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ABSTRACT

This paper examines the proposition that the business cycle affects seasonality in

industrial production, with output being switched to the traditionally low production

summer months when recent (annual) growth has been strong. This is investigated

through the use of a restricted threshold autoregressive model for the monthly growth

rate in a total of 74 industries in 16 OECD countries. Approximately one third of the

series exhibit significant nonlinearity, with this nonlinearity predominantly associated

with changes in the seasonal pattern. Estimates show that the summer slowdown in

many European countries is substantially reduced when recent growth has been high.

JEL Classifications: E32, C22

KEYWORDS: Business cycles, seasonality, TAR models, industrial production
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1. INTRODUCTION

Economists and statisticians have traditionally viewed seasonal patterns as devoid of

economic information, leading to the widespread use of seasonally adjusted data for the

analysis of economic phenomena. Recently, however, this has been questioned by a

number of authors. Studying various series, Ghysels (1994), Canova and Ghysels

(1994), Cecchetti and Kashyap (1996), Miron and Beaulieu (1996), Cecchetti, Kashyap

and Wilcox (1997), Carpenter and Levy (1998), Krane and Wascher (1999) have found

evidence that seasonality changes over the business cycle. On the other hand, while

agreeing that seasonality is not constant over time, van Dijk, Strikholm and Teräsvirta

(2001) conclude that cyclical changes in seasonality for industrial production are

relatively unimportant compared with changes in the seasonal pattern that depend on

time alone.

It has been well documented that industrial production exhibits very strong

seasonal movements, with developed countries in the Northern Hemisphere exhibiting

marked declines in the summer and, to a lesser extent, around Christmas; see, for

example, Miron and Beaulieu (1996). Presumably due to institutional and possibly

climatic factors, the strength of this seasonality differs across countries. Nevertheless,

the seasonal slowdown in production in certain months intuitively implies that, even at a

business cycle peak, capital may not be fully utilised throughout the year. Therefore,

with capacity given in the short-run, increased demand may be met by utilising spare

capacity in low production months, leading to a reduction in seasonality during business

cycle booms compared with recessions. More precisely, as examined in further detail by

Cecchetti and Kashyap (1996), the effect of the business cycle on seasonality in
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production will depend on the properties of the marginal cost function and the costs of

holding inventories.

The seasonal behaviour of inventories over the business cycle has been

examined by Carpenter and Levy (1998) and Cecchetti et al. (1997). However, at least

to date, the study of inventories in this context does not appear to offer substantial new

insights compared with examination of output series. Using monthly production data for

11 industries in 19 countries, Cecchetti and Kashyap (1996) examine the

seasonality/business cycle interactions by measuring the extent of seasonal variation

near business cycle peaks compared with troughs, concluding that seasonality is

generally less marked at peaks. Nevertheless, although their model is nonlinear, their

approach is not entirely satisfactory because they effectively eliminate the nonlinearity

by using a second-order approximation. They also take the business cycle indicator as

given by an economy-wide variable after the application of the filter proposed by Baxter

and King (1999), thereby utilising future information not available when production

decisions are taken and also not focusing on the position within a specific industry. The

approach of van Dijk et al. (2001) is more coherent, since they explicitly examine a

nonlinear model that allows seasonal dummy variable coefficients to change as a

function of the (lagged) change in the annual growth of the variable of interest. In fact,

however, the model allows all parameters to vary over time as well as over the business

cycle, leading to a highly parameterised specification.

The results of van Dijk et al. (2001), implying that any interactions are relative

minor, have (in effect) questioned the findings of Cecchetti and Kashyap (1996) about

the interactions between seasonality and the business cycle. We agree with Cecchetti

and Kashyap that the existence, or otherwise, of interactions is important from an

economic perspective because of the additional information this may provide about the
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nature of the cost function faced by producers. This paper sheds further light on the

issue.

In terms of technique, our approach is fairly close to van Dijk et al. (2001).

However, while they use quarterly aggregate industrial production for the G7 countries,

we examine a potentially richer dataset of monthly industrial production series for 16

OECD countries, using data on major components as well as the aggregate. Thus we

allow the possibility that different sectors may exhibit different business cycles. Further,

the use of monthly data may be important because the effect of the dominant summer

slowdown in production will be substantially masked at the quarterly level1. We also

provide a direct overall test for nonlinearity over the business cycle in a common

framework for all series, while also allowing for deterministic time varying effects. In

contrast, the tests of van Dijk et al. are indirect, in that they are based on Taylor series

approximations to their underlying nonlinear model.

The outline of the paper is as follows. After discussion of the models in Section

2, the characteristics of our data, including the evidence for business cycle

nonlinearities, are considered in Section 3. Estimates of the business cycle/seasonal

interactions are then discussed in Section 4. However, to minimise problems associated

with spurious effects, these results are considered only for those series that exhibit

(statistically) significant evidence of business cycle nonlinearity. Some conclusions

(Section 5) complete the paper.

                                               
1 Carpenter and Levy (1998) note that monthly inventory data reveals a large amount of seasonal
variation that is undetectable with quarterly data.
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2. MODELLING SEASONAL/BUSINESS CYCLE INTERACTIONS

This study aims to test whether seasonality in production is associated with the business

cycle and, where such interactions are found, to explicitly estimate the cyclical shifts in

production over the twelve months of the year. In particular, we wish to examine the

proposition of Cecchetti and Kashyap (1996) that summer declines in production are

less marked during business cycle booms. The threshold autoregressive (TAR) approach

is suitable for this purpose because it allows the parameters to change when growth

exceeds some threshold. In order to focus explicitly on seasonality, we use a restricted

form of the TAR model.

Our basic model is described in subsection 2.1, followed by a discussion of the

practical issue of trending seasonality, which could be associated with technological and

institutional changes, as considered by van Dijk et al. (2001). The section concludes

with a discussion of estimation issues.

2.1 The Basic Model

The basic model we employ has the form

( ) t
j

jttj
j

jtjtt sIsIyL εγδγδφ ∑∑
==

++++=∆
11

1

11

1
00 (1)

where the disturbance process εt ~ NID(0, σ2). The autoregressive operator )(Lφ ,

defined in terms of the usual lag operator L, is assumed to have all roots strictly outside

the unit circle. Seasonality is captured through the variables sjt which are defined by

,12tjtjt DDs −=  j = 1, …, 11 where Djt are the conventional monthly seasonal dummy

variables. This formulation is frequently used for seasonality because it allows the

separation of the overall mean from the deterministic seasonal effects. More precisely,
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0
1 )1( δφ −  is the overall steady state mean for ∆yt corresponding to the lower regime

(with It = It-1 = … = 0).

In the lower regime at time t (It = 0), the coefficients δj (j = 1, …, 11) measure

the seasonal intercept shift in each of eleven months compared with the overall intercept

δ0, with the intercept shift for the final month computed as ∑ =
−=

11

112 j jδδ . The

monthly seasonal deviations in steady state from the overall mean can be calculated

from the parameters of (1), as discussed in Appendix II.

We define the regime indicator It by:
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Equations (1) and (2) then define a restricted TAR model, where r is the (single)

threshold parameter. The coefficients γj (j = 0, …, 12) give the amount by which the

overall intercept and seasonal intercept terms shift in the upper regime (It = 1) compared

with the lower, where the seasonal intercept shift omitted from (1) can be computed as

∑ =
−=

11

112 j jγγ . Within the upper regime, the overall steady state mean is given by

])[1( 00
1 γδφ +− , with the calculation of seasonal deviations from this mean again

outlined in Appendix II.

