the periphery-initiated star fails to be Nash
when the player set increases, since agents wish to increase their distance
from other high endowment agents. However, decay acts as a countervailing
force to this cost based incentive. We Þnd that since longer paths decrease
the beneÞt obtained from the information itself, for certain values of the
decay parameter agents continue to access other high information agents
through the central agent. Thus while decay is of no consequence under the
LE cost model, it can lead to different equilibrium networks under the DC
cost model.

Network Experiments. In recent years there have been a number
of experiments that take into account strategic behavior in the formation
of networks (see Kosfeld (2002)). Here we will focus on two experiments
that are directly relevant to our model. First, the ubiquitous nature of
the center-initiated star requires some comment especially in the context
of recent experimental evidence (see Falk and Kosfeld (2002)). They Þnd
that despite being the (strict) Nash, subjects do not favor centre-sponsored
star of the [BG] model. They claim that this is because of the inequality
inherent in this architecture since the central agent bears all the costs of

18This payoff function is purely for illustrative purposes and a complete investigation of
the decay model is outside the scope of this paper.
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network formation. In our model while the links themselves are costless for
this network, the central agent still has the lowest payoff. When all values
are equal to V , the central agent gets zero while all the others get (n− 2)V2
and in the [BG] model the corresponding payoffs are (n − 1)(V − c) and
(n− 1)V . Thus relative inequality in our model is lower compared to [BG]
when c > V

2 . Further, if relative inequality is indeed the correct explanation
(and we believe so) it would be easy to verify this by introducing heteroge-
nous endowments in the model. If the central agent is given a substantially
higher endowment than the other players, it would be possible to form a
center-initiated star where all agents have the same payoff after the network
is formed.

The Deck and Johnson (2002) experiment tests the Johnson and Gilles
(2000) model using Nash equilibrium instead of pairwise stability.19 Dif-
ferent cost beneÞt parametrization are tested using three institutions. The
Þrst two called �Split� and �Primary� do not allow for indirect beneÞts. In
�Split� the cost of a link is split equally between the two agents and under
�Primary� subjects can submit a bid for some proportion of the cost of the
link. Not surprisingly subjects are able to achieve the Nash and efficient
network, i.e., the complete network most of the times. This is similar to
the LE cost model considered here where indirect links are more expensive.
In the third institution called �Secondary� is subjects are allowed to submit
bids on links in which they are not directly involved. This is a complex insti-
tution that permits agents to cross-subsidize their indirect links. Two main
Þnding emerge from this experiment. First subjects are quite intolerant to
free-riding. This supports the relative inequality idea suggested in Falk and
Kosfeld (2002). As before we suggest that using differential endowments can
provide conclusive evidence to support this hypothesis. The second Þnding is
that under �Secondary� subjects often tend to cross-subsidize indirect links.
Deck and Johnson (2002) suggest that this is an attempt to insure against
the failure of indirect links. We believe an experiment that includes both
costly indirect links like ours, and free indirect links with the possibility of
cross-subsidization, can be used to verify the indirect link insurance hypoth-
esis.

Finally, while reliability and detailed examination of decay may possi-
ble extensions of the basic model, we believe another even more interesting

19The experimental design is quite fascinating with subjects being labelled station man-
agers who must bid on the construction costs of railway tracks.
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problem would be to impose the restriction that each agent could only form
a limited number of links. Such a link formation capacity constraint would
lead to interesting insights on network formation because informationally
advantaged agents will now form links only with other such agents. While
it will lead to minimal network architectures, more importantly, it can lead
to social stratiÞcation based on the information endowment of agents.

5 Appendix

1. Proof of Theorem 1 : (a) Consider a graph g that is not complete. We
show that this cannot be in equilibrium. Let i an j be two agents such that
gij = gji = 0. Then dij > 1. Without loss of generality let agent i form a link
with j, i.e., gij = 1. Now under property LE, we have φ(Vj , 1) < φ(Vj, dij).
Hence g cannot be an equilibrium network. Further, as this is true for all
dij > 1, player i can minimize her costs by establishing direct links with all
the players. Since a similar reasoning holds for all players i ∈ I, the com-
plete network will be the equilibrium network. Finally the link duplication
penalty ensures that this complete graph is a directed network.

