-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Research Papers in Economics

On Entry and Bidding in Sequential Procurement Auctions®

J. Philipp Reif}, Jens Robert Schondube
University of Magdeburg
Faculty of Economics and Management

reiss@ww.uni-magdeburg.de

Special version prepared for the 2004 Royal Economic Society Conference

Abstract

We analyze entry and bidding behavior of capacity-constrained firms in a sequence of two
procurement auctions where lowest sealed bids win. In the model, firms with a cost advantage
in completing the project auctioned off at the end of the sequence may enter the unfavored
first auction hoping to lose it. Equilibrium bidding in the first auction deviates from the
standard Symmetric Independent Private Value auction model (SIPV) due to opportunity
costs of bidding created by possibly employed capacity.

Revenue equivalence between the first-price and second-price sealed-bid auction formats
suggests that these results on entry and bidding don’t depend on the auction design.

The model explains that firms with identical completion costs for the first project may
differ in entry and bidding strategies.

In addition we report experimental evidence from Brosig and Reifl (2003) to assess the

predictive power of the model.
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1 Introduction

A key feature of procurement auctions is its sequential nature. Usually procurers differ across
regions, countries, firms, and institutions and set independently from each other different auction
dates implying a sequence of auctions. Sometimes projects to be auctioned off differ substantially
from each other, but often they are similar and, moreover, offered for execution during the same
window of time. Although the sequential nature of procurement auctions is prevalent, most
theoretical studies implicitly abstract it away by focussing on a single procurement auction in
isolation (e.g. Riordan and Sappington (1987), McAfee and McMillan (1987b), Budde and Gox
(1999), Dasgupta and Spulber (1989), Rob (1986), Celentani and Ganuza (2002)).

In the few contributions to the sequential procurement auction theory, it is common to
assume that any bidding firm has unlimited capacity to execute all sequentially offered projects,
see e.g. Gale et al. (2000) and Luton and McAfee (1986).! However, empirical studies on
sequential procurement auctions point to the relevance of capacity constraints. De Silva et al.
(2002) find that bids are positively correlated with firms’ capacity. Jofre-Bonet and Pesendorfer
(2000, 2003) report that a firm which didn’t win a highway procurement contract earlier in a
sequence of auctions is twice as likely to enter a subsequent auction than a firm which already
won a (large) contract. This evidence suggests that firms are aware of their opportunity costs
of bidding created by employed capacity and might be choosy if facing an auction sequence of
non-identical procurement contracts.

Our paper differs from the literature in that firms are capacity-constrained, procurement
auctions are in the first-price sealed-bid design, and projects are stochastically equivalent. Since
a potential bidding firm finds itself restricted to execution of a subset of sequentially offered
heterogenous projects, it must decide which procurement auctions to enter entailing a selection
of projects it wishes to possibly end up with.

For a procurement sequence of identical projects, the analysis of Weber (1983) suggests that
equilibrium expected payments of winning bidders coincide and, hence, any firm may want to
begin bidding at the start of the sequence. If, however, firms prefer to execute one project to
another due to different project completion costs, it is a priori not clear if a firm with more
favorable completion costs for projects to be auctioned later in the sequence submit bids for
projects auctioned earlier.

This paper studies this kind of entry decision and analyzes how firms refine their bidding
strategies with opportunity costs of early bid submission. Our main findings are that the entry
decision depends on relative project completion cost levels and equilibrium bidding in both

auction stages deviates from the standard Symmetric Independent Private Value auction model

! An important exception is Elmaghraby (2003).



(SIPV) and its sequential formulation with homogenous goods and single-unit demand. Firms
with lower completion costs for the first project auctioned off always submit bids while firms
with lower completion costs for the project subsequently auctioned off only participate if their
opportunity costs are not too large. Each firm entering the first auction includes its option
value of the second project in its bid for the first project. Moreover, we show that the first-price
and second-price auction designs generate identical equilibrium entry strategies and identical
expected payments for procurers suggesting that our results are independent of the choice of the
particular auction stage format.

The next section introduces our model and its symmetric equilibrium. In section 3, the
equivalence of first- and second-price auctions is demonstrated. Section 4 provides a parame-
terized example. The impact of alternative transaction opportunities on bidding behavior is

analyzed in section 5 and section 6 concludes.

2 The Model

There are two risk-neutral firms, each endowed with capacity to complete a single project.?
Two projects, L and M, are sequentially auctioned off. Subcontracting is prohibitively costly.?
The firms’ cost of completing any of the two projects are their private information. In order to
formalize the similarity of both projects and the aspect that the ranking of completion costs is
unknown® to competitors, we assume, in the spirit of Gale and Hausch (1994), that projects are
stochastically equivalent. In particular, it is common knowledge that firm 4’s costs of completion
are jointly drawn from f(l;,m;) with domain [c,¢]? and stochastically equivalent in the sense of
f(lm) = f(m,1) for every (I,m) € [c,¢]? implying E[L;] = E[M;). Although completion costs of
a single firm may be correlated across projects, pairs of completion costs of different firms are
independently distributed. If cost realizations of firm i are such that I; < m;, this firm is said
to have a cost advantage for project L, the reversed inequality indicates a cost advantage for

project M.