From a behavioural perspective, (2) has the interpretation that seasonality

changes when, over the previous three months, production has increased by more than

some threshold amount r compared with a year earlier. For many countries, production

peaks during the spring and early summer, before falling (sometimes dramatically)

during July or August; see, for example, the monthly growth rate patterns in Miron and

Beaulieu (1996, Table 3). Therefore, it can be anticipated that capacity constraints will

typically be more pressing in the spring and early summer than in other months of the



8

year. The use of (2) as the business cycle indicator allows the possibility that the

seasonal pattern in July/August will reflect capacity constraints that have operated in

these earlier months.

There are, of course, other possibilities than (2) for the definition of the regime.

An obvious one is to use the lagged annual difference, ∆12yt, without smoothing through

the moving sum 1 + L + L2. However, some experiments with this specification

indicated that it is too noisy as a business cycle regime indicator, implying relatively

frequent regime changes. Another possibility is to define the regime in terms of

differences over a period shorter than a year, allowing relatively quick reactions to

business cycle regime changes. Seasonality in these shorter differences would imply the

use of a seasonally varying threshold parameter, leading to a type of periodic TAR

model. However, such models involve a large number of parameters and hence we

prefer the more parsimonious specification of (2).

Note that, in contrast to the model used by van Dijk et al. (2001), (1) restricts

changing seasonal behaviour to the seasonal intercepts, with no effect operating through

the dynamics in )(Lφ . This restriction is adopted to keep the parameterisation as simple

as possible, with the practical advantages that interpretation is straightforward and

relatively few parameters need to be estimated. Nevertheless, we also believe that an

examination of shifts in the seasonal intercepts captures the essential feature of the

possible relationship between seasonality and the business cycle.

Another assumption implicit in this specification is that the series yt is integrated

of order 1, or I(1), when due allowance is made for deterministic seasonal effects

through Σδjsjt + ΣγjsjtIt. In particular, it is assumed that yt contains no seasonal unit roots.

Indeed, the presence of seasonal unit roots would obscure the meaning of interactions

between seasonality and the business cycle, because such roots imply that the seasonal
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pattern is subject to constant change and hence “summer can become winter”; see

Ghysels and Osborn (2001). In any case, the existence of the full set of seasonal unit

roots required for annual differencing appears to be relatively rare in practice; see, for

example, Beaulieu and Miron (1993), Osborn, Heravi and Birchenhall (1999), van Dijk

et al. (2001). Nevertheless, we acknowledge the potential importance of deterministic

changes in the seasonal pattern over time, as discussed next.

2.2 Trending Seasonality

Equation (1) assumes that seasonality in ∆yt has constant mean over time, after

allowing for cyclical changes. In practice, however, some of our industrial production

series exhibit graphical evidence that the seasonal pattern is, at least for some months of

the year, trending over time. Canova and Ghysels (1994) note the presence of such

seasonal trends in M1, while they also appear to be a feature of inventory investment

series examined by Carpenter and Levy (1998). Nevertheless, the models used in these

and other studies (including Cecchetti and Kashyap, 1996) do not incorporate trending

seasonality. An exception is van Dijk et al. (2001), who model changing seasonality as

logistic time trends. They find that trending seasonal effects dominate those associated

with the business cycle, calling into question other results that do not allow for possible

trends in seasonality over time.

Our approach to trending seasonality is to add a set of linear seasonal trends to

(1). We guard against the possibility of a trend for ∆yt by also including an overall

(nonseasonal) trend2. Thus, the model becomes

( ) t
j

jttj
j j

jtjjtjtt sItssItyL εγλδγλδφ ∑∑ ∑
== =

++++++=∆
11

1

11

1

11

1
000 . (3)

                                               
2  It might be noted that this allows the possibility that yt exhibits an underlying nonlinear (quadratic)
trend.
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There is one further complication. If the overall (nonseasonal) trend is a characteristic of

the series ∆yt, our threshold variable will also display such trending behaviour. To avoid

this problem, we detrend the annual growth rate variable, used to define the threshold in

(2), by a prior regression on a constant and a linear time trend.

2.3 Estimation

Estimation of (3) can be undertaken using the standard approaches developed for

TAR models. The crucial parameter is the threshold r, since ordinary least squares

(OLS) can be applied conditional on its value. Chan (1993) shows that, for a given order

of )(Lφ , searching over all possible values of r to minimise the sum of squared

residuals produces a super-consistent estimate of this threshold. To implement this

search procedure, we chose an autoregressive order of 24, thereby allowing for

dynamics of up to two years3.

Following conventional practice, for instance, Hansen (1996) or Tsay (1989), we

apply the grid search for r over the empirical distribution of the threshold variable,

excluding its extremes. Chan and Cheung (1994) argue that a natural way to robustify

the estimate of the threshold parameter in TAR models is to restrict the interval upon

which the grid search is conducted, and thereby avoid the problem that one “regime”

may correspond to only a small number of observations. This is particularly important

in our context, since a reasonable number of observations in each regime are required in

order to obtain reliable estimates of the regime-dependent monthly seasonal coefficients

δj and γj in (3). Our specific procedure is to obtain the empirical distribution function of

the threshold variable and to ignore the extreme 20 percent in both tails. The estimated

                                               
3 This relatively conservative value is selected in preference to choosing the lag order by an information
criterion as part of the model selection procedure. Given the large number of series in our study, we
prefer this on grounds of practicality. It also avoids some of the potential pitfalls of using an information
criterion for lag selection in the context of seasonal time series; for example, Hall (1994) finds that such
procedures may not work well when the autoregressive operator has a seasonal form.
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threshold is then obtained by searching over the central 60 percent of the empirical

distribution function in 1 percent increments. Conditional on this r, we then estimate (3)

by OLS.

3. DATA CHARACTERISTICS

We analyse seasonally unadjusted monthly indexes of industrial production for 16

OECD countries available from the OECD Main Economic Indicators database. The

variables and countries selected are those classified as industrial production series for

the specific country and available over a long period. In all, 74 series are analysed.

Information about the sample period and some descriptive statistics for each series can

be found in Appendix I.  It is clear that these variables represent a variety of historical

experiences, as captured by their overall means and standard deviations. Typically, our

series commence in January 1960, with the latest starting date used being January 1971.

The sample ends in December 1994 or during 1995. Prior to analysis, all series are

transformed to monthly percentage growth rates by taking first differences of the

(natural) logarithms and multiplying by 100.

Both total industrial production (this being the quarterly analogue of the series

considered by van Dijk et al, 2001) and manufacturing output are available for all 16

countries studied here. In addition, for most countries, monthly industrial production

data for the consumer goods (for either total or non-durable and durable separately),

intermediate goods and investment goods sectors are also available. A small number of

other series classified as industrial production are available for a few countries, the most

common of these being the construction series included for four European countries.

The countries covered include all G7 countries except Canada, which is omitted due to

data availability considerations. European countries are covered particularly well, with
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14 such countries (including the UK) represented. The two major non-European

countries, namely the US and Japan, are included.

