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1 Introduction

The equations that researchers want to estimate often describe relations in
which some independent variables are endogenous. In linear models esti-
mated with least squares methods, the usual response to such a situation is
to replace the endogenous regressors with predictions using ancillary equa-
tions based on other exogenous variables and to modify the formula of the
asymptotic covariance matrix of estimates. The most famous method is the
two-stage least squares estimator of which conditions for consistency and
asymptotic normality are known.1 In more complex nonlinear models, other
interesting two-stage estimators relying on a first step of predictions for en-
dogenous explanatory variables (sometimes describing selection processes)
have been developed and the conditions for their asymptotic properties have
been clarified.2

There are many situations where the ancillary first-stage regressions,
used for predicting the endogenous regressors, may be asymptotically bi-
ased: missing variables, invalid instrumental variables, model misspecifica-
tion, faulty estimation methods, etc. Many of these estimation methods
rely on semi-parametric restrictions for the first-stage equations. In general
nothing guarantees that such restrictions are rigourously satisfied. Often
when there is an intercept term in the model, one may hope that if the
imposed semi-parametric restrictions are not satisfied (e.g., that the error
term has non-zero mean), this may only affect the consistency of the inter-
cept estimator in the first-stage equation.

However, it is generally the second stage of the estimation that includes
the results of interest for applied researchers. When the first stage estima-
tion method is asymptotically biased, how the bias is transmitted to the
second stage of the estimation is unclear in realistic settings with random
and endogenous regressors and non iid errors. In this paper, we investigate
the channel of this bias transmission by eliciting the algebraic structure of
the asymptotic representation of the two-stage estimator. Notably, we show
that an asymptotic bias on the intercept of the first-stage estimation is ex-
clusively and integrally conveyed to the intercept in the second stage of the
estimation.

This state of affairs has several interesting consequences. First, the
choice of the first-stage and second-stage estimation methods matters if one
worries about generation of asymptotic biases, even if only on the intercept
coefficient. We will show that there are cases where the semi-parametric re-
strictions imposed on the two stages may lead to contradictions that result
in the occurrence of an asymptotic bias for the two-stage estimator.

Second, we shall show that the estimator of the intercept coefficient in the

1Malinvaud (1970), Amemiya (1985).
2Heckman (1976), Newey (1985), Pagan (1986), Newey (1989), Newey (1994).
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second stage may be inconsistent, but the estimators of the slope coefficients
will be consistent in plausible cases, which may be all that interest the
applied researcher. However, even in that case there are still precautions
to take for inference. Indeed, the inconsistent intercept estimator is present
in the residual. Then, usual ‘plug-in’ methods employed for estimating the
covariance matrix of the parameters by replacing error terms in the formula
of this matrix by residuals may yield inconsistent estimators. One solution
to this issue is to correct the estimator of this covariance matrix to account
for the bias on the intercept. This is generally easy to do, as soon as the
applied researcher is aware of the problem.

Finally, we emphasize that the result of the integral transmission of the
bias on the first-stage intercept to the second-stage intercept is valid in very
general settings, with random endogenous regressors and non independent
and non identically distributed errors. To the best of our knowledge, such
property has only been noticed, except under very restrictive setting. In
particular, we shall show that the traditional approach of analysing the bias
on the intercept for quantile regressions does not provide any insight for
general settings.

Our main example is that of two-stage quantile regressions of the linear
model. Focusing on quantile regressions has several advantages. First, it
enables us to limit our attention to a popular estimation method, rather than
losing ourselves into vague generalities. Second, we provide the complete
inference package for two-stage quantile regression, which was not available
before.

Quantile regression and least absolute deviations estimators have re-
cently become very popular estimation methods. Quantile regressions have
been used for studying wages and living standards3, firm data4, financial
data5, and longitudinal data.6 They are often chosen for two kinds of prop-
erties. Firstly, they provide robust estimates, particularly for misspecifica-
tion errors related to non-normality, but also for the presence of outliers.
Secondly, they allow the researcher to concentrate her attention on specific
parts of the conditional distribution of the dependent variable.

The theoretical literature on quantile regression and LAD estimators
is extensive since the seminal paper by Koenker and Bassett (1978). The
asymptotic behaviour of these estimators has been extensively studied.7 A
few extensions exist for two-stage estimators. Amemiya (1982) and Pow-
ell (1983) have treated the case of the two-stage least absolute deviations
(2SLAD). Chen and Portnoy (1996) study two-stage quantile regressions

3Buchinsky (1995, 98), Jalan and Ravallion (1998), Machado and Mata (2001).
4Mata and Machado (1996).
5Engle and Manganelli (1999), Granger and Sin (2000).
6Lipsitz et al. (1997).
7Koenker and Bassett (1978, 82), Bassett and Koenker (1978, 86), Powell (1983),

Weiss (1990), Phillips (1991), Pollard (1991).
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where the first-stage estimators are trimmed least squares estimators and
LAD estimators, although only under assumption of symmetric iid error
distributions. However, up to now, no general study of two-stage quan-
tile regression estimators is available for general first-stage estimators, and
general assumptions on error terms and regressors.

Although it does not correspond to our simple two-stage approach, the
possibility of dealing with endogeneity problems in quantile regressions has
already been examined in the literature. Least-absolute-error-difference es-
timators for a single equation from a simultaneous equation model have
been studied by Kemp (1999) and Sakata (2001). A quantile treatment ef-
fects estimator has been proposed by Abadie, Angrist and Imbens (2002) by
solving a convex programming problem with a preliminary non-parametric
estimation of a nuisance function. MaCurdy and Timmins (2000) use an es-
timator for ARMA models and quantile regressions. Kim and Muller (2003)
deal with the case where the same quantile regression method is employed
for the two stages, in the iid case, and thereby avoid the bias transmission
issue.

In this paper, we study the asymptotic and small sample properties of
general two-stage linear regression estimators. Moreover, we offer specific
contributions for two-stage quantile regressions. Firstly, we generalise the
2SLAD results to estimators that enables one to focus on different parts of
the conditional distribution of the dependent variable. Secondly, we provide
results with random exogenous variables and dependent and non identically
distributed error terms. Thirdly, we clarify the link between the assumptions
for first-stage and second-stage errors. In particular, we deal with biases in
the first stage of this estimation. This is all the more important that the
case without bias corresponds to restrictive conditions on error terms when
considering arbitrary quantiles. Usual renormalisations of the intercept are
generally not sufficient to eliminate the bias. Fourthly, we conduct Monte
Carlo simulations that provide insight on small sample properties and illus-
trate the role of different parameters of the problem.

Section 2 discusses the model and the assumptions. In Section 3, we
derive the asymptotic representation of the two-stage quantile regression
estimators. We discuss the asymptotic bias for general two-stage estimators
in Section 4. We analyse in Section 5 the asymptotic normality and the
asymptotic covariance matrix of two-stage quantile regression based on LS
predictions. We present simulation results in Section 6. Finally, Section 7
concludes. All proofs are in Appendix A.
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2 The Model

We are interested in the parameter (α0) in an equation that is given in the
following matrix form for a sample of T observations:

y = X1β0 + Y γ0 + u (1)

= Zα0 + u

where [y, Y ] is a T × (G+ 1) matrix of endogenous variables, X1 is T ×K1
matrix of exogenous variables, Z = [X1, Y ], α

0
0 = [β

0
0, γ

0
0], and u is a T × 1

vector. We denote by X2 the matrix of K2(= K −K1) exogenous variables
absent from (1). Let us assume that Y can be predicted from the set of
exogenous variables:

Y = XΠ0 + V (2)

where X = [X1,X2] is a T ×K matrix, Π0 is a K ×G matrix of unknown
parameters and V is a T × G matrix of unknown error terms. We assume
that the first column of X1 is a vector of 1’s. Using (1) and (2), y can also
be expressed from the exogenous variables:

y = Xπ0 + v (3)

where π0 =

·µ
IK1

0

¶
,Π0

¸
α0 = H(Π0)α0 and by definition v = u + V γ0.