? Although the restriction that firms are required to complete at most a single project seems severe, closer
observation reveals that this element is common in procurement auctions. Firstly, procurers may stipulate exclu-
sive project completion to avoid that its competitors running a similar project gain benefits through a contractor
working for both procurers. Secondly, a firm may face capacity constraints if projects run simultaneously and re-
quire relatively large amounts of its resources. Finally, firms may voluntarily decide not to execute simultaneously

several risky projects to prevent changes in the risk distribution of their entrepreneurial activities.
3Empirical studies on procurement bidding (e.g. Jofre-Bonet and Pesendorfer 2000, 2003) find that the proba-

bility that a firm participates in an auction and that a participating firm wins the auction decreases in its backlog.
This points to the fact that firms regard subcontracting as costly and not always as a feasible option to weaken

their capacity constraints.
*Unlike the second-price procurement auction model in Elmaghraby (2003) where it is assumed that the second

project is always more costly than the first one.



In each procurement auction, a participating firm may submit a sealed bid where the lowest
bid wins the project and the bidded amount is paid in exchange for completion of the project.
However, bids cannot exceed maximum completion costs ¢ which may be interpreted as the
procurers outside option. We assume that the auctioneer cannot set a price below maximum
completion costs ¢ and that resale of projects is not feasible. If there happens to be a bidding
tie, auctioneers employ a fair chance mechanism to break it. The sequence of auctions begins
with the procurement auction of project L where the winner is announced before project M is
auctioned off. Thus, with two firms, any firm knows if it faces competition in auction M before
it submits its bid.

Since both firms are ex ante symmetric, we restrict attention to the case of symmetric
equilibria. We refer to the representative firm as firm 1. In addition to equilibrium bidding
functions for each auction stage, a firm’s strategy also includes a decision to submit a bid in
the first auction or skip bidding for project L. Intuitively, there must be a region of cost types
where firms reject to bid in auction L since a firm with completion cost [ = ¢ cannot make any
profit by completing this project and, moreover, is - if it has won project L - excluded from
participating in auction M where its expected profits may be positive due to more favorable
costs of completion m < €. Obviously, these extreme cost pairs highlight that opportunity costs,
which coincide with expected profits from skipping auction L, exceed expected profits from
bidding for project L. In general, firm 1 participates in auction L if its expected profit from
bidding exceeds opportunity costs arising from possibly being excluded from bidding for project
M, formally

By (1, m)] > B[

ml]a

where E[TT"|(11,m1)] denotes firm 1’s expected profit if it bids in the procurement auction for

project L and - if unsuccessful - continues bidding in auction M and E[I1}?| m] is its expected
profit if it skips the first auction and bids only for the subsequently auctioned project M. Profits
are random since completion costs of any competitor are unknown and determine its bidding
behavior.

The firm’s decision to skip auction L depends on the relationship of its completion costs.
In order to formalize the entry decision we introduce the entry indifference curve g; : [¢,¢] —
[c,¢] that assigns a level for the completion cost of project L to each cost level of project M
such that the firm is indifferent between taking part in auction L and skipping it. The entry
ferit

indifference curve = g1(my) is implicitly defined by the equality of expected profits from

entering auction L and corresponding opportunity cost:
E [Hf*M | (lf”t,ml)} = E [T m,]. (1)
Since it cannot be worthwhile for a firm to participate in auction L with [; > lf”t but it must
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be if I; < I§"®, the firm’s decision rule to participate in auction L is given by

( ) Enter Auction L if {1 < g1(mq)
e1(l,my) =
Skip Auction L if {1 > g1(mq)

Next we derive the equilibrium bidding functions for both procurement auctions since these
determine expected profits on which the entry indifference curve g;(m;) depends. Since the
equilibrium bidding functions depend on the equilibrium entry indifference curve themselves,
we derive these for any entry indifference curve gi(mq). The equilibrium indifference curve is
denoted by g(m) and is identified given equilibrium bidding behavior. Thus equilibrium bidding

and the entry indifference curve are simultaneously determined.

2.1 Equilibrium Bidding Functions

Both auctions employ the first-price sealed-bid auction format where the lowest bid wins.> Under
this auction design, the symmetric equilibrium strategy in a one-shot auction is well-known and

summarized for the procurement context in lemma 1.

Lemma 1 Cohen and Loeb (1990), Equilibrium bidding in a first-price sealed-bid procurement
auction

Let project completion costs of n risk-neutral firms that bid for a single project contract be private
information and independently and identically distributed according to cdf H(c), ¢ € [c, €.

Then, the symmetric equilibrium bidding function is b(c) = c+ff [1—H(z)]" tda/[1 — H(e)]" .
(The proof is omitted.)

For our sequential procurement auction game, we derive the equilibrium bidding function
for each of the two project auctions by application of this lemma to our specific context with
additional strategic interaction: In the first auction stage every firm knows that a second auction
follows. In the second auction stage, each bidder receives information on the outcome of the
first auction L.

Consider first the auction for project L. Any of the two firms that enters the first auction
anticipates that in case it does not win the first auction, it will be the only bidder in the
subsequent auction M where it will receive ¢ — m. Thus, it might submit a relatively high bid
for project L, since it is, at least partially, insured against losing the first auction. In particular,
a firm with a cost advantage for project M knows that the largest payoff it can receive is ¢ — m
from being the only bidder for project M since its largest payoff in auction L is ¢ — [ which must

be smaller due to the firm’s cost advantage. Thus, provided the firm decides to participate in

PCf. Vickrey (1961), McAfee and McMillan (1987a) or Milgrom (1989) for a description of the first-price

sealed-bid auction design.



auction L, it seeks to lose the first auction and minimizes its chances of winning project L by
submitting the highest feasible bid which simultaneously maximizes its payoff from accidentally
winning it. In contrast, if a firm has a cost advantage for project L, then it tops its completion
cost [ with its certain return from auction M and uses this revised cost parameter A =14+¢—m
in auction L. Intuitively it uses its total cost of executing project L that include the direct
project cost | and the opportunity cost of winning project L, ¢ — m (=benefit of not-winning
auction L): Any firm taking part in auction L treats ¢ — m as a safe profit. In case it wins
project L, it pays the cost of executing this project and 'repays’ the amount ¢ — m.

