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Abstract

We examine several continuous-time term structure models in which
the short rate is subject both to continuous changes and to discrete
shifts. Several regime-switching term structure models are developed,
with regime-dependence in various combinations of their drift and dif-
fusion parameters. We examine their predictive power. Our empirical
analysis suggests that it is important to attempt to specify the switch-
ing model correctly: badly parameterized switching models may not
be an improvement (in terms of pricing) over models which do not
allow for regime switching, even when there are clear breaks in the
data.
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1 Introduction

Modelling the term structure of interest rates plays a significant role in pric-

ing fixed income derivatives, in risk management and in designing macroe-

conomic policies. A number of models belonging to a particular class, called

“affine” models [Duffie and Kan (1996) and Dai and Singleton (2000)], have

been widely used in the theoretical and empirical literatures because of their

tractability and functional richness. However, their empirical performance

is somewhat unsatisfactory [Ghysels and Ng (1998)]. There are new de-

velopments in the affine term structure literature aimed at improving their

predictive power. These involve richer parameterizations (i) for the price of

risk [Duarte (2000), Dai and Singleton (2001) and Duffee (2002) ] and (ii) to

capture discrete shifts in interest rates [Naik and Lee (1997), Evans (1998)

and Bansal and Zhou (2002)].

The second approach is appealing since it adds more realism by capturing

discrete movements in the economy. We argue that for two reasons interest

rates are subject to discrete shifts as well as continuous changes.1 These are:

(i) there is increasing evidence in the literature that both short and long term

interest rates are characterized by stochastic regime switching processes [see,

for example, Hamilton (1988), Sola and Driffill (1994), Garcia and Perron

(1996), Gray (1996), and Dahlquist and Gray (2000)]; and (ii) economic

regimes such as business cycle expansion and recession have regime switching

effects on interest rates. Empirical evidence for regime switching interest

rates can also be found indirectly in the form of the parameter instability of

single-regime interest rate models over the 1979-82 period [see Cai (1994),

1A possible third reason is that regime switching interest rate models may capture some

of the non-linearities in interest rates which may show up in higher order unconditional

moments [Ang and Bekaert (2002b)].
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Pearson and Sun (1994) and Brenner, Harjes and Kroner (1996)].

The models that currently exist in the literature, which allow for discrete

shifts (see for example, Naik and Lee (1997), Evans (1998) and Bansal and

Zhou (2002)), are solved under different assumptions about the evolution of

the instantaneous interest rate. For example, with the exception of Naik and

Lee (1997) (the Vasicek model), the most widely used is the CIR model (since

it is rich enough to mimic most of the possible shapes of the term structure).

In Naik and Lee (1997), only the volatility term is allowed to switch while

in Bansal and Zhou (2002) the full set of parameters is allowed to switch.2

This paper provides a framework for deciding which of these assumptions is

best supported by the data.

A key element of this paper is the search for a suitable parameterization

for the short-term interest rate. When looking for it we have to take into

account several criteria. An obvious first criterion is the goodness of fit of

the short-term interest rate itself. But we are also interested in how well

the prices of longer maturity bonds, that it predicts via the term-structure

model, fit the data. The model for the short rate has to be rich enough to

be capable of reproducing the properties of the term structure data.

We compare a variety of models for the short term interest rate that

allow for regime switching in some or all of the following aspects: the volatil-

ity of the short rate; the long-run value of the short rate, and the speed of

adjustment to the long-run value. More precisely, we use an extended mean-

reverting square root process due to Cox, Ingersoll and Ross (1985; CIR) to

account for situations in which there is the possibility of changes in parame-

2In estimating parameters including market prices of risks in both regimes Bansal and

Zhou (2002) use the entire term structure data. Papers by Landen (2000) and Elliott,

Hunter and Jamieson (2000) use a Hidden Markov model in mixing continuous changes in

the short rate with discrete changes.
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ters. We then use each of these models to price bonds of different maturities.

