
Risk Aversion in Cumulative Prospect
Theory

Ulrich Schmidta & Horst Zankb,∗

aInstitut für Finanzwissenschaft und Sozialpolitik, Christian-Albrechts-Universität zu

Kiel, Germany.

bSchool of Economic Studies, The University of Manchester, United Kingdom.

20 November, 2001

Proposed Running Title: Risk Aversion in CPT

∗Corresponding author: Horst Zank, School of Economic Studies, The University of Manchester,

Oxford Road, Manchester M13 9PL, United Kingdom; Telephone: ++44 161 275 4872, Fax: ++44 161

275 4812, E-mail: horst.zank@man.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6754836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract. This paper characterizes the conditions for risk aversion in cumulative prospect

theory where risk aversion is defined in the strong sense ([27]). Under weaker assumptions

than differentiability we show that risk aversion implies convex weighting functions for

gains and for losses but not necessarily a concave utility function. Also, we investigate the

exact relationship between loss aversion and risk aversion. We illustrate the analysis by

considering two special cases of cumulative prospect theory and show that risk aversion

and convex utility may coexist.
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1 Introduction

Cumulative prospect theory (CPT) has nowadays become the most prominent alternative

to expected utility (EU). It is widely used in empirical research and various axiomatic

characterizations of CPT have been proposed ( [21], [22], [33], [34], [5], [29], and [30]).

The paradoxes of Allais [1] and Ellsberg [11] are resolved under CPT, as well as the

coexistence of gambling and insurance ([13]). The equity premium puzzle ([23]), the

overtime premium puzzle ([8]), the status quo bias ([28]), and the endowment effect ([32])

can all be accommodated under CPT.

Another popular alternative to expected utility is the rank-dependent utility (RDU)

model of Quiggin [25]. RDU generalizes EU by introducing a weighting function which

transforms cumulative probabilities. CPT is even more general than RDU by allowing

additionally for sign-dependence (there exist two separate weighting functions, one for

gains and one for losses, which do not need to coincide) and reference-dependence (utility

is defined on deviations from a status quo, i.e. on gains and losses, and not on final

wealth positions). Due to reference-dependence a decision maker in the CPT framework

can exhibit loss aversion which means that the utility of a loss weights more heavily than

the utility of a corresponding gain.

There exist various theoretical applications of RDU in the literature, especially in

the context of insurance economics. These applications have shown that RDU generates

results which differ substantially from those derived in the expected utility framework

and in many cases these results provide a better accommodation of observed data. In

general, the theoretical applications of RDU — and even those of EU — assume strong risk

aversion. An individual exhibits strong risk aversion if she or he always dislikes mean-
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preserving spreads in risk (cf. [27]). Chew, Karni and Safra [6] have shown that strong

risk aversion is satisfied within the RDU framework if and only if the utility function is

concave and the weighting function is convex. In contrast, strong risk aversion has not

yet been analyzed for CPT and the goal of the present paper is to fill this gap. It is

useful to derive the conditions for strong risk aversion under CPT in order to improve our

understanding of this model. Moreover, since most theoretical applications of RDU and

EU assume strong risk aversion it is reasonable to do the same for CPT in order to make

the results comparable.

Our main result shows that the conditions for strong risk aversion under CPT and RDU

coincide if we consider only gains or if we consider only losses, i.e. utility is concave on the

domain of gains and also concave in the domain of losses and both weighting functions are

convex. However, this result generalizes the finding of Chew, Karni, and Safra [6] since

we do not employ any differentiability assumption. If gains and losses are considered

simultaneously, surprisingly utility does not need to be concave; in extreme cases strong

risk aversion and convex utility may coexist under CPT. This result is noteworthy since