If there is no bidding competition in the auction for project M, then any firm bidding for
it submits the maximum feasible bid to maximize profits. If it is not the only bidder then it
receives the additional information that its competitor did not enter auction L, too. In response
it updates its belief about its competitor’s cost parameter for project M since skipping auction
L might not be equilibrium behavior for every type. The appropriate a posteriori pdf is denoted
by farskip(m) and gives the (equilibrium) density that a firm with completion cost realization m
for project M bids only in auction M. Put differently, fysxip(m) is the marginal pdf of f(I,m)

conditional on the fact that completion cost pair (I,m) leads the firm to skip auction L.

Proposition 2 Equilibrium bidding functions in auctions L and M

The equilibrium bidding functions of a firm with completion cost pair (I,m) € [c,¢]? are given

by:

(a) V() =

c if l>m
A+ [S[1— Fa(z)]dx/[1 — Fx(N)]  otherwise
if it submits a bid for project L where X = 1+¢—m and F\(z) = [ (];_C_A f(m—c+X,m)dmd\
with © € [, €.
(b) bM (m) = [€ i if it is %he only bidder
m+ [ [1 - FM|Skip(93)] dx/ [1 - FM|5k¢p(M)] otherwise
if it submits a bid for project M where fyrspip(T) = Ugc(m) f(l,x) dl} / UQC _[;(z) f(l,z)dldz| and
Farsrip(z) = [cw Jaiskip(s) ds and g(x) denotes the competitor’s entry indifference curve.

Proof See the appendizx.

2.2 Entry Decision

In this section, we derive the entry indifference curve (1) under the assumption of equilibrium

bidding that is summarized in proposition 2. Obviously the expected profit from bidding in
M
1

auction L and possibly in auction M, E| (I1,m1)], always exceeds the expected profit
from skipping auction L, E[I1}|m] if firm 1 has a cost advantage for project L (i.e. I3 < my):
the expected profit from entering auction L and possibly M is at least as large as ¢ — m;.

To see this suppose that the firm would bid ¢ in auction L. Then it receives in expectation



(¢—11)-Pr(won L)+(¢—mq)-Pr(lost L)> ¢—m;. For any bid in auction M, the expected profit
from skipping L, E[II}|m;], must be lower than & — my since there is a positive probability
of bidding competition in auction M. It follows that (1) can only hold if I > m; and that

without loss of generality the entry indifference curve is defined by:
E |:Hf+M| (lf”t > ml,ml)} =F [H{\q ml] . (2)

In order to explicitly state equation (2), consider first its left-hand side. A firm with a cost
advantage for project M that enters auction L bids ¢ in auction L and if it loses ¢ in auction M.
This strategy results in four events summarized in the next table where the probabilities depend

on firm 1’s belief that firm 2 acts in accordance with the entry indifference curve ga(Ma).

Events if firm 1 bids ¢ in auction L Payoft Probability

it is the only bidder c—h Pr (Ly > g2(M>))

the competitor bids ¢ and firm 1 wins L | ¢ —1; | Pr (g2(M2) > L2 > M2 )-0.5
the competitor bids ¢ and firm 1 loses L | ¢ —my | Pr (g2(M2) > Lo > M3 )-0.5
the competitor bids less than ¢ c—m Pr (Ly < M)

g aQ w =

Hence the expected benefit to a firm with a cost advantage for project M from starting
bidding for project L with b = ¢ and then continuing bidding in auction M after losing auction

L is given by

B[mf @ s mm] = [ g i dme - (et (&)
€ ga2(m2)
¢ g2(ma) ]
4 / w dly dmy - [2¢ — (It +m1)] (B+C)
+/ /'f(zg,mg) dly dmy - (€ —my) (D)

Now, consider the right-hand side of (2). If firm 1 skips auction L there are three events
depending on the entry behavior of its competitor. Again firm 1 assesses the probabilities of

these events given its belief about the competitor’s entry indifference curve g(Ms).

Events if firm 1 skips auction L Payoff Probability
E no bidding competition c—my Pr (Ly < go(Ms))
F  firm 1 wins project M WM (my) —my | Pr(Ma > my A Ly > go(Ms))
G the competitor wins project M 0 Pr(Ma < my A Ly > ga2(Ma))




Thus the expected benefit to firm 1 with a cost advantage for project M from skipping

bidding for project L can be written as:

[ 92(77}2)
B[ | my] = (@ — ma) / / (s, m2) dls dms (®)
/ / bJ\[ m1 ml] f(lg, mg) dlg dmg (F+G)

mi ga(ma)

A standard result in auction theory is that in first-price sealed-bid auctions bids are formed such
that they equal the expected second-order statistic from the relevant type pool (conditional on
the own type being the first-order statistic). Thus, ™ (m;) in the last term in E[TI}|m;] can
be substituted by ms. This is formally confirmed by lemma 3 implying:

¢ ga(mg)

E[HM’ mﬂ (C — ml) / / f(lg, TTLQ) dlg dTTLQ (3)

[

/ / mz — m1 f(lz, mg) dlz dmz

m1 go(ms)

Clearly E[I1})?| m1] decreases in m; and is independent of [;.