The versions of the CIR short rate process that we use include: (1) a bench-

mark case with no regime-switching; models with regime-switching in: (2)

volatility; (3) volatility and the speed of adjustment; (4) volatility and the

long-run value of the short rate; and (5) volatility, the speed of adjustment

and the long-run value of the short rate. This allows us to find the model

that best matches the data for bond prices of all maturities rather than using

model selection criteria that use only the data on the short-term interest rate

itself.3

The issue of which univariate parameterization best characterizes short

term interest rates has been left largely unanswered in the literature. Choos-

ing among the alternatives is rather difficult since a model that allows all

the parameters to switch typically has a very flat likelihood. Nevertheless,

different parameterizations can produce very different bond prices. In this

paper we attempt to obtain the best model for bond prices (in the sense that

its predictions are closest to the observed ones) and as a by-product use the

term structure of interest rates as a criterion to assess which parameteriza-

tion of the short term interest rate is preferred. In this paper we recursively

estimate the different parameterizations of the switching CIR process for the

short term interest rate described above and use the results to price bonds

for different maturities. In this way we generate a series of prices which we

then compare with the actual prices in terms of fit and also in terms of the

3Gray (1996) shows that a switching CIR is the preferred model to characterize the US

short term data. Since then this model has been widely used to characterize the short term

data (see for example Dahlquist and Gray (2000) and Ang and Bekaert (2002a). None

of these papers ask the question of how different simplifications of this model perform in

terms of fit, or what is more important in terms of forecasting, which is crucial for pricing

bonds.
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shape of the term structure at different points in time. Interestingly, the re-

sults obtained for the whole sample using standard likelihood ratio tests and

goodness of fit criteria do not coincide with those obtained using the pricing

strategies described above. The possible interpretation of these results is

that the model which provides the best fit does not necessarily provide the

best forecast and therefore the best price.

2 Pricing Bonds when the instantaneous rate

switches between two Brownian motions

We consider a financial market model in which all activity takes place in the

time interval [0, T ] and operates on a stochastic basis (Ω,F , (Ft)(t∈[0,T ]),P).

Elements of the stochastic basis are explained as follows: Ω denotes the set

of all possible states of the economy. F is the set of distinguishable events in

the economy and is a given σ-field of subsets of Ω. The term (Ft)(t∈[0,T ] (with

FT = F) represents a filtration describing the information arrival. Finally,

P denotes the probability beliefs of the agents. Stochastics in the economy

are generated by a standard Wiener process W in R1 and a Markov process.

It is assumed that short term interest rates are driven by a stochastic pro-

cess with state dependent drift and diffusion parameters, where the discrete

states X are said to be regime 0 and 1. The switch between the two regimes

is governed by a Markov chain with intensity (rate) matrix H = (hij).

H =

[
h11 h12

h21 h22

]
=

[
−h12 h12

h21 −h21

]
(1)

In the above continuous-time Markov chain model, the probability that a

transition occurs from a given source state depends not only on the source

state itself but also on the length of the interval of observation. Then, the
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probability that a transition occurs from state i (say i = 1) to state j (say

j = 2) in the interval [t, t + ∆t) is equal to h12∆t + o(∆t). Similarly, 1 −
h12∆t+o(∆t) is the probability that the process remains in state i. Moreover,

the above Markov chain has a stationary distribution property, and hence

the long-run probability and conditional probability given the source state

i can be easily calculated. π∞(1) = h21

h12+h21
and π∞(2) = h12

h12+h21
are the

long run probabilities that the process is in the regime 1 and 2, respectively.

h21

h12+h21
+ h12 exp[−(h12+h21)(s)]

h12+h21
is the probability that the process is in regime 1 at

time t+ s given that it is in regime 1 at time t. For analytical tractability, it

is assumed that the discrete states Xt are independent of the instantaneous

interest rate r(t). It is also assumed that agents in the financial markets

know the actual state of the system Xt.
4

The short rate process r is thus formally represented by the stochastic

differential equation for which we specify a “regime-switching mean-reverting

square root process” (the RSCIR process)5,

dr(t) = κ(Xt)[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t). (2)

where dZ(t) is the increment from a standard Wiener process. The drift term,

κ(Xt)[α(Xt) − r(t)]dt, in (2) captures regime-dependent mean-reversion by

setting κ(Xt) > 0. The parameter α(Xt) (> 0) is the regime-dependent im-

plied long-run mean interest rate, and κ(Xt) determines the regime-dependent

adjustment speed of r toward the long-term mean. σ(Xt)
2r is the regime-

dependent variance of unexpected interest rate changes. The term σ(Xt) is

4However, the econometrician does not, and has to make inferences of it based on the

observable history of the system.
5Evans (1998) and Bansal and Zhou (2002) use a discrete version of the RSCIR process.

For the connection between discrete-time and continuous-time single regime models see

Sun (1992).
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the regime-dependent volatility factor and serves as a scale factor. This im-

plies that the volatility of the interest rate is parameterized as a function of

interest rate levels and produces conditional heterokedasticity which is the

cause of the leptokurtosis in the unconditional distribution of changes in the

short rate.