Chateauneuf and Cohen [3] tried to derive the coexistence of risk aversion and convex

utility under RDU. They have shown that RDU is compatible with convex utility only in

the presence of weak risk aversion (i.e. any lottery is dispreferred to its expected value)

while strong risk aversion forces utility to be concave everywhere. Moreover, our results

show that there exists a particular relationship between strong risk aversion and loss

aversion: in general, strong risk aversion is compatible with loss seeking, while utility is

concave if and only if loss aversion holds. Surprisingly, the relationship between strong

risk aversion and loss aversion is characterized by the ratio of the left and right derivative

of the utility function at zero. Theoretical arguments have motivated Köbberling and
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Wakker [18] to propose this ratio as index of loss aversion. Our results support their

proposal since in our framework this index of loss aversion arises naturally.

In order to shed some more light on the consequences of strong risk aversion in the

CPT framework we consider two specific variants of the model. In the first variant utility

is a linear/exponential function, and in the second case it is a power function. By incor-

porating strong risk aversion these variants lead to examples where the utility function is

non-concave, in particular loss seeking behavior is allowed in a region around the status

quo. In the case of the power function utility becomes linear for gains and linear for losses

with a possible kink at the status quo.

One may argue that the analysis of loss aversion in the CPT framework is of less

interest since the value function in prospect theory and CPT is usually proposed to be

convex in order to accommodate empirical observed risk seeking for losses ([16], [33]).

However, many empirical studies found linear utility for small losses ([10], [15], [31], [7],

[36], and [20]). Moreover, it seems to be commonly agreed that utility is linear, at least for

small stakes ([19], [12], [17]). Theoretical arguments for linear utility have been provided

by Hansson [14] and Rabin [26]. Additionally, there seems to be some evidence that a

decision maker, who initially is risk seeking in the loss domain, changes attitudes towards

risk while gaining experience. This fact has lead Myagkov and Plott [24] to formulate the

conjecture that “with experience, risk seeking in the losses evolves into either risk-neutral

or risk-averse behavior.” These empirical findings as well as the fact that the theoretical

applications of RDU and EU assume strong risk aversion indicate that strong risk aversion

should also be analyzed in the CPT framework.

The paper is organized as follows. In the next section we present the CPT model

and derive our main results. Section 3 considers the consequences of strong risk aversion
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for the two special variants of CPT mentioned above. All proofs are presented in the

Appendix.

2 Cumulative Prospect Theory and Risk Aversion

In this section we recall the general cumulative prospect theory model for decision under

risk. It is assumed that a decision maker has a preference relation over lotteries. A lottery

is a finite probability distribution over the set of monetary outcomes (here identified

with the set of real numbers, IR). It is represented by P := (p1, x1; . . . ; pn, xn) meaning

that probability pj is assigned to outcome xj, for j = 1, . . . , n. The probabilities pj are

nonnegative and sum to one. With this notation we implicitly assume that outcomes are

ranked in decreasing order, i.e., x1 > · · · > xn. Without loss of generality, we assume that

the status quo is given by zero. Therefore, we refer to positive outcomes as gains and to

negative outcomes as losses.

Cumulative Prospect Theory (CPT) holds if the decision maker evaluates lotteries by

the following functional.

(p1, x1; . . . ; pn, xn) 7→
nX
j=1

πjU(xj),

where U is the utility function and the πj’s are decision weights.

The utility function assigns to each outcome a real value, in particular U(0) = 0, and

it is assumed that utility is strictly increasing and continuous.

The decision weights are generated by probability weighting functions w+, w−. These

functions map the interval of probabilities [0, 1] into itself, they are strictly increasing and

satisfy w+(0) = w−(0) = 0, and w+(1) = w−(1) = 1. For a lottery (p1, x1; . . . ; pn, xn),

the decision weights are defined as follows. There exists some k ∈ {0, . . . , n} such that

6



x1 > · · · > xk > 0 > xk+1 > · · · > xn. Then

πj =


w+(p1 + · · ·+ pj)− w+(p1 + · · ·+ pj−1), if j 6 k,

w−(p1 + · · ·+ pj)− w−(p1 + · · ·+ pj−1), if j > k.
Under CPT utility is a ratio scale, i.e., it is unique up to multiplication by a positive

constant, and the weighting functions are uniquely determined.