(b) First, consider a disconnected network with k components, denoted
as Cj, j = 1, 2, . . . , k. If |Cj | < 2 for all j, a player is indifferent between
forming and not forming links. Consequently, the empty network will be an
equilibrium. Of course this holds when Vi ≤ φ(Vi, 1). However, the empty
network will not be strict Nash.

In order prove that it must be a tree, we will Þrst show that the Nash
network must be connected. Assume that there exists a disconnected Nash
network with at least one component of size at least 2. Consider any two
components C1 and C2. Without loss of generality, let |C2| ≥ 2 and agent
j belongs to C1. If j establishes a link to a player in C2 then there will be
at least one agent in C2 who is at least 2 links away from j. By connecting
to C2, player j will get a positive payoff. Hence the Nash network must be
connected. Next, we show that a connected Nash network will contain no
cycles, i.e., it must be minimally connected. Suppose not. Then there exists
a Nash network with at least one cycle. Consider the cycle j1j2j3 · · · jrj1.
Then either gjrj1 = 1 or gj1jr = 1. If gjrj1 = 1, then agent jr want to delete
the link since φ(V1, 1) > φ(V1, dij) for dij > 1. When gjrj1 = 0, we know that
dij > 1. By a similar reasoning when gj1jr = 1, agent j1 will delete the link.
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Hence a Nash network cannot contain the cycle described above. Finally
we need to rule out cycles between two agents, i.e., cases when gij = 1 and
gji = 1. Since both agents will incur a cost ε > 0 in this case, such cycles
cannot be a part of an equilibrium network. Hence, the Nash network will
be a tree.

To prove the second part, we present the following counter-example. Let
g12 = 1, g23 = g24 = 1 with no other links existing in the graph. Assign
V2 = 2, V3 = 1, V4 = 3. V1 can be assigned any value. Assume that the
payoff function is given by equation (2). In the current network player 1
can get the information of all the other three nodes and has to pay a cost

of V2 +
V3 + V4
2

= 4. If player 1 deletes the current link to player 2 and

instead links to player 3, then his total beneÞt will not change but the cost

is reduced to V3 +
V2
2
+
V3
3
= 3. Clearly, this tree is not in equilibrium.

2. Proof of Proposition 1 : We Þrst show that a chain satisÞes the con-
dition of Theorem 1 and hence is an candidate for Nash. We then use (2)
to show that the networks shown in the above Þgure is strict Nash. Let
{1, 2, . . . , n}be the sequence of players forming the chain. By Theorem 1
we know that g1n = gn1 = 0. Also, if gij = 1, player i will not break
the link since it will destroy connectivity in the network. If gij = 1, then
gji = 0 because of the duplication penalty. A player does not establish a
new link to a second player since it will lead to a payoff of zero from this
direct link. The only tree that has this property is the chain and hence a
strict Nash network must be a chain. Now we show that in the above graph
each player is playing their unique best response. First consider player k.
If player k deletes the link with player 1 and links to node j, then the cost

will be

·
Vj +

1

2
(Vj−1 + Vj+1) + ...

¸
which is bigger than the previous cost·

V1 +
V2
2
+
V3
3
+ ...

¸
. Hence player k will not gain by changing her strat-

egy. Similarly, any other player m ∈ I\{1, k}, will incur a larger cost by
deviating from the current strategy. Thus, this particular group of chains is
in equilibrium.

3. Proof of Proposition 2 : (a) In a center-initiated star the central agent
in the star forms direct links to all the other agents. This graph is connected
and has no cycles and therefore is a tree. Clearly, the central agent has a
total payoff of zero. However, removing any of its current links will not lead
to a higher payoff. All other agents can only add links since they do not
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have any links to remove. Forming extra links would lead to cycles that will
only reduce the current payoff. Thus, no agent can improve his or her payoff
by deviating from the current strategy and the center-initiated star is Nash.