In order to price bonds based on the short rate specified in (2) we use the

stochastic discount factor process of the form (due to Cochrane (2001))

dΛ(t)

Λ(t)
= −r(t)dt− σΛ

√
r(t)dZ(t) (3)

where Λ(t) is the stochastic discount factor, equivalent to the pricing kernel

or state-price deflator [see for example Fisher and Gilles (2000)], which is

determined by marginal utility

Λ(t) = e−δtu′(c(t))

where c is the consumption and δ is the time preference rate. Note that for

simplicity it is assumed that uncertainty in the instantaneous interest rate

and the stochastic discount rate is governed by the same Brownian motion

Z(t).6

We assume that there is a market for every bond for every choice of

maturity T and the market is arbitrage free. We assume furthermore that,

for very T , the price of a maturity T-bond has the form

P (t, T ) = F (t, r(t), X, T ), (4)

where F (t, r(t), X, T ) is a function of four variables. Given this form for bond

6In the literature it is sometimes assumed that they are governed by different sources

of uncertainty. But at later stages of the modelling it is either explicitly or often implicitly

assumed that the discount factor and shocks are perfectly correlated, e.i., ρ = 1.

7



prices the short rate model takes a semi-affine term structure (SATS):7

ln F (t, r(t), X, T ) = A(r,X, T )−B(r,X, T )r (5)

where A and B are deterministic functions.

Our aim is now to price bonds using (i) the above semi-affine term struc-

ture and (ii) no-arbitrage condition. To do this we make two further assump-

tions: one about the hedging behavior of investors and the other about the

market price of risk. The first assumption is that investors do not hedge the

regime switching risk while they hedge the risk of the continuous changes

in short rates. The second is that the market price of risk is the same in

different regimes as in Naik and Lee (1997) and Landen (2000). To satisfy

the no-arbitrage condition we will follow the fundamental pricing equation

E(t)

(
dF

F

)
−

(
1

P

∂F

∂T

)
dt = rdt− E(t)

(
dF

F

dΛ

Λ

)
(6)

where E is the expectation operator. The left hand side is the expected (hold-

ing period) rate of return on the T-Bond which should be equal to the sum

of the risk-free rate and the covariance of the return with the discount factor

or marginal utility (the last term in (6)). This is the obvious continuous-time

analogue to the CAPM expression. From the Itô formula we get the following

price dynamics for the T-bond (dF )

dF = aFdt + bFdZ (7)

where

a =
κ(Xt)[α(Xt)− r]Fr + 1

2
σ(Xt)

2rFrr +
∑1

i=0

∑1
j=0 hij∆F

F
(8)

b =
σ(Xt)

√
rFr

F
(9)

7Duarte (2000) also uses a similar terminology “semi-affine square-root” model in which

he develops a different (flexible) parameterization for the price of risk.
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Plugging this in (6) and cancelling dt, we obtain the differential equation for

bonds,

κ(Xt)[α(Xt)−r]Fr+
1
2
σ(Xt)

2rFrr−FT +
1∑

i=0

1∑
j=0

hij∆F−rF = FrσσΛr. (10)

The right hand-side of (10) is the risk premium. Setting σΛ = λ the market

price of risk and rearranging (10) we obtain the following “term structure

equation”

(κ(Xt)[α(Xt)−r]−σ(Xt)λr)Fr+
1
2
σ(Xt)

2rFrr−FT +
1∑

i=0

1∑
j=0

hij∆F−rF = 0,

(11)

with the boundary condition

F (T, X, r, T ) = 1.

Using (5) we now easily compute the various partial derivatives of F , and

since F must solve the term structure (11), after collecting terms we thus

obtain
{

B0t(t, T )− κ0B0(t, T )− 1
2
σ0B0(t, T )2 + 1

B1t(t, T )− κ1B1(t, T )− 1
2
σ1B1(t, T )2 + 1

}
r+ (12)

{
A0t(t, T )−
A1t(t, T )−

(
κ0α0 − λ0σ0

)
B0(t, T )+

(
κ1α1 − λ1σ1

)
B1(t, T )+

∑1
j=0 h0j∆F0

∑1
j=0 h1j∆F1

}
= 0

where

∆F0 = eAj(t,T )−rBj(t,T )−[A0(t,T )−rB0(t,T )],

∆F1 = eAj(t,T )−rBj(t,T )−[A1(t,T )−rB1(t,T )].

The boundary value F (T, r,X, T ) ≡ 1 implies




Ai(T, T ) = 0, i = 0, 1,

Bi(T, T ) = 0, i = 0, 1.
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Equation (12) may be solved by applying the commonly adopted log-

linear approximation ey − 1 ≈ y [see, for example, Bansal and Zhou (2002)].