Lemma 3 Firm 1’s expected profit from equilibrium bidding in auction M if there is bidding
competition and bM = bM (my) is equal to the expected profit from bidding the expected second-

order statistic of completion costs given that firm 1’s completion costs are the lowest, i.e.

/ / Y —m) - f(l, mg) dly dmg = /E /E (ma —ma) - f(la, m) dly dms.

m1 ga(ma) m1 ga(ma)

Proof See the appendiz.

Lemma 4 Boundaries of the entry indifference curve g(m)

Let 1§ = g1(mq) be implicitly defined by E[II-TM |15 my)] = E[IIM|my). If gi(m1) evists,

then my < g1(mq) <€ for my € [c, €) and g1(¢) =¢.
Proof See the appendiz.

In order to determine the entry indifference curve I§™ = g1(my) it is sufficient to consider
entry condition (1) for firms with a cost advantage for project M since, according to lemma

4, for all other types expected profits strictly exceed opportunity costs. Thus, substitution of



the definitions of expected profits from both entry strategies into (2) leads with some minor
algebraic manipulations using the properties of f(I,m) to the implicit definition of the entry

indifference curve 1§ = g(my):

c—my 2c — (lgrit + m

o+ 5 ) %-_/'./ f(la,ms) dly dmy +(z—z?“)/'t/ f(l2,ma) dly dmy

€ ga(me) ¢ ga(ma)

(4)

¢ g2(m2) T ¢
— (E — ml) / / f(lg,mz) dlo dmo — / / (mz — ml) . f(lQ,mQ) dls dmo = 0.
c ¢ M1 go(ms)

The existence of the entry indifference curve in symmetric equilibrium is verified in proposition
5 where also its properties are given. Its proof contains a differential equation whose solution
is the symmetric equilibrium indiffence curve g(m). Figure 1 illustrates these results for a

representative firm with completion cost pair (I,m).

Proposition 5 For the symmetric perfect Bayesian equilibrium characterized by the represen-

tative firm’s strategy [b*(I,m), ¥™(m), e(m)] and the density function f(I,m):

(a) There exists a (nonempty) compact and conver set of completion cost pairs where it is
rational for a firm to bid for project L although it has a cost advantage for completing
project M. This subset is defined by G = {(I,m) € [¢,¢]*|m <1 < g(m)}.

(b) The critical value function g(m) exists and

(i) m < g(m) <cif m € [c,?), 9(¢) =7C, g(¢) >¢,
(i) g'(m) >0,

(iii) ¢"(m) <0 f. m € ¢, ) and ¢"(¢) = 0.

Proof
Part (b) of the proposition directly implies the existence and the claimed properties of set G
in (a). Therefore it is sufficient to show the existence of g(m) satisfying (i)-(iii) to prove the
proposition.
The implicit-function theorem implies existence and differentiability of I = g;(m1) as defined
by (4) for any function go(ms). In a symmetric equilibrium, both firms act in accordance with
the same equilibrium entry indifference curve denoted by g(m). Thus g1(m) = g2(m) = g(m)

and (i) follows from lemma 4. Again, using symmetry of equilibrium entry behavior with identity



(4) and subsequent differentiation w.r.t. m leads to

—g/(2m>/ / Flla,mg) dly dmz—gl(élm) +%—%/ / f(la,m2) dly dmy (5)
)

< g(ma) < g(mg
+ / / f(lz,mz) dlz dmz =0.
m g(ms)

ol

By (i) [ [ f(l2,me) dly dmy <
¢ g(m2)
(5) implies ¢’(m) > 0 as claimed in (ii

| f(la,m2) dla dmg where the latter equals 1/2, identity

18— ql

3

~—

Differentiation of (5) w.r.t. m yields

_g'm) / / F(la,ma) dly dms — gﬂim) — / Fla,m) dls =0

2
¢ g(ma) g(m)
implying (iii). O
1, ferit
A
o —_——— - [=m

Skip Auction L

Enter Auction L
(b-=2¢)

Enter Auction L
(b-<¢)

Figure 1: Equilibrium Entry Behavior

Consideration of proposition 5 leads to the conclusion that any firm always enters auction L
if it faces a cost advantage for this project, i.e. [ < m. Then it earns at least ¢—m while skipping
auction L leaves it with running the risk of lower profits in case its competitor also skipped the
first auction resulting in lower expected profits of this strategy. In contrast, a cost advantage
for completing project M implies the impossibility of the firm to secure itself the same return in
auction L as it could earn in auction M being the only bidder. However, if the competing firm

has a strong cost advantage for project M and skipped auction L, then there is competition in
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Entry Decision Bidding in L Bidding in M

12m? o, A=/+¢-m ot
b-(A) < ¢ " _
yes only bidder:
A b’V’(m)= c
[>g(m)? no » A>C if_ IoLst
= n
bh=c competition:
,yes bM(m)< ¢
skip L .

Figure 2: Equilibrium structure of the sequential procurement auction game

the second auction with the risk of low or even zero profits due to aggressive bidding. Therefore
a firm may wish to participate in the first auction and win the unloved project L at a high
price to insure itself against low profits resulting from fierce competition in the second auction,
although it actually prefers losing the auction for project L. Figure 2 illustrates the equilibrium

structure of the game.

