Joint Production Games
with Mixed Sharing Rules

Richard Cornes and
Roger Hartley

Keele Economics Research Papers

Keele = September 2002




KERP Keele Economics Research Papers

The Keele Economics Department produces this series of research papers in
order to stimulate discussion and invite feedback. Copyright remains with the

authors.

All papers in the KERP series are available for downloading from the Keele
Economics website, via www.keele.ac.uk/depts/ec/kerp.

ISSN 1352-8955

Department of Economics = Keele University, Keele, Staffordshire, sT5 5BG, UK
= tel: (44) 1782 583091, fax: (44) 1782 717577 = email: economics@keele.ac.uk



Keele Economics Research Papers KERP 2002/16

Date
Abstract

Keywords

J.E.L. Class

Notes

Address

Download

Joint Production Games
with Mixed Sharing Rules

by
Richard Cornes (Nottingham University)
Roger Hartley (Keele University)

September 2002

We study Nash equilibria of joint production games under a mixed output sharing
rule in which part of the output (the mixing parameter) is shared in proportion to
inputs and the rest according to exogenously determined shares. This rule includes
proportional sharing and equal sharing as special cases. We show that this game
has a unique equilibrium and discuss comparative statics. When the game is large,
players unanimously prefer the same value of the mixing parameter: the equilibrium
value of the elasticity of production. For this value, equilibrium input and output
are fully efficient. Our approach exploits the fact that payoffs in the joint production
game are a function only of a player’s input and the aggregate input and has indepen-
dent interest as it readily extends to other “aggregative games”.

Production externalities, non-cooperative games
C72, H42

The work of the first author was supported by a Leverhulme Research Fellowship.
We would like to thank Wolfgang Buchholz, Jurgen Eichberger, Gauthier Lanot, Todd
Sandler, Henry Tulkens and members of seminars at the University of Melbourne and
the Australian National University for helpful and encouraging comments on earlier
drafts.

Roger Hartley: Department of Economics, Keele, Staffordshire sT5 58BG, United Kingdom,
Email r.hartley@keele.ac.uk. Richard Cornes: School of Economics University of
Nottingham Nottingham NG7 2RG, UK.

www.keele.ac.uk/depts/ec/web/wpapers/kerp0216.pdf






1 Introduction

Several procedures for distributing the output amongst the owners of a com-
mon property technology have been proposed. Under the average-return
procedure each owner receives a share of the output equal to their share of
the aggregate input. This widely studied sharing rule may be chosen on
the basis of ethical principles or may simply be an inevitable consequence
of free access to a jointly owned resource. In the latter case, with free en-
try, we are led to the familiar tragedy of the commons. More generally, if
the technology exhibits decreasing returns to scale, there is over-production
in equilibrium: a Pareto improvement can be achieved by reducing inputs.
A polar opposite case is the equal shares procedure in which the output is
divided equally amongst all the owners. Here, there is under-production
when the technology exhibits increasing returns to scale. This sharing rule
is readily generalised to exogenous sharing in which each owner receives an
exogenously determined proportion of the output independent of her input.
Once again, under-production is characteristic of this procedure. Serial cost
sharing was introduced by Moulin and Shenker [20]. Under decreasing re-
turns, the unique Nash equilibrium of this sharing rule can also be achieved
as the unique equilibrium of an output sharing variant. Serial output sharing
has a number of desirable properties. Notably, if owners have identical pref-
erences or the technology has constant returns to scale, the level of output
under the serial equilibrium is efficient.

In this article, we study a mixture of the average and exogenous sharing
rules. More specifically, the output is split into two piles. FEach owner re-
ceives a share of the first pile in proportion to her input and an exogenously
determined share of the second pile. We refer to the proportion of total out-
put in the first pile as the mixing parameter. Evidently, (by continuity) there
will be a value of the mixing parameter for which the level of total output is
efficient. When preferences satisfy suitable conditions, principally convexity
and binormality, the mixed sharing rule has a unique Nash equilibrium. The
choice of mixing parameter is most easily resolved in large games. When
there are many players, even if their preferences fall into distinct types, all
players will agree (to first order) on the most preferred value of the mixing
parameter: the equilibrium value of the elasticity of production. Further-
more, with this value of the mixing parameter, the Nash equilibrium will be
fully efficient. This is true of the equilibrium allocation, not just the equi-
librium input and output. When all players have the same preferences, the
elasticity of production is the only value of the mixing parameter for which
the equilibrium allocation is efficient.

To establish these results, we adopt a novel method of analysis which



exploits the fact that the choice of inputs under a mixed sharing rule is
an example of an ‘aggregative’ game. Shubik comments that such games
“clearly have much more structure than a game selected at random. How
this structure influences the equilibrium points has not yet been explored in
depth” [Shubik [27], p.325]. Several authors have suggested ways of exploit-
ing the aggregative structure of a game to simplify its analysis. This paper
offers an approach that builds on but significantly extends some of this earlier
work to provide a simple and powerful method of analyzing such issues as
the existence, uniqueness and comparative static and asymptotic properties
of equilibrium!. Our methodology, which uses what we call ‘share functions’,
provides a tool which reduces the study of fixed points of multi-dimensional
mappings, entailed by conventional approaches using best-response functions,
to the analysis of real-valued functions of the aggregate input. This simplifi-
cation permits a straightforward and natural proof of existence and unique-
ness, and allows us to characterize comparative statics and obtain results for
large games. This methodology can also be applied to many other aggrega-
tive games; this is discussed briefly in the Conclusion.

Section 2 presents a simple numerical example of joint production under
a mixed sharing rule and is designed to illustrate the use of share functions
to obtain and characterize equilibria. Section 3 extends the example to the
general case with some mild restrictions on preferences and the production
function. The existence and properties of share functions are derived and
used to demonstrate the existence of a unique Nash equilibrium. The next
section shows how comparative statics may be derived from the properties of
share functions. Section 5 applies share functions to an analysis of asymp-
totic properties of large games. This enables us to establish the optimality
properties of setting the mixing parameter equal to the elasticity of produc-
tion. In Section 6, we use share functions to extend our results to games
in which the disutility of inputs depends also on aggregate input as well in-
dividual input. This includes cost sharing games with mixed sharing rules.
Section 7 concludes.

! A seminal contribution is Selten [26], whose approach is later exploited by Szidarovszky
and Yakowitz [28]. Novshek [22], [23] extends the approach to establish existence of
equilibrium in Cournot models. Phlips [25] and Wolfstetter [32] provide expositions of
Selten’s approach. Okuguchi [24] and Cornes, Hartley and Sandler [11] have used a similar
approach to analyze existence and uniqueness of equilibrium in the aggregative games
that arise in models of oligopoly and public good provision. Corchon [6], [7] exploits the
aggregative structure of such games using a slightly different approach.



2 A numerical example

Consider a jointly owned resource in the form of a fishing ground. FEach of the
n owners chooses how much input in the form of labor to devote to catching
fish. The total catch, X, depends on the aggregate level L of labor applied
according to the homogeneous production function X = /L. Suppose the
output is shared according to a rule in which a proportion A(> 0) of the total
output is consumed by player 7 in proportion to the input that she supplies.
The remaining output is shared equally amongst all the players:
x; l; 1
X = )\E +(1-N .

where /;[z;] is the input supplied [output consumed| by i. For example, A = 1
generates the standard ‘open access resource’ problem in which each player’s
share of total output equals that player’s share of the total input whereas
A close to zero characterizes the ‘equal shares’ rule for distributing output.
An increase in the mixing parameter, A, reflects a move towards a more
egalitarian distribution.