Several axiomatizations of CPT can be found in the literature. To derive the general

functional form often complex conditions are required beyond the standard properties

(continuity, weak ordering, stochastic dominance). Luce and Fishburn [22] use a condi-

tion termed compound gamble and joint receipt (see also [21]). Tversky and Kahneman

[33], Wakker and Tversky [34], Chateauneuf and Wakker [5] and Schmidt [29] use sign-

dependent comonotonic tradeoff-consistency. The conditions can be less complex if a

particular parametric form for utility is desired. Wakker and Zank [35] use a general-

ization of constant proportional risk aversion to incorporate losses and derive CPT with

utility as power function. Zank [37] provides a model where utility is exponential or linear

by requiring constant absolute risk aversion for gains and separately for losses. These two

models are analyzed in more detail in the next section. Schmidt and Zank [30] use a

condition called independence of common increments to derive a model where utility is

linear for losses and linear for gains.

Under expected utility risk aversion is equivalent to requiring concavity of the utility

function. Since the flow of alternatives to expected utility theory many alternative notions

of risk aversion have been proposed and analyzed. The most prominent one defines risk

aversion as aversion to mean preserving spreads which is referred to as strong risk aversion.

This concept of risk aversion was introduced by Rothschild and Stiglitz [27]. More pre-

cisely, an individual exhibits strong risk aversion if for all lotteries P = (p1, x1; . . . ; pn, xn)
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and all δ > 0 it follows that

(p1, x1; . . . ; pi, xi − δ

pi
; . . . ; pj, xj +

δ

pj
; . . . ; pn, xn) < P,

whenever pi, pj > 0. Recall that due our notation δ must be chosen such that rank-

ordering of outcomes is maintained.

Several generalizations of strong risk aversion have been proposed by Chateauneuf,

Cohen, and Meilijson [4], and their implications on various decision models have been

studied. Strong risk aversion is a property which is model independent — i.e. defined in

terms of preferences and not in terms of properties of the utility representation — and

this fact may explain its popularity. In the next theorem we present the implications of

strong risk aversion under general CPT. Some of our results are similar to those found for

RDU, which is the special case of CPT given by w+ ≡ w−. As shown by Chew, Karni,

and Safra [6], in the case of RDU utility has to be concave and the weighting function

has to be convex in order to satisfy strong risk aversion. In the theorem below we do

not assume any differentiability of the utility function, nor do we assume continuity of

the weighting functions on [0, 1]. We rather adopt the approach of Ebert [9], who has

shown in a welfare theory setting that these assumptions can be relaxed. In this sense

Theorem 1 below also generalizes the existing results for rank-dependent expected utility

since Chew, Karni, and Safra [6] assumed Gâteaux-differentiability.

Theorem 1 Suppose that cumulative prospect theory holds. Then the following two state-

ments are equivalent:

1. Strong risk aversion holds.

2. The weighting functions w+ and w− are convex and continuous on the half-open

interval [0, 1), the utility function is concave on the domain of losses and also on
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the domain of gains. Moreover, the utility function and the weighting functions are

differentiable almost everywhere. In particular the left and right derivative of the

utility function at any outcome exists, as well as the left and right derivatives of the

weighting functions at any p in (0, 1). Further, the following relationship is satisfied:

U 0(0−)
U 0(0+)

> sup
p∈(0,1)

w+0(p+)
w−0(p−)

.

¤

Theorem 1 shows that the utility function does not need to be concave on the entire

real line since convexity at the status quo is permitted. In the next section two special

cases of CPT are analyzed with respect to this issue and an example with convex utility

is derived.