3 Revenue Equivalence

In this section we briefly demonstrate that our results on equilibrium entry with a first-price
sealed-bid auction design coincide with those obtained under a second-price sealed-bid auction
regime.% Here the term revenue equivalence refers to the bidders’ perspective and means that
under revenue-equivalent auction formats, which may even differ across both auction stages, a
bidding firm receives the same expected revenue net of expected project completion costs from

equilibrium bidding.

Lemma 6 Second-price sealed-bid auction: equilibrium bidding functions
The equilibrium bidding functions of a firm with completion cost pair (I,m) € [c,¢]? under a
second-price sealed-bid design are given by:

c—m+1 ifl <m

(a) b2 (1,m) = = if it submits a bid for project L.
c ifl >m

(b) M (m) =m  if it submits a bid for project M.

Proof See the appendiz.

Expected profits under the second-price sealed-bid design for the entry-strategies ”skip auc-

tion L” and ”enter auction L and possibly M” can be determined with the bidding functions as

6Cf. Gale and Hausch (1994) on the second-price sealed-bid design in a similar setting.
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given in lemma 6 analogously to the profit determination with the first-price sealed-bid auction

format:
¢ g2(me)
E[H¥7SP| mﬂ = (E — m1 / / f lo, mg) dls dms (6)
/ / (mg —my) - f(l2,m2) dla dma
m1 go(ma)
E. ma
B SPI 1 >, m)] = (@ —m) / / F (12, ms) dly dim )
5 l C g2 mz)
w/ / fla,m2) dla dma + (¢ —11) / / f(la,m2) dla dms
€ € ga(ma)

Lemma 7 Firm 1’s expected profits from both mutually exclusive entry strategies, either en-
tering auction L and possibly auction M or only bidding for auction M, coincide under the
first-price and second-price sealed-bid auction formats if the entry indifference curves of firm 1’s
competitor coincide under both auction designs, i.e. for gfp( ) = g5F (z) = ga(z) it follows:

(a) E[I1 i\{’fp\ my] = E[II {\{’Sp\ my1] where the RHS is defined by (6),

(b) B[P (1 > my,my)] = EETYMP|(1y > my, my)] where the RHS is defined by (7).
Proof See the appendizx.

Proposition 8 The equilibrium entry indifference curve g°?(m) under the second-price sealed-
bid auction format in the symmetric perfect Bayesian equilibrium is identical to the entry in-
difference curve g/P(m) under the first-price sealed-bid auction design as identified and charac-
terized in proposition 5. Therefore, auction entry decisions coincide in equilibrium under both

designs and there is equivalence of firms’ expected equilibrium profits.

Proof As for the first-price sealed-bid auction design, the entry indifference curve under
the second-price auction format is defined by the equality of E [H{M’Sp | mi] and E [Hf”‘“p |(l1 >
mi,m1)] arising from participation in auction L and possibly in auction M. (E [Hf”‘“p |(l1 <
m1,m1)] can be neglected for exactly the same reasons as in the first-price sealed-bid case since
lemma 4 applies here, too.) It follows that the only difference between the implicit definitions of
the entry indifference curve under both auction formats is that under the second-price sealed-bid
auction it is named g5¥(m) as a result from E[II}"*|m1] and E[IIL | (1, > my,m1)] as given
in lemma 7. Therefore the entry indifference curves must be the same, i.e. g5/ (m) = ggp (m) =
g2(m). In consequence, proposition 5 also applies to the second-price sealed-bid auction format

since no other property specific to the first-price sealed bid auction in its proof is used. However,

the appropriate equilibrium bidding functions are given in lemma 6. [J
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4 A Parameterized Example

In order illustrate the results of our model, we utilize a bivariate uniform distribution to explicitly
determine equilibrium entry and bidding strategies under the first-price sealed-bid auction design

with:

1 . _ B

— ifc<lo<¢c<my<c

f (ZQ) mQ) - (079)
0 otherwise

Since bidding behavior depends on the entry indifference curve, we begin with the derivation of
g (m). Equation (5) implicitly defines g (m) and simplifies with our distributional assumption
to the following differential equation:
/ c / C
g (m) [°. g(m) 1 1 [°_
—_ — dmg — ¥———= + — — — — d
i [ Ematm]dmy — T g o [ g )]

+% /mE [E—g(mg)} dmg =0

with § = (¢ — ¢)*. This equation can be reduced to the following second-order differential equa-

tion
z(m) v

Z” (m) _

(51}1 U1 =0 (8)

where

" '{@4,@2:

26 4 El B %} ‘ (10)

The general solution of (8) is
z(m) = AjeVor + AQ@JT—l — dvg,

where A; and Aj are arbitrary constants of integration. The fact that g (¢) = ¢ implies 2’ (¢) =0

and z (¢) = 0. In consequence, A; and Ay are determined by the following system of equations:
z(€) = AreV®1r 4 AyeV®i —fug =0

, — Ale\/‘s;Tl — AQB\/_T%
z'(¢) = =0,
vV 5’[)1

with solution

_1 v 1o (eE)
Av= 5 ovem A2 = gove '

Therefore, the definite solution of (8) is:

m—=¢c

1 t—m
z(m):§5v2 eVer +evii — 2] .
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Note that v; and vy depend on z (¢) . For a given parameter ¢, z (¢) can be numerically derived

by solving the following equation w.r.t. z(c).