Equations (2) and (3) are the basis of the first-stage estimation that yields
some estimators π̂, Π̂ respectively of π0, Π0. We now specify the data
generating process.

Assumption 1 The sequence {(x0t, ut, vt)} is strong mixing with mixing
numbers {α(s)} of size − (2K + 1) (K + 1). Here, xt, ut and vt are the t

th

elements in X, u and v respectively.8

Studying quantile regressions with dependent processes is unusual, al-
though some interesting results are in Weiss (1990). As we mentioned before,
the asymptotic properties of the two-stage estimator can be of interest when
the first-stage estimators π̂ and Π̂ are asymptotically biased. This situation
arises for example when the LS estimation method is used in the first stage

8The sequence {Wt} of random variables is strong mixing if α(s) decreases towards 0
as s→∞, where

α(s) = sup
t

sup
A∈F t−∞;B∈F∞t+s

|P (A ∩B)− P (A)P (B)|

for s ≥ 1 and where F ts denote the σ-field generated by (Ws, . . . ,Wt) for −∞ ≤ s ≤ t ≤ ∞.
The sequence is called strong mixing of size −a if α(s) = O(s−a−ε) for some ε > 0.
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and the quantile regression method is used in the second stage. Considering
asymptotically biased first-stage estimators is interesting on two grounds.
First, the first-stage estimates are sensitive to various misspecifications and
estimation difficulties that may generate asymptotic biases. Second, when
no intercept term is present in the first-stage equation, the usual normalisa-
tion approach is not possible and asymptotic biases may occur as we shall
show later on. To be able to account for inconsistent first-stage estimation,
we use the following assumption.

Assumption 2 There exist kBπk <∞ and kBΠk <∞ such that T 1/2(π̂−
π0 −Bπ) = Op(1) and T

1/2(Π̂−Π0 −BΠ) = Op(1), where kak = (a0a)1/2.

The bias terms Bπ and BΠ may not be bounded under fat-tailed error dis-
tributions if OLS is used in the first stage. Therefore, imposing Assumption
2 excludes some error distributions.

We now turn to the optimisation program from which the two-stage es-
timator is calculated. To save on space, we explicitly develop only the case
of the Two-Stage Quantile Regression, while the generalisation to general
two-stage M-estimators is obvious. Following the literature on quantile re-
gressions, we define ρθ : R → R+ for a given θ ∈ (0, 1) as ρθ(z) = zψθ(z),
where ψθ(z) = θ − 1[z≤0] and 1[.] is the Kronecker index.

The motivation for the two stage approach is to deal with an endogene-

ity problem. If the first-order conditions,
TP
t=1
Ztψθ(yt − Z 0tα) = op(1), were

satisfied, then the one-stage quantile regression estimator would be con-
sistent. However, when u and Y are correlated, which occurs under the
non-separability in parameters of the joint density due to the endogeneity
of Y , these first-order conditions are not satisfied. Therefore, the first-stage
quantile regression estimator of α0 is generally not consistent.

As a natural extension of Amemiya (1982) and Powell (1983), we define
the Two-Stage Quantile Regression (2SQR(θ, q)) estimator α̂ of α0 as a
solution to the following programme.

min
α

ST (α, π̂, Π̂, q, θ) =
TX
t=1

ρθ(qyt + (1− q)x0tπ̂ − x0tH(Π̂)α) (4)

where yt is the t
th elements in y and q is a non-zero constant. The reformu-

lation of the dependent variable as qyt + (1− q)x0tπ̂ has been introduced by
Amemiya to improve efficiency by choosing parameter q.

In the next section, we discuss the asymptotic representation of the
2SQR(θ, q). We shall show that the following conditions are sufficient for
the asymptotic representation.

Assumption 3 (i) H(Π0) is of full column rank.
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(ii) Let ft(λ|x) = ∂
∂λFt(λ|x) be the conditional pdf and Ft(λ|x) be the con-

ditional cdf of vt. It is assumed that ft(·|x) is Lipschitz continuous for all
x, strictly positive, and bounded; that is, there exists a constant f0 such that
0 < ft(·|x) < f0 for all x.
(iii) The matrices Q = lim

T→∞
E

·
1
T

TP
t=1
xtx

0
t

¸
and Q0 = lim

T→∞
E

·
1
T

TP
t=1
ft(0|xt)xtx0t

¸
are finite and positive definite.
(iv) E(ψθ(vt)|xt) = 0.
(v) sup

t≥1
E(kxtk3) < C <∞ for some positive constant C.

Assumptions 3(i)-(iii) are standard in the literature. Note, however, that
the conditional pdf ft(·|x) may change with observation t. Assumption 3(iv)
is the assumption that zero is the θth-quantile of the conditional distribu-
tion of vt.

9 When there is an intercept term in the model, Assumption
3(iv) can be considered as an identification condition on the coefficient of
the intercept. Indeed, E (ψθ(vt)|xt) = 0 and E (ψθ(vt)|xt) 6= 0 correspond
to isomorphic statistical structures that distinguish themselves only by the
value of the intercept term. They are observationally equivalent structures.
Therefore, it is possible to impose E (ψθ(v)|xt) = 0, and thus to fix the value
of the intercept, without loss of generality. Jureckova (1984) mentions that
the non-existence of an intercept would affect the large sample properties
of quantile regressions. This suggests that having a close look at this in-
tercept is interesting. We shall show that the use of the intercept term for
normalisation does not extend to the two-stage estimators because contra-
dictions may occur between the semi-parametric restrictions in the first and
the second stages. Assumption 3(v) is necessary for obtaining the stochastic
equicontinuity of our empirical process of interest in the strong mixing case.
We are now ready to study the asymptotic properties of the 2SQR(θ, q).

3 The Asymptotic Representation

The first step of the analysis is the derivation of an asymptotic representation
of the 2SQR(θ, q). For this, we define an empirical process given by

MT (∆) = T
−1/2

TX
t=1

xtψθ(qvt − T−1/2x0t∆)

where ∆ is a K×1 vector. A direct application of Theorem II.8 in Andrews
(1990) yields the following lemma. The lemma is proven only for the quantile

9Note that in the iid case, the term f(F−1(θ))−1 typically appears in the variance
formula of a quantile estimator (Koenker and Bassett, 1978). However, due to Assumption
1(iv), F−1(θ) is now zero so that we have f(0)−1 instead in the iid case.
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regression case, but similar derivations can be done for general two-stage M-
estimators.

Lemma 1 Suppose that Assumptions 1 and 3 hold. Then, we have for any
L > 0,

sup
||∆||≤L

||MT (∆)−MT (0) + q
−1Q0∆|| = op(1).

We combine Lemma 1 and Assumption 2 to obtain the following asymptotic
representation for the 2SQR(θ, q) with a possible bias.

Proposition 1 Suppose that Assumptions 1-3 hold. Then, the 2SQR(θ, q)
has the asymptotic representation

T 1/2(α̂− α0 −Bα) = R{T−1/2
TX
t=1

xtqψθ(vt) + (1− q)Q0T 1/2(π̂ − π0 −Bπ)

−Q0T 1/2(Π̂−Π0 −BΠ)γ0}+ op(1),

where Bα = RQ0{(1−q)Bπ−BΠγ0}, R = Q∗−1zz H(Π
∗
0)
0,Q∗zz = H(Π∗0)0Q0H(Π∗0)

and Π∗0 = Π0 +BΠ.