Virtually all series exhibit strong seasonality, as measured by the R2 from a

simple linear regression of the growth rate on twelve seasonal dummy variables; see

Appendix I. Indeed, with the single exception of consumer goods in Greece, the value

of this R2 measure exceeds 0.5 for all 74 series. According to this measure, the extent of

seasonality varies over countries, with the Scandinavian countries of Finland, Norway

and Sweden having particularly marked patterns compared with, say, the US, UK or

Germany. This finding is not new. Indeed, when they examine the relative importance

of country and industry effects in seasonal patterns for production series, Cecchetti and

Kashyap (1996) conclude that the former dominate the latter.

Our model for seasonal/business cycle has already been discussed in the

previous section. However, inference in such models is not straightforward, because the

key parameters capturing the interactions are not identified when the true process is

linear. To guard against the possibility that the results obtained from the estimated

models are spurious, prior testing for nonlinearity is undertaken. Other characteristics

discussed in this section are outliers and the nature of the business cycle and trends

captured by the estimated TAR models.

3.1 Nonlinearity

The problem of how to conduct hypothesis tests is sometimes solved by

linearisation of the nonlinear model. This is the route favoured by van Dijk et al. (2001)

in their study of the interactions between seasonality and the business cycle for total

industrial production. We, however, favour more direct tests based explicitly on our

nonlinear TAR specification.
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In the context of (3), linearity is tested through the null hypothesis

0...: 112100 ===== γγγγH . (4)

A test of (4) involves non-standard inference, since the threshold parameter is not

identified under this null hypothesis; see, for instance, Hansen (1996). Although Hansen

develops an asymptotic theory for such cases, Potter (1995) finds that the size of his test

is sometimes too conservative with finite sample sizes. Thus, we will follow an

approach based on direct Monte Carlo simulation, as in Balke and Fomby (1997) or

Obstfeld and Taylor (1997).

Using a grid search over r, as described above, (3) is estimated and the usual

Wald F-test statistic for H0 is computed. Since r is chosen to minimise the residual sum

of squares, this Wald statistic must be the maximal value over the values of r considered

and hence it is often denoted as sup-Wald. Monte Carlo simulations are then used to

generate data from the estimated null (linear) model, and the TAR model estimation

(including the grid search) is repeated for each of 10,000 replications in order to

generate the empirical distribution of the test statistic under the null hypothesis4. The

reported p-value for the sup-Wald statistic is obtained using this empirical distribution.

The summary sup-Wald test results in Table 1 (detailed results are in Appendix

I), points to our nonlinear model being appropriate in some countries to a greater extent

than in others. In particular, four out of five series for both Finland and Spain yield

significant statistics at the 5 percent level, with two out of three series for Luxembourg

also indicating significant business cycle nonlinearity. At the other extreme, none of the

eight US series yield a significant sup-Wald statistic at even the 10 percent level. In

terms of industrial sectors, this table also indicates that the aggregate industrial

                                               
4 This number of replications should give a reasonable approximation of the true critical value for the sup-
Wald statistic at significance levels of, say, 5% or greater. However, the smaller the empirical “p-value”
reported, the less reliable is the approximation to the true p-value due to the smaller number of
replications that allow estimation of the tail values of true sup-Wald distribution.
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production and the manufacturing production series for around a quarter of the countries

reject linearity. However, rejections are (proportionately) even more marked for the

intermediate goods sector, with rejection for six of the nine series at 5 percent. Such

nonlinearity is, however, apparently not an important general feature of the consumer

goods and investment goods sectors.

TABLE 1 ABOUT HERE

In addition to the sup-Wald test, we also report results from the TAR

nonlinearity test proposed by Tsay (1989); the implementation of this test is discussed

in Appendix I. Overall, the Tsay test confirms the extent of nonlinearity found for our

series, which is reassuring. There is some disagreement about the significance of

nonlinearity for specific series, but this is not surprising given the different forms of the

tests. For nonlinearity of the type we are seeking through the two-regime TAR model of

(3), we anticipate the more specific sup-Wald statistic to have greater power and we

pursue the analysis of this model on the basis of significance of the sup-Wald statistic.

Estimation results are presented in Table 2 for the series which yield a significant

statistic at the 10 percent level.

TABLE 2 ABOUT HERE

3.2 Outliers

Conventional residual diagnostic tests for autocorrelation, ARCH effects and

non-normality were computed for all estimated models of Table 2. In practice, these

revealed no major problems, with the exception of excess kurtosis. Such excess kurtosis
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may be associated with outliers, which are known to be potentially important for the

estimation of nonlinear models (see, in the context of smooth transition models, the

discussions in Öcal and Osborn, 2000, or van Dijk, Franses and Lucas, 1999). For those

series with significant excess kurtosis at the 1 percent level, dummy variables were

introduced to handle outliers. Our procedure was to include a dummy for a specific

observation when the largest residual (in absolute value) exceeded four times the overall

residual standard deviation. The threshold variable (2) was corrected for the outlier by

simple interpolation of the offending observation based on an AR(24) model for ∆yt,

including seasonal dummy variables. The TAR model was then re-estimated and the

procedure repeated until no further outliers were detected.

The detailed estimation results presented are computed with outlier dummies

included and the number of such dummies is indicated5. As seen from Table 2, most

series required none or only one outlier dummy.

3.3 Business cycle and trend characteristics

In addition to the sup-Wald p-value, Table 2 shows the p-value for a

conventional F-test of the upper regime seasonal restrictions γj = 0, j = 1, …, 11, which

we denote F11. Significance for individual coefficients, including the overall intercept

shift term γ0, is indicated using conventional t-tests. Chan (1993) shows, in the context

of a conventional TAR model, that estimation of the threshold parameter r is super-

consistent and hence, conditional on the presence of TAR nonlinearity, standard

distributional results apply for the coefficients. The threshold itself is shown as the

proportion of observations estimated to fall in the lower regime, denoted r*.

                                               
5 Our outlier procedure was invoked only for the series of Table 2, namely series that yielded a significant
sup-Wald statistic (at 10 percent). Where relevant, the values presented for this statistic in Table 2 and the
Appendix Table are computed for the model including outlier dummies.
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One of the most striking results in Table 2 is that a shift in the overall

(nonseasonal) intercept does not appear to be the dominant source of nonlinearity. Only

four of the 26 series produce an estimate of γ0 which is significant at 5 percent. In

contrast, the F11-test for constant seasonal dummy variable coefficients fails to reject the

null hypothesis (at 5 percent) for only one series. Therefore, it appears that the

nonlinearity detected by the sup-Wald statistic is associated primarily with a change in

the seasonal pattern (rather than the overall intercept) over regimes.

The estimated values of γ0 and r* indicate that the model captures a variety of

business cycle characteristics in our series. In approximately a third of the series in

Table 2, γ0 is positive and r* less than 0.5. In such cases it is reasonable to associate the

lower regime with recession and the upper one with expansion, even though this

labelling may not be entirely accurate. Other cases (such as Finland Manufacturing or

France Intermediate) have estimated r* greater than 0.5 with positive γ0, so that the

regimes appear to be associated with high growth versus low to moderate growth.

However, yet other series (including Spain Intermediate and Sweden Manufacturing)

produce negative estimates of γ0. Although this implies a lower overall growth rate in

the upper regime compared with the lower one, it must be recalled that the regimes are

defined in terms of the annual growth rate over the previous three months, and not the

contemporaneous growth rate.