(b) Let the distribution of values be such that agent j has value Vj and
V1 ≤ V2 ≤ · · · ≤ Vn. First observe that for an equilibrium the central agent
must have the least value. Otherwise, suppose agent j 6= 1 occupies the
center. Since this is a star agent 1 has link to agent j. In this situation,
all the other players except j will get a higher payoff by linking to player
1. Hence player 1 must be the center of the star. Let the initial periphery-
initiated star with agent 1 in the center be denoted by gps. Let agent k,
2 < k ≤ n, alter her strategy by deleting the link to 1 and establishing
a link to player 2. Recall that direct links should always be to the agent
with least value, and since agent 1 is ruled out, player k can get the highest
payoff only by linking to player 2. We denote the resultant network by

g
0
= gps − gk1 + gk2. Hence Ck(gps) = V1 +

X
j 6=1,k

Vj
2
= V1 +

(Λ− V1 − Vk)
2

and Ck(g
0) =

V1
2
+V2+

X
j 6=1,2,k

Vj
3
= V2+

V1
2
+
(Λ− V1 − V2 − Vk)

3
. For gps to

be the Nash, it must have the lower cost, i.e., we need Ck(g
ps)−Ck(g0) ≤ 0.

We can rewrite this difference as
V1
2
+
(Λ− V1 − Vk)

6
− 2V2

3
≤ 0. Now,

(Λ− V1 − Vk) ≥ (n− 2)V2 since V2 is the smallest value in the set I/{1, k}.
Hence

V1
2
−2V2

3
+(n−2)V2

6
≤ 0, or (n−2)V2 ≤ 4V2−3V1. This is inconsistent

if (n− 2) ≥ 4 i.e., for n ≥ 6. Hence, the result.

3. Proof of Proposition 3 : First, we prove that a periphery-initiated
star itself is never Nash when all values are equal. The central agent in such
a star has payoff zero and the acyclicity principle prevents it from forming

any additional links. Each peripheral agent has a cost V (1 + (n − 2)1
2
).

This peripheral agent can initiate a link to another peripheral agent only
after deleting the current link to the center. In that case, her cost will be

V (1+
1

2
+ (n− 3)1

3
) which is less than the previous one.

When periphery-initiated star forms a subgraph of some tree, then one
or more of its edges will be connected to some other component of the tree
(see Figure 5). Let the central agent have κ branches excluding the branch
associated with agent a with diameters D1, D2, . . . ,Dκ. Without loss of
generality, we assume D1 ≤ D2 ≤ . . . . ≤ Dκ. Let µ(j,Di) denote the
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number of players that are Di links away from node j. In the above graph
µ(a, 1) ≥ 1 and µ(a, 2) ≥ k. Also, for any Di > Dκ, we set µ(a,Di) = 0. Let
player a now delete its current link and form a link to the player at farthest
end of the longest diameter branch. Denote the new network by g0. In g0,
µ(a, 1) is the same as before while µ(a, 2) is reduced by (k − 1). Also, now,
µ(a,D) ≥ 1 for any D such that Dκ ≤ D ≤ (D1 + Dκ). Since the total
number of players is Þxed and the distance from some of the players has
increased whereas the number of nodes that are 2 links away has decreased,
the cost component for player a has decreased. Thus, a periphery-initiated
star, where a peripheral agent has a choice of making a link to one end of
the whole tree, can never form a component of a Nash network.

4. Proof of Theorem 2 : Under property LE, there is no conßict between
efficiency and stability. The network that minimizes the costs of all agents
also minimizes the overall cost since. Under property DC, only a connected
network can be efficient. Further, it must contain no cycles since cycles will
raise the cost of acquiring information for all agents in the cycle. Hence we
consider only trees as potential efficient graphs. Next we argue that only
the chain is efficient. Consider a tree with diameter k (0 < k < n − 1). If
k = n − 1, then we have a chain. Let dij = k 6= 1. Then there exists a
star network (center-initiated or periphery-initiated or mixed) somewhere
in the graph in the path between i and j since at least one vertex has two
edges emanating from it. Without loss of generality, let such a star be at a
distance m (0 < m < k) from j. Since the star has at least two arms one
of these links can be rearranged in such a way that it becomes a part of the
diameter. The diameter now becomes k + 1 and irrespective of the agent
who forms this new link the total cost is lowered for the entire tree. This
eliminates all other trees except chains as potential graphs.