This asymptotic representation shows that the asymptotic distribution of
the second-stage estimator T 1/2(α̂ − α0 − Bα) depends on the asymptotic
distribution of the first-stage estimators T 1/2(π̂−π0−Bπ) and T

1/2(Π̂−Π0−
BΠ)γ0.

10 Naturally, if q = 1, the influence of π̂ disappears. The asymptotic

representation of the 2SQR(θ, q) is composed of three additive terms. The
first term in the right-hand-side term does not perturb consistency under
Assumption 3(iv) and corresponds to the contribution of the second stage to
the uncertainty of the estimator. The second and third terms in the right-
hand-side term correspond to the respective contributions of π̂ and Π̂ to the
uncertainty of the estimator. Because of these contributions, contradictions
between semi-parametric restrictions used in the first stage and the second
stage may occur and yield biases that cannot be eliminated by renormali-
sation of the intercepts. We now discuss the issue of the asymptotic bias in
the quantile regression case.

4 Asymptotic Bias

As for most estimation methods, an incorrect specification of the first stage
in (2) and (3) may degrade the properties of the 2SQR(θ, q). However,

10Other derivations of asymptotic representations of quantile regression estima-
tors have been developed (Phillips, 1991, Pollard, 1991), which involve slightly
different assumptions. They have not been applied to 2SQR estimators.
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some misspecifications of the first stage do not affect the estimation results
of interest. In particular, we now show that an asymptotic bias on the
intercept of the first stage estimator can be appropriately dealt with.

This result has not been exhibited in the literature. One reason for such
lacuna may be that in the traditional approach of examining the conditional
quantile defined as the inverse of the conditional distribution function, it is
not obvious how the bias is transmitted to the two-stage estimator. In
contrast, our analysis is based on the algebraic structure of the asymptotic
representation of the two-stage estimator. This representation implicitly
includes a projection that conveys the asymptotic properties of the first-
stage estimators to the two-stage estimator. We shall show that this implies
that asymptotic biases on the intercepts of the first-stage estimators affect
only the intercept of the two-stage estimator.

This situation has several interesting implications. First, one should be
careful when choosing the first-stage and second-stage methods in this type
of two stage estimations. Without co-ordinating the semi-parametric restric-
tions at the two stages, asymptotic biases may occur as in the case of two-
stage quantile regressions that we develop. Second, the sufficient stochastic
assumptions to obtain the transmission of the bias on the first-stage inter-
cept coefficients to the second-stage intercept only are very general, including
the possibility of general serial correlations and homoscedasticity, and of en-
dogenous variables in the equation of interest. Third, the possible presence
of an asymptotic bias on the intercept of the two-stage estimator is more
serious than it may first appears. Indeed, because residuals are often used
for estimates of covariance matrices and of test statistics, an asymptotic
bias on the intercept coefficient may lead to inconsistent inferences. In that
sense, what is at stake here is not only the interpretation of one coefficient
of the model, but also the danger of doing incorrect inferences based on the
whole model.

We now turn to the explicit analysis of the asymptotic bias. Because
most interesting results only arise if the asymptotic bias of the first-stage
estimators exclusively affect the intercept term, we focus on the case where
the first-stage estimators of the slope coefficients are consistent. According
to the asymptotic representation in Proposition 1, biases in π̂ and in Π̂ are
transmitted to the 2SQR(θ, q) through the matrix RQ. Just looking at the
matrix RQ does not make obvious that the asymptotic bias in the first-stage
estimators only affects the intercept coefficient of the second-stage estimator.
This feature occurs for many two-stage estimation procedures that share the
same algebraic structure for the asymptotic representation.

To isolate the intercept of the first-stage estimators, we decompose both
matrix Q0 and the first-stage estimator: Q0 = [ Q1 Q2 ] where Q1 is
the first column of Q0 and Q2 is a K × (K − 1) matrix consisting of
the remaining columns of Q0, and π̂ − π0 =

·
π̂(1) − π0(1)
π̂(2) − π0(2)

¸
, where π̂(1)
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is the estimator of the constant coefficient. This yields RQ0(π̂ − π0) =
RQ1(π̂(1) − π0(1)) +RQ2(π̂(2) − π0(2)), where the second term in the right-
hand-side term is asymptotically unbiased by assumption. The contribution
of the first-stage estimate Π̂ can be similarly decomposed, and we do not
repeat the calculus that is similar to the one for π̂. It is therefore necessary
and sufficient to study the product RQ1 to understand the generation of
a possible asymptotic bias of α̂. The next proposition presents our main
result.

Proposition 2 Given that R = [H(Π∗0)0Q0H(Π∗0)]−1H(Π∗0)0 and H(Π∗0) =· µ
IK1

0K2×K1

¶
, Π∗0

¸
, we have

RQ1 =

·
1
0(K1+G−1)×1

¸
.

Proposition 2 implies that the only coordinate of α̂ for which there is a
possible asymptotic bias in that case corresponds to the intercept. Moreover,
this asymptotic bias is equal to (1 − q) times the asymptotic bias in the
intercept in π̂ minus the asymptotic bias in the intercept in Π̂γ0.

Several favourable situations may occur. First, empirical researchers
are generally interested in the slope components of α̂ rather than in its in-
tercept coefficient. Then, any first-stage estimation method satisfying our
mentioned assumptions will deliver the consistency and the asymptotic nor-
mality of the slope coefficients. Second, in cases where Π̂γ0 is not asymp-
totically biased, for example because T 1/2(Π̂−Π0) is Op(1), the asymptotic
bias of the coefficient of the intercept in α̂ is (1 − q) times the asymptotic
bias of π̂. Choosing q = 1 guarantees that this bias disappears. Naturally,
the first-stage estimation method can also be chosen to eliminate the biases
on π̂ and Π̂ (e.g., by using the same quantile regressions in the two-stages
as in Kim and Muller, 2003). However, we consider in this paper that the
researcher chooses the first-stage estimation method freely for her own rea-
sons, for example because there exists already some available estimation
results.

We need to return to the normalisation of the model to assess the con-
sequence of the choice of the estimation procedure. Assumption 3(iv) nor-
malises the intercept on the θth quantile of the distribution of vt. However,
the intercept may be interesting in more than one quantile. In that case,
two natural approaches are possible. First, the researcher may choose to
use different adapted first stage methods for different quantiles, for exam-
ple different quantile regressions with the same quantile as in the second
stage. Second, she may alternatively decide to stick to the same first-stage
estimation results for all the different second stage quantiles. For example,
a least squares estimator or a least absolute deviations estimator may be

9



systematically used for the first stage. This has the advantage of requiring
only one trial of first-stage estimation, but it implies that the researcher is
ready to accept the occurrence of the asymptotic bias on the intercept for
almost all quantiles.

The traditional approach in the quantile regression literature11 of di-
rectly deriving the intercept term from the normalisation assumption is
convenient only in the case where the error terms are independent of the
independent variable. Suppose we have yt = x

0
tβ+εt where the first element

of xt is one and εt is independent of xt. Then, in this case the θ
th condi-

tional quantile of yt is qθ(yt|xt) = x0tβ + F−1(θ), where F is the cdf of εt.
Indeed, by definition qθ(εt|xt) = F−1(θ) and the variables xt, do not per-
turb12 the arrangement of the different quantiles of y. In contrast, when the
regressors and the errors are not independent, the role of the normalisation
is much more important than it appears at first sight. Indeed, in general it
is not obvious how to calculate the translated intercept. This is because the
translation depends on the joint distribution of error terms and exogenous
variables, and this distribution may be characterised by heteroscedasticity
and serial correlations. Furthermore, it is not obvious in the general case
that the asymptotic bias is only on the intercept.