Player i has a linear utility function: u;(z;, ;) = z; —a,l;. The parameter
a; reflects the player’s disutility of labor. Alternatively, player i may be
thought of as a profit-maximizer facing output and input prices of 1 and a;
respectively. When A = 1, this example is formally equivalent to a Cournot
oligopoly game with an isoelastic inverse demand function and constant unit
costs, but equivalence breaks down for more general preferences. We have
chosen linear preferences because they lead to particularly simple functions
in our expository example.

Writing L_; = L — ¥;, player i’s payoff takes the form:

n

— azfz

This is a strictly concave function of ¢; for any L_;, so a positive best response
/; to L_; must satisfy the stationarity condition:

. ~1/2 M, 1—-2A
)\<£1+sz) - — 3/2‘|‘ £ ) 172 —ai:0. (1)

Also, lz = 0 if and only if the left hand side of (1) is non-positive. For L > 0,
writing s;(L) for ¢;/L, we can rearrange the first-order conditions as:

si(L):maX{Q—I—l)\_n)\— 2;’”\/5,0}. (2)




In addition, an economically meaningful solution must satisfy the require-
ment that L ; 2 0, or {; < L. This can only be consistent with (1) if
L 2 L;, where

I - [1—|—n)\—)\r.

2na;

We refer to s; (L) as the share function of player i and note that its domain
is the set [L;, 00).

Knowledge of the share function of every player in the game allows us
to determine the set of Nash equilibria. This follows from the natural con-
sistency requirement that LV is an equilibrium value of L if and only if the
aggregate share function, defined as S (L) = Zj s; (L), equals unity when
evaluated at I = LY. The strategy profile corresponding to "V is the vector
/N where ) = s, (LN) LN,

Example 2.1 Suppose A = 1/2 and (a1, as,a3) = (1/30,1/20,1/15). The
individual and aggregate share functions are drawn in Figure 1. The unique
Nash equilibrium corresponds to the point N at which LN = 121 and the cor-
responding strategy profile is (13/15,2/15,0) LY = (105, 16,0) (to the nearest
integer values).

For a second example, we leave the mixing parameter and the number of
players unspecified.

Example 2.2 Suppose n is even and a; = 1 for half the players, a; = 2 for
the remainder. In this case, it is readily checked that the share function for
players of the second type (a; = 2) takes the value 0 at the lower bound (L;)
of the domain of the share function of players of the first type. Hence, only
players of the first type contribute positive inpul in equilibrium whereas the
second type free rides on this input. The equilibrium value of L can be found
by solving s; (L) = 2/n with a; = 1 to find

3 177
L=|A1-— — 3
[ < Qn) + 2n} )
and b; = 2L/n if a; = 1 whereas {; = 0 if a; = 2. Note that when n = 2, the
sole player with a; = 1 supplies the whole input.

FExistence and uniqueness of Nash equilibrium follow from simple quali-
tative properties of the share functions. From (2) we see that s;(I) has a
closed, semi-infinite domain of the form [L;, o0), it is continuous and strictly

4



decreasing wherever positive, it equals zero for all large enough I and it
equals 1 at L,. All these properties are inherited by the aggregate share
function, except the last: > 55 (L) either equals or exceeds 1 at L,. The
deduction that there is a unique Nash equilibrium for any number of players
is immediate.

We can also use share functions to obtain comparative static results.
Suppose a; falls in FExample 2.1. From (2), we see that the graph of the
aggregate share function in Figure 1 moves to the right and its new value
at the original equilibrium I exceeds unity. Consequently the equilibrium
value of I increases. To examine the effect of this increase on player 2 in
equilibrium, we can substitute the share function into the payoff function to

y <{32(L) +l} \/3,32(}:)}:) _ &L 13, I

obtain

2 6 3 60 100"

provided L does not reach 136%. The latter is the value at which player
2’s share function reaches the axis, above which she contributes no input.
Differentiating this expression with respect to L gives

2 13 3L

_ _|_ —_
3V, 60 200’

which is positive for all I exceeding the current equilibrium value of L. The

nature of player 3’s share function means that she remains inactive when L

increases so her payoff is, we have

o(%0) -7

—.0
3 6 3

6
which is obviously increasing in L. Note that, this is also the formula for
player 2’s payoff if L exceeds 136% and we may conclude that both of player
1’s rivals benefit from the fall in a,.

Share functions are also useful tools for the derivation of results for large
games. Consider Example 2.2 and suppose that n is large. Then (3) shows
that L is approximately A? and, using the same approximation, the payoff of
a player 7 for which a; =1 is

2N 11—\ 2 A — )2
{—+—}\/f——L: .
n n n

n

Similarly, we find that the payoff for the remaining players is

11—\ A — A2
NI .

n n




Note that all players (of both types) agree on their preferred value of the
mixing parameter; payoffs are maximised at A = 1/2.  The fact that this is
equal to the exponent of I in the production function is not coincidental as
we shall see in Section 5 where we also show that similar conclusions apply
even when payoffs are not linear.

3 The output sharing game: existence and
uniqueness

In this section we generalise the example discussed in Section 2. Suppose that
the total output X that is available for consumption by n players depends
upon the aggregate level of labor, I, that is applied to the resource via
a production function F(L) exhibiting diminishing returns to labor. We
consider an output-sharing rule that generalizes the sharing rule in Section
2. If player i supplies labor input #;, she receives the quantity x;, where

n= (6 0) = {2+ =8} P (D), (1)

Here A is an exogenous mixing parameter satisfying 0 < A < 1 and the
0;’s are positive exogenous weights satisfying Zjel 0; < 1. In Section 2, we
assumed equal shares: 6; = 1/n for all 7, but the generalisation to arbitrary 6;
allows us, for example, to single out some more deserving players for receipt
of more than equal share of that part of the total output which is distributed
exogenously. Note also that we now allow the mixing parameter to take the
value zero, which we label the “exogenous shares” case.

Player i’s preferences are represented by a utility function w;(z;, ¢;). If
L > 0, player i’s payoff to strategy profile (¢y,...,4,) is u;(x;, ;) where
x; is determined by (4). Otherwise it is u;(0,0). We make the following
assumptions:

A.1(Preferences) Player i’s utility function u;(x;, ¢;) is quasi-concave, lo-
cally non-satiable, increasing in z;, decreasing in ¢;, continuous and
continuously differentiable? for x;,¢; > 0. Both x; and ¢; are normal.

A.2(Technology) The production function F(L) is increasing, strictly con-
cave, continuous and continuously differentiable for . > 0, and F'(0) =

0.

