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one is more likely to observe the constitution of strategic inventories when the

market enters in a downturn: firms can credibly flood the market and exert
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1 Introduction

On many mineral or non-mineral commodity markets producers are in imperfect

competition. The highly standardized nature of those products regularly triggers ag-

gressive commercial behaviour. Moreover those markets are often cyclical: upturns

alternate to downturns, inducing modifications in firms strategies. One frequently

reported behaviour is the search for a large ”customer base”: firms price aggressively

in downturns to maintain or enlarge their presence on the market, with the obvious

goal to reach new customers. For example the U.S. uranium spot market has faced

an important downturn at the beginning of the 1990’s1: during that period Kazakh

producers have been the object of an anti-dumping duty conducted by the U.S. De-

partment of Commerce2. A similar inquiry has been conducted on the market for

PC memories (DRAMs). On this market, South-Korean producers have been sus-

pected to sell the good at less-than-fair value when the market was in downturn, in

order to enlarge their market share relatively to their American competitors3. The

business cycle effect on firms strategies on the DRAM market is quoted explicitly in

the report of the U.S. department of Commerce4,

The DRAM industry is highly cyclical in nature [...]. In the past, the

DRAM industry has been characterized by dumping during periods of

significant downturn. [...] Because DRAMs are a commodity product,

DRAM producers/resellers must price aggressively during a downturn

period in order to [...] maintain their customer base. This is especially

true during the lowest point in the downturn.

On most if not all of these markets, storage behaviour of producers or consumers

are playing a crucial role in the price formation process. On the uranium market

for example, ”on ground” storage (extracted from the mine but kept out of the

market) has presumably contributed to the decrease of spot prices in the 1990’s.

1The re-estimation of the growth rate of the number of nuclear powerplants and the decrease of

the large strategic inventories (constituted by western buyers in the 1980’s to face the prophesied

scarcity of this natural resource) seemed to be the main drivers of this downturn.
2see U.S. department of Commerce (1999) for the summary of the investigations started in 1991.
3The inquiry started with a denunciation by American producers. See the panel report of the

World Trade Organization, WT/DS99/R 29 January 1999.
4US/DOC Preliminary Results Third Review, 62 Fed. Reg. at 12796 (Ex. USA-20), par. 16.
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The impact of storage strategies on the DRAMs market price has also been pointed

out, in particular when demand started to decrease. Market analysts emphasized

the strategy of South-Korean producers, consisting in stockpiling the product as the

demand decreases to sell those quantities later on, inducing an even worse reduction

of the market price. The goal of this paper is to provide a theoretical justification of

this strategy, which goes against the standard economic view that firms are storing

when expecting either a shortage of their own future supply, or a sudden increase

of their future demand. I show that firms in Cournot competition find profitable

to build up inventories to enlarge their market shares only when the market en-

ters in a downturn, in particular when it reaches its lowest, for two main reasons.

First, when demand at the target period where inventories are released is low, a

firm owning large inventories is committed to sell those quantities on the market.

Consequently to a low expected average revenue, its rival does not find profitable to

produce any other quantity than a follower’s one. If demand is low, the marginal

cost of storage incurred to conduct this strategy is limited. Second if the market

demand at the initiating period where inventories are constituted is low, and if the

storage strategy cannot be separated from the first period strategy, the increase in

the marginal cost of production resulting from storage is also limited. When demand

decreases from period to period, and if it is low enough, firms are not deterred from

using inventories to exert some leadership.

The present paper falls into the literature in which the Stackelberg leadership is

endogenous. It contributes to the other studies of storage in Cournot competition

(Arvan [1985], Ware [1985], Allaz [1991], Moellgaard [1994], Moellgaard, Poddar,

and Sasaki [2000], Thille [2003]) by disentangling the ”smoothing effect” from the

”commitment effect” of inventories, and relating their use to the Business Cycle

that affects the market demand. Moreover it evaluates their consequences on the

existence of pure strategies Nash equilibria. The smoothing effect of inventories

results from the convexity of the cost function: storing allows a firm to replicate

its technology of production across time, and therefore enables one to work on the

lowest part of its marginal cost of production. Integrating this reduction in its

optimization, a firm is more aggressive than its opponent on subsequent markets:

storage has the desirable equilibrium property to reduce the sales of any opponent
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by making a firm more efficient on the production side. The total smoothing effect

of inventories includes this second marginal effect, together with the direct reduction

of the marginal cost of production.

The commitment effect of inventories results from the fact that a firm is able

to force its opponent to react as a follower to the quantity it has stockpiled, when

its inventories are large and the follower’s one are low. This effect is obviously

connected to Dixit (1980), but is limited by the size of the market firms are sharing.

Indeed building up inventories consists in sinking costs in the first period to enlarge

one’s future capacity to market the good, by a quantity -the inventories- from which

a firm can sell at a zero marginal cost: the firm has the possibility to flood the

market. However this threat is credible and profitable for the leader only when

the market demand in target period is low enough. As said before, building up

inventories and keeping them for later sale is not too costly both in terms of cost of

production and of cost of storage. More strikingly, the follower does not deter the

leader to stockpile, neither by increasing its sales in the period subsequent to the

constitution of inventories, nor by increasing its inventories in the initiating period.

The former is due to the fact that flooding the market when the market price is

already low enough leaves any competitor who has to produce with an even lower

expected average revenue. The latter follows from the same argument sustaining the

Stackelberg result: sticking to a follower’s quantity when inventories are constituted

is always a profit maximizer when one’s opponent acts as a leader. The unique

difference with a Stackelberg game is that the commitment in the Cournot game

with inventories is endogenous: firms have to pay for it, a natural limitation to the

asymmetry in market shares.

In his path-breaking paper, Arvan [1985] shows, in a model with stationary

demands, that the Cournot equilibrium of a game where firms are able to store

before selling a good on the market may be asymmetric. He argues however that

a firm may find profitable to increase its inventories to force the leader to give up

the search for a bigger market share5, leading to the non-existence of an asymmetric

equilibrium. By disentangling all the various effects interacting, I am able to reach a

more complete characterization of the Cournot game with inventories, in particular

regarding the existence and the likelihood of asymmetric outcomes. I show that

5In his terminology ”firms may be put with redundant inventories”.
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the equilibrium of the game is symmetric only when demand is high. When it is

low, firms build up inventories to enlarge their market share. A first period demand

reduces the incentives to conduct this strategy: storing increases also the marginal

cost of production of all the units sold immediately. I find that building inventories

is a profitable strategy only in when the market reaches the neighbourhood of a

downturn. When the market is in upturn, firms do not store under linear costs of

production. Under a convex cost of production the most likely issue is that firms

start first to build up symmetric inventories to smooth their cost of production across

time, then stop to store when the demand reaches its highest.

These findings contrast with Rotemberg and Saloner [1989], who show that inven-

tories may be used to maintain collusion when market demand is high by enlarging

an existing capacity of production. Moreover it may be connected closely to the

qualitative evidence drawn from the DRAM market: without taking into account

the fidelity or goodwill implicit aspect of a ”customer base”, that is without any

other incentive than strategic to build up inventories, I show that firms find strate-

gic storage profitable in downturns. Adding the ”customer base” incentive to the

model would simply reinforce the effect.

In a setting deeply grounded on exhaustible resource models, Ware [1985] studies

the entry deterrence strategy that a firm could conduct by stockpiling and then

releasing units on the market from this large deposit. While the dynamic of his

model is longer than mine, the incumbent firm does not renew its inventories once

sales have started. Entry is deterred until the entire inventories are sufficiently

low to induce an accommodating behaviour by the leader. The asymmetry of the

equilibrium he is describing comes from the timing of the game, and the importance

of the size of the market is not studied.

This paper focuses on the trade-off between the ”smoothing” effect and the

”commitment” effect: it differs with previous studies by Allaz [1991], who shows

that storage and forward trading are used simultaneously to enlarge the market

share under decreasing return-to-scale, and to Moellgaard [1994], and Moellgaard,

Poddar, and Sasaki [2000], who introduce conjectural variations in Arvan’s model

while keeping stationary demands and neglecting the search for a leader market

share. The model studied here is a generalization of Saloner [1987], Pal [1991] and

Pal [1996], who study two-period constant returns Cournot competition, assuming
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that all units produced in the first period are automatically sold on the market in

second period. The trade-off between the smoothing and the commitment effect of

inventories does not appear, as well as the importance of the market demand.

Finally Thille [2003] studies a infinite horizon model in which Cournot competi-

tors produce the good with a convex technology of production while suffering risks

on the marginal cost and on the linear demand interecept. He characterizes the

volatility of the market price, which depends deeply on the source of the uncertainty

in imperfect competition. The result presented here is a step towards the under-

standing of the effect of non stationary demands on the constitution of strategic

inventories, effect that cannot be analyzed in a long dynamic settings since it is not

possible to define value functions for non stationary systems.

Section 2 presents the model. Then section 3 analyzes the sales sub-game and

shows how the effect of storage depend on costs and demand in quantity competition.

In section 4, the existence of a pure strategy Nash equilibrium is discussed. Then I

look at the effect of a non-stationary demand, in the context of a linear cost and of

a convex cost of production. In section 5, I conclude.

2 The model

Let two producers i = 1, 2 of an homogeneous and non-perishable good compete

during two periods. In the first period, they choose simultaneously the quantities

they want to produce and sell. Every unit not sold is kept in inventories, and those

inventories are perfectly observed by both firms at the end of the first period. Then

in the second period they choose simultaneously the quantities they want to sell and

the quantities they want to produce, given their inventories. Firms are therefore in

two periods Cournot competition.