More explicitly, for our main model of interest, let qθ(yt |Yt, x1t) be the
θth conditional quantile of yt given Yt and x1t where Y

0
t and x

0
1t are the t

th

elements of Y and X1 respectively. Then, we have

qθ(yt|Yt,x1t)Z
−∞

fyt|Yt,x1t(y | Yt, x1t) dy = θ,

which implies that qθ(yt|Yt, x1t) = x01tβ0+Y 0t γ0+F−1ut|Yt,x1t(θ). On the other
hand, with first-stage estimators Ŷt we have qθ(yt|Ŷt, x1t) = x01tβ0+ Ŷ 0t γ0+
F−1
ut|Ŷt,x1t(θ). If the first-stage estimators are OLS, then Ŷt = xt(X

0X)−1X 0Y

and qθ(yt|Ŷt, xt) = x01tβ0+xt(X 0X)−1X 0Y γ0+F
−1
ut|xt(X0X)−1X0Y,x1t

(θ) . None

of these expressions seems to provide much insight about the nature of the
possible asymptotic biases because of the presence of F−1

ut|xt(X0X)−1X0Yt,x1t
(θ).

Whether this term can affect only the intercept term depends on the random
association of the ut, x1t and Ŷt. This reasoning can be extended to other
two-stage estimation methods by using the appropriate inversion procedure
instead of the inverse cdf that is specific to the calculus with regression
quantiles.

Therefore, it seems at first sight that nothing guaranteed a priori that an
asymptotic bias would not generally appear on slope coefficients. We have

11A common approach in the literature is to normalise the model on a measure of central
tendency (Koenker and Bassett, 1978).
12By definition of the independence, the parameters of the marginal distribution of the

xt can be factorized in the joint distribution, and disappear in the conditionning.
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examined this issue by deriving the asymptotic representation of the estima-
tor of interest, then by exhibiting a matrix identity appearing in this repre-
sentation, and finally by exploiting this identity to show how an asymptotic
bias on the intercept of the first-stage estimators is integrally transmitted to
the intercept of the two-stage estimator. We now provide a direct intuition
of the result.

The problem can be seen as understanding the term Fut|xt(X0X)−1X0Yt,x1t
when xt is exogenous. If xt is strictly exogenous, i.e. if there is separa-
tion of the marginal distribution of the xt in the joint distribution, then
it can be shown directly that xt(X

0X)−1X 0Yt is also strictly exogenous.
This is because X(X 0X)−1X 0Y is the projection of Yt the space spanned
by X, and is therefore a fixed linear combination of strictly exogenous vari-
ables. Moreover, the term corresponding to observation t can be written as
xt(X

0X)−1X 0Yt since only the tth line of X(X 0X)−1X 0 matters for calcu-
lation the projection corresponding to this observation. Then, in this case
Fut|xt(X0X)−1X0Yt,x1t = Fut .

Now, if we relax the assumption of strict exogeneity in for example or-
thogonality with the error term, we have ut ⊥ xt(X 0X)−1X 0Yt and x1t with
the same reasoning as above. Clearly, in that caseE[ut|xt(X 0X)−1X 0Yt, x1t] =
0 but it is not necessary that qθ[ut|xt(X 0X)−1X 0Yt, x1t] = 0. However, under
these assumptions we do not have qθ[ut|xt] = 0. Moreover, this orthogonal-
ity for OLS is not the type of exogeneity that we defined at the beginning.
If instead we start from qθ[ut|xt] = 0, the above projection will ensure that
qθ[ut|xt(X 0X)−1X 0Yt, x1t] = 0 since the conditioning is nothing else than a
special case of xt and our definition of exogeneity is still based on an orthog-
onality condition. We now turn to the explicit derivation of the asymptotic
covariance matrix for 2SQR(θ, q) with LS predictions.

5 Asymptotic Normality and Covariance Matrix
with LS Predictions

In this section, we investigate the use of LS estimation for π0 and Π0 in the
first step of 2SQR(θ, q). Naturally, if one is interested in robustness, it is a
bad idea to use LS estimators in the first stage. However, there are several
reasons to consider this case. First, the researcher may want to use quantile
regressions not for their robustness but rather for the possibility of focusing
on different locations of the conditional distribution of the dependent vari-
able. Also, LS estimators are popular and available LS estimation results for
the first-stage equations could be ready to be used. Moreover, one may be in-
terested in robustness issues arising only from the second-stage setting, e.g.,
outliers for u. Then, using LS estimators as a first stage may improve the
efficiency of the estimation procedure. Finally, that is what some empirical
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researchers do and are willing to do in practice. Some empirical studies13

adopt first-stage least squares estimators with the second stage based on
quantile regression. Therefore, it can be important for applied researchers
to know the theoretical consequences of that approach, and we provide an
answer in this section.

Using the LS estimation in the first stage yields consistency only for the
slope coefficients of the 2SQR(θ, q). This is because the necessary condition
E(vt) = 0 for consistently estimating the intercept coefficient in (3) by OLS
is not compatible with Assumption 3(iv). This problem has hardly been
noticed in the literature, although this might be the reason why authors im-
posed symmetry of error terms (as in Chen, 1988, and in Chen and Portnoy,
1996). If θ = 1/2 and the distribution is symmetric, then the bias vanishes,
as in Powell (1983).

First, we define V ∗t = Vt−E(Vt) and v∗t = vt−E(vt). Then, the reduced
forms for Yt and yt in (2) and (3) can be expressed as

Yt = x
0
tΠ
∗
0 + V

∗
t (5)

where Π∗0 = Π0+ BΠ and BΠ = [E(Vt)
0, 00, ..., 00]0(K×G);

yt = x
0
tπ
∗
0 + v

∗
t (6)

where π∗0 = π0 + Bπ and Bπ = [E(vt), 0, ..., 0]
0
(K×1). We also define u

∗
t =

v∗t − V ∗t γ0, where it can be shown that u∗t = ut − E(ut). By construction,
we have E(V ∗t ) = E(v∗t ) = E(u∗t ) = 0.

Let Π̃ and π̃ be the LS estimators based on (5) and (6) respectively; that
is we have

T 1/2(π̃ − π∗0) = Q−1T−1/2
TX
t=1

xtv
∗
t + op(1)

T 1/2(Π̃−Π∗0) = Q−1T−1/2
TX
t=1

xtV
∗
t + op(1).

Let α̃ be the 2SQR(θ, q) based on the LS estimators Π̃ and π̃ in the first
stage. By plugging the above expressions into the formula in Proposition
1, we obtain the asymptotic representation for the 2SQR(θ, q) based on LS
predictions as follows;

T 1/2(α̃− α0 −Bα) = RT−1/2
TX
t=1

xtqψθ(vt)

−RQ0Q−1T−1/2
TX
t=1

xt(qv
∗
t − u∗t ) + op(1),

13Arias et al. (2001), Garcia et al. (2001).
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where Bα = RQ0{(1− q)Bπ − BΠγ}. Owing to Proposition 2 and the def-
initions of Bπ and BΠ, we have Bα = ((1 − q)E(vt) − E(Vt)γ0, 0, . . . , 0)0.
The formula of the bias term Bα shows that the intercept estimator may
be asymptotically biased, while the slope estimators are not, for usual semi-
parametric assumptions affecting only the location of the error distributions.
Even when there is a bias, the asymptotic normality of α̃− α0 −Bα can be
easily derived. For this purpose, we impose the following assumptions.