2Watts (1996) does not assume that utility functions are differentiable. However, we
make this assumption purely for expository reasons. The proofs in the sequel go through
mutatis mutandis in the nondifferentiable case if ¢;(0;, L) is interpreted as the slope of a
separating line to player i’s upper preference set at (z;,1;) = (0, F(L),0;L).
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A.3(Boundedness) There exists a value of L > 0 such that u,(F(L), L)

A

The first two assumptions are standard. Our characterization of normal-
ity in A.1 follows Watts [30]. Suppose that the allocation (z}, £;) is in player
i’s demand set when the budget set is pz; — wl; < ml. Both goods are
normal if, for any m] > m/, the demand set associated with the budget set
pr; — wl; < ml contains at least one point (z/,¢!) such that 2!/ = z and
¢! < ¢, Bearing in mind the fact that ¢; is a ‘bad’ this implies that, if pref-
erences are strictly convex, all income expansion paths in (z;, {;) space are
downward-sloping. Assumption A.3 says that the indifference curve through
the origin cannot lie entirely below the graph of the production function when
/; 1s measured along the horizontal axis and x; along the vertical axis.. This
leaves two possibilities. The whole indifference curve may lie on or above
the production function. If a player with such preferences had exclusive
access to the lake she would choose not to fish. A fortiori this is the case
if there are other players. Alternatively, the curves cross for some positive
L and a monopoly owner of the resource would supply a positive but finite
labor input. Sufficient conditions for A.3 are (a) F'(L) — 0 as L — oo or
(b) the MRS of the indifference curve through the origin is unbounded. In
particular, an upper bound imposed on the input of player i corresponds to
vertical indifference curves at ¢; = ¢;, so that (b) is satisfied.

It will prove convenient to write the first order conditions for best re-
sponses in terms of I, and player i’s share of total input at any allocation,
0; = ¥;/L. Because of the dependence of z; on ¢; and L, both player i’s
payoff and also her marginal rate of substitution between x; and #¢; can be
written as functions of ¢; and L. In particular, we use (; (0;, L) to denote

the MRS evaluated at
7= {0+ (1= \) 0.} F (I) 5)

and ¢, = 0;L. Note that an increase in either o; or L cannot lead to a
decrease in either x; or ¢;. Hence, by Assumption Al and the subsequent
discussion, the MRS cannot decrease.

Lemma 3.1 Player i’s marginal rate of substitution: ¢, (o;, L) is a non-
decreasing function of o; for fixred L > 0 and of L for fized o;.

Now consider the response of z; to a change in ¢; when the input levels
of all other players are taken as given. This response, which is i’s marginal
rate of transformation of input into consumption, can also be expressed as
a function of o, and L. Holding all other players’ input levels fixed and

7



differentiating (5) with respect to #;, we obtain the following expression for
1’s marginal rate of transformation as a function of o; and L:

81' i
0Y;

F(L
Our analysis will exploit the following properties of the MRT.

Lemma 3.2 Playeri’s marginal rate of transformation: 7; (0;, L) is a strictly
decreasing function of L for fixed o; and of o; for fired L > 0, provided X > 0.

Proof. For fixed g;, the conclusion follows immediately from Assumption
A.2. This assumption also implies that F'(L) < F(L)/L. For fixed L > 0,
increasing o; places more weight on F'(L) and less on F'(L)/L and the value
of the convex combination of marginal and average products must fall. m

The first-order conditions for #; to be a best response to L_; = > ¥,

jel,j#i
can be written
Ci (31'1[/) 2 T; (6i;L) (7)
¢; (@3, L) —7:(0:, L)]G; = 0 (®)

where I, = ZL + L_, and 7; = ZL/L Note that

52
227 (05, € + L)
AL

L2

[F’ (L) - M} + {)\é F (1= ) ai} F (L) <0
L L

for /; > 0. This means that the sharing rule v,(¢;,¢; + L_;) is a strictly
concave function of ¢;.  Since u; is quasiconcave, conditions (7) and (&)
are necessary and sufficient. Recall from Section 2, that the value of the
share function of player 7 at L is equal to 0,; where ¢ is a best response to
L_; = L — ¥;. To establish that a share function is well-defined, we must
demonstrate that these conditions have a unique solution in ;. We start by
ruling out multiple solutions in the following proposition, the proof of which
is an immediate consequence of Lemmas 3.1 and 3.2.

Proposition 3.1 If A > 0 and L > 0, there is at most one &; satisfying (7)
and (8).

The case A = 0 may be accommodated by a slight strengthening of our
assumptions. In this case, 7; is a constant function of ¢; for any L, but the

8



proposition would still hold provided (, were strictly increasing in ;. This
would follow from a slightly stricter interpretation of normality in which all
income expansion paths were strictly downward sloping. We shall refer to
this by describing player i’s preferences as strictly normal. Observe, however,
that strict normality would rule out the linear utility function considered in
the example in Section 2.

Figure 2 summarizes the reasoning that establishes Proposition 3.1. Con-
sider a particular value of L, say L° in the figure. Suppose that there is a
share, 0¥, such that 0?9 is a best response to (1 — 0?) L0 If 09 is strictly
positive, it is characterized by equality of ¢,(.) and 7,(.). By demonstrating
that, for any such given value of I, (;(.) is nondecreasing in o; and 7;(.) is
everywhere increasing in o;, we have established the uniqueness of such a
share. For any L > 0 for which conditions (7) and (8) have a unique solu-
tion, we will write s;(L) for that solution. Note that Proposition 3.1 does
not constrain the domain of s;. However, the next result shows that the
domain is a semi-infinite interval (if non-empty) as well as drawing attention
to a useful property of share functions.

Proposition 3.2 Suppose A > 0, L' > L% > 0 and s;(L°) exists. Then
s;(LY) exists and s;(L') < s;(I°). This inequality is strict if s;(1°) > 0.

Proof. From Lemmas 3.1 and 3.2 and the first-order conditions, we have
Ci(s:(L%), L) 2 Gy(si(L°), L) 2 7y(si(L°), L) > 7i(si(L%), L),

Hence, either (a) (;(0;, L) > 74(0;, L) for all o; € (0,1), or (b) ¢,(d;, L) =
7;(0;, L) for some ;. In case (a), s;(L') = 0 £ 5;(I°%) and the inequality
is strict if s;(L%) > 0. In case (b), since ¢, is non-decreasing in L and 7,
is strictly decreasing in L, we have s;(L') < s;(L°). Note that (b) can only
occur if s;(L°%) > 0. =

(Again, if A = 0, Proposition 3.2 is valid under an assumption of strictly
normal preferences.) Figure 2 summarizes the argument. Briefly stated, an
increase in the value of I from L? to L' shifts the graph of ¢;(., L) up and
that of 7;(., L) down. Therefore, if player i’s most preferred share is initially
positive, it must fall.

Nothing in our argument to this point excludes the possibilities that the
share function has empty domain, exhibits downward jumps or has a strictly
positive limit as I, — oo , any of which would pose difficulties for the ex-
istence of a Nash equilibrium. Fortunately, Proposition 3.3 rules out such
pathological behavior:

Proposition 3.3 If Assumption A.3 holds, either s;(L) = 0 for all L > 0,
or, for any o; € (0,1), there is a value of L satisfying s;(L) = o;.

9



Proof. Figure 3 provides a justification of this proposition. The graph
marked X = F(L) represents the aggregate technology. Choose any o; €
(0,1) and take a point on the graph of X = F(L), such as A. The point a is
the point on the ray O A with the property that Oa/OA = ;. As A moves
along the graph of F'(L), the point a traces out the graph of the function
x; = 0, F (¢;/0;) for the chosen value of 0;. Note that the slope of the graph
through a equals that of the graph through A: dz; (¢;,0;) /0¢; = F' (L)
evaluated at ¢;/o; = L. Tt follows that both graphs share a common tangent
at the origin.