Let qi
t be the production and si

t be the sales chosen by firm i in period t, for

t = 1, 2. Firms cannot borrow the good in period 1: each has to produce at least

the quantity it sells in each period. Moreover they do not hold inventories at the

beginning of the game, xi
0 = 0 for any i = 1, 2. Let xi

t = qi
t + xi

t−1 − si
t be the

inventories hold by firm i at the end of period t. Then for t = 1, 2 and i = 1, 2, sales,

productions and inventories satisfy the following inequalities

xi
t ≥ 0, qi

t ≥ 0, si
t ≥ 0, si

t ≤ xi
t−1 + qi

t (1)
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Firms perfectly observe the first period pair of inventories (x1
1, x

2
1) before making

second period decisions. This assumption is crucial for inventories to affect future

competition. Indeed inventories commit firms second period decisions and modify

the second period Cournot equilibrium. In particular since the costs of producing

and carrying inventories are sunk when taking second period decisions, they lead a

firm to be more aggressive on the second period market than a rival who has not

stored. Several arguments support this assumption. First, from a theoretical point

of view, the non-observability of a past choice does not mean that it will have no

impact on current decisions. For example if a firm holds private information and its

opponent receives a signal on its choice, the value of a commitment can be restored

(Maggi [1999]). Moreover if agents use a ”tatonnement” process to determine their

equilibrium actions, they are able to reconstruct a past commitment, and will do it,

provided that this commitment affect their payoffs. Second, from a practical point

of view, the main actors on many markets are collecting precise information on ex-

isting inventories either through market studies (realized by independent analysts,

brokers, regulation authorities on organized commodity markets,...), or by monitor-

ing closely their rivals. A more complex theoretical setting would allow for imperfect

observability of inventories and incomplete information on costs of production, but

it would make the effect of the Business Cycle on storage behaviour in Cournot

competition less clear and of course less tractable.

We restrict our attention to second period strategies that depend only on the pair

of inventories chosen in the first period, and not on previous sales or poduction6:

strictly speaking we are considering Markovian strategies in inventories. For any

i = 1, 2, firm i strategy ωi is

ωi = {xi
1, s

i
1, q

i
1, x

i
2(x

i
1, x

j
1), s

i
2(x

i
1, x

j
1), q

i
2(x

i
1, x

j
1)} (2)

Let C(q) be the cost of producing the quantity q for firm i, identical across firms

and across periods. We assume that there are neither sunk nor non-sunk fixed cost

of production, i.e.

C(0) = 0 and lim
q→0+

C(q) = 0 (3)

Remark that relaxing the second assumption (i.e. allowing for non-sunk fixed cost of

6Past sales could matter in an infinite horizon game.
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production) would give a strong incentive to stockpile, since by producing everything

in the first period a firm avoids to pay the fixed cost again in the second period7.

However the most striking result of this paper does not rely on this effect. Therefore

I do not consider decreasing average cost of production in this analysis. To end up

the characterization of the production technology, the marginal cost of production

is positive and increasing with the quantity produced,

dC

dq
≡ C ′(q) ≥ 0, lim

q→0+
C ′(q) = C ′(0) > 0, and

d2C

dq2
≡ C ′′(q) ≥ 0 for q ≥ 0 (4)

where C ′(0) is the additional cost of producing the first units of output.

Let H(x) be the cost of holding total inventories x from one period to the other,

paid by firm i at the end of period in which inventories are constituted. I assume that

the storage capacity exists at the time where firms decide to stockpile. Consequently

there are neither sunk nor non-sunk fixed cost of storage,

H(0) = 0 and lim
x→0+

H(x) = 0 (5)

Moreover this cost is convex in the quantity stored

dH

dx
≡ H ′(x) ≥ 0, and

d2H

dx2
≡ H ′′(x) ≥ 0 for x ≥ 0 (6)

In order not to create extra incentives to release inventories on the market in period

2, I assume that firms are able to destroy at no cost unsold inventories at the end of

this period. This assumption guaranties that the ”commitment” effect of inventories

is not a last period effect8.

Assuming that storage and production costs are identical between firms is useful.

Indeed part of this study consists in stressing the differences in firm inventories and

market shares in equilibrium: assuming symmetric payoffs allows to characterize

unambiguously asymmetric equilibria. The results established here are easily gener-

alizable to asymmetric payoffs. Finally the model may be interpreted as a short-run

storage game, where all the long-run investments (e.g. the production tool, the stor-

age technology...) are given.

7Arvan [1985] provides some remarks on the effect of a non-sunk fixed cost on the storage

strategy.
8See Saloner [1986] for a study of the commitment effect of the cost to dispose of unsold units.

For example if the output were loosing its value at the end of the game, because of a ”fashion

effect”, firms would be more willing to sell it when its value is still high.
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To analyze the effect on storage behaviour of changes in demand from period

to period, the inverse demand in each period is assumed to be a function of the

aggregated quantity sold as well as of the period considered. Let P (Q, t) be the

inverse demand function, where Q denotes the aggregate quantity sold on the market,

and t = 1, 2 denotes the period. Both the first and second derivative of P (Q, t) are

negative and independent of the period t considered,

∂P

∂Q
(Q, t) ≡ P ′(Q) < 0 and

∂2P

∂Q2
(Q, t) ≡ P ′′(Q) ≤ 0, for Q ≥ 0 and t = 1, 2 (7)

In addition, I assume that it exists a finite maximal price consumers are ready to

pay to obtain the good. This price, denoted P t = P (0, t), is such that a monopolist

would find profitable to trade in each period,

C ′(0) ≤ P t < +∞ (8)

Qt denotes the finite maximal quantity for which consumers are satiated, i.e. such

that the price of the product is equal to 0 whenever this quantity is sold. Then

P (Qt, t) = 0 if Qt > Qt for t = 1, 2 (9)

The difference between the two periods comes therefore from parallel shifts in de-

mand from period to period, modifying solely the pair (P t, Qt).

Let δ be the discount rate at which firms are working, δ < 1. Firm i’s total profit

discounted in the first period is

Πi(ωi, ωj) = P (s1
1 + s2

1,1) si
1 − C(qi

1) − H(xi
1) + δ [(P (s1

2 + s2
2,2) si

2 − C(qi
2)] (10)

The two periods Cournot storage game in which two firms (1 and 2) interact using

respectively strategies (ω1, ω2) and earning respectively profits (Π1(ω1, ω2), Π2(ω1, ω2))

is denoted G.

3 Storage effect on second period sales

In second period, firms maximize their current profits given first period inventories.

Since the game ends up at this period, there is no point for them to build up

extra inventories. Therefore, for any si
2 the firm is ready to sell, the production
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qi
2 is determined in such a way that together with inventories xi

1, it matches sales

si
2 exactly. If xi

1 is lower than the planned level of sales si
2, then production is

positive and equal to the difference between sales and inventories, qi
2 = si

2 − xi
1, and

if inventories are larger than planned sales then the production is equal to 0. It

remains to describe the effect of inventories on firms market behaviour si
2.

As already seen by Arvan and Ware, when storing before selling, a firm sinks the

cost of production of these units. Consequently it endows itself with a capacity xi
1

from which it may sell at a marginal cost equal to 0 later on. Once past inventories

have been exhausted by current sales, the firm has to produce again to be able to

sell more. First, selling in addition to its inventories obliges the firm to start its

production tool and therefore to pay a strictly positive incremental cost of produc-

tion. Second, when the marginal cost of production is strictly increasing, selling an

amount larger than its inventories is feasible at a total cost strictly lower than the

cost it would suffer to produce this quantity in a single period. Under a convex cost

of production, firms have an incentive to store in order to replicate the technology

of production across time and reduce the total cost of producing a given quantity.

This cost reduction may be used strategically by Cournot competitors: therefore

the higher the inventories cumulated in previous periods are, the more aggressive

is a firm on the current period market. To fix the ideas, it is helpful to stress the

difference between the game G and the static Cournot game by introducing the cost

of production faced by a firm when selling si
2 given inventories xi

1, Γi(si
2, x

i
1). It is

equal to

Γi(si
2, x

i
1) =

∣

∣

∣

∣

∣

∣

0 if si
2 ≤ xi

1

C(si
2 − xi

1) if si
2 > xi

1

(11)

Whereas firms costs of production are identical, firms costs to sell si
2 when they

own xi
1 in inventories differ from each other when inventories differ: asymmetric

equilibria may therefore appear in this symmetric setting. Figure 1 represents this

cost function and compare it with the no inventories case. Inventories shift the

marginal cost of producing a given level of sales to the South-East of the graph: a

Cournot competitor with inventories is more aggressive than a Cournot competitor

without inventories. Moreover whenever C(q) is discontinuous or non differentiable

at q̃, Γ(si
2, x

i
1) is discontinuous or non differentiable at si

2 = q̃ + xi
1.

[INSERT FIGURE 1 FROM APPENDIX (A.) HERE]
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The best responses of firms when choosing sales are continuous but, as a conse-

quence of the strictly positive marginal cost of production, present two kinks. For

small sales of her opponent, firm i’s sales in the second period are a function of its

opponent’s sales f i
2(s

j
2, x

i
1) solution in si

2 of

P ′(si
2 + s

j
2) si

2 + P (si
2 + s

j
2,2) − C ′(si

2 − xi
1) = 0 ⇔ si

2 ≡ f i
2(s

j
2, x

i
1) (12)

When its opponent sells a larger quantity on the market, selling more than its inven-

tories may be too costly for firm i: it may generate a marginal revenue always lower

than the marginal cost of production, no matter the quantity produced. However

if selling exactly its inventories generates a strictly positive marginal revenue given

firm j’s sales, then firm i will sell exactly this quantity,

P ′(xi
1 + s

j
2) xi

1 + P (xi
1 + s

j
2,2) − C ′(0) < 0

P ′(xi
1 + s

j
2) xi

1 + P (xi
1 + s

j
2,2) > 0







⇔ si
2 = xi

1 (13)

Finally when its opponent sells a very large quantity on the market, the marginal

revenue of selling exactly its inventories may be strictly negative. In that case firm i

sells strictly less than its inventories to maximize its profits. This choice is a function

of the sales of its opponent only, g2(s
j
2), and is not firm specific contrary to f i

2 which

depends on inventories: g2 is the solution in si
2 of

P ′(si
2 + s

j
2) si

2 + P (si
2 + s

j
2,2) = 0 ⇔ si

2 ≡ g2(s
j
2) (14)

Note that this description of a firm best choice is valid when its inventories xi
1 are

small enough9. Without loss of generality we restrict the description of the sub-game

equilibria of the game to this case, since it encompasses the two other cases.