Significant (at the 5 percent level) overall trend effects are indicated by the

estimated λ0 in Table 2 for eight series. In all these cases, the trend is downward.

Therefore, although the mean growth is almost always positive over the sample period,

in many cases it has nevertheless declined significantly over time. Perhaps more

remarkable, however, is that the F11-statistic that tests the presence of seasonal trends

through the null hypothesis λj (j = 1, …, 11) points to these being significant at 5
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percent for 18 of the 26 series. This echoes the important role found by van Dijk et al.

(2001) for seasonal trends in aggregate quarterly industrial production series.

The next section examines the nature of the changes in seasonality over the

regimes of the TAR model.

4. SEASONALITY OVER THE BUSINESS CYCLE

The results in Table 2 include the estimated seasonal dummy variable

coefficients in the lower regime, the seasonal shift terms which apply for the upper

regime and the estimated seasonal trend coefficients. That is, in terms of (3), we show

the estimated values of δj, γj and λj (j = 1, …, 11), together with an indication of

significance for each coefficient according to a conventional t-test. The twelfth seasonal

coefficient and its significance is obtained in each case from the restriction that the

corresponding terms must sum to zero over the year.

Our interest focuses on the seasonal/business cycle interactions and, in Figure 1,

we also present the implied deviation in steady state for each month in relation to the

overall mean. These mean deviations are shown for both the upper and lower regimes.

The details of our computational method are presented in Appendix II, but it should be

noted here that each seasonal mean deviation depends on all seasonal intercepts, with

weights that are nonlinear functions of the autoregressive parameters. The series

included in Figure 1 are identical to those in Table 2, namely those series that produce a

significant Sup-Wald statistic at the 10 percent level. Figure 1 expresses the means as

deviations from the overall mean in each regime, with the trend terms ignored, so that

each set of monthly seasonal mean deviations sums to zero.
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FIGURE 1 ABOUT HERE

Both the coefficients of Table 2 and the seasonal means of Figure 1 indicate that

industrial production series of European countries typically experience their largest

seasonal change in July or August, depending on the country, with a large fall

immediately followed by an increase of similar magnitude in the following month. It is

precisely this summer slowdown that exhibits the greatest effect from cyclical

influences. To be specific, ignoring German Construction (which does not exhibit a

marked summer slowdown) and the three Japanese series, 16 out of the remaining 22

series in Table 2 show the estimated upper regime shift coefficient corresponding to the

summer slowdown, 7γ  or 8γ  as appropriate, to be positive and significant at the 5

percent level. The size of this estimated seasonal intercept shift is not negligible, as its

magnitude is typically equal to one or two times the residual standard deviation.

Corresponding to the reduced summer slowdown, the mean growth in the following one

or two months also tends to be lower in the upper regime, which is compatible with the

summer reduction being less dramatic. These results are consistent with the hypothesis

of Cecchetti and Kashyap (1996) that firms reallocate production to the usually slack

summer months during business cycle expansions.

The one non-European country represented in Table 2 and Figure 1 is Japan.

Although the summer slowdown is not as dominant as for European countries, the

general pattern is again a summer decline that is tempered in the upper regime

compared with the lower one.

There is also evidence in some series of a seasonal reallocation of production in

the upper regime at the Christmas holiday period (December and/or January), although
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it is not as large or widespread as the cyclical change observed during the summer. For

example, Figure 1 shows that the mean for the Austrian Intermediate series exhibits a

substantial seasonal fall in December, with this being less dramatic in the upper than the

lower regime.

There are some notable exceptions to the comments just made. In particular, the

construction industry in various countries exhibits a pattern where a December/January

decline is exaggerated in the upper regime compared with the lower. This pattern is

particularly notable in Figure 1 for German Construction. The four series for which we

have data on the construction industry (France, Germany, Belgium and Luxembourg)

relate to Northern European countries and have substantial winter seasonal effects. It is

possible that the additional seasonality detected during winter for these series in the

upper regime may relate to the weather, rather than a conscious choice to reallocate

production over months. Consider the situation where output has been growing strongly

in the autumn, leading to a high level in December say, but only a given level of

construction activity is feasible in January because of the weather. In this case, a greater

decline will result compared with the norm. Table 2 shows significant negative upper

regime shift coefficients for the winter months (December, January and/or February,

depending on the country) for all construction series analysed.

Because we have used significance of the business cycle effects as the criterion

for inclusion in Figure 1 (and Table 2), not all countries are examined there. However,

there do appear to be substantial country-specific influences that affect the extent of

interaction between seasonal patterns and the business cycle. In particular, the reduction

of the summer slowdown in the upper regime appears to be less pronounced for Austria,

Germany, Japan and the UK than for other included countries. Nevertheless,



20

irrespective of the particular seasonal pattern over the months of the year, this pattern is

typically less marked in the upper regime compared with the lower.

Although our interest focuses on the seasonal/business cycle interaction, it might

be noted from Table 2 that significant seasonal trend terms are often observed in the

summer months. Focusing again on July or August as appropriate, the associated trend

coefficient is typically positive and significant (this is the case at 5 percent in 15 of the

26 cases). Therefore, over time the summer seasonal has generally increased in

magnitude, although the opposite is true for the two UK series. A significant increase in

the magnitude for the December seasonal slowdown is also noticeable in many cases.

Since all series, with the single exception of Belgium Construction, have positive mean

growth over our sample period (see the table of Appendix I), the phenomenon of

reduced seasonality in the upper business cycle regime appears to be a short-term one

when capacity constraints operate. The evidence suggests that, in the longer term, as

production increases capacity generally expands to facilitate or even increase the

seasonal pattern in production.

5. CONCLUSIONS

We have found evidence of business cycle nonlinearity in around a third of the monthly

industrial production series examined. To summarise our substantive finding,

production is spread more smoothly over the months of the year when the series is

growing strongly than when it is not. In particular, the summer slowdown is less marked

when recent growth has been relatively strong. Although we use a different approach,

our findings reinforce those of Cecchetti and Kashyap (1996).
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Our results also raise some interesting issues. Although we define business cycle

regimes in terms of the (lagged) annual growth rate, the regimes appear to exhibit

greater effects on the seasonal pattern than on the overall series mean. In other words, at

least for some series, the stage of the business cycle captured here has more impact on

the organisation of production over the months of the year than on the overall growth

rate of output. Building on the work of Cecchetti and Kashyap (1996), this may reflect

the cost structures in different industries and countries. However, it also implies that the

use of seasonally adjusted data will obliterate the information in seasonality itself about

the stage of the business cycle.

Seasonal/business cycle interactions are apparently stronger in some countries

than others. Indeed, although much earlier work focuses on the US, the interactions

there appear to be substantially weaker than in European countries such as Finland,

Germany and Spain. Further, the communality of some patterns across series within

such countries in Figure 1 points to the potential value of a panel data approach. This is,

however, beyond the scope of the present paper.