If Assumption A.3 holds, either F'(0) < s;(0,0) and we can deduce that
$;(L) =0 for all L > 0 or [the case drawn in the figure] a point of intersection
I exists, at some positive value of L, between the graph of F'(.) and player i’s
indifference curve through the origin. Hence, the graph of x; = o, F(¢;/0;)
intersects this indifference curve at some point S in the positive orthant.
Conditions (7) and (8) are satisfied with &; = ¢; at some point on the graph
between 0 and S. This follows from the observation that at S, player i’s
marginal rate of substitution exceeds both the marginal product and also
the average product. It therefore exceeds their convex combination. At the
origin, the opposite is true. Continuity ensures that equality holds for some
intermediate value of L. m

These propositions ensure that (a) s; (.) is continuous®, (b) it is strictly
decreasing where positive, (c) it approaches or equals 0 as I, — oo. Finally,
either s; (L) = 1 for some L or s;(L) = 0 for all . > 0. If the latter
holds for all 4, then . = 0 is the only Nash equilibrium. Otherwise, S (L) =

> s; (L) 2 1 for some L and satisfies (a), (b) and (c¢). Consequently there
j=1

is a unique L* > 0 satisfying S (L) = 1. This establishes the next theorem.
Theorem 3.4 (Existence and Uniqueness) Given assumptions A.1- A.3,
the surplus sharing game has a unique Nash equilibrium for A > 0.

As we have seen above, the case A = 0 is easily admitted by requiring
strict normality in Assumption A.1.

Figure 1, although derived for a particular numerical example, also serves
to summarize our argument to this point. It shows the graphs of the indi-
vidual share functions associated with a 3-player game. FEach is continuous
and strictly decreasing for positive values of the share, and the figure shows
each reaching zero at some finite value of L. The aggregate share function,
S(L), inherits these properties. Consequently, there exists a unique value,

LN, at which S(IV) = 1.

3 A discontinuous, non-increasing function would have to exhibit downward jumps and
these are ruled out by Proposition 3.3.
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4 The output sharing game: comparative stat-
ics

Share functions can also be used to study comparative statics. To guarantee
the existence and desirable properties of share functions, we assume, without
explicit statement, that A.2 is satisfied and that A.1 and A.3 hold for all
players. We also exclude players with a share function equal to zero for all
L > 0. (When A = 0, we additionally assume that preferences are strictly
normal.) Any change in the game, for example, more or fewer players, modi-
fication of the strategy sets, or an alteration of the payoffs, has two effects on
players. There will often be a direct effect (holding levels of input and out-
put fixed) on the payoffs of some or all of the players. However, the altered
payoffs will lead to new inputs and outputs leading to a secondary effect on
payoffs. In particular, the aggregate share function will shift, altering the
equilibrium L. Define w;(0;, L) = u;(z;, 0;L), where z; is determined by the
sharing rule (4). In equilibrium, player i’s payoff is w;[s;(L), L] where s;(L)
is the player’s share function. A change in other players’ payoff functions or
the advent of new players will change equilibrium I and the sign of the slope
of w; can be used to sign the effect of such a change on player i’s equilibrium
payoff.

Recall that the domain of the share function for player i is [L;, c0) and
that s;(L;) = 1. Furthermore, either s;(.) is positive and strictly decreasing
throughout its domain or it is strictly decreasing up to some finite value I;
[to which we refer as player i’s dropout value] and takes the value zero for
larger L. In the former case, we set L; = occ. It is also convenient to write

n (L) for the elasticity of production, LF" (L) /F (L).

Theorem 4.1 Suppose s;(L) exists if and only if L. 2 L, and is positive if
and only if L; < I < L.

(i) When L; is finite, wi(s;(L), L) is strictly decreasing for I = T; if 0 <
A <1 and constant if A = 1.

(ii) Let L; < L < L;. Thenw;(s;(L), L) is a strictly increasing [decreasing]
function in a neighborhood of L if A;(s;(L), L) > 0 [< 0], where

Ao, L) =1 =Xn(L)0; = A1 —=n(L)}o. (9)

Proof. (i) If L =2 L; , s;(L) = 0, so

w;(0, L) = w;((1 — X 0,F (L) ,0)

11



and (i) is immediate.
(i) By definition, for active players,

w;(8;(L), L) = max u; (7v; (4, L — Ls;(L) + 4;) , 4;) (10)

£;20

where the maximum is achieved at ¢; = Ls;(L) > 0. The first-order con-
ditions for an interior solution together with our assumptions on differen-
tiability imply that the share function is differentiable at L. Applying the
envelope theorem,

3601'(31'([/); L) _ Ou; (%‘ () i) O (ﬁi’ L)

oL o, 57— (L= sill) = Lsi(L)} .

K2

Since Ou;/dz; > 0, s;(L) < 1 and s,(L) < 0, we have
oL ~ ST
The proof is completed by noting that FA;/L = dv,/0L. m

From (i), inactive players never lose from an increase in I and strictly

sign

gain if A > 0. To determine the effect on active players we must sign A; and
this can be done unambiguously for extreme values of A\. In particular, if
A = 0, then A;(0, L) = 0;n(L) > 0 for all L. By contrast, if A = 1, then
Ay(o,L) = —c{1 —n (L)} <0 for all L. More generally, if A < 1, then A;
has the same sign as

n(L)0; Ao

1—n(L) 1-X

Hence, if n — X and 0; — o share the same sign, that sign is also shared by
A;. The following corollary summarises these observations.

Corollary 4.2 Player i’s equilibrium payoff increases if

(i) A =0 (exogenous shares), and L increases,
(i1) X =1 (proportional shares), player i is active and L decreases,
(iii) 0 < X <1, n(Lo) > A, s; (L) <0; and L increases slightly from Ly,

(iv) 0 < XA <1, n(Lo) <A, s;(Lo) > 0;, player i is active and L decreases
slightly from Ly,

(v) 0 < X <1, player i is inactive and L increases.
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By continuity, the conclusion for A = 0 [A = 1] continues to hold when
0 < XA < 1 provided A is small [large] enough. Parts (iii) and (iv) continue to
hold even if the one of the inequalities is weak. Also, the restriction to small
changes in L in these parts reflects the fact that n(L) is not necessarily a
monotonic function of L. However, if the production function has constant
elasticity: F'(L) o« L® and the mixing parameter is equal to the elasticity:
A = «, then an active player benefits from an increase in L above Lg if
she is a net beneficiary at Lo: s; (Lo) < 0; since s; is strictly decreasing.
Similarly, net contributors alt Lo (players for which s; (Lg) > 0;), benefit
from a decrease in L.

To exploit these results, we must examine how aggregate input changes in
response to a modification of the game. Perhaps the easiest case to consider
is a change in the number of players. If a game has at least three players and
one of the active players leaves the game, the aggregate share function will
shift left, strictly at the current equilibrium. Hence, L will fall and, under
exogenous shares, all players will be worse off. Under proportional shares,
active players will gain; inactive players are unaffected. If F(L) o L*, net
beneficiaries lose and net contributors gain from exit of an active player. All
these conclusions are predicated on the assumption that the weights in the
sharing rule: 6; do not change. But this means that some of the output
is wasted in the reduced game. Under an alternative rule such as equal
shares, 0; = 1/n, the direct effect on payoffs of a decrease in n is positive
since 6; rises. These two effects work in opposite directions under exogenous
shares and determining the overall sign requires more detailed information on
payoffs. This also applies to intermediate values of A although, if elasticity
is constant and equal to the mixing parameter, both effects have the same
sign for net contributors who always benefit from exit.