The formula obtained in Theorem 1 can be used to derive a new measure of loss aver-

sion. Since in general U 0(0−)/U 0(0+) can be less than unity also in the case of strict risk

aversion some losses, however small they are, may not “loom larger than the correspond-

ing gains”, that is, not for all x > 0 we have |U(−x)| > U(x). Therefore, loss aversion

does only hold if U 0(0−)/U 0(0+) > 1. Note that an identical definition of loss aversion was

already proposed by Bernatzi and Thaler [2] and formalized by Köbberling and Wakker

[18]. The latter authors denote the ratio U 0(0−)/U 0(0+) as index of loss aversion (say λ)

and employ it in order to compare the degree of loss aversion between different individuals.

If we want to derive a utility function in Theorem 1 which is overall concave then

U 0(0−)/U 0(0+) must be larger or equal to 1. Since the converse relationship holds as well

we can formulate the following corollary.

Corollary 2 Assume that CPT holds and that risk aversion is satisfied. Then, the

utility function is concave if and only if loss aversion holds. ¤
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Note that in the case of RDU we have w+ ≡ w− and, therefore, supp∈(0,1)w+0(p+)/w−0(p−) >

1. Consequently, in this case strong risk aversion does always imply loss aversion and a

concave utility function on the entire domain.

For CPT, two examples which illustrate the issue of non-concavity of the utility func-

tion in a region around the status quo are presented in the next section.

3 Risk Aversion and Convex Utility

As already noted in the preceding section, the interest of economists in a particular

parametric form for utility has lead to simpler axiomatizations of CPT. The first functional

form for utility which we analyze here is linear/exponential utility. Zank [37] provides a

characterization of CPT with linear/exponential utility for decision under uncertainty. A

function U : IR → IR is from the increasing linear/exponential family for gains (losses) if

one of the following holds for all x > 0 (x 6 0):

(i) U(x) = αx, with α > 0,

(ii) U(x) = αeγx + τ, with αγ > 0 and τ ∈ IR.

Under CPT utility satisfies U(0) = 0. Therefore, in (i) we dropped the location

parameter, and in (ii) the only possibility for the location parameter is τ = −α. In the

above definition only the functional form of utility is described. Clearly the parameters

α, γ can be different for gains (say α+, γ+) than for losses (say α−, γ−). The following

result holds if we assume CPT with linear/exponential utility in Theorem 1.

Corollary 3 Suppose that cumulative prospect theory holds with linear/exponential util-

ity. Then the following two statements are equivalent:
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1. Strong risk aversion holds.

2. The weighting functions w+ and w− are convex and continuous on the half-open

interval [0, 1), the utility function is concave on the domain of losses and concave

on the domain of gains. Moreover, the weighting functions are differentiable almost

everywhere. In particular the left and right derivative of the utility function at any

outcome exists, as well as the left and right derivatives of the weighting functions at

any p in (0, 1). Further, the following relationship is satisfied:

λ :=


α−γ−/α+γ+ if utility is exponential

α−/α+ if utility is linear

 > sup
p∈(0,1)

w+0(p+)
w−0(p−)

,

where λ denotes the index of loss aversion. ¤

If the utility function in the above corollary is exponential for both, gains and losses,

then Statement 2, which says that utility is concave on the loss-domain and concave on

the gain domain, implies that the involved parameters are all negative. We can use this

result to design an example which shows that utility is not necessarily concave on the

entire domain. Suppose that for some positive α the utility function is defined as

U(x) =


− exp(−x) + 1, x > 0,

−α(exp(−x)− 1), x 6 0,

and for some positive β the weighting functions are defined as

w+(p) =


exp(p)−1
4(e−1) , p ∈ [0, 1),

1, p = 1,

and

w−(p) =


βw+(p), p ∈ [0, 1),

1, p = 1.
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Obviously, CPT holds and Statement 2 in the above corollary is satisfied if αβ > 1.