We have found than an important aspect of seasonality in industrial production

is the trend-like changes in the pattern that have occurred over our sample period. If the

explanation of changing seasonality over the business cycle lies in the nature of the cost

function faced by producers, then we might anticipate that at least part of these seasonal

trends may also be attributable to similar causes. Research may be warranted on

whether long-run changes to the seasonal pattern in production shed further light on the

nature of the cost function faced by producers.
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Table 1. Summary Nonlinearity Test Results

Series Significant at Series Significant at
Country # 5% 10% Classification # 5% 10%

Austria 5 1 1 Total industrial prod. 16 4 4
Belgium 7 0 1 Manufacturing 16 3 6
Finland 5 4 4 Consumer durables 3 0 1
France 7 1 2 Consumer non-durables 3 0 0
Germany 7 1 3 Consumer goods 9 1 2
Greece 4 0 0 Intermediate goods 9 6 6
Italy 4 1 2 Investment goods 11 2 2
Japan 6 1 3 Construction 4 2 4
Luxembourg 3 2 2 Other series 3 0 1
Nederlands 2 0 0
Norway 2 1 1
Portugal 2 0 0
Spain 5 4 4
Sweden 2 0 1
United Kingdom 5 2 2
United States 8 0 0
Total 74 18 26 74 18 26
Percentage 24% 35% 24% 35%
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Table 2. Estimated Models
Estimated Coefficients SupWald σ

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec γ0 /λ0 F11 r* Outliers
Austria Intermediate
Lower regime -8.91 a 0.91 5.60 a 5.95 a 3.41 -0.06 -9.60 a -8.26 a 7.46 a 6.70 a 4.07 b -7.25 a

Upper regime shift 2.68 b -1.47 -3.51 a -1.06 -0.47 -0.14 0.55 0.21 1.02 -0.93 -0.69 3.83 a 0.53 0.003 0.023 3.18
Trend -0.018 a -0.007 0.002 0.006 0.002 0.000 -0.008 -0.035 a 0.019 a 0.021 a 0.002 0.016 b 0.000 0.000 0.50 0
Belgium Construction
Lower regime 14.57 -8.79 16.22 b 8.18 1.26 17.56 b -60.91 a 35.03 a 11.15 -1.86 1.07 -33.48 a

Upper regime shift -22.87 a 1.87 -13.71 b 1.38 4.03 1.04 13.22 b -6.86 3.27 3.16 4.85 10.61 -1.65 0.006 0.061 15.04
Trend 0.046 0.001 -0.010 -0.006 -0.008 0.041 -0.102 a 0.049 0.028 -0.003 -0.001 -0.033 -0.006 0.070 0.28 0
Finland Intermediate
Lower regime 1.85 0.24 4.69 0.30 -2.77 -2.18 -21.15 a 10.09 a 7.52 a 4.05 0.58 -3.21
Upper regime shift 1.50 -0.95 -1.92 -1.60 0.84 0.26 7.72 a -3.51 b -1.96 0.50 0.18 -1.06 0.39 0.001 0.021 3.84
Trend -0.003 0.003 -0.005 0.011 -0.002 0.019 a -0.017 a -0.006 0.004 -0.009 0.006 -0.003 -0.002 0.069 0.21 3
Finland Investment
Lower regime 0.42 4.83 3.13 -6.11 0.17 -3.63 -41.93 a 10.72 13.55 b 19.01 a 0.83 -1.00
Upper regime shift -0.20 1.49 0.19 1.95 -2.29 1.17 11.51 a -4.81 b -2.20 -4.03 -1.42 -1.35 2.41 b 0.000 0.000 6.29
Trend -0.030 a -0.008 -0.008 0.019 0.019 0.016 -0.013 -0.004 -0.003 0.001 0.001 0.010 0.000 0.131 0.38 1
Finland Manufacturing
Lower regime 1.58 -1.87 0.41 3.84 1.25 -4.82 -18.47 a 8.12 a 4.84 5.89 b -0.86 0.08
Upper regime shift -0.64 1.22 3.50 b -1.71 1.72 -2.94 b 6.35 a -3.58 b -2.28 -1.99 -0.25 0.59 0.91 0.000 0.000 3.62
Trend -0.005 -0.002 0.003 -0.003 0.006 0.005 -0.001 0.002 0.004 0.004 -0.004 -0.009 -0.002 0.818 0.80 3
Finland Total
Lower regime 0.92 0.49 1.39 1.01 0.18 -3.51 -12.32 a 5.68 b 4.44 b 3.57 -0.65 -1.21
Upper regime shift 0.07 0.38 0.50 0.51 1.30 -1.88 6.86 a -3.15 b -3.01 b -1.67 -0.64 0.73 0.88 0.000 0.000 2.86
Trend -0.003 -0.002 0.002 -0.001 0.004 0.006 -0.001 -0.001 0.002 0.002 -0.001 -0.007 -0.002 0.915 0.80 0
France Construction
Lower regime -2.70 -0.00 1.47 9.39 b 8.69 b 5.18 -4.86 -31.04 a 14.28 a 6.63 1.58 -8.63 b

Upper regime shift -4.40 a -3.88 b -0.42 -1.21 -0.43 2.00 2.13 2.47 0.84 1.31 -0.11 1.72 1.65 0.025 0.087 5.31
Trend 0.030 a 0.018 -0.005 -0.002 0.016 0.000 -0.017 -0.052 a 0.013 0.004 0.010 -0.014 -0.005 0.001 0.40 0
France Intermediate
Lower regime 13.06 -0.01 5.81 -7.14 10.75 b -2.14 -13.23 a -43.60 a 33.87 a 4.07 9.25 -10.67 b

Upper regime shift -0.29 -0.51 -0.52 -0.18 -1.65 -1.32 -1.05 4.75 a -3.43 b 0.56 1.45 2.20 0.94 0.032 0.000 3.33
Trend 0.023 a -0.001 0.017 b -0.006 0.019 a 0.005 0.027 a -0.021 a 0.004 -0.017 b -0.009 -0.039 a -0.004 b 0.000 0.67 4
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Table 2 (continued)
Estimated Coefficients SupWald σ

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec γ0 /λ0 F11 r* Outliers
Germany Construction
Lower regime -11.17 a -7.86 b 13.62 a 8.46 b 4.63 7.06 2.71 -1.41 7.34 b 0.57 -5.41 -18.54 a

Upper regime shift -11.30 a 8.03 b -4.34 -3.80 -1.76 -2.48 2.13 1.73 1.44 1.05 6.54 b 2.77 1.30 0.005 0.048 8.64
Trend 0.051 a -0.044 a 0.043 a -0.007 -0.017 0.000 0.017 -0.006 0.003 0.009 -0.014 -0.034 b 0.000 0.001 0.58 2
Germany Food
Lower regime -7.49 a -5.18 a 2.93 5.37 a 1.10 0.85 -5.37 a -3.68 b 1.93 6.80 a 6.88 a -4.16 a

Upper regime shift -0.32 -0.62 -1.32 -1.73 2.18 b -0.52 -0.58 1.11 -0.46 2.62 b 0.81 -1.16 -1.15 a 0.122 0.096 2.71
Trend 0.031 a -0.001 0.026 a -0.031 a -0.016 b -0.019 a 0.017 b 0.031 a 0.006 0.008 -0.010 -0.043 a -0.002 0.000 0.26 1
Germany Manufacturing
Lower regime -5.92 a 0.49 6.14 a 1.28 -3.31 b 0.20 -1.26 -7.81 a 6.01 a 6.39 a 2.42 -4.64 a