Assumption 4 (i) The sequence {(ut, vt)} satisfies the following moment
conditions that there exist finite constants ∆u and ∆v such that E|xtiu∗t |3 <
∆u and E|xtiv∗t |3 < ∆v for all i and t.
(ii) E(u∗t |xt) = 0 and E(v∗t |xt) = 0.
(iii) The covariance matrix VT = var

³
T−1/2

PT
t=1 St

´
is positive definite

for T sufficiently large, where St = (qψθ(vt), qv
∗
t − u∗t )0 ⊗ xt and ⊗ is the

Kronecker product.

Proposition 3 Suppose that Assumptions 1,3-4 hold. Then,

D
−1/2
T T 1/2(α̃− α0 −Bα)

d→ N(0, I),

where DT =MVTM
0 and M = R[I,−Q0Q−1].

The asymptotic normality of the slope coefficients is easily derived using
Proposition 3 by truncating the vector of parameters. Let α0(1) and α0(2)
be the intercept and slope coefficients respectively. We also decompose the
2SQR(θ, q) accordingly: α̃0 = (α̃0(1), α̃

0
0(2)). Under the same conditions

as in Proposition 3, we have N
−1/2
T T 1/2(α̃0(2) − α0(2))

d→ N(0, I), where
NT =M2VTM

0
2 and M2 is the last (K1 +G− 1) rows in M .

At this stage, we have shown that it is possible to obtain useful asymp-
totic properties of the 2SQR(θ, q) for a given value of q. Now, the main
interest of introducing parameter q in the problem is to provide an oppor-
tunity to improve efficiency. This can be done trying several values of q or
using prior information of values of q that worked well for past estimations.
One may also want to adopt a more systematic approach and replace q by
its optimal value obtained by minimising the asymptotic covariance matrix
for which we derived an explicit expression. We now discuss such estimator
of q and the impact that it may have on the 2SQR(θ, q).

The estimation of parameter q as a minimand of the asymptotic covari-
ance matrix of the 2SQR(θ, q) raises a series of difficulties. First, there is
no unique way of minimising a covariance matrix when the dimension is
greater then one. One possibility is to select a matrix norm (e.g., trace or
determinant) that will be minimised. Another one is to focus on one coef-
ficient of interest, for example the coefficient of the return to education in
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wage equations, and to minimise only the asymptotic standard error for this
coefficient. Moreover, in the iid case, unique values of q∗ can be reached.
Second, in general, no explicit formula may be available for q∗. This would
make the whole estimation process less straightforward and implies to use
numerical estimation techniques.

In the case of least-squares plus quantile regression estimation, using
q = 1 and E(Vt) = 0 in the asymptotic representation in Proposition 1
would allow the researcher to avoid the occurrence of an asymptotic bias.
By contrast, using different values for q would introduce an asymptotic bias
isolated in the intercept term; but the asymptotic variance of the consistent
slope estimates can be reduced. Since the bias can be easily corrected, one
should try to improve efficiency in two-stage estimations whose results are
often insufficiently accurate for the needs of applied researchers.

We focus on a case where an explicit formula for an estimator fo q, q̂, can
be exhibited, which allows us to convey the intuition of the DGP features
driving the estimation properties. Finally, we shall present Monte Carlo
simulation results showing how the estimators based on q = 1, q = q∗ and
q = q̂ differ. Suppose that (i) the sequence {(x0t, ut, vt)} is i.i.d. and (i)
ft(0|xt) = f(0). Then, the limiting distribution in Proposition 3 simplifies
as follows:

T 1/2(α̃− α0 −Bα)
d→ N(0,σ20(q)Q

−1
zz ),

where σ20(q) = E(ζ
2
t ), ζt = qf(0)

−1ψθ(vt)+u
∗
t−qv∗t andQzz = H(Π∗0)0QH(Π∗0).

Hence, in this case, the optimal choice for q can be obtained by minimising
σ20(q) and it is given by

q∗ =
E(v∗t u∗t )− f(0)−1E(ψθ(vt)u

∗
t )

f(0)−2θ(1− θ) +E(v∗2t )− 2f(0)−1E(ψθ(vt)v
∗
t )
. (7)

Using the ‘plug-in principle,’ a consistent estimator for q∗ is easily obtained
based on any consistent kernel-estimator f̂(0) for f(0);

q̂ =

PT
t=1 ṽ

∗
t ũ
∗
t − f̂(0)−1

PT
t=1 ψθ(ṽt)ũ

∗
t

T.f̂(0)−2θ(1− θ) +
PT
t=1 ṽ

∗2
t − 2f̂(0)−1

PT
t=1 ψθ(ṽt)ṽ

∗
t

(8)

where ũ∗t = ṽ∗t − Ṽ ∗t γ̂, ṽ∗t = yt − x0tπ̃, Ṽ ∗t = Yt − x0tΠ̃, ṽt = yt − x0tπ̂θ and
π̂θ = argmin

π

PT
t=1 ρθ(yt − x0tπ). The proof is straightforward and hence is

omitted.

6 Monte Carlo Simulations

We conduct simulation experiments to investigate the finite sample proper-
ties of the 2SQR(θ, q) in three cases: (i) the benchmark case (q = 1), (ii)
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when the optimal value (q = q∗) is used and finally (iii) when our consistent
estimator (q = q̂ ) is used.

The data generating process used in the simulations is described in Ap-
pendix B. The equation of interest is over-identified and the parameter val-
ues are β00 = (1, 0.2) and γ0 = 0.5. We generate the error terms by using
three alternative distributions: the standard normal N(0,1), the Student-t
with 3 degrees of freedom t(3) and the Lognormal LN(0,1). The exogenous
variables xt are drawn from a normal distribution at each of the 1,000 repli-
cations. For each replication, we estimate the parameter values β0 and γ0
and the deviations of the estimates from the true values. Then, we compute
the sample mean and sample standard deviation of these deviations over
the 1,000 replications. The optimal value q∗ for different values of θ and
for different error distributions is obtained by simulating the formula in (7)
while q̂ is calculated through (8).

The results for the 2SQR(θ, q) with N(0,1) errors are in Table 1. The
cases q = 1, q = q∗ and q = q̂ are respectively shown in Tables 1(a), 1(b)
and 1(c). In all cases, as predicted by the results in Sections 4 and 5, the
intercept estimate is systematically biased and the biases do not diminish
as the sample size increases. On the other hand, the 2SQR(θ, q) provides
unbiased estimates for the slope parameters (β10 and γ0) for all choices of
q and all values of θ. This outcome on the intercept and slope estimates
also takes place for Tables 2 and 3 based on t(3) and LN(0,1) distributions.
Table 1(b) shows that using the optimal value q∗ (whose simulated values
are shown in the first row of the table) dramatically improves the accuracy
of the 2SQR(θ, q) in comparison with the benchmark case in Table 1(a);
the efficiency gain ranges from 14% up to 50% depending on the value of θ.
Generally, the gain is larger for extreme quantiles (θ = 0.05 and 0.95) than
for the middle quantiles (θ = 0.25, 0.5 and 0.75); specifically the ranges are
46%-50% for θ = 0.05, 17%-24% for θ = 0.25, 14%-22% for θ = 0.5, 21%-23%
for θ = 0.75 and 45%-47% for θ = 0.95.

Actually in empirical work, the true value of q∗ is not known even though
q̂ will be close to q∗ in large samples. Hence, it is interesting to investigate the
use of q̂ on the 2SQR(θ, q) in small samples. The results for normal errors
are in Table 1(c) where we also provide simulation means and standard
deviations of q̂ for different values of T and θ. The table demonstrates that
with sample size as low as T = 50, the use of q̂ can result in substantial
efficiency gains (35%-50% for θ = 0.05, 17%-24% for θ = 0.25, 14%-22% for
θ = 0.5, 21%-23% for θ = 0.75 and 35%-47% for θ = 0.95) as compared with
the case q = 1 The estimation accuracy of q̂ improves as the sample size
increases to T = 300 and the efficiency gain becomes larger. In fact, with
T = 300, it does not make any difference whether to use either q̂ or q∗.