{
B0t(t, T )− κ0B0(t, T )− 1

2
σ0B0(t, T )2 + h01[B0(t, T )−B1(t, T )] + 1

B1t(t, T )− κ1B1(t, T )− 1
2
σ1B1(t, T )2 + h10[B1(t, T )−B0(t, T )] + 1

}
r+

{
A0t(t, T )−
A1t(t, T )−

(
κ0α0 − λ0σ0

)
B0(t, T )+

(
κ1α1 − λ1σ1

)
B1(t, T )+

h01[A1(t, T )− A0(t, T )]

h10[A0(t, T )− A1(t, T )]

}
= 0

3 Data Description

There are two widely used data sets of US bond yields8: (i) McCulloch

and Kwon (1993) which use a cubic spline to construct the yield curve and

(ii) Fama and Bliss (1987) which use bootstrap methods to construct the

yield curve. We use the data (monthly estimates of annualized continuously-

compounded zero-coupon US government bonds yields) constructed by Duf-

fee (2002) which are based on the Bliss (1997) extension of McCulloch and

Kwon (1993). The data set ranges from January 1952 to December 1998.9

There are 564 monthly observations with 6 maturities 3, 6 month and 1, 2,

5, 10 year.

To find out how the shapes of the yield curves evolve over the sample

period we plot the surfaces of yield curves in Figure 1. Likewise, Table 2

reports the summary statistics for the yields. The yield curve is typically

upward sloping, but inverted around 1979 to 1981. The yield volatilities,

measured by standard deviations, decrease with the maturities. Figure 1

reveals the widely reported empirical fact that there is a significant increase

8We assume that measurement errors such as not using the actual trade data, nonsyn-

chronous quotations, and quotation errors are negligible.
9This data set is available on the web page associated with Duffee (2002). The address

is http://www.haas.berkeley.edu/ ˜ duffee/affine.htm.
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in interest rate volatility in the last two decades.

[Figure 1 approximately here]

[Table 2 approximately here]

4 Estimation

We use the 3 month T-Bill yield as the proxy for the instantaneous interest

rate10 as in Andersen and Lund (1997) and Duffee (2002) to estimate the pa-

rameters of the regime-switching Cox, Ingersoll and Ross model (RSCIR). To

avoid the serial correlation induced by overlapping expectations we converted

the monthly data set into a quarterly one and our sample is 1964:1–1998:4.

Five models that are specified in Table 1 are estimated. Note that a model

without regime switching in the volatility scale factor σ is not included as

the data reject such models.

Estimation and testing in the context of the Markov-switching mod-

els presented in Table 1—where the Markov chain {Xt} is unobserved—

can be carried out by using the recursive algorithm discussed in Hamil-

ton (1994, ch. 22). This gives as a by-product the sample likelihood function

10Since our model is in continuous time, its state variable is the instantaneous interest

rate which is unobservable. Chapman, John B. Long and Pearson (1997) explores this

proxy problem and show that it is not economically significant for single-factor affine

models. But it can be economically significant when applied to a two-factor affine model

and a nonlinear single-factor model. In the literature, the one-month rate is also used a

popular proxy for the instantaneous rate [see for example Chan, Karolyi, Longstaff and

Sanders (1992) and Nowman (1997)]. But it is well documented that estimating the model

with the one-month rate is relatively difficult. Another argument against using 1-month

yields is that they are are more likely to be influenced by liquidity needs. For the same

reason Bansal and Zhou (2002) use the 6 month T-Bill yield.
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which can be maximized numerically with respect to (κ0, κ1, α0, α1, σ0, σ1, p, q),

subject to the constraint that p and q lie in the open unit interval.

Table 1: Models to be estimated

• Model 1: No regime switching.

– dr(t) = κ[α− r(t)]dt + σ
√

r(t)dZ(t)

• Model 2: Regime switching in volatility.

– dr(t) = κ[α− r(t)]dt + σ(Xt)
√

r(t)dZ(t)

• Model 3: Regime switching in volatility and adjustment speed.

– dr(t) = κ(Xt)[(α− r(t)]dt + σ(Xt)
√

r(t)dZ(t)

• Model 4: Regime switching in volatility and long-run rate.

– dr(t) = κ[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t)

• Model 5: Regime switching in all parameters.

– dr(t) = κ(Xt)[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t)

To estimate the RSCIR process (2) we discretize it using the exact dis-

cretization method as follows:

rt+∆ = e−κ(Xt)∆trt +(1−e−κ(Xt)∆t)α(Xt)+σ(Xt)
√

rt

√
1− e−2κ(Xt)∆t

2κ(Xt)
εt+∆.