Upper regime shift 1.68 -0.66 -1.94 b -0.56 0.16 1.99 b -1.29 -0.68 -1.32 0.11 0.34 2.18 b 1.05 b 0.045 0.091 2.65
Trend 0.011 b -0.001 0.018 a -0.016 a -0.018 a -0.007 0.027 a 0.007 -0.007 0.011 -0.007 -0.019 a -0.003 b 0.000 0.55 1
Italy Consumer
Lower regime 13.24 b -2.33 -4.49 18.78 a 7.07 -11.65 8.26 -48.74 a 21.49 a -7.30 -9.19 0.44
Upper regime shift -1.14 0.47 0.48 -2.67 -1.87 1.09 -1.03 5.43 a -1.36 -2.31 0.20 2.73 1.68 0.030 0.094 4.15
Trend 0.021 0.008 0.014 0.000 0.009 0.012 -0.005 -0.073 a 0.009 -0.005 -0.004 0.013 -0.004 0.031 0.62 0
Italy Total
Lower regime 2.47 5.49 3.84 5.53 -1.09 -0.07 -3.95 -38.58 a 19.67 a 5.64 7.33 -6.29
Upper regime shift -2.53 b -2.75 b 1.54 -0.14 -0.23 0.09 0.01 4.69 a -3.09 b -0.59 0.23 2.75 b 1.00 0.000 0.006 3.34
Trend 0.004 0.014 0.014 0.010 -0.008 0.001 0.000 -0.088 a 0.039 a 0.013 0.019 -0.018 -0.005 a 0.000 0.33 1
Japan Consumer Durables
Lower regime -10.03 a 6.01 b 8.33 a -1.75 -6.15 a 8.53 a 6.59 a -19.31 a 6.36 b 9.11 a -3.21 -4.48
Upper regime shift -3.44 a -0.12 -1.25 1.56 1.61 -1.49 -2.27 b 0.78 -0.76 1.60 2.70 b 1.06 -0.36 0.010 0.059 2.94
Trend 0.023 a 0.010 0.015 b -0.021 a -0.012 0.006 0.023 a -0.049 a 0.020 a 0.017 b 0.004 -0.036 a -0.005 b 0.000 0.29 1
Japan Intermediate
Lower regime -7.59 a -0.05 7.02 a 2.13 -2.25 b 3.70 a 1.21 -7.98 a 2.79 b 3.91 a -1.96 -0.94
Upper regimeshift 0.77 -0.10 -0.64 -3.12 a -0.15 -1.14 0.27 1.33 b 0.80 0.95 0.62 0.41 -0.61 b 0.006 0.054 1.38
Trend 0.000 0.004 0.005 0.002 -0.009 a 0.007 a 0.008 a -0.018 a 0.005 0.007 b -0.001 -0.009 a -0.001 0.000 0.21 3
Japan Manufacturing
Lower regime -3.99 a -0.19 8.57 a -1.79 -5.37 a 3.98 a 4.16 a -8.82 a 4.80 2.24 -5.13 a 1.55
Upper regime shift -0.68 -0.99 -1.22 b 0.94 0.09 -0.80 -0.93 0.28 -0.23 1.97 a 0.69 0.88 -0.07 0.001 0.030 1.44
Trend 0.000 -0.001 0.006 0.005 -0.013 a 0.005 0.016 a -0.021 a 0.008 b 0.006 -0.004 -0.008 b -0.002 b 0.000 0.27 2
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Table 2 (continued)
Estimated Coefficients SupWald σ

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec γ0 /λ0 F11 r* Outliers
Luxembourg Construction
Lower regime -5.65 -13.01 7.04 3.53 11.96 3.52 4.63 -25.30 a 2.18 1.21 6.75 3.14
Upper regime shift -21.08 a 5.87 0.42 5.37 3.02 7.37 4.65 2.52 5.73 2.72 -3.88 -12.72 b -2.38 0.005 0.050 12.31
Trend 0.022 0.030 0.022 -0.025 -0.008 -0.005 0.021 -0.184 a 0.052 0.012 0.046 0.017 0.004 0.000 0.23 1
Luxembourg Total
Lower regime -3.78 3.30 2.50 4.73 b 0.17 3.00 -4.52 b -18.00 a 1.79 7.69 a -3.22 0.23
Upper regime shift 2.99 -0.02 -0.63 0.12 -1.63 -3.50 b 0.54 5.71 a -3.72 b 1.63 -1.52 0.01 0.35 0.001 0.021 4.31
Trend -0.004 0.008 0.003 0.008 -0.015 0.004 -0.006 -0.046 a 0.015 0.017 0.024 a -0.009 0.000 0.000 0.45 3
Norway Manufacturing
Lower regime -3.65 6.27 6.12 14.78 a -2.67 12.00 b -50.67 a -7.15 9.01 10.99 b 12.00 b -7.04
Upper regime shift 0.17 -0.39 -1.81 -2.02 0.24 -1.42 6.46 a 0.40 -2.33 -0.49 0.27 0.91 0.73 0.000 0.027 3.91
Trend 0.009 0.003 -0.004 -0.002 0.000 -0.001 0.009 b 0.003 -0.001 -0.007 -0.005 -0.007 -0.003 b 0.408 0.37 2
Spain Consumer
Lower regime 1.98 6.48 5.52 3.45 2.67 -6.56 2.15 -35.66 a 19.96 a 11.18 a -0.59 -10.59 b

Upper regime shift 3.99 b -0.14 -1.61 -2.02 0.17 1.90 -1.81 5.40 a -5.28 a -4.03 b 2.16 1.27 0.33 0.003 0.017 4.09
Trend -0.001 0.007 0.003 -0.014 0.010 -0.005 0.020 -0.063 a 0.049 a 0.029 b 0.007 -0.042 a -0.008 b 0.000 0.26 0
Spain Intermediate
Lower regime 3.06 -1.45 1.29 -0.18 0.54 -1.79 -0.08 -17.19 a 7.61 a 7.71 a 1.87 -1.40
Upper regime shift -0.15 0.66 1.16 -0.08 -0.17 1.63 -1.10 5.57 a -2.91 -2.97 b -1.33 -0.32 -1.07 0.021 0.020 0
Trend 0.014 0.002 0.002 -0.007 0.011 -0.001 0.016 -0.044 a 0.017 0.002 0.002 -0.015 -0.004 0.116 0.75 3.28
Spain Investment
Lower regime 11.68 -3.14 9.15 8.00 0.28 -7.46 -5.98 -48.28 a 10.66 17.74 a 1.87 -1.40
Upper regime shift -4.20 7.39 1.52 0.65 2.05 3.92 -5.87 19.37 a -11.30 a -10.91 b -4.18 1.56 -1.29 0.000 0.025 9.21
Trend 0.043 0.008 0.027 0.010 -0.012 -0.037 -0.028 -0.069 b 0.004 0.033 0.012 0.009 0.001 0.196 0.68 3
Spain Manufacturing
Lower regime 2.52 3.45 6.12 1.89 3.44 -6.33 0.49 -32.41 a 15.21 a 14.13 a 0.85 -9.36 b