Hence, risk aversion holds. However, utility is not concave for α < 1. Non-concavity of

the utility will occur if for example α = 0.9 and β = 2.

The next corollary is focusing on a result of Wakker and Zank [35], in which utility is

a two-sided power function of the following form:

U(x) =


σ+xα, with σ+ > 0,α > 0, for all x > 0,

−σ−|x|β, with σ− > 0, β > 0, for all x 6 0.

This form for utility under CPT has been proposed by Tversky and Kahneman [33] and is

the most used parametric form in empirical and theoretical applications (many references

are given in [35]). If we assume CPT with power utility in Theorem 1 then the following

result holds.

Corollary 4 Suppose that cumulative prospect theory holds with power utility. Then

the following two statements are equivalent:

1. Strong risk aversion holds.

2. The weighting functions w+ and w− are convex and continuous on the half-open

interval [0, 1), the utility function is linear on the domain of losses and also on

the domain of gains. Moreover, the weighting functions are differentiable almost

everywhere. In particular the left and right derivative of the utility function at any

outcome exists, as well as the left and right derivatives of the weighting functions at

any p in (0, 1). Further, the following relationship is satisfied:

λ :=
σ−

σ+
> sup
p∈(0,1)

w+0(p+)
w−0(p−)

,

where λ denotes the index of loss aversion. ¤
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This result shows that risk aversion and convex utility can coexist under CPT. Assume

that CPT holds with the following utility function

U(x) =


σ+x, x > 0,

σ−x, x 6 0,

and the weighting functions

w+(p) =


p/4, p ∈ [0, 1),

1, p = 1,

and

w−(p) =


p/2, p ∈ [0, 1),

1, p = 1.

Then for σ+ = 1, σ− = 0.9 the conditions in Statement 2 of the above corollary are

satisfied, and obviously utility is convex, due to the fact that utility is less steep for losses

than for gains (i.e. 1 = σ+ > σ− = 0.9).

The reason why in this example we have loss seeking is that the weighting functions

are allowed to be discontinuous at 1. If we require continuity of the weighting functions

on [0, 1], as is often done in the literature, loss-seeking behavior cannot occur. In that case

continuity and convexity of the weighting functions imply that supp∈(0,1)[w
+0(p+)/w−0(p−)]

will be at least 1, and utility must be concave on the entire domain. The proof is simple.

If w− is above w+ then for p close to 1 we have w−0(p−) 6 w+0(p+). Similarly, if w− is

below w+ then for p close to 0 we have w−0(p−) 6 w+0(p+). If neither of the previous

cases holds, then the two weighting functions must intersect. In that case there exists an

interval in [0, 1] where either w− is above w+ or w− is below w+ and where w− is below

w+ at the boundary of the interval. Using similar arguments as above, we can conclude

the existence of some p ∈ (0, 1) with w−0(p−) 6 w+0(p+).
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This analysis is independent of the chosen utility function, and therefore it holds in

general. This shows that, while under RDU assuming a continuous or discontinuous

weighting function is irrelevant for the shape of the utility function, here the assumption

of continuous weighting functions is crucial and forces utility to be concave. We get the

following result.

Lemma 5 Suppose that CPT holds and that strong risk aversion is satisfied. Further,

assume that the weighting functions are continuous on [0, 1]. Then, loss seeking behavior

is excluded, i.e. the utility function is concave. ¤

4 Appendix. Proofs

Proof of Theorem 1: Let us first assume Statement 1 and derive Statement 2. Sup-

pose strong risk aversion holds and as well CPT. In what follows we prove that if the

outcomes are gains or zero then utility must be concave and the weighting function w+

convex. Then a similar result is derived for the case of losses (or zero): again utility is

concave and the weighting function w− is convex. In both cases we cannot rely on results

from the literature as our assumptions are weaker: we do not assume differentiability of

the utility function, neither do we assume continuity of the weighting functions. We will

show that the additional assumptions are not necessary.(It has been shown in Lemma 5

that such additional assumptions are rather restrictive under CPT.)