(13)

εt+∆ is assumed to be i.i.d. standard normal in the model. Notice that as

∆t becomes small equation (13) reduces to the Euler discretization equation

rt+∆ = ϕ(Xt)rt − (1− ϕ(Xt))α(Xt) + σ(Xt)
√

rt∆t εt+∆, (14)
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where ϕ ≈ 1− κ∆t captures the autocorrelation of the interest rate.

In Table 3, we report Gaussian S–PML estimates of the parameters of

the models presented in Table 1, along with corresponding asymptotic stan-

dard errors.11 Estimates of the parameters vary (i) model to model and (ii)

regime to regime. For example, estimates of the long-run rate range from

0.0161 (Model 1) to 0.0337 (Model 4) in regime 0. The estimate of the same

parameter for the model 4 is 0.0149 in regime 1. There is an interesting re-

sult to report: a comparison between the versions of the RSCIR process, i.e.

Models 2 through 4, reveals that the volatility parameter, σ does not vary

much, ranging from 0.0310 to 0.0399 in regime 0 and from 0.0128 to 0.0130

in regime 1.

The allocation of time periods to the two states for the four switching

models under consideration is shown in Figure 2. The period between 1965

and 1980 is assigned with high probability to state 1, with a brief departure

from it around 1971. The period from 1980 to 1982 is assigned to the high

interest rates/low-variance state (state 0). The remaining observations fall

into state 1.

Table 3 shows that the hypothesis that model 4 and model 2 are valid

simplifications of model 5 are rejected (the likelihood ratio test statistics are

5.9938, distributed χ2(1) and 6.5392, distributed χ2(2) respectively), while

the null hypothesis that model 3 is a valid reduction is not rejected (the like-

lihood ratio test statistic is 2.299, distributed χ2(1)). The Akaike, Schwarz,

and Hannan-Quinn specification criteria, give conflicting results. While

model 5 is favored by the AIC, model 2 is favored by the SIC and model 3

by the HQ criteria.

11The likelihood function was maximized by using the Broyden–Fletcher–Goldfarb–

Shanno quasi-Newton algorithm with numerically computed derivatives.
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Neither the likelihood ratio test nor the selection criteria give us a clear

cut indication of which should be the preferred model. Therefore we use the

information contained in the term structure to decide which is the model

that produces the best bond prices. To do that we recursively estimate the

five models described above, price them with the pricing equation derived

in Section 2 and compare the generated prices (returns) with the actual

data. We therefore use the observations from 1964:1-1980:4 to start the

pricing exercise and sequentially enlarge the sample up to1998:4 obtaining

as a result generated prices for 6 month, 1, 2 and 5 year bonds from 1980:4

to 1998:4. More formally at time τ a yield curve can be constructed simply

by using the pricing model derived in Section 2 and instantaneous interest

rates for the alternative models using information up to time τ = t1, ...T −
1, T . Therefore we recursively estimate the alternative models of the three

months U.S. Treasury Bill rates and compute the different yield curves using

F (τ, r(τ), Xτ , T ) prices where information from 1 to τ is used to estimate the

short run rate. This will produce a series of T − t long term interest rates for

each maturity and estimation model. Then we compare the generated data

with the actual.

Notice that in order to obtain these prices we need to calculate the market

price of risk λ in order to generate the yield curve. The market price of risk

λ is calculated such that the observed yield on the 10 year bond equals the

model generated one [for further information, see Backus, Foresi and Telmer

(2000)]. Using the estimates of the alternative models for each period of time

from 1980:4 to 1998:4 and the calculated market prices of risk we generate

yield curves for our 5 models. Figures 4-6 plot the model generated yield

curves and actual yield curve as of 19881:1, 1989:3 and 1998:4, respectively.

A simple visual inspection shows that only model 4 is able to generate a
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yield curve which resembles the actual curve for the three chosen dates. All