Let us introduce some useful notations: (s1
ϕ,ϕ′ , s2

ϕ,ϕ′) denotes the equilibrium

when it results from the intersection of functions ϕ for firm 1 and ϕ′ for firm 2,

where ϕ and ϕ′ can be equal to functions f i
2(s

j
2, x

i
1) or g2(s

j
2)

10. Similarly (s1
ϕ,x, x

2
1)

9If inventories xi
1

are larger than sM
2

solution of P ′(sM
2

) sM
2

+ P (sM
2

,2) − C ′(0) = 0, then

obviously the first inequality in (13) is always satisfied for any values of firm j’s sales, and firm i

will not produce again in that period: its best choice is given either by (13) or (14). If inventories

are larger than g2(0), the firm always sell less than its inventories by reacting always only according

to (14).
10For example (s1

g,f , s2

g,f ) results from the intersection of g2(s
2

2
) and f2

2
(s1

2
, x2

1
), and (s1

f,g, s
2

f,g)

results from the intersection of f 1

2
(s2

2
, x1

1
) and g2(s

1

2
).
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denotes the intersection between function ϕ for firm 1 and x2
1 for firm 211. Finally

(x1
1, x

2
1) is the equilibrium when both firms sell exactly their inventories. As lemma 1

below establishes, the extent to which a Cournot competitor may use its inventories

to act as a leader on the target market depends on the size of the market demand.

Indeed whenever the market demand is low enough, the market price resulting from

sales by a firm benefiting from a null marginal cost may be lower than the marginal

cost of production of any other firm who has to produce to serve the market. In that

case the latter will not find profitable to produce, meaning that the former owning

large inventories may flood the market and obtain a leader market share. For some

levels of inventories an asymmetric equilibrium may appear in the sub-game, such

as (x1
1, s

2
x,f ).

On the other hand when the market demand is high enough, the owner of inven-

tories cannot deter its opponent with no inventories to produce in second period:

its marginal revenue may be higher than its marginal cost of production for some

sales level. This firm will indeed produce and sell the good, leaving the owner of

inventories with unsold quantities. The higher is the second period demand the

larger will be the set of inventories (x1
1, x

2
1) for which a firm will find profitable to

produce and sell a positive amount when its opponent owns large inventories. There-

fore the sale levels s1
g,f and s2

f,g represent the upper bounds on the leadership each

firm can exert in second period through the inventories it has constituted in first

period. Remark that the greater is the second period demand relatively to the cost

C ′(0) the smaller is the region in which firms exert a leadership or sell exactly their

inventories: the bound si
g,f tends to si

f,f for both firms. The commitment power of

inventories vanishes when the market demand increases.

Lemma 1 When the second period demand is low enough, P (g2(0),2)−C ′(0) ≤ 0,

a firm that builds up large inventories in the first period to obtain the leadership

cannot be obliged to sell less than this quantity by its opponent who has not stored.

The second period sales sub-game admits 7 types of equilibria in which each firm

11For example (s1

g,x, x2

1
) results from the intersection of g2(s

2

2
) and x2

1
.
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sells more than, less than or exactly her inventories,

(s1
2(x

1
1, x

2
1), s

2
2(x

1
1, x

2
1)) = (s1

g,g, s
2
g,g) if x1

1 ≥ s1
g,g, x2

1 ≥ s2
g,g R1

(s1
g,x, x

2
1) if x1

1 > s1
g,x, x2

1 < s2
g,g R2

(x1
1, s

2
x,g) if x1

1 < s1
g,g, x2

1 > s2
g,x R3

(x1
1, x

2
1) if x1

1 < s1
g,x, x2

1 < s2
x,g R4

x1
1 > s1

f,x, x2
1 > s2

x,f

(s1
f,x, x

2
1) if x1

1 ≤ s1
f,x, x2

1 > s2
f,f R5

(x1
1, s

2
x,f ) if x1

1 ≥ s1
f,f , x2

1 ≤ s2
x,f R6

(s1
f,f , s

2
f,f ) if x1

1 < s1
f,f , x2

1 < s2
f,f R7

When the second period demand is high enough, P (g2(0),2)−C ′(0) > 0, a firm that

builds up large inventories to obtain the leadership in the first period may be obliged

to sell less than its inventories by an opponent producing and selling starting from

small inventories. Regions R1 and R4 are not affected, but two new equilibria appear,

(s1
g,f , s

2
g,f ) if x1

1 > s1
g,f , x2

1 < s2
g,f R8

(s1
f,g, s

2
f,g) si x1

1 < s1
f,g, x2

1 > s2
f,g R9

Frontiers of regions R2, R3, R5, and R6 are obviously modified.

Proof. Available upon request (Referees may find the proof in appendix B.)‖

It may be helpful for the reader to refer to the following figures.

[INSERT FIGURES 2 AND 3 FROM APPENDIX (A.) HERE]

The last section is devoted to the analysis of the first period and discuss the effect

of the business cycle on the constitution of inventories in Cournot competition.

4 Storage choice in first period

4.1 Existence of an equilibrium in pure strategies

Let Πi
2(x

1
1, x

2
1) be the value of firm i ’s second period profit (i = 1, 2) as a function

of the pair of inventories,

Πi
2(x

1
1, x

2
1) = P (s1

2(x
1
1, x

2
1) + s2

2(x
1
1, x

2
1),2) si

2(x
1
1, x

2
1) − Γ(si

2(x
1
1, x

2
1), x

i
1) (15)
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This profit is continuous, but even if it is concave on each of the regions defined in

lemma 1 under some standard assumptions, it is non concave on the full domain

and non differentiable at certain pairs of inventories with respect to xi
1. As pointed

out also by Arvan, these non-concavities arise because a player may find profitable

to cease to smooth its cost of production to behave as a leader. Facing a leader the

other player prefers to reduce its sales on the second period market: payoffs may

have a local maximum in regions R5 and R6 as well as in R7. Firm i’s total profit to

optimize with respect to xi
1 and si

1 is

Πi(s1
1, s

2
1, x

1
1, x

2
1) = P (s1

1 + s2
1,1) si

1 − C(si
1 + xi

1) − H(xi
1) + δ Πi

2(x
1
1, x

2
1) (16)

Without any inventories at the beginning of the game, a close look at this profit

shows immediately that firms trade-off is to decide how to allocate first period

production between revenue in period 1 thanks to sales si
1, and profit in period

2 thanks to the marginal effect of inventories on profits net of the storage cost.

As discussed later, if a firm is storing and selling in period 1, the marginal revenue

coming from period 1 sales has to be equal to the marginal profitability of inventories

in period 2 net of storage costs.

Some pairs of inventories lead to strictly dominated second period sub-games

for any first period sales (s1
1, s

2
1). When deciding how much to store, and since

producing is costly, a firm never chooses to carry more to period 2 than what it will

sell. Moreover, since it is costly to produce and store, both firms never choose to store

and sell exactly their inventories: whenever one firm tries to store a large amount

to act as a Stackelberg leader, the other stores a small amount. As in games with

exogenous commitment and strategic substitutes, the follower is better-off selling a

small quantity when its opponent sells a large quantity.

Proposition 1 Any pair of inventories (x1
1, x

2
1) such that at least one firm sells less

than its inventories in second period, or both firms sell exactly their inventories in

second period, leads to a strictly dominated second period sub-game for any first

period sales (s1
1, s

2
1). Therefore pairs of inventories belonging to regions R1, R2, R3,

R4, R8, and R9 cannot be part of an equilibrium strategy of the game G.

Proof. See appendix C.‖

14



The consequence of this lemma is that firms storage choices - when they exist in

pure strategy - is either for both to sell more than their inventories, or for one to

sell exactly its inventories, the other acting as a follower in second period. To put

it differently if there is an equilibrium candidate in which one firm stores a large

quantity and its opponent a small quantity, the latter never deviates unilaterally from

that equilibrium by storing more. Therefore if one firm finds profitable to store a

large quantity, the game may end up in an asymmetric equilibrium. Moreover firms

will not use those pairs of inventories when designing mixed strategies.

The marginal profitability of inventories allow us to draw another important but

intuitive feature of the Cournot game with inventories.

Lemma 2 When firms sell (s1
f,f , s

2
f,f ) in second period, an increase in first period

inventories increases their second period profit. The marginal profitability of inven-

tories of firm i in second period is given by

∂Πi
2

∂xi
1

=
∂s

j
f,f

∂xi
1

P ′(s1
f,f + s2

f,f ) si
f,f + C ′(si

f,f − xi
1)

= 1
∆

C ′′(si
f,f − xi

1)[P
′′(s1

f,f + s2
f,f ) s

j
f,f + P ′(s1

f,f + s2
f,f )] [P ′(s1

f,f + s2
f,f )s

i
f,f − C ′(si

f,f − xi
1)] > 0

where ∆ > 0 is defined in appendix D.

Proof. The proof is immediate (referees may look at appendix D.)‖

If the marginal cost of production is constant, C ′′(q) = 0, inventories are not

used to smooth the cost of production. The marginal profitability of an increase in

inventories in that case is equal to 0: small inventories do not modify firms future

behaviour. However large inventories can still modify firms behaviour no matter

the convexity of the cost of production, as appear in lemma 3 below. When one

firm (the leader) stores a large amount and the other (the follower) produces in

second period, the follower’s marginal benefit to carry inventories comes only from

the reduction of the marginal cost of production, while the leader enjoys a limited

leadership. Again if the marginal cost of production is constant the follower earns

no profit from storing.
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Lemma 3 When firm 1 produces in second period while firm 2 sells exactly its

inventories, (s1
f,x, x

2
1), the marginal effect of inventories are

∂Π1
2

∂x1
1

=
∂x2

1

∂x1
1

P ′(s1
f,x + x2

1) s1
f,x + C ′(s1

f,x − x1
1) = C ′(s1

f,x − x1
1) > 0

and
∂Π2

2

∂x2
1

= (1 +
∂s1

f,x

∂x2
1

) P ′(s1
f,x + x2

1) x2
1 + P (s1

f,x + x2
1,2)

The effects are reversed when firms are selling (x1
1, s

1
x,f ) in period 2.