Now suppose that each player is subjected to an exogenously set upper
limit on the individual input level. This simply involves adding to the open
access resource game a set of constraints of the form ¢; £ ¢* and has the
effect of changing player i’s share function from s; to s}, where

s; (L) = min{s;(L), >/ L}.

K2

We will say that the player i’s quota £® strictly binds if > < Ls;(L)
at the equilibrium value of L. If no quota binds strictly, the equilibrium
is unchanged. Otherwise, imposing quotas shifts the aggregate share func-
tion down, strictly in equilibrium, leading to a strict decrease in equilibrium
aggregate labor input. We may deduce that, under exogenous shares, all
players are worse off. Note that this includes those players for whom the
quota binds, the direct effect of a quota is always adverse and therefore rein-
forces the indirect effect. Abolition of quotas is Pareto improving. This is
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not the case with a proportional sharing rule, for active players benefit from
the imposition of a quota which does not bind them but strictly binds at least
one of their competitors. We cannot even rule out the latter benefiting, for
the direct and indirect effects are in opposite directions. For intermediate
values of the mixing parameter, typically some players will benefit, others
lose. For example, if elasticity is constant and equal to the mixing parame-
ter, net contributors are made better off whereas net beneficiaries are made
worse off if a rival is subject to a strictly binding quota. The payoff of net
beneficiaries suffering a strictly binding quota also falls.

Next, we consider technological changes in players’ inherent productivi-
ties. This may be modelled by supposing that each unit of nominal input by
player j generates e; units of effective input, where e; is an exogenous param-
eter, so that ¢; = e;h; for j = 1,... ,n. The variable h; may be interpreted
as the actual number of hours applied by player j to the productive activ-
ity. 'We assume that player i’s preferences over output and hours satisfy
Assumption A.1 and, slightly abusing notation, we write u; for the corre-
sponding utility function. This also allows us write the payoff and marginal
rate of substitution as functions of share, aggregate input and the i’s tech-
nological factor: w; (0;, L,e;) = u; (25, 4;/e;) and ¢, (05, L, ;) = [fi (x:,4;/¢€;),
where z; satisfies the sharing rule (4) and ¢; = o;L. In this formulation, the
natural generalisation of A.3 is that there should exist an I > 0 satisfying
u; (e;F' (L), L) < u;(0,0). It is possible for this to be true, say, for e; = 1
(the original A.3) but not for some e; > 1, so throughout the remainder of
the section, we shall assume that this generalisation of A.3 is true for all
players and all relevant e;.

Consider a technological shock which exogenously increases the inherent
productivity, or ability, of a subset I’ of players, while leaving that of the
other players unaffected. Specifically, suppose e; increases from e} to e? for
alli € I'. The effect on share functions can be seen by holding o; and L
fixed. Then, player i enjoys the same value of z;, and applies a lower level
of h;.  Consequently, w;(0;, L,e;) increases and (,(0;, L,e;) falls. If (.(.)
now falls short of 7;(.), player 7 can further enhance her payoff by increasing
her share o;. This means that s;(L,e?) > s;(L,e}) - the increase in i’s
ability implies an upward shift in the graph of her share function in Figure
1, and therefore also in that of the aggregate share function. Provided that
player i is active at the new equilibrium, the equilibrium level of L therefore
increases. Under exogenous shares, this adds to the direct effect for players
in I’ and results in a Pareto improvement provided at least one of the players
in I' is active. When output is shared proportionally, the change in payoffs
for players in I’ is ambiguous, direct and indirect effects working in opposite
directions, whilst active players not in I’ are made worse off. When elasticity
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is constant and equal to the mixing parameter, net beneficiaries benefit from
the increases in productivity whether or not they are members of I’ whereas
the payoff of net contributors who are not in I’ falls.

Finally, we investigate changes in the mixing parameter. If this increases
there is a direct effect on all players: for fixed L, net contributors gain and
net beneficiaries lose. To determine the secondary effect, we see from (6)
that an increase in A of, say, 6\ changes the MRT of player i for fixed o; and
L by

57 (00, L) = X [os — 0, F' (L) + 6\ [1 — o] F](:L) >0,

exploiting the fact that the average product exceeds the marginal product.
Since the MRT as a function of ¢; shifts upwards and the MRS is unchanged,
the intersection moves to the right. Thus share functions move to the right
and equilibrium L increases. If A = 0, a move to positive A benefits net
contributors; the effect on net beneficiaries depends on whether the loss of
their share of the output is outweighed by the increase in aggregate output.
Similarly, if A = 1, a reduction in A leads to a rise in the payoff of net
beneficiaries*.  For intermediate values of A, no firm conclusions can be
drawn, even if the production function has constant elasticity, say a. For,
if A £ «, net beneficiaries gain from an increase in L by Part (iii) of the
corollary but the direct effect is a loss for such players and the overall result
is ambiguous. A similar conclusion holds when A 2 «a. Even inactive
players, who benefit from an increase in I, lose from the direct effects of an
increase in A since inactive players are always net beneficiaries. Nevertheless,
it turns out that when there are many players, approximately, payoffs of all
players increase with A up to a and decrease thereafter. In the next section,
we justify this claim as part of an application of share functions to large
games.

5 Large games

In previous sections, we have treated the number of players as exogenous.
However, the presence of positive payoffs will attract potential entrants and,
if costs of entry are small, we would expect to see many players. Results
for large games are often sharper than those for smaller games. There are
two reasons for this. Firstly, strategic effects are weakened in such games®

“For active players, this follows from part (ii) of Corollary 4.2. If i is inactive,
A; (0,L) =0 when A = 1 and the direct effect is positive.

>Though not necessarily eliminated. See Cornes and Hartley [??7?7?] for analysis of this
point for rent-seeking contests.
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and, secondly, input and output are small, permitting the use of a linear
approximation to the utility function. =~ We shall analyse output sharing
games as the number of players tends to infinity and, once again, share
functions will provide the vital analytical tool, particularly when players are
heterogeneous.

We make four further mild assumptions throughout this section in addi-
tion to A.1 - A.3. Firstly, we add to A.1 the assumption that the marginal
rate of substitution at the origin is strictly positive for all players. Since,
indifference curves are upward sloping by A.1, we are only ruling out the pos-
sibility that the slope falls to zero as the curve through the origin reaches it.
This assumption allows us to approximate preferences in the neighbourhood
of the origin by linear preferences which continue to satisfy A.1. Secondly,
we add to A.2 the requirement that F' (L) /L — 0 as L — oco. Note that
this restriction is satisfied if the production function is bounded, though we
do not need to impose such a severe restriction. Concavity of F' implies
that the marginal product is less than the average product and therefore also
approaches zero for large L. This assumption means that individual shares
of outputs become small as the number of players becomes large. Finally,
we assume that the graph of F' has infinite slope at the origin exceeds the
marginal rate of substitution at the origin. This assumption may appear
to be more severely restrictive, though it does include the important special
case of constant elasticity. However, our results are readily modified to cope
with bounded marginal product and we briefly discuss these extensions at
the end of the section. Finally, we assume that A > 0.