The final step in the derivation of Statement 2 is to consider the mixed outcome case.

Step 1: Outcomes are gains or they are the status quo.

First we consider the lottery P := (p1, x1; . . . ; pi, xi; pi+1, xi+1; . . . ; pn, xn). Strong risk
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aversion implies that

(p1, x1; . . . ; pi, xi − δ

pi
; pi+1, xi+1 +

δ

pi+1
; . . . ; pn, xn) < P

whenever δ ∈ [0, (xi − xi+1)/2]. After elimination of common terms, substitution of CPT

gives

πi[U(xi)− U(xi − δ

pi
)] 6 πi+1[U(xi+1 +

δ

pi+1
)− U(xi+1)],

or equivalently

pi+1πi
piπi+1

6 [U(xi+1 + δ/pi+1)− U(xi+1)]
δ/pi+1

δ/pi
[U(xi)− U(xi − δ/pi)]

.

Now we use the fact that the utility function is continuous and strictly increasing, hence

differentiable almost everywhere. Then we can choose xi, xi+1 such that derivative at

those values is well defined. Then, for δ → 0 it must hold that

pi+1πi
piπi+1

6 U 0(xi+1)
U 0(xi)

,

and by letting xi → xi+1 in the limit, we find

pi+1πi
piπi+1

6 1,

or

πi
pi
6 πi+1
pi+1

.

This shows that for any selection of probabilities we have

w+(
Pi

j=1 pj)− w+(
Pi−1

j=1 pj)

pi
6
w+(

Pi+1
j=1 pj)− w+(

Pi
j=1 pj)

pi+1
,

or equivalently that the weighting function w+ is convex.

It can now be shown that the weighting function w+, which is strictly increasing

satisfying w+(0) = 0 and w+(1) = 1, is continuous on [0, 1). Convexity and monotonicity
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are sufficient for the derivation of this property. Now we use the fact that a monotonic

continuous function is differentiable almost everywhere. In addition the weighting function

w+ is convex, and this means that its left and right derivative at each point in (0, 1) exists

as well as the right derivative at 0.

For this case it remains to show that the utility function is concave. Strong risk

aversion implies that

(1/2, x1 − δ; 1/2, x2 + δ) < (1/2, x1; 1/2, x2)

whenever δ ∈ [0, (x1 − x2)/2]. After elimination of common terms, substitution of CPT

gives

[w+(1/2)][U(x1)− U(x1 − δ)] 6 [1− w+(1/2)][U(x2 + δ)− U(x2)],

and using the convexity of w+ and the continuity at 1/2 we find

1 6 [U(x2 + δ)− U(x2)]
[U(x1)− U(x1 − δ)]

.

With δ = 1/2(x1 − x2) we derive

U(x1) + U(x2)

2
6 U((x1 + x2)

2
),

which implies concavity of the utility function, as xi, xi+1 were arbitrary (gains).

In order to show that the left and right derivative of U exists at any gain outcome, note

that a similar argument as in the case of the weighting function w+ applies here. However,

because the domain of the utility function is unbounded from above, we conclude that the

left and right derivatives of the utility function at each point x > 0 exist and in particular

the right derivative at the status quo is well defined.

Step 2: Outcomes are losses or they are the status quo.
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The proof is similar to the one in the previous case. Therefore, we can conclude that

the utility function is concave for losses and that the weighting function w− is convex.

Moreover, continuity of w− on [0, 1) is satisfied and the left and right derivative of w−

exists for each point in (0, 1), in particular the right derivative of w− at 0 is well defined.

Similarly to the previous case we can conclude that the utility function U is differentiable

almost everywhere, and that the left and right derivative exists at any x < 0. In addition

the left derivative of U at 0 is well defined, and in general it may not agree with the right

derivative established in step 1 of this proof.