Proof. The proof is immediate (referees may look at appendix D.)‖

In the first period, firms simultaneously maximize their profits (16) with respect

to first period sales si
1 and inventories xi

1. Let J i be the Jacobian vector of the

program, composed of the first order derivatives,

J i =





∂Πi

∂si
1

∂Πi

∂xi
1



 =





P ′(s1
1 + s2

1) si
1 + P (s1

1 + s2
1,1) − C ′(si

1 + xi
1)

−C ′(si
1 + xi

1) − H ′(xi
1) + δ

∂Πi
2

∂xi
1
(x1

1, x
2
1)



 (17)

where the effect of inventories on second period profit depends on the regions to

which inventories belong. The Hessian matrix H i of the program is

H i =





P ′′(s1
1 + s2

1) si
1 + 2 P ′(s1

1 + s2
1) − C ′′(si

1 + xi
1) −C ′′(si

1 + xi
1)

−C ′′(si
1 + xi

1) −C ′′(si
1 + xi

1) − H ′′(xi
1) + δ

∂2Πi
2

∂(xi
1)2



 (18)

Since the first element on the diagonal is obviously negative, we need to check

that the determinant of the Hessian matrix H i is positive to be insured that H i is

negative semi-definite and therefore that the objective function is concave in each

region. This is equivalent to verify that

δ
∂2Πi

2

∂(xi
1)

2
(xi

1, x
j
1) < H ′′(xi

1) +
P ′′si

1 + 2P ′(s1
1 + s2

1)

P ′′si
1 + 2P ′(s1

1 + s2
1) − C ′′(si

1 + xi
1)

C ′′(si
1 + xi

1) (19)

If the second period profit is concave with respect to inventories xi
1 in every region not

excluded by proposition 1, and if moreover the cross partial derivative of this profit

with respect to xi
1 and x

j
1 is also negative, then for every expression of Πi

2(x
1
1, x

2
1)

it exists local strictly decreasing best response functions. The main difficulty is

however to characterize the global properties of these best response functions, and

the consequences these properties may have on the existence of an equilibrium in

pure strategies.
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Theorem 1 below shows, under fairly general conditions on the demand func-

tion but under the assumption of a linear cost of production, that the two-periods

Cournot game with inventories G has a pure strategy Nash-Perfect equilibrium. Why

does the linearity of the cost of production matter for the existence of a pure strat-

egy equilibrium ? Because even if the non-concavities in the second period payoffs

Πi
2(x

i
1, x

j
1) are innocuous regarding the properties of the best response when xi

1 is

the unique strategy of the firm in the first period12, they create upward jumps in

the choice of si
1 when the firms have two strategies. Indeed if the choice of si

1 cannot

be separated from the choice of xi
1, as it is the case with any cost of production

other than linear13, a downward jump in xi
1 decreases the cost of production and

allow to increase brutally sales si
1, as appear in the first element of (17). As in

any game where actions are strategic substitutes, this type of jump jeopardizes the

existence of a pure strategy Nash equilibrium: the locus (sj
1, x

j
1) at which the jump

happens is evolving with the parameters of the model, making impossible to insure

the existence of a pure strategy Nash equilibrium for all their possible values.

Theorem 1 If the second order derivative of the inverse demand P ′′(Q) is constant,

and if the cost of production C(q) is linear, C ′(q) = C ′(0) q = c q, then the game G

has a pure strategy Nash-Perfect equilibrium.

Proof. See appendix E.‖

The equilibrium in pure strategies exists presumably for not too convex costs of

production: the upward jumps when choosing sales are limited. Note that multiple

equilibria may arise: for some parameter values the asymmetric and symmetric issues

may coexist simultaneously. In the next section I derive two corollaries from this

theorem, then I deepen the analysis of the first period first order conditions to try

derive some properties of the equilibrium when it exists in pure strategy.

12Mitraille [2003] shows in a version of G without any demand in the first period that it always

exist a pure strategy Nash equilibrium. The issue of the game is either symmetric, or asymmetric,

depending on second period demand, the cost of storage and the degree of convexity of the cost

of production. In particular the two players may have a local influence on second period payoffs

through their inventories.
13As appear in the expression of the Jacobian J i, when the cost of production is linear, C ′(si

1
+

xi
1
) = C ′(0) = c, the two first order conditions can be treated separately since they depend only

on one endogenous variable when considering the choice of the opponent as given.
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4.2 Effect of the Business Cycle

The first corollary examines the case of a high second period demand.

Corollary 1 If the cost of production is linear, and if the second period demand is

high enough for some given discount factor and storage cost, then the game G has a

unique symmetric Nash-Perfect equilibrium, in which both firms are not storing and

selling the one-shot Cournot quantity in each period.

From theorem 1 we know that it exists an equilibrium in pure strategy. Consider

the asymmetric candidate xL
1 for firm 1. It solves

−c − H ′(xL
1 ) + δ

∂Πi
2

∂xi
1
(xL

1 , 0) = 0 if s1
f,f ≤ xL

1 ≤ s1
g,f

> 0 if xL
1 = s1

g,f

< 0 if xL
1 ≤ s1

f,f

(20)

where s1
f,f (= s2

f,f ) designates the Cournot symmetric outcome, which can be an

equilibrium of the sub-game in the absence of the cost smoothing effect. The profit

obtained by firm 1 when storing xL
1 has to be compared with the Cournot profit

in second period obtained when not storing at all. Depending on the degree of

convexity of the storage cost and on the discount factor, even if xL
1 is interior to

the asymmetric region, a too high demand makes the exercise of some leadership

too costly. On the other hand if the second period demand is low enough the cost

of exerting the leadership is low enough to make the asymmetric choice xL
1 close

to the Stackelberg quantity which maximizes the profit when the commitment is

exogenous. The comparison between the Stackelberg-like and the Cournot profits

will turn in favour of the asymmetric issue.

Corollary 2 If the cost of production is linear, and if the second period demand is

low enough, then the game G has a two asymmetric Nash-Perfect equilibria, in which

one firm stores in first period to obtain the leadership on the second period market.

Its competitor does not store.

Together with corollaries 1 and 2, theorem 1 extends Arvan’s theorem on the ex-

istence of a symmetric Nash equilibrium in this game (see Arvan (1985) theorem

1, p. 572): if, as stated in the assumptions sustaining Arvan’s result, the second

period profit is globally concave in inventories, then there are no discontinuities in
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the choice of inventories and therefore no upward jumps in the sales choice in first

period. The game has naturally an equilibrium in pure strategy which is symmetric.

However it is possible to find symmetric equilibria in pure strategy even in the game

with non concave second period profit Πi
2(x

i
1, x

j
1). In the particular context of a lin-

ear cost the two corollaries to theorem 1 stated above illustrate that the driver of the

symmetry of the equilibrium is not the concavity of Πi
2(x

i
1, x

j
1), but the importance

of second period demand. To put it differently the concavity of Πi
2(x

i
1, x

j
1), which is

of course sufficient to have the symmetry of the equilibrium, is not necessary. This

analysis may be generalized to the case of a convex cost of production, keeping in

mind that the pure strategy equilibrium may not exist. In that case one has to look

at mixed strategy Nash equilibria14.

Consider again the system (17). In a pure strategy Nash equilibrium (if it exists),

si
1 and xi

1 have to verify

P ′(s1
1 + s2

1) si
1 + P (s1

1 + s2
1,1) − C ′(si

1 + xi
1) = 0 if si

1 > 0

< 0 if si
1 = 0

(21)

and

−C ′(si
1 + xi

1) − H ′(xi
1) + δ

∂Πi
2

∂xi
1
(x1

1, x
2
1) = 0 if xi

1 > 0

< 0 if xi
1 = 0

(22)

Some key features on the effect of differences in demands between periods may be

established when the costs of production are convex. First, the higher second period

benefit a player can hope is a profit resulting from a limited leadership. However by

storing this player increases its first period cost of production and looses some mar-

ket shares to the benefit of its opponent. Looking for exerting some second period

leadership is equivalent to accept to suffer some first period ”followership”. If first

period demand is high enough compared to second period demand, the marginal

revenue from selling may be always higher than the marginal profit from storing

in first period, and the two equations above cannot be equated. In that case no

inventories will be constituted. It is consequently unlikely to observe the constitu-

tion of strategic inventories when the market is at the peak of an upturn. If on

14It presumably exists mixed strategy equilibria in which firms put some weight on a pair (high

sales,low inventories) and some weight on a pair (low sales, high inventories). One has to check

whether a symmetric pair may be part of the equilibrium strategy, but the analysis will have to be

done in particular cases.
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the contrary first period demand is low enough, two favourable situations for the

constitution of inventories may appear. Either the market is reaching the bottom of

a downturn, with a first period demand higher than second period demand, and one

firm only will presumably exert some leadership (the other one does not store since

smoothing costs does not matter when demand decreases), or the market demand

start to increase from a very low first period level, and in that case a symmetric

equilibrium may appear if the difference between demands is high enough. In this

latter case both firms will enjoy a local influence on second period profits through

their inventories.

5 Discussion and extensions

I have shown in a two periods model that one is more likely to observe in downturns

the use of strategic inventories to allow one firm to exert some limited leadership.