the figures reveal that one can get differently shaped yield curves from the 5

models. Nevertheless it seems that even though the fact that model 4 (and

to some extent model 2) manages to reproduce the shape of the actual yield

curve is a desirable feature of the model, visual inspection of the shapes

of the yield curve for every data point does not seem a feasible or formal

enough strategy for use as a selection criterion. Therefore we attempt to

use all the information contained in our generated prices to asses which of

the models has best predictive power. Figure 7 plots the model generated

and actual yields for the four maturities 6 months, 1 year, 2 years and 5

years. Table 4 reports some goodness of fit statistics which are used to

compare the empirical performance of each of the 5 models. We present

performance indicators such as mean squared error (MSE), relative mean

square error (RMSE), mean absolute error (MAE) and relative mean absolute

error (RMAE) of the difference between the generated yields and the actual

data for each maturity and also an aggregate measure (coulumn5) which

capture both the time series and the cross section dimension. A general

feature of all the pricing models is that they perform better in predicting the

lower maturities than in predicting higher maturities (the reduction of the

error for the 5 year bond has to be attributed to the way the price of the risk

is computed). More importantly, we find that Models 2 and 4 significantly

outperform the other models in terms of producing prices closer to the actual

data. Interestingly a straight comparison between Model 1 and Model 5

(advocated by Evans (1998) and Bansal and Zhou (2002)) shows that using

the very general Markov switching parameterization may not produce better

prices than the standard CIR model even when there are apparent structural

breaks in the sample under scrutiny, implying that any improvement of Model
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5 over Model 1 in terms of fit is undone by the poor forecasting performance

of Model 5. Figure 7 complements the information presented in Table 4

mostly by showing the deterioration in the fit of the simple CIR model after

first half of the 1980s.

We have also reported in Table 5 the descriptive statistics of yield dif-

ferences. The results show that Model 1 overestimates (underprices) yields

(bonds) while other models underestimate (overprice) yields (bonds). In

terms of the first two moments (mean and variance) Models 2 and 4 per-

form better than the other 3 models. When the third (skewness) and fourth

(kurtosis) moments are considered, Model 4 gains some support.

A clear message can be drawn from our analysis if we consider an indi-

vidual who intends to price bonds using a Markov switching model in 1998:4

(the end of the sample). If she attempts to use standard statistical crite-

ria, she would find that model 2 and model 4 are not valid simplifications

of model 5, while model 3 is preferred to model 5. On the other hand by

carrying out a more extensive analysis, that is, by obtaining the bond prices

by means of estimating recursively a Markov switching model, we find that

model 4 (and to some extent model 2) not only are the only models that

manage to reproduce the actual shape of the yield curve, but also seem to

have produced on average much better prices than the other parameteriza-

tions. Most importantly the poor performance of model 5 compared with

model 1 highlights how important it is (especially when the model is used to

forecast) to attempt to specify the switching model correctly. This exercise

seems to suggest that badly parameterized switching models may not be an

improvement (in terms of pricing) over models which do not allow for regime

switching, even when there are clear breaks in the data.

[Table 3 approximately here]
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[Figures 2 – 6 approximately here]

[Table 4 approximately here]

[Figure 7 approximately here]

[Table 5 approximately here]

5 Conclusions

In this paper, we have provided an analysis of several regime-switching char-

acterizations of the CIR term structure process. In order to make our re-

sults comparable with the existing literature, we keep intact the standard

continuous-time framework and affine setup when modelling the term struc-

ture. We investigate how the pricing performance of the model is affected by

different assumptions about which parameters (drift and diffusion) are spec-

ified as regime-dependent to capture. We employ corresponding/equivalent

models to examine the empirical significance of alternative regime-dependent

characterization of drift and diffusion parameters. Using these models we

have estimated recursively Markov switching models for short term inter-

est rates and generated bond yields which are then compared with actual

yields. Our results reveal that simpler specifications, such as a term struc-

ture model with only a regime-dependent volatility parameter and a term

structure model with both a regime-dependent volatility parameter and a

regime-dependent long-run rate perform better than models with no regime

switching, models where all the parameters switch, and models with both

regime-dependent volatility and regime-dependent speed of adjustment pa-

rameters. These results have the interesting feature that the preferred pa-

17



rameterizations differ from those that one would have chosen on the basis of

goodness of fit. This can only be interpreted as a sign that the models which

better fit the data for the sample under scrutiny are not necessarily those

that better forecast and this is crucial for pricing bonds.

18



Figure 1: The Historical U.S. Term Structure of Interest Rates

Table 2: Summary Statistics for the U.S. Term Structure of Interest Rates

Period 1964-1978 Period 1979-1981 Period 1982-1998
Standard Standard Standard

Maturity Mean Deviation Mean Deviation Mean Deviation
3 4.15023 1.98836 12.0278 2.47187 6.50504 2.26995
6 4.38941 2.04902 12.2170 2.43729 6.74247 2.36220
12 4.56006 2.03908 12.1098 2.30643 7.07753 2.43233
24 4.72129 1.96039 11.8012 2.24064 7.55160 2.40562
60 4.96496 1.87292 11.4083 2.15478 8.15998 2.28925
120 5.10668 1.84290 11.2681 1.92634 8.54856 2.12881
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Figure 2: Probability of Regime 1 - univariate filter. (These are filtered
probabilities conditional on information available at time t.)