As expected when the errors are generated from t(3) with fat tails, the
standard deviations of the sampling distributions of the 2SQR(θ, q) are much
larger than that obtained when the errors are normal. When t(3) is used to
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generate the error terms (Table 2), even with q∗ the percentage reductions
in standard deviation are small for middle quantiles. However, with extreme
quantiles, substantial reductions can be achieved (55%-63% for θ = 0.05 and
57%-60% for θ = 0.95). When q̂ is used (Table 2(c)), there are cases where
the standard deviation of the 2SQR(θ, q) increases by 0.08%-1.25% when
T = 50 and θ = 0.5. This is expected because in these cases there is no
gain even with q∗ and the estimation of q̂ just adds noise to the process. As
the sample size grows to 300, the negligible negative gains disappear and
the performance of the 2SQR(θ, q) based on q̂ is nearly identical to the one
based on q∗ despite the fact that the estimated values of q̂ are not very
close to q∗. It seems likely that the surface of the function σ20(q) is very flat
around q∗ in these cases.

Finally, we turn to the lognormal distribution case whose results are
displayed in Tables 3(a)-3(c). The standard deviations rise even more in the
this case, indicating that the 2SQR(θ, q) may be particularly sensitive to
asymmetry of error distributions. When the true value q∗ is employed, the
efficiency gain is phenomenal, regardless the values of T and θ; the results
do not vary much with T and large variance reductions are achieved for all
quantiles. It is well known that when the distribution is skewed to the right,
parameter estimation by quantile regression for large quantiles are generally
very poor. The simulation results show that this is the precisely the case
in which our method can generate the maximum efficiency gain. Table 3(c)
shows that, when q̂ is used, there can be a large efficiency loss (29%-56%
as compared with results based on q = 1) for small sample size (T = 50)
and for small quantile (θ = 0.05), although the general case is of efficiency
gains. However, as with the other error distribution cases, when the sample
size increase to T = 300, the use of q̂ delivers large efficiency gains for all
quantiles

7 Conclusion

We analyse in this paper the transmission of the asymptotic bias in two-
stage estimation procedures where the first stage is asymptotically biased.
We exhibit the algebraic structure that describe the bias transmission in
the asymptotic representation of the estimator. This enables us to show
that even for general cases with endogenous variables, an asymptotic bias
occurring only on the intercept of the first-stage estimation is integrally and
exclusively transmitted to the intercept for the second-stage estimation.

To illustrate this issue, we fully develop the case of the two-stage quan-
tile regression estimators with random regressors, dependent and non iden-
tically distributed error terms when the first stage is implemented with
least-squares estimators. These results permit valid inferences in models
estimated using quantile regressions, in which the possible endogeneity of
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some explanatory variables is treated via ancillary predictive equations.
Moreover, for the two-stage quantile regressions substantial variance re-

duction is obtained in the context of two-stage estimation by reformulating
the dependent variable by using predictions from the reduced-form esti-
mation. This approach alleviates a frequently mentioned disadvantage of
quantile regressions, namely their small efficiency.
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Appendix A: Proofs

Proof of Lemma 1: Using Assumptions 1, 3(ii) and 3(v) and the fact that
the quantile influence function ψθ(·) is bounded, Theorem II.8 in Andrews
(1990) implies

sup
k∆k<L

kMT (∆)−MT (0)− {EMT (∆)−EMT (0)}k = op(1).

Next, we show that E(MT (∆))−E(MT (0))→ −q−1Q0∆ as follows. Noting
that E(MT (∆)) = E

n
T−1/2

PT
t=1

h
xtθ − xt

R q−1x0tT−1/2∆
−∞ ft(v|xt)dv

io
, we

have

E(MT (∆))−E(MT (0))

= −E
(
T−1/2

TX
t=1

"
xt

Z q−1x0tT−1/2∆

0
ft(v|xt)dv

#)

= −E
(
q−1T−1

TX
t=1

xtx
0
t∆
Ft(q

−1x0tT−1/2∆|xt)− Ft(0|xt)
q−1x0tT−1/2∆

)
,

where Ft(·|xt) is the conditional cdf of vt. LetG(λ) = q−1T−1
PT
t=1 Ft(λ|xt)xtx0t∆.

Then, by the Mean-Value Theorem and the continuity in Assumption 3(ii),
there exists ξT,t between 0 and q

−1x0tT−1/2∆ such thatE(MT (∆))−E(MT (0)) =

−E{G0(ξT,t)} = −q−1E{T−1
PT
t=1 ft(ξT,t|xt)xtx0t}∆.

Let QT = E

·
T−1

TP
t=1

ft(ξT,t|xt)xtx0t
¸
, Q0T = E

·
T−1

TP
t=1

ft(0|xt)xtx0t
¸
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and consider the (i, j)th element of |QT −Q0T |, which is given by

|T−1
TX
t=1

E
¡{ft(ξT,t|xt)− ft(0|xt)}xtixtj¢ |

≤ T−1
TX
t=1

E
¡|ft(ξT,t|xt)− ft(0|xt)| |xti| |xtj |¢

≤ L0T
−1

TX
t=1

E
¡|ξT,t| |xti| |xtj |¢

for some constant L0, where the first result is due to Minkowski’s inequality
and Jensen’s inequality and the second result is obtained by the Lipschitz
continuity condition in Assumption 3(ii). Next, we note that

T−1
TX
t=1

E
¡ |ξT,t| |xti| |xtj |¢ ≤ q−1T−3/2

TX
t=1

E
¡ ¯̄
x0t∆

¯̄ |xti| |xtj |¢
≤ k∆kT−3/2

TX
t=1

E
³
kxtk3

´
≤ k∆kT−1/2C → 0

for a constant C, where the last inequality is obtained by Assumption 3(v).
Since Q0 = lim

T→∞
Q0T , we have E(MT (∆))−E(MT (0))→ −q−1Q0∆. QED.

Proof of Proposition 1: We define ∆̂1(δ) = H(Π̂)δ − (1 − q)T 1/2(π̂ −
π0 − Bπ) + T

1/2(Π̂ − Π0 − BΠ)γ0 for ||δ|| ≤ L, where δ ∈ RG+K1 . Using
Assumption 2 and Lemma 1, it is straightforward to show that

sup
||δ||≤L

||MT (∆̂1(δ))−MT (0) + q
−1Q0∆̂1(δ)|| = op(1) (9)

for any L > 0. Next, we define ∆̂ = T 1/2(α̂−α0−Bα). Then, one can show:

MT (∆̂1(∆̂)) = op(1) (10)

because T 1/2H(Π̂)0MT (∆̂1(∆̂)) =
h
∂ST
∂α

¯̄̄
α=α̂

i
−
. Here, H(Π̂) is bounded in

probability: H(Π̂) = Op(1) by Assumption 2, and
h
∂ST
∂α

¯̄̄
α=α̂

i
−
is op(1) because

it is the vector of left-hand-side partial derivatives of the objective function
in (4), evaluated at the solution α̂.