This result has been established by restricting the analysis to a separable problem

across periods in order to insure the existence of a Nash equilibrium in pure strate-

gies. When the two periods are not separable, the non-existence of a pure strategy

equilibrium comes from the fact that firms have to constitute their inventories in

one single period. Since only the cumulated inventories count when coming to the

period at which they are released, a way to proceed could possibly be to allow firms

to stockpile the good on several periods instead of one. This much more realistic set-

ting would allow firms to separate the two problems - determining optimal sales and

building up inventories in order to get the leadership on the market- by stockpiling

small amounts in each period. In that case the cost of production would be close

enough to the cost of sales in each period, but of course the cumulated inventories

would be big enough to allow firms to get a larger market share, provided that the

cost of storage is not too high. From the theoretical evidence drawn before, my

conjecture is however that the search for a leader market share cannot happen in

each period: under a convex cost of production firms will find profitable to stockpile

by adding little quantities to their cumulated inventories in each period, in order

not to loose too much in each period, and then release those quantities on the most

favourable target market. I have shown in a two period game that the most prof-

itable period to release inventories on a market is during a downturn in terms of the
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potential gain in market shares. In a longer dynamic, the same may be true: firms

may build up small inventories at a low cost, those inventories having the higher

marginal effect in periods of low demand. This conjecture seems consistent with the

qualitative empirical evidence presented in introduction.

The use of strategic inventories in downturns pointed out in this paper may be

connected to dumping practices: indeed storage consists in a capacity from which it

is rational for firms to sell even at a price equal to 0. There is no cost of production

suffered to release these units. Moreover depending on the market demand firms

are committed to flood the market once inventories are constituted. The results

established here are a possible explanation of why in several cases, Public Authorities

involved in the control of International Trade have observed large inventories before

downturns, and received in return complaints from firms obliged to reduce their

sales in those period (see WTO (1999)). By increasing competition, storage lowers

the price in downturns. Therefore if the firm who stores is better-off, it worsens the

situation for the firm who does not store. Some producers may clearly be against

the use of inventories, while others may be in favour. In the short run, the overall

effect on the Social Welfare is positive, for the same reason that the Social Welfare in

Stackelberg competition is higher than in Cournot competition. In the long run, if

the consequence of asymmetric market shares is to provoke the exit of one producer

from the market, and if for example the ”customer base” effect locks buyers to their

current suppliers, the effect on the Social Welfare may be negative, which is a strong

rationale for Public Authorities to look carefully at strategic storage behaviour.
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Appendices

A. Figures

Cost in period 2
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Cost to sell si
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units without inventories, C(si
2
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Cost to sell si
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units with inventories, Γi(si
2
, xi

1
)

Increase of the set of feasible sales

Figure 1: Storage and cost manipulation in the sales subgame
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Figure 2: Subgame equilibrium when P (g2(0),2) − C ′(0) ≤ 0.
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Figure 3: Subgame equilibrium when P (g2(0),2) − C ′(0) > 0.
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B. FOR REFEREES ONLY - Proofs of lemma 1

In the second period each firm chooses its sales by maximizing the second period

revenue net of the total cost of production at this period,

Πi
2(s

i
2, s

j
2) = P (s1

2 + s2
2,2)si

2 − Γi(si
2, x

i
1) (B.1)

where Γi(si
2, x

i
1) is given by (11), for non-negative sales and non-negative inventories.

This maximization problem depend on the inventories of firm i in the following way.

First of all remark that the gross revenue of each firm admits a unique maximum

given the sales of the opponent, g2(s
j
2), such that

g2(s
j
2) = arg max

si
2

P (s1
2+s2

2,2)si
2 , solution of P ′(g2(s

j
2)+s

j
2)g2(s

j
2)+P (g2(s

j
2)+s

j
2,2) = 0

(B.2)

This first order condition depicted above is sufficient to determine the maximum

g2(s
j
2), since the gross revenue is strictly concave,

P ′′(g2(s
j
2) + s

j
2)g2(s

j
2) + 2P ′(g2(s

j
2) + s

j
2) < 0 (B.3)

and as long as s
j
2 ≤ Q2, the solution is interior, g2(s

j
2) > 0. In the remaining we omit

the last part of this piece of the reaction function, namely g2(s
j
2) = 0 for s

j
2 ≥ Q2

since it deals with a strictly dominated strategy for firm j, i.e. selling more than the

maximal quantity consumers are ready to buy, at a null price. Let us construct the

best response Bi
2(s

j
2) of a firm.

The first case for the inventories xi
1 is when they exceed the quantity that firm i

will sell to maximize its profit when alone on the market. Reacting to s
j
2 according to

g2(s
j
2) is obviously the best choice. Indeed the function g2(s

j
2) is strictly decreasing

with s
j
2: by applying the implicit function theorem to the first order condition above,

it comes
∂g2

∂s
j
2

(sj
2) = −

P ′′(si
2 + s

j
2)s

i
2 + P ′(si

2 + s
j
2)

P ′′(si
2 + s

j
2)s

i
2 + 2P ′(si

2 + s
j
2)

< 0 (B.4)

This slope is strictly lower than one in absolute value. The higher firm j’s sales are,

the lower firm i’s sales will be: whenever the inventories xi
1 are higher than g2(0),

firm i will react according to g2(s
j
2). Since g2(s

j
2) does not depend on xi

1, note that

the condition xi
1 ≥ g2(0) is strictly equivalent to P ′(xi

1)x
i
1 +P (xi

1,2) ≤ 0: as soon as

the inventories are such that the marginal revenue of exhausting xi
1 when alone on
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the market is negative, firm i will always prefer to maximize its gross revenue and

sell less than xi
1. Therefore

Bi
2(s

j
2) = g2(s

j
2) if P ′(xi

1)x
i
1 + P (xi

1,2) ≤ 0 (B.5)

Remark now that when producing again in the second period, firm i will sell

on the market according to the function f i
2(s

j
2, x

i
1), which is firm-specific since it

depends on xi
1. This function verifies

f i
2(s

j
2, x

i
1) = arg max

si
2

P (s1
2 + s2

2,2)si
2 − C(si

2 − xi
1) (B.6)

solution of

P ′(f i
2(s

j
2, x

i
1) + s

j
2)f

i
2(s

j
2, x

i
1) + P (f i

2(s
j
2, x

i
1) + s

j
2,2) − C(f i

2(s
j
2, x

i
1) − xi

1) = 0 (B.7)

and is again strictly decreasing with s
j
2, from the same argument than before

∂f i

∂s
j
2

(sj
2) = −

P ′′(si
2 + s

j
2)s

i
2 + P ′(si

2 + s
j
2)

P ′′(si
2 + s

j
2)s

i
2 + 2P ′(si

2 + s
j
2) − C ′′(si

2 − xi
1)

< 0 (B.8)

Note that this solution is unique when it exists, and that the slope of this function

is strictly lower than one in absolute value.

Consider now the case where P ′(xi
1)x

i
1 + P (xi

1,2) > 0. Selling exactly xi
1 is

therefore a possible solution for some values of s
j
2. However if f i

2(0, x
i
1) ≤ xi

1, then

selling more than its inventories will never be a solution for firm i for any s
j
2. Note

that this condition is equivalent to P ′(xi
1)x

i
1 + P (xi

1,2) − C ′(0) ≤ 0: as soon as the

net marginal profit of selling one unit in addition to the inventories is positive, firm

i will produce in the second period when alone on the market. In the case where

P ′(xi
1)x

i
1+P (xi

1,2) > 0 and P ′(xi
1)x

i
1+P (xi

1,2)−C ′(0) ≤ 0, firm i will sell according

to g2(s
j
2) as long as s

j
2 is such that g2(s

j
2) < xi

1, i.e. P ′(xi
1 +s

j
2)x

i
1 +P (xi

1 +s
j
2,2) ≤ 0.

When g2(s
j
2) ≥ xi

1, i.e. when P ′(xi
1 + s

j
2)x

i
1 + P (xi

1 + s
j
2,2) ≥ 0, firm i would be

willing to sell more than its inventories since the marginal profit of selling exactly

xi
1 is strictly positive. However since P ′(xi

1)x
i
1 + P (xi

1,2) − C ′(0) ≤ 0, producing

again is not profitable at the margin: therefore when s
j
2 is such that P ′(xi

1 + s
j
2)x

i
1 +

P (xi
1 + s

j
2,2) ≥ 0, firm i will sell exactly xi

1. To conclude, if P ′(xi
1)x

i
1 + P (xi

1,2) > 0

and P ′(xi
1)x

i
1 + P (xi

1,2) − C ′(0) ≤ 0

Bi
2(s

j
2) =

∣

∣

∣

∣

∣

∣

xi
1 if g2(s

j
2) ≥ xi

1 i.e. P ′(xi
1 + s

j
2)x

i
1 + P (xi

1 + s
j
2,2) ≥ 0

g2(s
j
2) if g2(s

j
2) < xi

1 i.e. P ′(xi
1 + s

j
2)x

i
1 + P (xi

1 + s
j
2,2) < 0

(B.9)
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Let us now consider the last case, P ′(xi
1)x

i
1 +P (xi

1,2)−C ′(0) > 0. We have seen

that firm i could find profitable to produce again to sell more than its inventories.

The decision will again be simply based on the sales of its opponent s
j
2. If g2(s

j
2) < xi

1,

then firm i will sell according to g2(s
j
2). If s

j
2 is such that g2(s

j
2) ≥ xi

1 and f i
2(s

j
2, x

i
1) <

xi
1, then firm i will sell exactly xi

1, and finally if s
j
2 verifies f i

2(s
j
2, x

i
1) ≥ xi

1, then i

sells f i
2(s

j
2, x

i
1). Indeed in this last case, the profit is strictly increasing as long as

si
2 ≤ xi

1, since by construction g2(s
j
2) > f i

2(s
j
2, x

i
1). It is also still increasing until si

2

reaches f i
2(s

j
2, x

i
1) by definition of this function, and decreasing after. To summarize,

if P ′(xi
1)x

i
1 + P (xi

1,2) − C ′(0) > 0

Bi
2(s

j
2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f i
2(s

j
2, x

i
1) if f i

2(s
j
2, x

i
1) ≥ xi

1 i.e. P ′(xi
1 + s

j
2)x

i
1 + P (xi

1 + s
j
2,2) − C ′(0) > 0

xi
1 if f i

2(s
j
2, x

i
1) < xi

1 i.e. P ′(xi
1 + s

j
2)x

i
1 + P (xi

1 + s
j
2,2) − C ′(0) ≤ 0

and g2(s
j
2) ≥ xi

1 and P ′(xi
1 + s

j
2)x

i
1 + P (xi

1 + s
j
2,2) ≥ 0

g2(s
j
2) if g2(s

j
2) < xi

1 i.e. P ′(xi
1 + s

j
2)x

i
1 + P (xi

1 + s
j
2,2) < 0

(B.10)

Again this best response is decreasing but continuous.