Upper regime shift 2.26 -0.64 -0.89 -1.81 0.55 1.47 -1.48 6.48 a -5.72 a -2.89 0.37 2.31 -0.10 0.002 0.045 3.66
Trend 0.015 0.007 0.012 -0.012 0.016 -0.011 0.020 -0.083 a 0.034 b 0.038 a 0.003 -0.038 a -0.006 b 0.000 0.21 0
Sweden Manufacturing
Lower regime -1.67 -0.55 -3.07 -2.97 2.60 -3.55 -13.56 a 5.70 5.97 5.19 5.72 0.18
Upper regime shift 2.58 1.46 2.65 0.81 -3.56 b -0.06 -0.32 -5.09 a -0.37 -2.79 1.88 2.80 -1.05 0.043 0.061 3.88
Trend -0.009 -0.003 0.004 0.000 0.001 0.004 0.022 a -0.012 b 0.000 -0.005 -0.001 -0.001 0.000 0.037 0.78 3
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Table 2 (continued)
Estimated Coefficients supWald σ

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec γ0 /λ0 F11 r* Outliers
UK Intermediate
Lower regime 3.81 0.31 5.00 -5.27 b -5.28 a -2.47 -5.22 a -10.60 a 8.41 a 9.23 a 6.26 a -4.19 b

Upper regime shift -1.80 -2.37 -1.23 -5.69 a 0.50 0.40 1.46 3.44 b 1.76 0.23 1.50 1.80 0.99 0.004 0.029 2.97
Trend 0.009 -0.007 0.015 b -0.006 -0.008 -0.006 0.019 b 0.017 b -0.019 b -0.008 0.004 -0.009 0.001 0.011 0.40 0
UK Total
Lower regime -0.19 -0.85 5.24 a -1.58 -5.10 a -1.18 -3.82 -9.07 a 7.96 a 7.72 a 4.14 b -3.27
Upper regime shift -0.07 0.47 -0.86 -2.45 a -0.87 0.13 -0.22 1.98 b 0.41 -0.46 1.21 0.73 -0.21 0.002 0.038 2.49
Trend -0.002 -0.011 b 0.012 a -0.005 -0.008 0.000 0.015 a 0.011 a -0.007 -0.001 0.000 -0.004 -0.001 0.000 0.29 3

The columns labelled Jan-Dec show the estimated coefficients for the seasonal intercepts in the lower regime (δj), the shift terms corresponding to the upper regime (γj), and
the coefficients for the seasonal trends (λj); γ0 is the coefficient for the shift in the nonseasonal intercept in the upper regime and λ0 is the overall trend coefficient; F11 is the
p-value for the conventional F-test of γj = 0 or λj  =0 (j = 1, …, 11), as appropriate; Sup-Wald is the Sup-Wald test of section 4.1 (shown as a p-value) with r*  the estimated
threshold, expressed as the proportion of observations below the threshold r; Outliers reports the number of outliers removed while σ is the residual standard deviation.
Significance of coefficients is indicated by
Bold numbers : p-value ≤ 0.10
b  0.01< p-value≤ 0.05
a   p-value ≤ 0.01
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APPENDIX  I

Descriptive Statistics and Nonlinearity Test Results: All Series

The Appendix Table below reports descriptive statistics for all series: sample period, mean,
standard deviation and R2 from a regression on twelve seasonal dummies. Also shown are the
results (as p-values) for the Sup-Wald and Tsay nonlinearity tests discussed in Section 3.1. For the
former, the threshold estimate is shown as r*, which is the proportion of observations in the lower
regime for the estimated TAR model of equation (3).

The Tsay (1989) test is general in that no specific number of thresholds is assumed under
the alternative hypothesis. Also, no particular form of the nonlinearity is assumed in the sense that
under the alternative all the coefficients (intercepts, trend and autoregressive) may change with the
regime. The basis of Tsay´s test in our context is a k-regime TAR model, with the order of each
autoregression again taken to be 24. The test is based on a conventional F-test statistic computed
using recursive residuals obtained after all variables are re-ordered according to the threshold
variable of (2). Tsay shows that, for large samples, the associated F-statistic follows the
conventional F-distribution.

In practice, the recursive estimation using the re-ordered data begins from a certain
minimum number of observations. We choose 10 percent of the sample for this purpose and
generate the test with both increasing and decreasing orderings of the data so that no threshold is
missed within this initial portion.  The Tsay test result shown in the table below is the more
significant p-value of the two F-tests obtained in this fashion.

Appendix Table. Descriptive Statistics and Nonlinearity Test Results for All Series

Country Series Sample period Mean Std.dev. R2 Sup-Wald Tsay r*

Austria Consumer 1960:01 1995:07 0.27 9.72 0.83 0.844 0.006 0.64
Intermediate 1960:01 1995:07 0.31 7.25 0.66 0.023 0.004 0.50
Investment 1960:01 1995:07 0.41 17.42 0.84 0.241 0.271 0.75
Manufacturing 1960:01 1995:05 0.32 9.15 0.78 0.660 0.337 0.79
Total 1960:01 1995:07 0.32 7.59 0.78 0.831 0.052 0.33

Belgium Construction 1960:01 1994:12 -0.06 39.60 0.76 0.061 0.947 0.28
Consumer Dur. 1960:01 1994:12 0.23 17.33 0.89 0.886 0.524 0.65
Consumer Non-Dur. 1960:01 1994:12 0.16 9.06 0.77 0.877 0.564 0.80
Intermediate 1960:01 1994:12 0.16 11.84 0.88 1.000 0.665 0.50
Investment 1960:01 1994:12 0.21 14.43 0.76 0.289 0.239 0.21
Manufacturing 1960:01 1994:12 0.21 12.18 0.88 0.987 0.483 0.50
Total 1960:01 1994:12 0.18 11.86 0.89 0.993 0.499 0.72

Finland Consumer 1960:01 1995:07 0.22 19.27 0.91 0.914 0.564 0.80
Intermediate 1960:01 1995:07 0.26 14.95 0.80 0.021 0.000 0.21
Investment 1960:01 1995:07 0.38 31.24 0.91 0.000 0.421 0.38
Manufacturing 1960:01 1995:07 0.26 19.48 0.92 0.000 0.000 0.80
Total 1960:01 1995:07 0.27 17.38 0.93 0.000 0.000 0.80

France Construction 1960:01 1995:06 0.15 19.54 0.85 0.087 0.000 0.40
Consumer 1963:01 1995:06 0.30 25.69 0.93 0.794 0.337 0.73
Energy 1963:01 1995:06 0.16 9.38 0.73 0.122 0.154 0.50
Intermediate 1963:01 1995:06 0.18 21.75 0.97 0.000 0.030 0.67
Investment 1963:01 1995:06 0.26 18.93 0.67 0.840 0.000 0.21
Manufacturing 1960:01 1995:06 0.22 18.18 0.94 0.233 0.192 0.59
Total 1960:01 1995:06 0.22 17.04 0.93 0.641 0.047 0.61
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Appendix Table  (continued)
Sample period Mean Std.dev. R2 Sup-Wald Tsay r*

Germany Construction 1960:01 1994:12 0.13 19.28 0.68 0.048 0.694 0.58
Consumer 1960:01 1994:12 0.14 9.27 0.69 0.436 0.010 0.21
Food 1960:01 1994:12 0.22 6.87 0.54 0.096 0.209 0.26
Intermediate 1960:01 1994:12 0.21 5.69 0.66 0.228 0.149 0.25
Investment 1960:01 1994:12 0.25 10.75 0.77 0.248 0.000 0.20
Manufacturing 1960:01 1994:12 0.22 7.57 0.72 0.091 0.116 0.55
Total 1960:01 1994:12 0.22 7.10 0.71 0.339 0.147 0.24