Step 2: Outcomes are gains or losses.

This step will focus entirely on the derivation of the inequality in Statement 2 of the

theorem. Suppose we have a lottery P = (p1, x1; . . . ; pk, xk; pk+1, xk+1; . . . ; pn, xn), where

xk > 0 > xk+1. Then strong risk aversion implies

(p1, x1; . . . ; pk, xk − δ

pk
; pk+1, xk+1 +

δ

pk+1
; . . . ; pn, xn) < P.

Let now δ be small enough such that xk − δ > 0 > xk+1 + δ. Substitution of CPT gives

πk[U(xk)− U(xk − δ

pk
)] 6 πk+1[U(xk+1 +

δ

pk+1
)− U(xk+1)].

Therefore, for any xk > 0 > xk+1 and any probabilities pk, pk+1 the following must be

satisfied:

[U(xk)− U(xk − δ
pk
)]

[U(xk+1 +
δ

pk+1
)− U(xk+1)]

6
[w−(

Pk+1
j=1 pj)− w−(

Pk
j=1 pj)]

[w+(
Pk

j=1 pj)− w+(
Pk−1

j=1 pj)]
.

We can write this inequality as

[U(xk)− U(xk − δ
pk
)]/ δ

pk

[U(xk+1 +
δ

pk+1
)− U(xk+1)]/ δ

pk+1

6
[w−(

Pk+1
j=1 pj)− w−(

Pk
j=1 pj)]/pk+1

[w+(
Pk

j=1 pj)− w+(
Pk−1

j=1 pj)]/pk
.
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This inequality needs to be satisfied for all xk > 0 > xk+1, all probabilities p1, . . . , pn and

any appropriate δ. Hence,

sup
xk>0>xk+1

δ>0

[U(xk)− U(xk − δ
pk
)]/ δ

pk

[U(xk+1 +
δ

pk+1
)− U(xk+1)]/ δ

pk+1

6 inf
p1,...,pn

[w−(
Pk+1

j=1 pj)− w−(
Pk

j=1 pj)]/pk+1

[w+(
Pk

j=1 pj)− w+(
Pk−1

j=1 pj)]/pk

must hold. We now use the concavity of the utility function and the convexity of the

weighting functions and derive

sup
xk>0>xk+1

U 0(x+k )
U 0(x−k+1)

6 inf
p∈(0,1)

w−0(p−)
w+0(p+)

,

or further using concavity of the utility function on the gain domain and on the loss

domain:

U 0(0+)
U 0(0−)

6 inf
p∈(0,1)

w−0(p−)
w+0(p+)

.

This inequality is equivalent to

U 0(0−)
U 0(0+)

6 sup
p∈(0,1)

w+0(p+)
w−0(p−)

,

which concludes the proof of Statement 2.

Let us now assume that Statement 2 holds. The proof of Statement 1 follows from

the fact that under CPT strong risk aversion is equivalent to

pjπi
piπj

6 [U(xj + δ/pj)− U(xj)]
δ/pj

δ/pi
[U(xi)− U(xi − δ/pi)]

,

for any xi > xj and probabilities pi + pj 6 1, and appropriate δ > 0. For each of the

three cases (xi > xj > 0, 0 > xi > xj, xi > 0 > xj) this inequality follows from continuity

of the different functions and the convexity of the weighting functions together with the

concavity of U for gains and for losses. For the derivation of the case xi > 0 > xj the

inequality in statement 2 of the theorem is needed. This concludes the proof of Theorem

1. ¤
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Proof of Corollary 2: The proof follows immediately from the new definition of loss

aversion: λ = U 0(0−)/U 0(0+). ¤

Proof of Corollary 3: The proof follows from substitution of the particular form for

the utility function in Theorem 1. ¤

Proof of Corollary 4: The proof follows from substitution of the particular form for

the utility function in Theorem 1. ¤
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