As shown before, the slope of the reaction function Bi
2(s

j
2) is always strictly

lower than 1 under our assumptions on the cost and the inverse demand functions.

Consequently the Cournot equilibrium will be unique for every pair of inventories and

will always exist. The remaining part of this proof discuss the type of equilibrium

that arises depending on the inventories. We show that the second period sales sub-

game will have at least 7 and at most 9 intersections, depending on the parameters

of the model and in particular on the size of the market of that period.

The first and obvious case is when both inventories are large enough to rule out

any production in the second period. In that case the equilibrium is

(s1
2(x

1
2, x

2
2), s

2
2(x

1
2, x

2
2)) = (s1

g,g, s
2
g,g) if P ′(x1

1)x
1
1+P (x1

1,2) ≤ 0 and P ′(x2
1)x

2
1+P (x2

1,2) ≤ 0

where (s1
g,g, s

2
g,g) is the intersection of g2(s

1
2) and g2(s

2
2), and solves the system







P ′(s1
g,g + s2

g,g)s
1
g,g + P (s1

g,g + s2
g,g,2) = 0

P ′(s1
g,g + s2

g,g)s
2
g,g + P (s1

g,g + s2
g,g,2) = 0

Note that the quantities sold in equilibrium are not a functional form of the in-

ventories, but are only a function of the market demand. The dependance to the
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inventories comes from the region of the plan (x1
1, x

2
1) in which this equilibrium is

valid.

Consider now the case P ′(x1
1)x

1
1 + P (x1

1,2) ≤ 0, P ′(x2
1)x

2
1 + P (x2

1,2) > 0 and

P ′(x2
1)x

2
1+P (x2

1,2)−C ′(0) ≤ 0. The equilibrium will be either (s1
g,g, s

2
g,g) or (s1

g,x, x
2
1),

depending on the inventories of both firms. Indeed if x2
1 is such that the marginal

revenue of selling the entire inventories while the opponent reacts according to g2(s
j
2)

is negative, then firm 2 will reduce its sales: if P ′(g2(x
2
1) + x2

1)x
2
1 + P (g2(x

2
1) +

x2
1,2) ≤ 0 the equilibrium is (s1

g,g, s
2
g,g). On the other hand if P ′(g2(x

2
1) + x2

1)x
2
1 +

P (g2(x
2
1) + x2

1,2) > 0, firm 2 could still realize a positive profit by selling more than

its inventories, but since it has to produce again, it suffers an extra cost. We are

considering the case where P ′(x2
1)x

2
1 + P (x2

1,2) − C ′(0) ≤ 0, therefore the marginal

benefit of producing again is negative when firm 1 is selling g2(x
2
1). Firm 2 will stick

to sell x2
1 and firm 1 will react using g2(x

2
1). To summarize

(s1
2(x

1
2, x

2
2), s

2
2(x

1
2, x

2
2)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(s1
g,g, s

2
g,g) if P ′(x1

1)x
1
1 + P (x1

1,2) ≤ 0

and P ′(g(x2
1) + x2

1)x
2
1 + P (g(x2

1) + x2
1,2) ≤ 0

(s1
g,x, x

2
1) if P ′(x1

1)x
1
1 + P (x1

1,2) ≤ 0

and P ′(g(x2
1) + x2

1)x
2
1 + P (g(x2

1) + x2
1,2) > 0

where (s1
g,x, x

2
1) solves P ′(s1

g,x +x2
1)s

1
g,x +P (s1

g,x +x2
1,2) = 0. Note that the condition

P ′(g(x2
1) + x2

1)x
2
1 + P (g(x2

1) + x2
1,2) ≤ 0 is equivalent to x2

1 ≥ g2(g
1
2(x

2
1)). We may

establish the symmetric case

(s1
2(x

1
2, x

2
2), s

2
2(x

1
2, x

2
2)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(s1
g,g, s

2
g,g) if P ′(x1

1 + g2(x
1
1))x

1
1 + P (x1

1 + g2(x
1
1),2) ≤ 0

and P ′(x2
1)x

2
1 + P (x2

1,2) ≤ 0

(x1
1, s

2
x,g) if P ′(x1

1 + g2(x
1
1))x

1
1 + P (x1

1 + g2(x
1
1),2) > 0

and P ′(x2
1)x

2
1 + P (x2

1,2) ≤ 0

where (x1
1, s

2
x,g) solves P ′(x1

1 + s2
x,g)s

2
x,g + P (x1

1 + s2
x,g,2) = 0.

In the case P ′(x1
1)x

1
1 +P (x1

1,2) ≤ 0, P ′(x2
1)x

2
1 +P (x2

1,2)−C ′(0) > 0, 3 equilibria

may appear. Again if P ′(g2(x
2
1)+x2

1)x
2
1 +P (g2(x

2
1)+x2

1,2) ≤ 0, firm 2 will reduce its

sales and the equilibrium will be (s1
g,g, s

2
g,g). If P ′(g2(x

2
1)+x2

1)x
2
1+P (g2(x

2
1)+x2

1,2) >

0, the equilibrium will be either (s1
g,x, x

2
1) or (s1

g,f , s
2
g,f ), depending on the sign of

28



P ′(g2(x
2
1) + x2

1)x
2
1 + P (g2(x

2
1) + x2

1,2) − C ′(0). First remark that if

P ′(g2(x
2
1) + x2

1)x
2
1 + P (g2(x

2
1) + x2

1,2) − C ′(0) < 0

x2
1 = 0

then the expression will always be negative for any x2
1 since it is decreasing with x2

1:

indeed the derivative with respect to x2
1 is

(1 +
dg2

dx2
1

)P ′′(·)x2
1 + P ′(·) + (1 +

dg2

dx2
1

)P ′(·)

which is negative under our assumptions. The condition above reduces to P (g2(0),2)−

C ′(0) < 0, where g2(0) solves P ′(g2(0))g2(0) + P (g2(0),2) = 0. Since they are iden-

tical, this condition is valid for both firms simultaneously. Therefore we have to

distinguish two cases: either P (g2(0),2) − C ′(0) < 0, in which case g2(s
i
2) and

f
j
2 (si

2, x
i
1) cannot have an intersection, and P (g2(0),2) − C ′(0) ≥ 0, in which case

g2(s
i
2) and f

j
2 (si

2, x
i
1) may have an intersection for some pair of inventories. Before

detailing the equilibria, let us first interpret the condition. P (g2(0),2) − C ′(0) < 0

states that when the opponent is selling from his inventories, there is no point in

producing to put him with redundant inventories, since even if he behaves as a mo-

nopolist, the price falls below the marginal cost C ′(0). It does not imply however

that firms are not able to sell anything: indeed P2(f
i
2(0, 0)) is still higher than C ′(0).

When P (g2(0),2) − C ′(0) < 0, only two equilibria may appear: (s1
g,g, s

2
g,g) or

(s1
g,x, x

2
1), with the same conditions than before. When P (g2(0),2) − C ′(0) ≥ 0,

(s1
g,f , s

2
g,f ) may appear if x2

1 > f 2
2 (g2(x

2
1), x

2
1), which is equivalent to P ′(g2(x

2
1) +

x2
1)x

2
1 + P (g2(x

2
1) + x2

1,2) − C ′(0) > 0. To summarize, if the parameters are such

that P (g2(0),2) − C ′(0) ≥ 0, then

(s1
2(x

1
2, x

2
2), s

2
2(x

1
2, x

2
2)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(s1
g,g, s

2
g,g) if P ′(x1

1)x
1
1 + P (x1

1,2) ≤ 0

and P ′(g(x2
1) + x2

1)x
2
1 + P (g(x2

1) + x2
1,2) ≤ 0

(s1
g,x, x

2
1) if P ′(x1

1)x
1
1 + P (x1

1,2) ≤ 0,

P ′(g(x2
1) + x2

1)x
2
1 + P (g(x2

1) + x2
1,2) > 0

and P ′(g(x2
1) + x2

1)x
2
1 + P (g(x2

1) + x2
1,2) − C ′(0) ≤ 0

(s1
g,f , s

2
g,f ) if P ′(x1

1)x
1
1 + P (x1

1,2) ≤ 0

and P ′(g(x2
1) + x2

1)x
2
1 + P (g(x2

1) + x2
1,2) − C ′(0) > 0

The symmetric case P ′(x1
1)x

1
1 + P (x1

1,2) − C ′(0) > 0, P ′(x2
1)x

2
1 + P (x2

1,2) ≤ 0 may

be established immediately.
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In the case P ′(x1
1)x

1
1+P (x1

1,2) > 0, P ′(x1
1)x

1
1+P (x1

1)−C ′(0) ≤ 0, and P ′(x2
1)x

2
1+

P (x2
1,2) > 0, P ′(x2

1)x
2
1+P (x2

1,2)−C ′(0) ≤ 0, both reaction functions have two parts.

As soon as xi
1 < si

g,g for any agent, (s1
g,g, s

2
g,g) cannot be an equilibrium anymore.

Therefore (s1
g,g, s

2
g,g) is an equilibrium if x1

1 > s1
g,g and x1

1 > s1
g,g. Consider now that

x1
1 < s1

g,g. Then the equilibrium will be either (x1
1, g2(x

1
1)) or (x1

1, x
2
1). Obviously

(x1
1, g2(x

1
1)) is an equilibrium if the marginal revenue of selling the entire inventories

of firm 2 is negative, i.e. P ′(x1
1+x2

1)x
2
1+P (x1

1+x2
1,2) ≤ 0, equivalent to g2(x

1
1) < x2

1.