1 m—<c c—m

z (Q) = 5(5@2 (z (Q)) e V1 (z(9) + eVivi(z(e) — 92| . (]_]_)

By construction of (9), g (m) = ¢+ 2’ (m) such that the entry indifference curve is given by

m—¢

c—m
81/6'01 _ 81/61}1
vV (51}1

1
g(m)=c¢+ 551}2

For the remainder of this example, let the domain of project costs be given by |, E}z = [20, 100]2
implying 6 = 6400, 2z (20) = 1475.4373, v; = 0.365 and vy = 0.135. For this distribution, the

entry indifference curve is given by

m—100 100—m

g(m) =100+ 8.938 - |e48332 — ¢48.332

1004

30+

501

407

204

20 30 40 50 60 70 80 90 100
m

Figure 3: g(m) for (I, m) ~ U [20,100]?

The cdf of opportunity-cost-augmented completion cost levels of project L is given by

(A —20)?

B @) =550

Using this result and the numerical function g(m) with proposition 2a leads to the equilibrium

bidding strategy in auction L:

100 for g(m) >1>m

A3—30A%—1,660,000
A2 —40A—12,400

vl (N =
otherwise

2
3
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Figure 4: Equilibrium bidding function b (\)

If both firms don’t submit a bid in the first auction, each of them uses this information to update

its beliefs about its competitor’s distribution of completion costs resulting in the a posteriori

density fazsip (7): )
4902 ] [cclOO}:|

Ja1|Skip (z) = 0.00604 - [e '

According to proposition 2b, the bidding function of a firm that submits a bid in the second
auction M is given by

(

100 if it is the only bidder
[100—m} [m—lOO]
bM (m) — 0.5839(m—100)+14.110 | e —e “
m+ 100—m —100 otherwise
{ [ 48.332 ] [ 48.332 ] :|
0.292 e +e —0.5839
\

1 UU e Sy Sy Sy Sy S S S ey Sy Sy S S S S e S e S e e e e o e e e el
90
20
u ]

5 701

60

501

20 30 40 50 60 70 80 90 100
M

Figure 5: Equilibrium bidding function o™ (m)
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5 Impact of Alternative Transaction Opportunities

In this section, we demonstrate how bidding behavior in the first auction varies with the value
that a firm places on the opportunity to participate in a second auction. The option value
negatively depends on a firm’s completion cost for the second project and from the equilibrium

bidding function b%(\) with A\ = [ + ¢ — m we obtain

ov-i,m) _ [ PR <0 ifl<m

om 0 otherwise

As the completion cost m increases, the option value of participating in the second auction,
¢ —m, decreases and firms with a cost advantage for the first project bid more aggressively in
the auction for project L in contrast to the prediction of the standard SIPV model. For the
purpose of illustration, consider our parameterized example with two firms where completion

costs are uniformely distributed on [[, m].

(a) (Base Scenario): Suppose the completion cost for project M to be fxed at some level below

maximum completion cost, say m = 80. The bidding function for the first project L is:

2 124301%2—1,664,000
b (1, m = 80) = 3’ 12-12,800 L<80
100 { >80

Figure 6 illustrates that bids in the dynamic auction environment with m = 80 substan-

tially exceed bids in a one-shot auction given by b(l) below.

m
A

100

88
86

60

20

\
~

20 50 100

Figure 6: Bidding for project L under various outside options
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(b) (One-Shot-Auction) There is no second auction such that the first auction reduces to the

standard SIPV model in a procurement context, see lemma 1:

b(l) = 50 + 0.5

(¢) (Virtually No 2nd Auction) Consider base scenario (a) with maximum completion cost
m = 100. Compared to b¥(I,m = 80), the larger completion cost m shifts the bidding
function b (1, m = 100) downwards,

13 — 3012 — 1,660,000
12 — 12,400 — 401

2
bl (1, m = 100) = 3

The exemplified change of b*(I,m) in response to increases in m illustrates typical com-
parative static behavior. Note that bids with virtually no second auction do not coincide
with bids in the one-shot auction since completion costs are private information. It follows
that the standard SIPV model is no special case of our dynamic auction model with an
option value equal to zero. In addition, bidding for the second project under competition
in our model is more aggressively than in the SIPV model for identical cost types m due
to endogenous type selection: since relatively more low-cost types skip the first auction, in
the second auction firm 1 expects its competitor to have a lower cost than it does in the

SIPV model.

6 Experimental Results

The preceding section highlighted the fact that variations of the second round auction game
change the equilibrium bidding function in the first round. In particular, larger costs for com-
pleting the second project, which correspond to a lower value of the second round game, lead
to more aggressive bidding for the first project. This theoretical prediction and that on entry
behavior are fulfilled in the laboratory implementation of our auction model. We sketch some
of the results obtained by Brosig and Reif3 in a study of sequential procurement auctions at the
Magdeburg Laboratory for Experimental Economics (MaxLab), see Brosig/Reif3 (2003).

Figure 3 summarizes data on entry generated in one of the treatments where 24 subjects
played the procurement auction sequence, each of them with 28 pairs of completion costs. Each
marking in the (m,[)-space represents one completion cost pair. The size of the markings
indicates the frequency of decisions on entry in line with the theoretical prediction relative to
all observed decisions on entry for that cost pair. Out of a total of 672 observed entry decisions,
approximately 70% are correctly predicted by our theory. It is apparent from figure 3 that the
number of correctly predicted entries rises as the cost pair is farther away from the critical-value

function. In the vicinity of g(m), a false entry decision is less costly and on its graph, the cost is
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Figure 3: Entry decisions in line with theory

zero by definition. Thus, the theory’s predictive power increases as the expected cost of incorrect

entry is larger. This is rigorously confirmed in Brosig/Reif} (2003).