Figure 3: Actual Yields on 3-Month Bond
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Table 4: Performance Results of Models

Maturity
6 Month 1 Year 2 Year 5 Year Total
Mean Squared Error (MSE)

Model 1 0.5306 1.0997 0.8339 0.1728 2.6370
Model 2 0.0614 0.2042 0.2986 0.1181 0.6823
Model 3 0.3592 1.2558 1.7106 0.4848 3.8104
Model 4 0.0704 0.2711 0.4625 0.2185 1.0225
Model 5 0.3635 1.2511 1.6432 0.4449 3.7027

Relative Mean Square Error (RMSE)
Model 1 0.0237 0.0382 0.0238 0.0039 0.0896
Model 2 0.0011 0.0035 0.0047 0.0016 0.0109
Model 3 0.0167 0.0591 0.0667 0.0124 0.1549
Model 4 0.0014 0.0055 0.0086 0.0032 0.0187
Model 5 0.0166 0.0561 0.0613 0.0112 0.1452

Mean Absolute Error (MAE)
Model 1 0.1083 0.1375 0.1082 0.0462 0.4002
Model 2 0.1498 0.2951 0.3858 0.2529 1.0836
Model 3 0.4736 0.9414 1.1535 0.6303 3.1988
Model 4 0.1828 0.4129 0.5902 0.4098 1.5957
Model 5 0.4836 0.9439 1.1258 0.6013 3.1546

Relative Mean Absolute Error (RMAE)
Model 1 0.1083 0.1375 0.1082 0.0462 0.4002
Model 2 0.0221 0.0420 0.0515 0.0314 0.1470
Model 3 0.0915 0.1846 0.2106 0.0960 0.5827
Model 4 0.0281 0.0616 0.0837 0.0523 0.2257
Model 5 0.0926 0.1818 0.2025 0.0909 0.5678

Model 1: dr(t) = κ[α− r(t)]dt + σ
√

r(t)dZ(t)

Model 2: dr(t) = κ[α− r(t)]dt + σ(Xt)
√

r(t)dZ(t)

Model 3: dr(t) = κ(Xt)[α− r(t)]dt + σ(Xt)
√

r(t)dZ(t)

Model 4: dr(t) = κ[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t)

Model 5: dr(t) = κ(Xt)[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t)
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Figure 4: Model Generated Yield Curves
Date: 1981:1.

23



Figure 5: Model Generated Yield Curves
Date: 1989:3.

24



Figure 6: Model Generated Yield Curves
Date: 1998:4.
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Table 5: Descriptive Statistics of Yield Differences

Maturity Mean Variance Skewness Kurtosis

Model 1: dr(t) = κ[α− r(t)]dt + σ
√

r(t)dZ(t)
6 Month 0.5601 0.5306 1.5278 2.7184
1 Year 0.7827 1.0997 1.5763 2.9075
2 Year 0.6570 0.8339 1.6436 3.2214
5 Year 0.2871 0.1728 1.5960 3.2651

Model 2: dr(t) = κ[α− r(t)]dt + σ(Xt)
√

r(t)dZ(t)
6 Month -0.1135 0.0614 -0.0462 0.0466
1 Year -0.2495 0.2042 -0.2381 0.3687
2 Year -0.3492 0.2986 -0.3605 0.5860
5 Year -0.1984 0.1181 -0.0776 0.0668

Model 3: dr(t) = κ(Xt)[α− r(t)]dt + σ(Xt)
√

r(t)dZ(t)
6 Month -0.4118 0.3592 -0.3205 0.4094
1 Year -0.8881 1.2558 -1.9432 3.4012
2 Year -1.1255 1.7106 -2.8431 5.0770
5 Year -0.6273 0.4848 -0.4073 0.3610

Model 4: dr(t) = κ[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t)
6 Month -0.1659 0.0704 -0.0434 0.0354
1 Year -0.3812 0.2711 -0.2459 0.2891
2 Year -0.5654 0.4625 -0.4464 0.5269
5 Year -0.3965 0.2185 -0.1404 0.1061

Model 5: dr(t) = κ(Xt)[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t)
6 Month -0.4264 0.3635 -0.3260 0.3926
1 Year -0.8930 1.2511 -1.9041 3.2248
2 Year -1.1031 1.6432 -2.6718 4.6273
5 Year -0.5979 0.4449 -0.3614 0.3102
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A Appendix A: Solution

A.1 Model 1: The Single Regime Cox-Ingersoll-Ross
Model

Stochastic processes for two state variables (stochastic discount factor and
short rate) are given

dΛ(t)