5. Proof of Proposition 4 : Consider an arbitrary chain given by j1, . . . , jn.
Then using equation (3) we can write the total cost of this network as

nX
i=1

nX
k=1

{ρ(Vjk)γ(|k − i|) + ρ(Vji)γ(|i− k|)} (7)

where |k − i| denotes the distance between agents k and i. We can com-
pute the total costs using the table shown below, where djijk measures the
geodesic distance between agents ji and jk.
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djijk j1 j2 j3 · · · jn Total
j1 0 1 2 n− 1 H(j1)
j2 1 0 1 n− 2 H(j2)
...
jn n− 1 n− 2 n-3 0 H(jn)

Note that H(ji) is the sum of the path lengths from agent ji to all the other

agents or H(ji) =
nP
k=1

γ(djijk) for all i ∈ I. Clearly for the chain shown
we have H(ji) = H(jn−i). We can rewrite the total cost of this chain as
n/2P
i=1

©
ρ(Vji) + ρ(Vjn−i+1)

ª
H(ji). This sum will ne minimized if for increas-

ing order of H(ji), the order of its coefficients, i.e., {ρ(Vji) + ρ(Vjn−i+1)}
is decreasing. This implies that the two nodes with the highest value of
information must be farthest apart and those with the smallest should be
the least apart. This given us the chain shown in the Þgure.

6. Proof of Proposition 5 : Let player 1, the agent with the lowest
information endowment be the center of the star. She cannot break any links
and the duplication penalty ensures that she will not add any links. Player
i ∈ I\{1} can either increase the number of links, or sever the link to the
center and make one or more links to other nodes. The Þrst possibility can
be ruled out since a direct link always yields negative payoffs and does not
create any new shortest paths to any other agent. Thus increasing number of
direct links will reduce the total payoffs. In the second case, making exactly
one link to some other node will produce a shortest path of length one to the
directly connected node, a shortest path of length 2 to the central node and
shortest paths of length 3 to the other indirectly connected nodes. As before
adding more than one direct link will not improve upon the existing shortest
paths. Next let gps be the original star graph. The graph g0 is created when
player k, 1 < k < n, severs the link to player 1 and creates a link to the player
with the next smallest value. Without loss of generality let this be player 2

or g0 = gps − gk1+ gk2. Hence Πk(gps) = −δV1 +
nP

j=2,j 6=k
Vj(1− 2δ − 1

2
) and

Πk(g
0) = −δV2 + V1(1− 2δ − 1

2
) +

nP
j=3,j 6=k

Vj(1− 3δ − 1
3
). For gps to be the

Nash, it must have yield a higher payoffs, i.e., we need Πk(g
ps)−Πk(g0) ≥ 0.

We can rewrite the difference between the two payoffs as (V1 − V2)(δ −
1

2
)+

nP
j=3,j 6=k

Vj(δ − 1
6
). Note that the diameter of the underlying undirected
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graph is 2. Using this it is easy to verify that for δ > 1/4 the graph itself is

not connected. This provides the upper bound on δ. Next (V1−V2)(δ− 1
2
) is

non-negative for δ ≤ 1/4 and the whole expression is positive when δ > 1/6.
Thus, a periphery-initiated star graph will be Nash if 1/6 < δ ≤ 1/4.
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Figure 1: A network formed by 
three nodes with different 
values of information 
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2 

Figure 2: A network in 
equilibrium according to our 
cost model. 
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Figure 3a:  A network in 
equilibrium according to both 
cost models. 
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Figure 3b:  A network in 
equilibrium according to both 
cost models. 
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Figure 4:  A chain which is Nash 
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Figure 5:  A periphery-initiated star which is a subgraph of a tree 

Figure 6: A concatenation of a center-initiated star and a lines which is 
not in equilibrium. 
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Figure 7:  Efficient chain 
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