Greece Consumer 1961:01 1995:05 0.39 8.05 0.47 0.746 0.000 0.75
Investment 1961:01 1995:05 0.42 9.99 0.55 0.215 0.255 0.61
Manufacturing 1960:01 1995:05 0.39 7.44 0.54 0.668 0.124 0.38
Total 1962:01 1995:05 0.39 6.41 0.54 0.668 0.160 0.24

Italy Consumer 1971:01 1995:05 0.24 33.81 0.95 0.094 0.080 0.62
Investment 1971:01 1995:05 0.35 41.96 0.93 0.629 0.897 0.58
Manufacturing 1960:01 1995:07 0.27 30.61 0.86 0.274 0.565 0.28
Total 1960:01 1995:07 0.27 27.03 0.89 0.006 0.071 0.33

Japan Consumer Dur. 1960:01 1995:08 0.56 10.63 0.82 0.059 0.213 0.29
Consumer Non-Dur. 1960:01 1995:08 0.29 9.23 0.77 0.330 0.003 0.57
Intermediate 1960:01 1995:08 0.41 4.38 0.83 0.054 0.000 0.21
Investment 1960:01 1995:08 0.54 11.28 0.86 0.395 0.113 0.28
Manufacturing 1960:01 1995:08 0.44 6.62 0.87 0.030 0.005 0.27
Total 1960:01 1995:08 0.44 6.34 0.87 0.370 0.000 0.22

Luxemb’g Construction 1960:01 1994:12 0.00 35.38 0.53 0.050 0.167 0.23
Manufacturing 1960:01 1995:06 0.22 11.37 0.65 0.275 0.092 0.47
Total 1960:01 1995:06 0.20 10.98 0.65 0.021 0.004 0.45

Netherlands Manufacturing 1960:01 1995:06 0.31 7.76 0.81 0.403 0.002 0.21
Total 1960:01 1995:06 0.28 8.03 0.75 0.164 0.234 0.23

Norway Consumer 1960:01 1991:12 0.16 18.62 0.93 0.368 0.052 0.41
Export 1960:01 1991:12 0.58 14.65 0.71 0.216 0.091 0.54
Intermediate 1961:01 1991:12 0.26 19.64 0.92 0.315 0.000 0.37
Investment 1960:01 1991:12 0.30 34.60 0.87 0.150 0.000 0.78
Manufacturing 1960:01 1995:07 0.09 25.44 0.94 0.027 0.148 0.37
Total 1960:01 1995:07 0.39 18.21 0.80 0.678 0.679 0.74

Portugal Manufacturing 1960:01 1995:06 0.35 14.03 0.61 0.346 0.140 0.80
Total 1960:01 1995:06 0.37 12.64 0.61 0.821 0.487 0.32

Spain Consumer 1965:01 1995:06 0.37 19.82 0.87 0.017 0.183 0.26
Intermediate 1965:01 1995:06 0.30 14.86 0.79 0.020 0.074 0.75
Investment 1965:01 1995:06 0.24 45.15 0.80 0.025 0.282 0.68
Manufacturing 1961:01 1995:06 0.38 21.01 0.80 0.045 0.139 0.21
Total 1961:01 1995:06 0.38 18.12 0.80 0.255 0.358 0.20

Sweden Manufacturing 1960:01 1995:07 0.12 32.31 0.95 0.061 0.227 0.78
Total 1960:01 1995:07 0.12 32.18 0.95 0.189 0.114 0.48

UK Consumer 1968:01 1995:04 0.10 8.05 0.88 0.369 0.680 0.21
Intermediate 1968:01 1995:07 0.11 7.36 0.75 0.029 0.115 0.40
Investment 1968:01 1995:07 0.05 10.95 0.78 0.737 0.878 0.28
Manufacturing 1960:01 1995:07 0.11 8.29 0.76 0.254 0.375 0.22
Total 1960:01 1995:07 0.13 7.42 0.78 0.038 0.022 0.29

US Consumer 1960:01 1995:08 0.23 3.68 0.77 0.989 0.034 0.80
Durables 1960:01 1995:08 0.30 3.13 0.70 0.979 0.125 0.21
Non-Durables 1960:01 1995:08 0.25 3.26 0.84 0.823 0.332 0.33
Intermediate 1960:01 1995:08 0.25 2.77 0.70 0.648 0.166 0.34
Investment 1960:01 1995:08 0.34 2.32 0.58 0.790 0.885 0.80
Manufacturing 1960:01 1995:08 0.31 2.90 0.83 0.542 0.187 0.20
Raw Materials 1960:01 1995:08 0.24 2.57 0.66 0.830 0.007 0.21
Total 1960:01 1995:08 0.29 2.51 0.78 0.753 0.050 0.20
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APPENDIX II

Calculation of Monthly Seasonal Mean Deviations

Consider, firstly, the linear autoregressive process for monthly data such that

tttyL εµφ =− ])[( (A.1)

where )(Lφ  is a pth order polynomial with all roots outside the unit circle, E[yt] = µt and the
means follow a twelve month cycle such that

...,2,1;12...,,1,12 === ± njnjj µµ (A.2)

Therefore, (A.1) and (A.2) define a process yt which is stationary around the monthly seasonal
means µ1,…, µ12.

This can be compared with the usual representation in terms of a seasonal intercept, namely

tjt
j

jt DyL εδφ += ∑
=

12

1

)( (A.3)

in which Djt is the conventional dummy variable for month j. Equation (A.3) defines a special case
of a periodic process, which has a mean that is a nonlinear function of all seasonal intercepts and
autoregressive coefficients; see Ghysels and Osborn (2001, pp.146/147). Equivalence of the two
representations follows from stationarity, and hence
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p

i
ijij δµφµ (A.4)

Given values of the autoregressive coefficients and the seasonal dummy variable coefficients,
(A.4) defines a set of linear equations that can be solved for the unknown seasonal means µ1,…, µ12.

In order to solve these equations, it is convenient to collect the coefficients on the left-hand
side of (A.4) that refer to each specific monthly mean. This yields
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and [.] denotes the integer part of the expression in brackets. Therefore, (A.5) can be written as the
conventional linear equation system

δδµµ =A (A.6)

in which the vectors µ = (µ1, …, µ12)', δ = (δ1, …, δ12)'  and the elements of the matrix A are given
by
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The monthly means can then be obtained as
.1δδµµ −= A (A.7)

In the context of this paper, the δj in equation (3) of the text represent the monthly shift in
the intercept in the lower regime, so that application of (A.7) to these values yields the monthly
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mean deviation from the overall mean in the lower regime. For the upper regime, the
corresponding equation becomes

).(1 γγδδµµ += −A (A.8)

where γ = (γ1, …, γ12)', with the interpretation that the values represent the mean deviations for
each month compared to the overall mean in the upper regime. The overall means for the lower
and upper regimes are obtained as 0

1 )1( δφ −  and ])[1( 00
1 γδφ +−  respectively.

Finally, as mentioned in the text, it should be noted that the regime-dependent means and
monthly mean shifts derived from equation (3) are steady state values. That is, their computation
assumes that the regime does not change over time. When a regime switch occurs, the
representations analogous to (A.1) and (A.3) are not equivalent; this is discussed by Hamilton
(1993) in the context of a Markov-switching model.
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Figure 1. Estimated Monthly Means in the Upper (indicated by nn) and Lower Regimes
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