Λ(t)
= −r(t)dt− σΛ

√
r(t)dZ(t) (A. 1)

dr(t) = κ[α− r(t)]dt + σ
√

r(t)dZ(t). (A. 2)

The fundamental bond pricing equation (10) becomes

κ[α− r]Fr + 1
2
σ2rFrr − FT − rF = FrσσΛr. (A. 3)

Using the following affine functional form for bond prices

F (t, r(t), T ) = eA(t,T )−B(t,T )r,

we obtain the partial derivatives required in (A. 3). Substituting them into
(A. 3) and separating the coefficients on the constant and on the terms in r
result in a set of ordinary differential equations for A(t, T ) and B(t, T )

B′(t, T ) = 1− 1
2
σ2B(t, T )2 − (σσΛ + κ)B(t, T ),

A′(t, T ) = −B(t, T )κα.
(A. 4)

One can solve them, subject to the boundary condition imposed by F (T, r(t), T ) =
1, which implies A(T, T ) = 0 and B(T, T ) = 0,

B(t, T ) =
2(1− eγτ)

(γ + κ + σσΛ)(eγτ − 1) + 2γ
,

A(t, T ) =
κα

σ2

(
2 ln

(
2γ

ψ(eγτ−1) + 2γ

)
+ ψτ

)
,

where

γ =
√

(κ + σσΛ)2 + 2σ2,

ψ = κ + σσΛ + γ,

τ = T − t.
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A.2 Models 2-5: The Cox-Ingersoll-Ross Model with
Regime Switching

Stochastic processes for two state variables (stochastic discount factor and
short rate) are given

dΛ(t)

Λ(t)
= −r(t)dt− σΛ

√
r(t)dZ(t) (A. 5)

dr(t) = κ(Xt)[α(Xt)− r(t)]dt + σ(Xt)
√

r(t)dZ(t) X = 0, 1. (A. 6)

The “term structure equation” is now given by

(κ(Xt)[α(Xt)−r]−σ(Xt)λr)Fr+
1
2
σ(Xt)

2rFrr−FT +
1∑

i=0

1∑
j=0

hij∆F−rF = 0,

(A. 7)

with the boundary condition

F (T, X, r, T ) = 1.

Using the following affine functional form for bond prices

F (t, X, r(t), T ) = eA(t,X,T )−B(t,X,T )r,

we obtain the partial derivatives required in (A. 7). Substituting them into
(A. 7) and separating the coefficients on the constant and on the terms in r
once again result in a set of ordinary differential equations for A(t, T ) and
B(t, T ),

{
B0t(t, T )− κ0B0(t, T )− 1

2
σ0B0(t, T )2 + 1

B1t(t, T )− κ1B1(t, T )− 1
2
σ1B1(t, T )2 + 1

}
r+ (A. 8)

{
A0t(t, T )−
A1t(t, T )−

(
κ0α0 − λ0σ0

)
B0(t, T )+(

κ1α1 − λ1σ1

)
B1(t, T )+

∑1
j=0 h0j∆F0∑1
j=0 h1j∆F1

}
= 0

where

∆F0 = eAj(t,T )−rBj(t,T )−[A0(t,T )−rB0(t,T )],

∆F1 = eAj(t,T )−rBj(t,T )−[A1(t,T )−rB1(t,T )].
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Equations system (A. 8) may be solved by applying the commonly adopted
log-linear approximation ey − 1 ≈ y [see, for example, Bansal and Zhou
(2002)].

{
B0t(t, T )− κ0B0(t, T )− 1

2
σ0B0(t, T )2 + h01[B0(t, T )−B1(t, T )] + 1

B1t(t, T )− κ1B1(t, T )− 1
2
σ1B1(t, T )2 + h10[B1(t, T )−B0(t, T )] + 1

}
r+

{
A0t(t, T )−
A1t(t, T )−

(
κ0α0 − λ0σ0

)
B0(t, T )+(

κ1α1 − λ1σ1

)
B1(t, T )+

h01[A1(t, T )− A0(t, T )]
h10[A0(t, T )− A1(t, T )]

}
= 0.

(A. 9)

Unfortunately, the above equations system (A. 9) has only an approximate
numerical solution. One way to improve the approximation is to use a tech-
nique similar to the control variate technique used as a variance reduction
procedures in the option pricing literature [see Hull (2000)]. This involves
calculating the bond pricing equation for the single regime CIR model (A. 3)
using the approximation adopted in obtaining (A. 9). The difference between
two gives the approximation error.
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