Av.Bids(m=40.57
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Figure 4: Observed bidding for project L

Figure 4 depicts average bids for project L as a function of [ for two different cost levels
for the second project. Apparently, observed bids for m = 40.57 (significantly) exceed those
for m = 60.12 in the relevant range 20-60.12 which is in line with our sequential procurement
auction model, see the previous section. Both bid samples (significantly) exceed predictions of
the standard one-shot auction model. Since the overbidding phenomenon in standard auction
experiments translates to underbidding in the procurement auction context, this fact is partic-

ularly remarkable and strengthens the suggestion that subjects included opportunity costs of
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early bidding in their bids for project L.

7 Conclusion

Motivated by recent empirical evidence that suggests that (1) firms perceive independent one-
shot procurement auctions not in isolation but rather as an auction sequence, that (2) sub-
contracting isn’t perfect and that (3) firms are aware of their opportunity cost, this paper has
introduced a sequential procurement auction model to study firms’ entry and bidding strategies.
In contrast to a procurement auction version of Weber (1983) and Elmaghraby (2003), the pre-
sented model predicts that firms not always participate in early auctions. In addition bidding
behavior in each auction stage strongly depends on the option value that a firm places on re-
maining auctions contrasting with a procurement auction version of the standard SIPV model.
If real-world firms would regard auction stages in a sequence of auction as one-shot games and,
thus, would ignore alternative transaction opportunites, the focus on the standard SIPV model
is appropriate. The experimental data generated by the implementation of our procurement
auction model in the laboratory, see Brosig and Reifl (2003), suggests that the option value of
alternative transaction opportunities strongly influences bidding and entry behavior in the lab

similiarly to the theoretical predictions and renders our approach relevant.
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8 Appendix

8.1 Proof of proposition 2

Consider first part (b): Before bidding for auction M, any firm knows if its competitor won
auction L. If the competitor entered auction L, the firm remains the only bidder in auction
M and maximizes its return by submitting the largest feasible bid equaling ¢. If, however, its
competitor skipped auction L, the firm infers that its competitor’s completion cost pair must
satisfy L > g(M) (to be determined later) and Bayesian updating of the firm’s cost belief
regarding its competitor leads to the a posteriori pdf fyy, skip(2). Appealing to lemma 1 leads to
bM(m).

For (a), note that a firm receives ¢—m in auction M if it loses auction L. If its completion costs
satisfy m <[ then it cannot receive a larger return in auction L, ¢ —m > ¢ — [ by assumption.
Thus the firm chooses to receive the largest feasible return from auction L by bidding ¢ which
also maximizes the frequency it ends up with the larger return from auction M, provided it
submits a bid for project L.

In case the firm has a cost advantage for project L, i.e. | < m, its expected profit from

participating in auction L with any bid b¥ € [c, €] and possibly in auction M is given by
EM ™|l < m] = (bf — 1) - Pr(b{ wins auction L) + (¢ —my) - [L — Pr(bl" wins auction L)] .
Using firm 1’s total cost parameter \; = l; + ¢ — my, this can be rewritten as

Bl < my] = (b — Ap) - Pr(bl wins auction L) + ¢ —my

From firm 1’s perspective ¢ — m1 is a known constant and its expected profit from bidding in

auction L, E[ITLTM| 1} < my4], is maximized if b} maximizes
Z(\1) := (bF — A1) - Pr(b¥ wins auction L) (12)

where I1 < m1 & A\ < ¢ by definition. Suppose there exists a symmetric equilibrium bidding
function % (\) that maximizes Z such that it is strictly increasing for A < ¢, b(\) < éfor A < ¢,
and b(\) = ¢ for A > ¢. Since b¥()) is strictly increasing on [c,c], there exists an inverse on
that domain denoted by b—1%(b%). Given that firm 1’s competitor adheres to this equilibrium
bidding function, firm 1 (with a cost advantage for project L) wins always the first round if
its competitor has a cost advantage for project M, Ao > ¢. It wins project L too, if it bids an
amount that corresponds to a lower total cost type A; = b~14(b) than the one of its competitor

A2. Denoting the cdf of total cost types by Fi()), (12) can be rewritten as’

Z(A1) = (b = M) - [1 = FA(b™ "5 (b1))] (13)

"Here the fact is used that types with a cost advantage for project L always enter the first auction. This is

formally confirmed in lemma 4.
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where f\(A\) = _[;Ci/\ f(m—2c+X, m)dm and Fy(¢) = 1/2. If b{ maximizes Z then 0Z* /Ob} =
and differentiation of (13) at the optimum w.r.t. A\; yields

dz*
d)\l

—[1=E@ ).

Integration in the boundaries [A1, ¢] together with the fact that in a Nash equilibrium b3" must

coincide with the value of the equilibrium bidding function at the true cost type A1 leads to

2) - 2°(w) = - | (L= F(2)] da

Since b (¢) = ¢, we have Z*(¢) = 0 and obtain with (13) at its optimum the equilibrium bidding
function for \; < &

]/\1 z)| dx

bL()\l):A 1—F>\()\1)

8.2 Proof of lemma 3

b]\l

Noting that m; and b}" are constants and substitution for the latter according to proposition 2

leads to

© [1 — Fapyskip(z)] da f
Jony 1= Fsyisip (2 / / f(la, m2) dly dms = /(mg—ml) / f(l2,m2) dly dmy

1 — Fag|skip(ma)

mi1 ga(ma) g2(mz2)