The next step is to show that ∆̂ = T 1/2(α̂ − α0 − Bα) = Op(1). Using
the same argument as in Lemma 5.2 of Jureckova (1977), it can be proven
that (9) implies that for any ² > 0, there exist L > 0, η > 0 and a positive
integer T0 such that

P

µ
min
||∆||≥L

°°°MT (∆̂1(∆̂))
°°°¶ < ² (11)
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for any T > T0. Hence, if ∆̂ = T 1/2(α̂ − α0 − Bα) is not bounded in
probability, then (11) implies that MT (∆̂1(∆̂)) 6= op(1), which contradicts
(10). Therefore, we have

∆̂ = T 1/2(α̂− α0 −Bα) = Op(1). (12)

Therefore, the results in (9), (10) and (12) imply

q−1Q0∆̂1(∆̂) =MT (0) + op(1). (13)

By rearranging terms in (13), we have the asymptotic representation for the
2SQR(θ, q):

T 1/2(α̂− α0 −Bα) = Q∗−1zz H(Π
∗
0)
0{T−1/2

TX
t=1

xtqψθ(vt)

+(1− q)Q0T 1/2(π̂ − π0 −Bπ)

−Q0T 1/2(Π̂−Π0 −BΠ)γ0}+ op(1)
where Bα, Q

∗
zz, and Π

∗
0 are defined in the proposition. QED.

Proof of Proposition 2: On the one hand, Q0 =
£
Q1 Q2

¤
where Q1 is

aK×1 matrix and Q2 is aK×(K−1) matrix. On the other hand, H(Π∗0) =·
IK1

0K2×K1

Π∗0

¸
and R = [H(Π∗0)0Q0H(Π∗0)]

−1H(Π∗0)0. We want to prove

that RQ1 =

·
1
0(K1+G−1)×1

¸
. Let A = RQ0 that is a (G+K1)×K matrix.

Since RQ1 is the first column of A, we just need to show that the first
column of A is composed of a one at the first line and of zeros elsewhere.
Let a0 be the first column of A. We have AH(Π∗0) = RQ0H(Π∗0) = I(G+K1)
by definition of R. It follows that the first column of AH(Π∗0) is a0 due to the
arrangement of elements in H(Π∗0) in Proposition 2, while the first column

of I(G+K1) is (1, 0, . . . , 0)
0. Hence, RQ1 =

·
1
0(K1+G−1)×1

¸
. QED.

Proof of Proposition 3: Replacing the asymptotic representation of the

first stage and collecting terms in the asymptotic representation for the
2SQR(θ, q) with LS first-stage estimators gives

T 1/2(α̃− α0 −Bα) =MT
−1/2

TX
t=1

St + op(1)

where M = R[I,−Q0Q−1] and St = (qψθ(vt), qv
∗
t − u∗t )0 ⊗ xt.

Note that since x0t, ut, vt are strong-mixing by assumption, and St is a
measurable function of x0t, ut, vt, it follows that St is also strong-mixing.
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Next, E(St) = 0 by Assumptions 3(iv) and 4(ii). Finally, Assumption 4(i)
provides all the moment conditions necessary to invoke Theorem 5.20 of
White (2001). Hence, we have:

V
−1/2
T T−1/2

TX
t=1

St
d→ N(0, I)

which in turn implies that

D
−1/2
T T−1/2(α̃− α0 −Bα)

d→ N(0, I)

where DT =MVTM
0. QED.

Appendix B: Simulation Design

The structural system is given by B

·
y0t
Y 0t

¸
+ Γx0t = U 0t, where

·
y0t
Y 0t

¸
is a 2× 1 vector of endogenous variables, x0t is a 4 × 1 vector of exogenous
variables with the first element set to one, U 0t is a 2×1 vector of errors, B =·

1 −0.5
−0.7 1

¸
and Γ =

· −1 −0.2 0 0
−1 0 −0.4 −0.5

¸
. We are interested

in the first equation of the system and the system is over-identified by the
zero restrictions Γ13 = Γ14 = Γ22 = 0. Here, the parameters in (1) are
γ0 = 0.5 and β00 = (1, 0.2), X1 is the first two columns in X and u is
the first column in U. The above structural equation can be written as£
y Y

¤
B0 = −XΓ0+U , which gives the following reduced form equations£

y Y
¤
= X

£
π0 Π0

¤
+
£
v V

¤
, where

£
π0 Π0

¤
= −Γ0 (B0)−1 and£

v V
¤
= U (B0)−1 . We obtain π00 = (2.3, 0.3, 0.3,−0.15) and Π00 =

(2.6, 0.2, 0.6,−0.3).
First, the errors

£
v V

¤
in the reduced form equations are generated

so that Assumption 3 is satisfied: v = ve − F−1ve (θ) and V = V e − F−1V e (θ),
where ve and V e are generated for the different simulation sets by using
the three distributions N(0, 1), t(3) and LN(0,1) with correlation coefficient
−0.1, and F−1ve (θ) and F−1V e (θ) are the inverse cumulative functions of ve and
V e evaluated at θ. Then, the second to fourth columns in X are generated
using the normal distribution with zero means and covariances, and unit
variances. Finally, we generate the endogenous variables

£
y Y

¤
using the

reduced-form equations.

23



Table 1(a). Simulation Means and Standard Deviations of )1,(2 =qSQR θ : N(0,1). 
                    θ            0.05           0.25           0.50           0.75           0.95 
        

        
0

~β  Mean -0.75 -0.35 -0.01 0.31 0.77 
 Std  2.18 1.15 0.83 0.67 0.58 
        

1
~β  Mean 0.01 0.00 0.00 0.00 0.00 

 Std  0.35 0.23 0.21 0.23 0.35 
         γ~  Mean -0.01 0.00 0.00 0.01 0.00 

 
 
T  =  50 

 Std  0.51 0.34 0.31 0.33 0.49 
        

        
0

~β  Mean -0.84 -0.34 -0.01 0.33 0.81 
 Std  0.83 0.43 0.33 0.26 0.22 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std  0.14 0.09 0.09 0.09 0.13 
         γ~  Mean 0.00 0.00 0.00 0.00 0.01 

 
 
T  =  300 

 Std  0.19 0.12 0.12 0.13 0.19 
 
Table 1(b). Simulation Means and Standard Deviations of ),(2 *qqSQR =θ : N(0,1). 
          θ  

       ( *q ) 
          0.05 
   (0.0013) 

          0.25 
  (-0.0003) 

          0.50 
   (0.0002) 

          0.75 
   (0.0003) 

          0.95 
   (0.0027) 

        
        

0
~β  Mean 0.59 0.23 -0.01 -0.26 -0.62 

 Std  1.19 0.89 0.71 0.54 0.36 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std  0.19 0.19 0.18 0.18 0.19 
         γ~  Mean 0.00 0.00 0.00 0.00 0.00 

 
 
T  =  50 

 Std  0.27 0.26 0.26 0.26 0.27 
        

        
0

~β  Mean 0.72 0.29 -0.01 -0.31 -0.74 
 Std  0.44 0.34 0.27 0.21 0.14 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std  0.07 0.07 0.07 0.07 0.07 
         γ~  Mean 0.00 0.00 0.00 0.00 0.00 

 
 
T  =  300 

 Std  0.10 0.10 0.10 0.10 0.10 
 
Table 1(c). Simulation Means and Standard Deviations of )ˆ,(2 qqSQR =θ : N(0,1). 
            θ            0.05           0.25           0.50           0.75           0.95 
 

        
0

~β  Mean 0.22 0.15 -0.01 -0.20 -0.26 
 Std   1.49 0.91 0.72 0.54 0.40 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std   0.22 0.19 0.18 0.19 0.22 
         γ~  Mean 0.01 0.01 0.00 0.01 0.01 
 Std   0.33 0.26 0.26 0.27 0.32 

 q̂      Mean 0.19 -0.01 -0.05 0.07 0.31 

 
 
 
 