We will analyse the limit as n, the number of players, approaches infinity.
The analysis is simplest when all players have identical payoffs and an equal
value of the exogenous sharing parameter #,. To ensure that we do not share
out more than the total output, we must reduce 6; as n increases to satisfy
nf; < 1. A simple way of achieving this is to assume that, for all n, a
proportion g < 1 of the output set aside for exogenous sharing is distributed
equally amongst the players: 6; = p/n. Theorem 3.4 shows that there is a
unique equilibrium value of aggregate labor for each n, which we denote ",

which satisfies s; (L") = 1/n. At this value MRS and MRT must be equal:

({2252 rn 2)
{2 B2 e (- ) BB

n n n n

where f; (z,¢) is the MRS of player i evaluated at (z,¢). Under Assump-
tion A1, f;(x,¢) =2 f;(0,0) for all (x,¢) = (0,0). Under Assumption A.2,
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F'" < F/L and we can deduce that f; (0,0) £ F (L") /L". The additional
assumptions made in this section (specifically f; (0,0) > 0 and bounded av-
erage product) allow us to conclude that the sequence {L"} is confined to a
bounded interval. From Lemma &.1 in the Appendix, we may deduce that
this sequence has a limit L. (To apply the lemma, take J = 2, g; the dif-
ference between the LHS and RHS in (11) and gy = —g;). Letting n — oo

and I" — T in (11), we have

£i(0,0) = —=2. (12)

Note that the right hand side of (12), is decreasing in E, exceeds f; (0,0) for
I close enough to zero (since it approaches infinity) and is less than f; (0, 0)
for large enough L (since the LHS is positive and the RHS approaches zero
for large E) It follows that (12) has a unique solution for any A € (0, 1].
Note also that the solution depends on the mixing parameter but not on the
exogenous proportion, g. Summarizing, we have the following result.

Lemma 5.1 If all players are identical and n — oc, then L™ — E, the
unique solution (12).

There is a useful alternative interpretation of L. Firstly, we show that,
for any n, the share function reaches the axis. Recall that we refer to this as
a players dropout value. We will write " for this value. Note, from Figure
2, that L" satisfies ¢; (0,?) =T; (0,?) and we justify the assertion that

T" exists by proving that this equation has a solution. Observe that

0.0 =5 (L2220 (0).0)
and
(0, 1) = O_T)\)MF (L) + A#,
Hence, as I, — 0,
PR LS TN P

using A.2. By our third additional assumption, this limit is infinite, so
exceeds (;(0,0). By A.l and our first additonal assumption ¢, (0, L) >
¢;(0,0) > 0 for all L > 0 which means that 7; (0, L) < (;(0,L) for large
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enough L. Since 7; (0, L) and ¢, (0, L) are both continuous, we may deduce
that there is some value of L for which they are equal.

Our main claim is that L' — L as n — oo. Similar arguments to
those used for I" shows that

F(T')

0< fi(0,0) < (01?) =T, (0,?) < =7

and we may deduce that the sequence {fn} is bounded. This allows us
to apply Lemma 8.1 to deduce that it has a limit. TLetting n — oo in
¢, (0,?) =T (0,?) shows that the limit satisfies (12) and is therefore
equal to L.

We have assumed that the average product falls to zero, so it is not
surprising that individual payoffs approach the reservation value, u; (0,0),
in the limit. However, the behavior of aggregate payoff is less obvious.
Nevertheless, we can use Lemma 5.1 to show that this generally has a finite

limit. The aggregate excess payoff (over the reservation value) is

oo ({24 2228 i 2

n n

L”) — (0,0)}

— 28O [ - P (T) - 0.0
:%2;0)(1_)\)”}?<z) as n — oo, (13)

where we have used (12) to obtain the final line. Under proportional sharing
(A = 1) the limit is zero: as the number of players increases, the surplus is
fully competed away. When the mixing parameter is positive, the aggregate
benefit of that portion of the output that is shared proportionally vanishes;
what remains in the limit is the exogenously shared part which has a positive
limit even in a large game.

To analyze the case when players differ, we start by considering the m-
fold replication of a basic game with T" distinct types of player. We write G™
for this game and use a subscript enclosed in parentheses to refer to players
of type t. So we set 0, = ;L(t)/m if player i is of type t, where the p
are positive type-weights which satisfy Zle K < 1. For each type there
will be a level of labor input which satisfies (12). We write E(t) for this

value and note that it is the unique solution of fi;) (0,0) = AF (E(t)) /E(t).

Writing L?Z) for the dropout value for type ¢ in G™, we also have L?Z) — Ly
as m — oo. It is also convenient to define a ‘limiting’ share function for
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players of type t by letting m — oo in the first order conditions (7) and
(8). We can write S@ for this function and note that these conditions can
be written:
-~ - - , ~ F (L)
Fay (A () F (L), L300y (L)) 2 XSy (L) F (L) + A [1 = 5 (D)) ——
(14)

with equality if Sy (L) > 0. Lemmas 3.1 and 3.2 still apply to the LHS and
RHS of (14) respectively and allow us to conclude that S has the properties
of a share function set out in Section 3 and, furthermore, has dropout value
E(t). We can also show that 54 is the pointwise limit of type-t share functions
m g™

Lemma 5.2 If L. < E(t) and S(p) i the share function of players of type t in
g™, then s (L) — S (L) as m — oo.

Proof. The proof is another application of Lemma 8.1. For any ¢ €
[0,1], define

V(o) = fo({po+a-nE2YF@)01)
F (L) X0
—{ro+ -0 ().
== {ao+ (1= =2} (1)
The first order conditions for St to be the share function for players of

type t in G™ are V™ <3?Z) (L)) > 0 and St (Lyvm <3?Z) (L)) = 0 for all

L > 0. Note that V™ approaches the left hand side of (14)) as m — oo
and this has a unique solution 54 (L). Since the sequence {S?Z) (L)}

-A(1-o0)

m=1
is also bounded between 0 and 1, all the requirements of the Lemma 8.1

are satisfied. (Replace n with m and z with ¢ in the Lemma. Then take
J =3, g9 (0c) ==V"(0), g2(0) = oV (0) and g3 = —gy.) The desired
limit follows. m B B

We can always label the types so that Ly < Lip) for allt # T'. Consider

such a type ¢ such that E(t) < E(T) and define L* = [E(t) + E(T)} /2. Note

that Sy (L*) > 0 which means that there is a positive integer 7, such that
msry (L*) 2 2 for m > ;. The preceding lemma implies that there is a
positive integer M, such that {7, (L*) > 5y (L*) /2 for all m > Tm,.  Fur-
thermore, convergence of dropout values implies that there is a positive inte-
ger T3 such that L}y < L* for all m > m3. Hence, if m > max {my, My, M3},

we may conclude that msip <L?Z)) > 1, exploiting the fact that share func-

tions are non-increasing. Hence, the equilibrium L in G™ exceeds L?Z), the
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dropout value of players of type t. If aggregate input is greater than the
dropout value of a type, no player of that type supplies positive labor input
in G™; only players of type T participate in equilibrium.

Proposition 5.1 If E(t) < E(T) players of type t supply no labor input in
g™ for all large enough m.