H%ol

Since 1— Fip,|skip(T) = [

equation

ng (5) S L2, 5) dlz ds] / [ff fgi(t) fla,t) dls dt} we obtain from the last

c cC Cc

[ ][ 00 dodsao -

m1 T g2 (3)

§\m

(mg — ml) / f(lg, mg) de dmg.
g2(mo)

Let ¢(ms2) be the integral of [gi (m2) f (lz,mz) dls, then integration by parts of the right-hand

side using | [2(m2 fla,mg) dlydmg = me [92(u (I2,u) dls du leads to
// / f ZQ, dlg dsdx = / / / f lg, dlg dsdmg
mi T go(s) mi1mz go(s)

which obviously holds. [

8.3 Proof of lemma 4

Suppose g1(m1) = ¢, then firm 1 always enters auction L. For I3 = ¢, the firm never makes
any profit from project L such that the strategy to enter auction L and continuing bidding in

auction M if possible is profitable only if it doesn’t win project L resulting in the same profit

21



as if the firm had skipped auction L. If the competitor has a cost advantage for project M,
it either bids ¢ for project L or skips the auction. In both cases, firm 1 wins project L with
positive probability although it could have won the profitable auction M in some cases since
my < € such that E[IIFTM|(l; = ¢ my < )] < E[IIM|m; < @. Since g1(m1) > ¢ leads to the
same entry strategy as gi(mq) = ¢ implies, it follows that g;(m;) < € for m; € [c, ©).

For g1(m1) < ¢ it follows immediately from (3) that E[I}|m; < ¢ < € —my. If firm 1 has
no cost advantage for project M, i.e. [; < mq, according to proposition 2 its bidding behavior
guarantees it at least profit ¢ — my for each feasible completion cost pair of its competitor, thus
E[Hf+M|l1 < my < ¢ >¢—my. Therefore, g1(m1) > my, my € [c, ©).

If m; = ¢, then the definition of gi(m;) directly implies g1(¢) = €. To see this note that
E[MM|my =¢)] = 0 and E[ITFY|(E,¢)] = 0 while E[ITET|(1; < E,¢)] > 0 which completes the

proof. [J

8.4 Proof of lemma 6

To prove (b) consider a Vickrey argument: b* only deviates in payoff for the firm if overbidding
with b leads a competitor to win with bid b where b>b>mor underbidding with b to win
project M where b < b < m. In the first case, b = m leads to the additional payoff b — m, in
the second case, underbidding results in the loss m — b while b = m guarantees zero profits.
Since in all other cases the strategies over- and underbidding and the bidding strategy b* = m
lead to identical payoffs, the latter is a weakly dominant strategy in auction stage M.

For (a), at first consider [ < m: If both firms submit bids for project L, the representative firm
anticipates that it receives ¢ — m in the second auction if it doesn’t win project L. Thus, true
completion costs including opportunity costs are given by A =¢ —m + 1. A Vickrey argument
analogous to the one given for (b) reveals optimality of b* = X. If the representative firm is
the only bidder for project L, any bid guarantees it the surplus ¢ — [, therefore bidding A is a
weakly dominant strategy if [ < m. Now suppose [ > m: Clearly, the representative firm cannot
secure itself return ¢ —m in auction L since this requires a bid exceeding ¢. If, however, the firm
submits a bid for project L,it submits the largest feasible bid, i.e. ¢. Depending on the bidding
behavior of the other firm, it receives either ¢ — [ or ¢ — m where the latter exceeds the former.
If it submits any lower bid in auction L than ¢, it reduces its expected profit since it receives a
lower return from bidding in auction L and increases the probability of winning the low prize.

Thus bidding b* = ¢ for [ > m is optimal. O

8.5 Proof of lemma 7

Proving (a) amounts to show that expected profits of firm 1 under both auction designs coincide

for any competitor’s entry indifference curve go(ms) if firm 1 adopts equilibrium bidding. In
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either auction format, firm 1 receives the amount ¢ — m; if it happens to be the only bidder and
nothing if its competitor has lower completion costs for project M (see lemma 6 and proposition
2b). Therefore it is sufficient to show that expected profits in both auction formats are the same
conditional on bidding competition. Thus we have to demonstrate that the following equation

holds b} is firm 1’s equilibrium bid under the first-price sealed-bid auction:

/. / (biw — ml) . f(lg,mg) dlg dmg = / / (mg — ml) . f(lQ,mQ) dlg dmg

M1 gdP (my) mi gsP (my)

Since ggp (m2) = g5¥(m2), we can appeal to lemma 3 to prove that the preceding equality holds

and thus part (a) of this lemma is established.

Now consider (b): According to proposition 2 and lemma 6, firm 1 bids in auction L under
the first-price and the second-price auction design always maximum completion costs ¢ (since
Iy > myq). It wins this auction and receives always ¢ — [y if its competitor skipped the auction,
ie. Lo > ggp (Ms) or it receives this amount half the time and otherwise ¢ — my if firm 2
has a cost advantage for project M and bids ¢, occuring if ngp(Mg) > Lo > M. If firm 2
has a cost advantage for project L, it submits a bid below ¢ and firm 1 loses this auction but
wins in turn project M giving it € — m;. Inspection of E[Hf+1\/[’$p\(l1 > mq,mq)] in (7) and
B! FMIP|(1; > my,my)] in subsection 2.2 shows that firm 1 faces the same return for every
competitor’s type regardless of whether a first-price or second-price auction is employed if entry

indifference curves coincide. [J
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