On the contrary, if P ′(x1
1 + x2

1)x
2
1 + P (x1

1 + x2
1,2) > 0 and knowing that producing

anything to be sold in addition of the inventories leads to a negative marginal profit,

firm 2 will sell exactly its inventories. To summarize,

(s1
2(x

1
2, x

2
2), s

2
2(x

1
2, x

2
2)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(s1
g,g, s

2
g,g) if x1

1 > s1
g,g, x2

1 > s2
g,g

(s1
g,x, x

2
1) if P ′(x1

1 + x2
1)x

1
1 + P (x1

1 + x2
1,2) ≤ 0,

and x2
1 ≤ s2

g,g

(x1
1, s

2
x,g) if x1

1 ≤ s1
g,g

and P ′(x2
1 + x2

1)x
2
1 + P (x2

1 + x2
1,2) ≤ 0

(x1
1, x

2
1) if P ′(x2

1 + x2
1)x

1
1 + P (x2

1 + x2
1,2) ≤ 0

and P ′(x2
1 + x2

1)x
2
1 + P (x2

1 + x2
1,2) ≤ 0

In the case where P ′(x1
1)x

1
1 + P (x1

1,2) > 0, P ′(x1
1)x

1
1 + P (x1

1) − C ′(0) ≤ 0, and

P ′(x2
1)x

2
1 + P (x2

1,2) − C ′(0) > 0, we have again to consider two cases separately.

First if P (g2(0),2) − C ′(0) < 0, g2(s
2
2) and f 2

2 (s1
2, x

2
1) will never cross. In addition

to the equilibria described before, (x1
1, s

2
x,f ) may also appear. Let us investigate the

conditions needed. If x1
1 > s1

g,g and x2
1 > s2

g,g then again the equilibrium is (s1
g,g, s

2
g,g).

If x1
1 < s1

g,g then 3 cases arise. If P ′(x2
1 + x2

1)x
2
1 + P (x2

1 + x2
1,2) ≤ 0 then firm

2 will not sell the whole inventories and the equilibrium is (x1
1, s

2
x,g). If P ′(x2

1 +

x2
1)x

2
1 + P (x2

1 + x2
1,2) > 0 and P ′(x2

1 + x2
1)x

2
1 + P (x2

1 + x2
1,2) − C ′(0) < 0, firm

2 will stick to sell exactly its inventories: the equilibrium is (x1
1, x

2
1). Finally if

P ′(x2
1 + x2

1)x
2
1 + P (x2

1 + x2
1,2) − C ′(0) ≥ 0, firm 2 finds profitable to produce again

and the equilibrium is (x1
1, s

2
x,f ).

If x1
1 ≥ s1

g,g and x2
1 < s2

g,g then the equilibrium is (s1
g,x, x

2
1) if P ′(x2

1 + x2
1)x

1
1 +

P (x2
1 + x2

1,2) ≤ 0, (x1
1, x

2
1) if P ′(x2

1 + x2
1)x

1
1 + P (x2

1 + x2
1,2) > 0 and P ′(x2

1 + x2
1)x

1
1 +

P (x2
1 +x2

1,2)−C ′(0) ≤ 0, and (x1
1, s

2
x,f ) if P ′(x2

1 +x2
1)x

1
1 +P (x2

1 +x2
1,2)−C ′(0) > 0.

Finally if x1
1 < s1

g,g and x2
1 < s2

g,g, the equilibrium is (x1
1, x

2
1) if P ′(x2

1 + x2
1)x

2
1 +

P (x2
1 +x2

1,2)−C ′(0) ≤ 0, and (x1
1, s

2
x,f ) if P ′(x2

1 +x2
1)x

2
1 +P (x2

1 +x2
1,2)−C ′(0) > 0.
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Second if P (g2(0),2) − C ′(0) ≥ 0, g2(s
2
2) and f 2

2 (s1
2, x

2
1) have an intersection.

Again, the equilibrium is the same than in the first case when {x1
1 ≥ s1

g,g, x
2
1 ≥ s2

g,g},

when {x1
1 < s1

g,g, x
2
1 ≥ s2

g,g}, and when {x1
1 < s1

g,g, x
2
1 < s2

g,g}. The difference appears

when {x1
1 ≥ s1

g,g, x
2
1 < s2

g,g}. Indeed if x1
1 ≥ s1

g,g and x2
1 < s2

g,g then the equilibrium is

(s1
g,x, x

2
1) if P ′(x2

1+x2
1)x

1
1+P (x2

1+x2
1,2) ≤ 0, (x1

1, x
2
1) if P ′(x2

1+x2
1)x

1
1+P (x2

1+x2
1,2) >

0, (x1
1, s

2
x,f ) if P ′(x2

1 + x2
1)x

2
1 + P (x2

1 + x2
1,2) − c′(0) > 0, and (s1

g,f , s
2
g,f ) if.

Let us consider the last case, P ′(x1
1)x

1
1 + P (x1

1,2) − C ′(0) > 0 and P ′(x2
1)x

2
1 +

P (x2
1,2) − C ′(0) > 0, where again we have to distinguish P (g2(0),2) − C ′(0) < 0

from P (g2(0),2) − C ′(0) ≥ 0.

When P (g2(0),2)−C ′(0) < 0, g2(s
i
2) and f

j
2 (si

2, x
i
1) do not cross. Therefore there

will be 7 possible equilibria depending on the pair of inventories. In addition to the

equilibria described before, (s1
f,f , s

2
f,f ), (s1

f,x, x
2
1), (x1

1, s
2
x,f ) are possible equilibria.

If simultaneously P ′(x1
1 + f 2

2 (x1
1, x

2
1))x

1
1 + P (x1

1 + f 2
2 (x1

1, x
2
1),2) − C ′(0) > 0 and

P ′(f 1
2 (x2

1, x
1
1) + x2

1)x
2
1 + P (f 1

2 (x2
1, x

1
1) + x2

1,2) − C ′(0) > 0 then both firms will find

profitable to increase their sales. They will sell up to (s1
f,f , s

2
f,f ). Note that the

condition is equivalent to x1
1 < s1

f,f and x2
1 < s2

f,f , since the pair (s1
f,f , s

2
f,f ) is the

unique intersection of f 1
2 (s2

2, x
1
1) and f 2

2 (s1
2, x

2
1).

If P ′(x1
1+f 2

2 (x1
1, x

2
1))x

1
1+P (x1

1+f 2
2 (x1

1, x
2
1),2)−C ′(0) ≤ 0 and P ′(x1

1+f 2
2 (x1

1, x
2
1))x

1
1+

P (x1
1 + f 2

2 (x1
1, x

2
1),2) > 0, then firm 1 will find profitable to sell exactly its invento-

ries. Depending on firm 2, the equilibrium will be either (x1
1, s

2
x,f ) if P ′(x1

1 +x2
1)x

2
1 +

P (x1
1 + x2

1,2) − C ′(0) > 0 or (x1
1, x

2
1) if P ′(x1

1 + x2
1)x

2
1 + P (x1

1 + x2
1,2) − C ′(0) ≤ 0

and P ′(x1
1 + x2

1)x
2
1 + P (x1

1 + x2
1,2) > 0. This condition is equivalent to x2

1 < s2
x,f .

When P (g2(0),2) − C ′(0) > 0, g2(s
i
2) and f

j
2 (si

2, x
i
1) do cross. Therefore there

will be 9 possible equilibria depending on the pair of inventories, the 7 described

before, (s1
f,g, s

2
f,g) and (s1

g,f , s
2
g,f ). They arise when one firm does not find profitable

to sell exactly its inventories any more when its opponent increases its sales. Indeed

if P ′(x1
1+f 2

2 (x1
1, x

2
1))x

1
1+P (x1

1+f 2
2 (x1

1, x
2
1),2) < 0 and P ′(g2(x

2
1)+x2

1)x
2
1+P (g2(x

2
1)+

x2
1,2)−C ′(0) > 0, firm 2 will place firm 1 with redundant inventories by increasing

its sales. The equilibrium in that case is (s1
g,f , s

2
g,f ). Note that the conditions are

equivalent to x1
1 > s1

g,f and x2
1 < s2

g,f .
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C. FOR REFEREES ONLY - Proof of proposition 1

Since producing is costly, we may rule out from the set of best responses (and

consequently from the set of plausible equilibria) the pair of inventories such that at

least one firm sells less than its inventories (regions R1, R2, R3, R8 and R9): no firm

deviates unilaterally to these regions. Firms never choose simultaneously to store

and sell exactly their inventories (region R4). Indeed the second period profit in that

case is equal to the total revenue of selling (x1
1, x

2
1), i.e. δ P (x1

1 +x2
1,2) xi

1 −H(xi
1)−

C(si
1 + xi

1). In first period, the optimization of the total profit induces a choice xi
1

solution of δ(P ′(x1
1 +x2

1)x
i
1 +P (x1

1 +x2
1,2))−H ′(xi

1)−C ′(si
1 +xi

1) = 0 for any given

si
1, which is strictly lower than the frontier of this region, P ′(x1

1 + x2
1) xi

1 + P (x1
1 +

x2
1,2) − C ′(0) = 0. Therefore the profit in this region is strictly higher on the lower

frontier {x1
1 = s1

f,x, x
2
1 = s2

x,f} than everywhere else inside the region. Consequently

we may rule out regions R4 from the set of plausible equilibria.