T  =  50 

 Std   0.33 0.23 0.20 0.20 0.20 
 

       
0

~β  Mean 0.62 0.25 -0.01 -0.27 -0.62 
 Std   0.46 0.34 0.27 0.21 0.16 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std   0.07 0.07 0.07 0.07 0.07 
         γ~  Mean 0.00 0.00 0.00 0.00 0.00 
 Std   0.10 0.10 0.10 0.10 0.10 
        q̂      Mean 0.08 0.00 -0.05 0.00 0.10 

 
 
 
 
T  =  300 

 Std   0.09 0.11 0.12 0.11 0.09 
 



Table 2(a). Simulation Means and Standard Deviations of )1,(2 =qSQR θ : t (3). 
                    θ            0.05           0.25           0.50           0.75           0.95 
        

        
0

~β  Mean -1.20 -0.36 0.01 0.45 1.36 
 Std  6.94 1.56 1.08 0.99 1.04 
        

1
~β  Mean -0.01 -0.01 0.00 0.00 0.00 

 Std  0.89 0.32 0.26 0.32 0.80 
         γ~  Mean -0.03 -0.01 0.00 -0.02 -0.06 

 
 
T  =  50 

 Std  1.43 0.45 0.40 0.51 1.19 
        

        
0

~β  Mean -1.21 -0.37 0.03 0.40 1.21 
 Std  2.09 0.57 0.38 0.33 0.33 
        

1
~β  Mean 0.00 -0.01 0.00 -0.01 0.00 

 Std  0.29 0.12 0.11 0.12 0.30 
         γ~  Mean 0.00 0.00 -0.01 0.00 0.00 

 
 
T  =  300 

 Std  0.41 0.16 0.14 0.17 0.42 
 
Table 2(b). Simulation Means and Standard Deviations of ),(2 *qqSQR =θ : t (3). 
          θ   

       ( *q ) 
          0.05 
    (-0.080) 

          0.25 
     (0.526) 

          0.50 
     (0.828) 

          0.75 
     (0.528) 

          0.95 
    (-0.080) 

        
        

0
~β  Mean 0.88 0.03 0.02 0.11 -0.73 

 Std  2.63 1.63 1.09 0.90 0.40 
        

1
~β  Mean -0.01 -0.01 -0.01 -0.01 0.00 

 Std  0.33 0.30 0.27 0.30 0.33 
         γ~  Mean -0.03 -0.02 0.00 -0.02 -0.02 

 
 
T  =  50 

 Std  0.54 0.49 0.41 0.47 0.48 
        

        
0

~β  Mean 0.95 -0.01 0.03 0.04 -0.91 
 Std  0.86 0.54 0.38 0.31 0.16 
        

1
~β  Mean -0.01 0.00 0.00 -0.01 0.00 

 Std  0.13 0.11 0.10 0.12 0.13 
         γ~  Mean -0.01 0.00 -0.01 -0.01 0.00 

 
 
T  =  300 

 Std  0.17 0.16 0.14 0.16 0.17 
 
Table 2(c). Simulation Means and Standard Deviations of )ˆ,(2 qqSQR =θ : t (3). 
            θ            0.05           0.25           0.50           0.75           0.95 
 

        
0

~β  Mean 0.26 0.13 0.05 -0.04 -0.24 
 Std   5.18 1.69 1.19 0.87 0.93 
        

1
~β  Mean -0.03 -0.01 -0.01 -0.01 -0.02 

 Std   0.54 0.30 0.28 0.29 0.43 
         γ~  Mean -0.01 -0.02 -0.02 -0.01 0.01 
 Std   1.08 0.50 0.45 0.46 0.75 

 q̂      Mean 0.16 0.27 0.29 0.30 0.28 

 
 
 
 
T  =  50 

 Std   0.63 0.28 0.24 0.25 0.44 
 

       
0

~β  Mean 0.89 0.04 0.03 -0.01 -0.85 
 Std   0.93 0.55 0.38 0.32 0.28 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std   0.13 0.11 0.11 0.12 0.13 
         γ~  Mean -0.01 0.00 -0.01 -0.01 0.00 
 Std   0.17 0.15 0.14 0.16 0.18 

q̂      Mean 0.02 0.46 0.57 0.46 0.05 

 
 
 
 
T  =  300 

 Std   0.16 0.18 0.14 0.17 0.16 
 



Table 3(a). Simulation Means and Standard Deviations of )1,(2 =qSQR θ : LN(0,1). 
                    θ            0.05           0.25           0.50           0.75           0.95 
        

        
0

~β  Mean -0.68 -0.50 -0.26 0.24 2.89 
 Std  0.25 0.18 0.17 0.57 8.74 
        

1
~β  Mean 0.00 0.01 0.00 -0.01 -0.04 

 Std  0.17 0.16 0.17 0.34 1.51 
         γ~  Mean -0.03 -0.03 -0.01 0.03 0.22 

 
 
T  =  50 

 Std  0.25 0.23 0.26 0.48 2.07 
        

        
0

~β  Mean -0.73 -0.56 -0.32 0.17 1.94 
 Std  0.09 0.07 0.07 0.22 3.54 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.01 

 Std  0.06 0.06 0.07 0.14 0.59 
         γ~  Mean 0.00 0.00 0.00 0.00 0.03 

 
 
T  =  300 

 Std  0.09 0.09 0.09 0.18 0.83 
 
Table 3(b). Simulation Means and Standard Deviations of ),(2 *qqSQR =θ : LN(0,1). 
           θ   

       ( *q ) 
          0.05 
     (0.413) 

          0.25 
     (0.524) 

          0.50 
     (0.526) 

          0.75 
     (0.230) 

          0.95 
    (-0.090) 

        
        

0
~β  Mean 0.11 -0.02 0.00 -0.01 -1.31 

 Std  0.10 0.08 0.11 0.34 1.39 
        

1
~β  Mean 0.00 0.00 0.00 -0.01 0.00 

 Std  0.06 0.07 0.11 0.19 0.21 
         γ~  Mean 0.01 0.01 0.02 0.04 0.05 

 
 
T  =  50 

 Std  0.09 0.09 0.16 0.29 0.32 
        

        
0

~β  Mean 0.12 -0.03 -0.02 -0.06 -1.57 
 Std  0.03 0.03 0.04 0.13 0.52 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std  0.02 0.02 0.04 0.08 0.09 
         γ~  Mean 0.00 0.00 0.00 0.00 0.00 

 
 
T  =  300 

 Std  0.03 0.03 0.06 0.11 0.12 
 
Table 3(c). Simulation Means and Standard Deviations of )ˆ,(2 qqSQR =θ : LN(0,1). 
            θ            0.05           0.25           0.50           0.75           0.95 
 

        
0

~β  Mean 0.00 0.15 0.12 -0.08 -1.26 
 Std   0.49 0.20 0.16 0.36 5.69 
        

1
~β  Mean 0.02 0.01 0.01 0.01 0.00 

 Std   0.22 0.13 0.13 0.21 0.71 
         γ~  Mean -0.07 -0.04 -0.02 -0.01 -0.05 
 Std   0.39 0.24 0.22 0.39 1.33 

 q̂      Mean 0.52 0.37 0.31 0.14 0.01 

 
 
 
 
T  =  50 

 Std   0.21 0.15 0.17 0.26 0.57 
 

       
0

~β  Mean -0.01 0.05 0.02 -0.10 -1.48 
 Std   0.13 0.09 0.07 0.12 0.76 
        

1
~β  Mean 0.00 0.00 0.00 0.01 0.00 

 Std   0.02 0.03 0.05 0.07 0.12 
         γ~  Mean -0.01 -0.01 -0.01 -0.01 0.00 
 Std   0.05 0.05 0.06 0.11 0.19 

q̂      Mean 0.51 0.46 0.46 0.21 -0.09 

 
 
 
 
T  =  300 

 Std   0.08 0.07 0.07 0.18 0.14 
 