This proposition shows that only players of types maximising E(t) partic-
ipate in the limit. For ease of exposition, we will assume throughout the
rest of this section that there is a unique type maximising L(t) and we choose
labels so that E(t) < E(T) for all t # T. Note that, in view of equation
(12) this is equivalent to assuming f(7) (0,0) < f) (0,0) for ¢ # T. (Nev-
ertheless, all substantial results continue to hold mutatis mutandis without
this additional restriction.) With this assumption, the proposition shows
that a large replicated game is essentially symmetric in that only type T ac-
tively participates in equilibrium and aggregate labor input approaches L.
Hence, we can use the formula (13) to derive the aggregate excess payoff for
players of type T'. Other types supply no labor once m is large enough, so
the aggregate excess payoff is given by

m [U(t) <mF( o) 10) — U (010)} :

m

This has the same limit as type T" when m — oc and we summarise our
conclusions in the following corollary.

Corollary 5.2 The equilibrium payoff to players of type t in G™ for large m
18 given by

1 3U(t) (0, 0) 1
ugy (0,0) + Ea—xiﬂ(t)é +o —

where
p=(1-NF (L) (15)
and E(T) is the solution of (12) for players of type T
In order to implement the sharing rule, we have assumed that either indi-
vidual inputs can be observed or players do not misreport their inputs. From

Corollary 5.2, a player’s first-order payoff depends on individual input only
through aggregate input. Hence, if aggregate input is observable, players
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have no incentive to misrepresent individual input levels in large games even
collusively.

The corollary also has an interesting consequence for the choice of mixing
parameter in large games for, to first order in 1/m, every player will agree on
their most preferred value of A, namely the value that maximises ¢ regarded
as a function of A\. Differentiating (12) with respect to A and rearranging
the result leads to the expression:

L) _ L)
At (o))

Differentiating (15), using the previous result and rearranging, we find:

> 0.

dp /= ﬂ(Lﬂ)U—A]_
") (S

We may deduce that A =17 (E(T)) is the unique stationary point of ¢. Fur-

thermore, since d¢/d\ is positive [negative] if A <[>]n <E(T)), it is the max-
imand of ¢. The unanimously preferred value of the mixing parameter in
a large game is the equilibrium value of the elasticity of production. When
this is constant, i.e. the production function is proportional to L%, where
0 < a < 1, then all players prefer a to any other value of the mixing param-
eter.

If we suppose that the value of A is chosen by some group decision pro-
cess on the part of the players, a voting scheme consistent with unanimity

will choose A = 7 <E(T)). More generally, if we suppose that the mixing
parameter is subject to alteration through a process that respects unanimity
we are led to dynamics of the form A= ¢ (X) where ¢ is positive [negative]
if a small increase in A results in a rise [fall] in payoffs of all players. Such
a process has A =g <E(T) as its unique stable solution.

Setting the mixing parameter to equilibrium elasticity is also efficient. It
is well known that exogenous sharing (A = 0) results in too little output
whereas proportional sharing (A = 1) leads to over-exploitation (see, for

example, Moulin [19]). With A =5 <E(T)), we will see that the unique Nash
equilibrium of a large output sharing game is Pareto efficient to first order
. . T
provided no output is wasted: Y, |y = 1.
First, observe that, since players of the same type have the same share
function, all such players enjoy the same input and output in equilibrium;
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we call such allocations type-symmetric. Quasiconcavity of utility functions
implies that, if a type-symmetric allocation is dominated by some other al-
location, it is dominated by the type-symmetric allocation found by giving
all players the average input and output for their type. This means we only
need consider re-allocations between types. Writing L for the aggregate
input and X, the aggregate output of players of type ¢, we can take the
type-t payofl to be the limiting aggregate excess, 1), where

: Xy La
= 1 20 ZO ) 0.0
b = Jim m [u(t)< === —uw (0.0)
8U(t) (0, 0)

ox; (X = Layfy (0,0)] -

We can establish efficiency by showing that the limiting equilibrium alloca-
tion maximises a positive weighted combination of the ¢,). Writing {a(t) }f: 1

for the weights, note that, if we set o) = [ﬁu(t) (0,0) /3%} ! for each t, we
have

T T
U= ZO&(TW(T) (Lay, -+ Lery) = F (L) - Z Linfr (0,0).
7=1 7=1

Here, we have written I = Zle L) and used the feasibility requirement
Zle X = F(L). Since U is a concave function of (L, ... ,L(T)),jt is

maximised at the equilibrium allocation, Ly = 0 for t # T and Ly = L7,
if

ov ~
=F (L — <
8L(t) < (T)) f(t) (070) <0,

holds with equality for £ = T. Note that equation (12) is valid for players of
type T. IftA= n (E(T)), then F’ <E(T)) = f(T) (0, 0) < f(t) (0, 0) for ¢ 7é T,
so these conditions are satisfied. This establishes Pareto efficiency.

Note that these results are independent of the exogenous weights { K }5:1'
However Corollary 5.2 shows that the choice of weights does affect the payoffs
of particular types. More specifically, to first order in a large game, there
is a unique efficient level of input: Ly provided by players of type T" with

no input from other types. Any distribution of the output F (E(T)) results

in an efficient allocation and this constitutes the set of all such allocations.
Any efficient allocation which gives every player a non-negative payoff (indi-
vidual rationality) is an equilibrium outcome for some choice of exogenous
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weights: { M(t)}il provided A =7 <E(T)). Changing the weights allows us
the freedom to redistribute at will without compromising efficiency.
When there is a single type, we can additionally assert that, in large

games, 1) (E(T)) is the unique value of the mixing parameter for which the

equilibrium is Pareto efficient. To see this, we simply note that, to first order
in 1/m, all players have payoffs proportional to F' (L) — L fry (0,0) which is
uniquely maximised at the solution of F' (L) = f(7)(0,0). This is solved at

L= E(T) only if A= n (E(T))

It is interesting to contrast these results with those for serial surplus
sharing. With the appropriate choice of mixing parameter, the equilibrium
solution with a mixed sharing rule is fully efficient. Under serial surplus
sharing, under the assumptions above, equilibria typically involve overpro-
duction. However, if preferences are linear, equilibrium input is efficient
although individual allocations are inefficient. Full efficiency requires restric-
tions on preferences (the same for all players) or on the technology (linear
production function). Note that in the latter case, the efficient value of the
mixing parameter is one: the average return procedure. On the other hand,
the results for serial sharing are valid for any number of players whereas our
conclusions for mixed sharing rules are asymptotic ones, only valid to first
order in large games.

For ease of exposition, we have focused on the case of a replicated game
in which there are the same (large) number of players of each type but this
is not really necessary. The conclusion, in Proposition 5.1, that only type T’
participates in a large game requires only that there are enough players of this
type. Thus aggregate input approaches L) provided the number of players
of type T tends to infinity. Similarly, the asymptotic form of payoffs in
Corollary 5.2 remain valid provided that the number of players of each type
is large, but not necessarily equal. Our conclusions that, approximately,

n (E(T)) is the unanimously preferred value of the mixing parameter and is

Pareto efficient do not depend on having equal numbers of each type.
Finally, we consider the effect of relaxing the assumption that F’ (L) —
oo as . — 0. Suppose f;(0,0) < F'(0) < oo. It is convenient to
impose the former inequality, otherwise player i never participates against
any opponents. If X = f;(0,0) /F"(0), then (12) has a solution L if and
only if A > X. For such A\, Lemma 5.1 and the remaining results continue
to hold. For A < X, it is necessary to consider boundary solutions and we
will have L™ = 0 for large enough n. Once again, Lemma 5.1 continues to
hold, provided we set L = 0. It can also be shown that, for large enough
n, the share function is zero for all . > 0. If we adopt the convention
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that the dropout value is zero in such a case, we again have convergence
of dropout values to L. Indeed, with these interpretations, the results for
asymmetric games extend to finite F’ (0). Note that the preferred value of
X will always exceed X, so our comments on preferred values of the mixing
parameter remain valid.