D. FOR REFEREES ONLY - Proofs of lemmas 2 and 3

When firm 1 sells more than her inventories and firm 2 sells exactly her inventories

(regions R5 in lemma 1 and R7 in lemma ??), the marginal effect on second period

sales of firm 1 are

∂s1
f,x

∂x1
1

= −
C ′′(s1

f,x − x1
1)

P ′′(s1
f,x + x2

1) s1
f,x + 2P ′(s1

f,x + x2
1) − C ′′(s1

f,x − x1
1)

> 0

and
∂s1

f,x

∂x2
1

= −
P ′′(s1

f,x + x2
1) s1

f,x + P ′(s1
f,x + x2

1)

P ′′(s1
f,x + x2

1) s1
f,x + 2P ′(s1

f,x + x2
1) − C ′′(s1

f,x − x1
1)

< 0

The symmetric effects are valid when firm 2 sells more than its inventories and firm

1 sells exactly its inventories (regions R6 in lemma 1 and R8 in lemma ??.) The

effect of an increase of period 1 inventories of firm 1 on its own equilibrium second

period sales may be interpreted as follows. When keeping part of its production in

inventories, firm 1 splits the cost of producing s1
f,x between two periods. Since its

cost of production is convex, producing in two periods instead of one reduces the

marginal cost tomorrow and allows a Cournot competitor to be more aggressive on

the market15. This ”cost smoothing” turns however to be strategic, contrary to what

it would be in perfect competition. The second equation shows that an increase in

15To say it differently, it allows to replicate the production tool.
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the sales of the opponent decreases firm i sales: crucially, this effect does not rely

on the convexity of the cost function but on the ”commitment effect” allowed by

inventories. If we allow for the second order derivative of the cost function to be

equal to 0, increasing its own inventories has no effect on firm 1 second period sales,

but an increase in firm 2’s inventories reduces firm 1 sales.

When both firms sell strictly more than their inventories (regions R7 in lemma

1 and R9 in lemma ??), the effect of an increase in firm i and firm j inventories on

firm i sales are given by

∂si
f,f

∂xi
1

= −
C ′′(si

f,f − xi
1) (P ′′(s1

f,f + s2
f,f )s

j
f,f + 2P ′(s1

f,f + s2
f,f ) − C ′′(sj

f,f − x
j
1))

∆
> 0

and
∂si

f,f

∂x
j
1

=
C ′′(sj

f,f − x
j
1)(P

′′(s1
f,f + s2

f,f )s
i
f,f + P ′(s1

f,f + s2
f,f ))

∆
< 0

where

∆ = P ′P ′′(s1
f,f +s2

f,f )−P ′′s1
f,fC

′′

2 +3(P ′)2−2P ′C ′′

2 −P ′′s2
f,fC

′′

1 −2P ′C ′′

1 +C ′′

1 C ′′

2 > 0,

with P ′ = P ′(s1
f,f + s2

f,f ), P ′′ = P ′′(s1
f,f + s2

f,f ), and C ′′

i = C ′′(si
f,f − xi

1)

When their inventories allow them to produce again in second period, both firms

use it to benefit from a ”cost smoothing” effect. The effect of inventories on their

sales is again directly proportional to the convexity of the cost function, and disap-

pear when C ′′(q) is always nil. Increasing its inventories allows one firm to increase

its sales, and on the other hand an increase in its opponent’s inventories reduces its

sales. The integration of those effects into the second period profit to measure the

marginal effect of inventories is straightforward.

E. FOR REFEREES ONLY - Proof of theorem 1

Under the assumption that the cost of production is linear, the two first order

conditions defined in J i can be treated separately for the two players. The first

period equilibrium is obviously symmetric regarding sales, but can be asymmetric

regarding production. (s1∗
1 , s2∗

1 ) satisfy






P ′(s1∗
1 + s2∗

1 ) s1∗
1 + P (s1∗

1 + s2∗
1 ,1) − c = 0

P ′(s1∗
1 + s2∗

1 ) s2∗
1 + P (s1∗

1 + s2∗
1 ,1) − c = 0
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and this system leads obviously to a unique pure strategy Nash equilibrium under

our assumptions on the inverse demand. In fact we do not need P ′′(Q) constant to

characterize this equilibrium. If we are able to determine that it exists an equilibrium

(x1∗
1 , x2∗

1 ) then first period production will be equal to (q1∗
1 , q2∗

1 ) = (x1∗
1 +s1∗

1 , x2∗
1 +s2∗

1 ),

a unique pair of second period sales resulting from this choice of inventories as stated

in lemmas 1 and ??. Consider the first order condition leading to the choice of xi
1,

−c − H ′(xi
1) + δ

∂Πi
2

∂xi
1

(x1
1, x

2
1) = 0 (E.1)

We have to insure first that it defines a unique choice xi
1 for each x

j
1 and moreover

we need to verify that the best response function in each region is downward sloping

to be able to use the fact that downward jumps will lead to a pure strategy Nash

equilibrium16. Therefore we have to verify that the objective function is concave

with respect to xi
1 in each region, i.e. verify (19). Consider for example firm 1

(this reasoning can be applied symmetrically to firm 2). First, the expression of the

profits on regions R5 and R7 obviously satisfy (19): on R5,
∂Πi

2

∂xi
1

= c constant and

therefore the second order effect is equal to 0, and on R7,
∂Πi

2

∂xi
1

= 0 since this region

appears only because of the convexity of the cost of production. It remains to check

that we have the property on region R6. We have to compute the second order effect

of inventories in that case. Since

∂Π1
2

∂x1
1

= (1 +
∂s2

x,f

∂x1
1

) P ′(x1
1 + s2

x,f ) x1
1 + P (x1

1 + s2
x,f ,2)

we have after simplifications

∂2Π1
2

∂(x1
1)

2
=

∂2s2
x,f

∂(x1
1)

2
P ′(x1

1 + s2
x,f ) x1

1 + (1 +
∂s2

x,f

∂x1
1

) [(1 +
∂s2

x,f

∂x1
1

) P ′′ x1
1 + 2P ′(x1

1 + s2
x,f )]

where
∂s2

x,f

∂x1
1

= −
P ′′ s2

x,f + P ′(x1
1 + s2

x,f )

P ′′ s2
x,f + 2P ′(x1

1 + s2
x,f )

and consequently after another round of simplifications

∂2s2
x,f

∂(x1
1)

2
= −[P ′′ s2

x,f + 2P ′(x1
1 + s2

x,f )]
−2

×P ′′ [
∂s2

x,f

∂x1
1

P ′(x1
1 + s2

x,f ) − P ′′ s2
x,f (1 +

∂s2
x,f

∂x1
1

)]

16See for example Tirole [1988] for a discussion of the existence of a pure strategy Nash equilib-

rium in Cournot games.

34



Since (1 +
∂s2

x,f

∂x1
1

) > 0, it follows immediately that when demand is linear (P ′′ = 0),

the second order effect of inventories on profits is negative. We have obviously the

property needed. Let us check that it is also true for P ′′ < 0. We have

1 +
∂s2

x,f

∂x1
1

=
P ′(x1

1 + s2
x,f )

P ′′ s2
x,f + 2P ′(x1

1 + s2
x,f )

therefore

∂2Π1
2

∂(x1
1)

2
= [P ′′ s2

x,f + 2P ′(x1
1 + s2

x,f )]
−2

×{−P ′′ [
∂s2

x,f

∂x1
1

P ′(x1
1 + s2

x,f ) − P ′′ s2
x,f (1 +

∂s2
x,f

∂x1
1

)]P ′(x1
1 + s2

x,f )x
1
1

+(P ′(x1
1 + s2

x,f ))
2P ′′x1

1 + 2(P ′(x1
1 + s2

x,f ))
2(P ′′ s2

x,f + 2P ′(x1
1 + s2

x,f ))}

= [P ′′ s2
x,f + 2P ′(x1

1 + s2
x,f )]

−3

×{−[−(P ′′ s2
x,f + P ′)P ′ − P ′′P ′s2

x,f ]P
′′P ′x1

1

+(P ′′ s2
x,f + 2P ′)(P ′)2P ′′x1

1 + 2(P ′)2(P ′′s2
x,f + 2P ′)2}

The sign of this last expression turns to be always negative. Indeed the first part

between square brackets is a negative expression power 3, therefore negative, and the

expression between brackets is the sum of 3 positive expressions, therefore positive.

Consequently the program on region R6 is indeed concave. The implicit function

theorem applied to the first order condition (E.2) gives the slope of the best response

function x1
1(x

2
1) in that region,

dx1
1

dx2
1

= −
δ

∂2Π1
2

∂x1
1∂x2

1

−H ′′(x1
1) + δ

∂2Π1
2

∂(x1
1)

2

When the cost is linear, the cross effect of inventories simplifies to give

∂2Π1
2

∂x1
1∂x2

1

=
∂2s2

x,f

∂x1
1∂x2

1

P ′x1
1

which turns to be equal to zero. The maximum of firms profit is therefore unique

in the region where one firm act as a leader, and depends of the cost of storage,

the discount factor and the demand function. Therefore firms reaction functions are

non increasing. Let us show now that they are downward jumping.

Since it is costly to store (remember that H is the cost of storage) and to pro-

duce before selling due to the discount factor (the discounted cost of production is
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(1 + δ)C(x) in second period), and since a firm cannot modify the behaviour of an

opponent acting as a leader when its cost is linear, the best choice when facing a

leader is to store nothing. Therefore whenever a firm finds profitable to produce and

store a leader quantity to be released in second period there will be an asymmetric

pure strategy Nash equilibrium (in fact two, since the roles of the two firms can be

permuted). If the leader does not find profitable to exert its leadership, then both

firms will not store at all. The pure strategy Nash equilibrium is symmetric and

firms do not store. The payoffs functions are therefore non concave in the graph

(x1
1, x

2
1), with a peak at xi

1 = 0 in region R7 and a peak given by equation(E.2) for

x
j
1 = 0 in regions R5 or R6. The comparisons of the profits obtained when storing

nothing and storing xL
1 solution of

−c − H ′(xL
1 ) + δ

∂Πi
2

∂xi
1

(xL
1 , 0) = 0 (E.2)

determines the nature of the equilibrium and is the straightforward goal of proposi-

tions 1 and 2.
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