6 Cost and surplus sharing

We have assumed that the disutility of supplying labor input ¢; is purely a
function of #; alone. In this section, we extend the analysis to games in
which this disutility also depends on aggregate (labor) input. For example,
this includes games in which the sum of all players’ inputs exerts a nega-
tive externality such as pollution, and the costs of amelioration are shared
amongst the players according to some rule. More particularly, consider the
following sharing rule for player 7

w= (1) = (XG4 (0= X)0 ) P (1), (16

where \* € (0,1) and 6 are positive weights satisfying Zjel 07 =1 and take
player i’s payoff to be u; (7v; (¢;, L) ,vi (¢;,L)). We shall continue to assume
that preferences satisfy A.1 in Section 3 (with y; replacing ¢;). The other two
assumptions need slight modification to cope with the generalized model, as

follows.

A.2* The functions F' and F* are increasing, continuous and continuously
differentiable for L > 0 and F'(0) = F*(0) = 0. FEither (i) F is strictly

concave and F* is convex, or (ii) F'is concave and F'™* is strictly convex.

A.3* There exists a value of L > 0 such that u;(F(L), F* (L)) < ;(0,0).

The surplus sharing model discussed in previous sections has A* = 1 and
F*(L) = L. (The value of 6 is irrelevant.) Pure cost sharing, as discussed
recently by Watts [31] is the special case A = A* =1 and F (L) = L.

The analysis proceeds along the same lines as the two preceding sections
and so we only sketch the results. Defining (; (0;, L) to be the MRS evalu-
ated at z; given by (5) and y; = {\'o; + (1 — X\") 6} F* (L), Lemma 3.1 still
holds. The formula for the MRT becomes

(o) = (Mo + (1=N) 6} F (L) + A[l— 0, F(L) /L
N+ (L= NP (D + N L=, Fr (L) /L
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If Assumption A.2* (i) holds, F’ <[<]F/L and both are strictly decreasing
and F¥ =2 F*/L and both are weakly increasing. For fixed 0;, we may
conclude that the MRT is strictly decreasing in L. For fixed L > 0, under
(1) an increase in o; implies a strict decrease in the numerator and a weak
increase in the denominator leading to a fall in 7;. The same conclusions may
be drawn under A.2* (ii). Fither way, Lemma 3.2 continues to hold when
A.2 is replaced by A.2*. Propositions 3.1 and 3.2 follow for the extended
model using the same arguments as in Section 3. The proof of Proposition
3.3 can also be modified for the extended model. We omit the details, simply
noting that the graph of F' must replaced by the locus of points of the form
(F(L),F* (L)) for L > 0 in the argument; it has the same key properties
under A.3* as the locus of (F'(L), L) under A.3. Fxistence and uniqueness
follows.

Theorem 6.1 Given assumptions A.1, A.2* and A.3* (i) [A.3"(ii)], there is
a unique Nash equilibrium if A >0, A* > 0.

Once again, the qualifications on the mixing parameters are not required
if normality holds strictly in A.1.

All the comparative statics results in Section 4 rest on Theorem 4.1.
Part of this theorem can be generalized as follows, defining w;(o;, L) to be
u; (x;,v;) where z; is given by (4) and y; is given by (16).

Theorem 6.2 Suppose that, s;(L) exists and is positive. Then w;(s;(L), L)
is a strictly decreasing function in a neighborhood of L if A;(s;(L), L) < 0,
where A; is defined in (9).

By a minor modification of the proof of the second part of Theorem 4.1,

we find

5L =72 0. 0T {1—s,(L)— Lsi(L)}.

Assumption A.1 implies that du;/dz; > 0 and du;/dy; < 0, and

N0 L) _ g, {F () - ) (L)} + (1= N0 FY (L) >0, (17)
oL L

by Assumption A.2*. Since s;(L) < 1 and si(L) < 0, the second term in
braces is positive and part (ii) of the theorem follows. Note that, if either
A < 1 or F* is strictly concave, the inequality in (17) is strict, and the
requirement in the theorem can be weakened to A(s;(L), L) < 0. This is

Ay(s;(L), L) +

important because under pure cost sharing, A; = 0 for all arguments and F*
is strictly concave under A.2*. We may deduce the following corollary which
includes pure cost sharing as a special case.
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Corollary 6.3 Suppose A = 1 and F (L). FEquilibrium payoffs of currently
active players decrease if L increases.

If A > 0, the sign of dw; /L is ambiguous unless A\* = 1 and F™* is linear
which implies equality in (17). This is the case of pure surplus sharing which
is covered by Theorem 4.1.

Note that the comparative statics of pure cost sharing do not depend on
the mixing parameter by contrast with the case of pure surplus sharing. We
may apply the corollary in a similar manner to Section 4 to a number of
comparative statics propositions. For example, under pure cost sharing or,
more generally, a mixed game in which the surplus is shared proportionally,
players are made worse off by extra players joining the game or by an increase
in ability of another player and better off by the imposition of a binding quota
on a competitor.

7 Conclusion

We have shown that, under conventional assumptions on preferences and
technology, the joint production game, with a mixed rule for sharing the
surplus or costs (or both simultaneously), has a unique Nash equilibrium.
We have also established results in comparative statics and for large games.
Throughout, we have used the method of share functions but this approach
is much more widely applicable. Indeed, it is potentially applicable to any
model that has the aggregative structure in which the payoff of every player
can be expressed as a function of that player’s own strategy choice and the
sum of the strategies chosen by all players in the game. FExamples in-
clude pure and impure public good provision (Cornes and Sandler [13], [14],
[15]), Bergstrom, Blume and Varian [3]), Cournot oligopoly with undiffer-
entiated products (Friedman [17]), rent-seeking contests (Nitzan [21]) and
pollution models (Tulkens [29], Barrett [1], Hoel [18], Chander and Tulkens
[4]). Cournot oligopoly is a special case of the model discussed in this pa-
per. (Let preferences be quasilinear in z; and interpret ¢; as the quantity
produced by owner/firm i and F' (L) /L as the demand function.) Public
goods are studied using this approach in [11] and the use of share functions
in rent-seeking has been studied by Cornes and Hartley when contestants are
risk neutral [9] as well as when they are risk averse [10].
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8 Appendix
Lemma 8.1 Suppose that the sequence {z"})° | is bounded and satisfies
g; (@™, 1/n) <0 forj=1,....J, (18)

where each g; is a continuous function (of both arguments). Suppose further
that T is the unique solution of g; (£,0) <0 forj=1,...,J. Thena" — T
asn — oc.

Proof. By contradiction. If the conclusion were false, we could choose
an open neighborhood N of T such that infinitely many members of the
sequence {z"}° | fall outside A/. Since the sequence {z"}° | is bounded,
it would contain a convergent subsequence falling outside A/, with limit 2,
say. Openness of N’ means z° ¢ N and taking limits in (18) on the
subsequence, using the continuity of the g; we deduce that g, (z>,0) < 0 for
j=1,...,.J. But this means x> = ¥ contradicting 7 € N. ®
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