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1. Introduction: The Evolution of the Consumption Function

Over many years, the aggregate consumption function has provided a context in
which problems of econometric modelling have been debated and from which
significant innovations in methodology have emerged. Whereas such innova-
tions have advanced the subject of econometrics, none of them has been wholly
appropriate to the aggregate consumption function itself. This may be one of
the reasons why the consumption function has remained a focus of attention.

The vestiges of our misconceptions tend to linger in our minds long after we
have consciously amended our beliefs. Our view of the consumption function is
particularly prone to the effects of ideas that have not been properly discarded
despite their inapplicability. Therefore, in setting a context for our discussion,
it is helpful to recount some of the history of the consumption function.

The first difficulties that were encountered in modelling the aggregate con-
sumption function arose from a conflict between Keynesian theory and the em-
pirical findings of Kuznets (1946) and others. Whereas the theory of Keynes
(1936) postulated average and marginal propensities to consume that declined
with income, it was discovered that income and consumption had maintained
a rough proportionality over many years.

At the same time, the econometricians were conscious that there is a double
relationship between income and consumption, which follows from the fact
that consumption expenditures are a major factor in determining the level of
aggregate income. The failure to take account of the second relationship might
lead to biases in the estimated coefficients of the consumption function.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6754548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


D.S.G. POLLOCK and Nikoletta LEKKA: The Consumption Function

Using a static analysis, Haavelmo (1947) demonstrated that the estimated
marginal propensity to consume was subject to an upward basis that was di-
rectly related to the variance of the innovations in consumption and inversely
related to the variance of the innovations in income. The latter were attributed
to autonomous changes in the rate of investment.

However, Haavelmo also envisaged, in common with other analysts, “that
the active dynamic factor in the business cycle is investment, with consumption
assuming a passive lagging role.” (These are the words of Alvin Hansen (1941),
as quoted by Haavelmo.) This notion was used by others in reconciling the
Keynesian formulation with the empirical findings. The manner in which they
did so greatly stimulated the development of dynamic econometric modelling.

Models in which consumption displayed a laggardly response to income
were provided by Duesenberry (1949), who propounded the relative income hy-
pothesis, by Modigliani and Brumberg (1954), who propounded the life-cycle
hypothesis—see Modigliani (1975), also—and by Friedman (1957), who pro-
pounded the permanent income hypotheses. According to these models, rapid
increases in income will give rise, in the short run, to less-than-proportional in-
creases in consumption, which is in accordance with the Keynesian view. Over
longer periods, consumption will gradually regain the relationship with income
that was revealed in the empirical findings.

The idea that consumption reacts in a passive and laggardly fashion to the
forces impacting upon it also suggested that it might be reasonable to ignore
the problem of simultaneous equation bias, to which Haavelmo had drawn
attention. The biases would be small if the innovations or disturbances in
consumption behaviour were relatively small and if consumers were reacting
preponderantly to events of the past.

The two suppositions, upon which the interpretations of the dynamic mod-
els largely depended, which were the inertial nature of consumer’s behaviour
and the relative insignificance of the consumption innovations, have become
established preconceptions, despite the lack of evidence to support them. In
fact, the evidence that we shall uncover strongly suggests that, in the U.K., the
business cycle has been driven by the fluctuations in consumers’ expenditure.

For almost two decades, beginning in the mid fifties, successes in modelling
the consumption function were seen as grounds for congratulating the econome-
tricians. However, the observations of Granger and Newbold (1974) and others
on the spurious nature of regression relationships between trended economic
variables led many to suspect that the success might be illusory. Whereas such
regressions account remarkably well for the level of consumption, they often
perform poorly in the far more stringent task of predicting changes in the level
of consumption from one period to another. Moreover, as Granger and New-
bold (1974) emphasised, the standard inferential procedures of linear regression
analysis are valid only in application to data that have finite-valued asymptotic
moment matrices. The moment matrices of trended variables, such as income
and consumption, are unbounded.

An apparent resolution of these difficulties came in the late 1970’s with
advent of the error-correction formulation of the consumption function. It
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was understood that a dynamic regression model in the levels of income and
consumption can be expressed, via a linear reparametrisation, as a model that
comprises the differences of the variables together with a stationary error term
expressing the current disproportion between income and consumption. Such
a model, in which all of the variables appear to be from stationary sequences,
is amenable to the standard inferential procedures.

The paper of Davidson, Hendry, Srba and Yeo (1978), which adopted an
error-correction formulation, succeeded in re-establishing the traditional con-
sumption function within a viable econometric framework. For a model in
which the dependent variable was a differenced sequence, it achieved a remark-
ably high value for the coefficient of determination. It also heralded the incipi-
ent notion of a cointegrating relationship between trended variables, which has
subsequently proved to be of major importance.

Some doubts have remained concerning the error-correction formulation
of the dynamic consumption function. For a start, it is questionable whether
the equation is a structural equation that truly represents the behaviour of
consumers in the aggregate, as it purports to do. There may be insufficient
grounds for ignoring the problems of simultaneous equation bias. There have
also been doubts about the statistical significance of the error-correction term,
which is included in the equation. We shall raise these doubts anew.

Enough time has elapsed since the publication of the article of Davidson
et al. for the data series to have more than doubled in length. In spite of
the various economic vicissitudes that are reflected in the extended data set,
their model continues to fit remarkably well, with newly estimated coefficients
that are not vastly different from the original ones. One of the purposes of the
present paper is to examine the basis for this apparent success. The principal
purpose is to determine whether the time-honoured presuppositions about the
nature of the income-consumption relationship, which were inherited by the
consumption function of Davidson et al., have any empirical support.

2. The Data and the Four-Period Difference Filter

In evaluating any model, we should begin by inspecting the data. The data
series of income and consumption—which is the expenditure on nondurable
goods—have two prominent characteristics. The first characteristic is their
non-stationarity. Over the extended data, the logarithms of the data, which
are plotted in Figure 1, show upward trends that are essentially linear. The
second characteristic of the data series is that they both show evident patterns
of seasonal variation, which play on the backs of the rising trends.

The seasonal pattern is more evident in the consumption series than it is
in the income series. Therefore, we incline to the view that, rather than being
transferred from the income stream, the seasonal fluctuations in consumption
have their origin in an independent influence that impinges on both income and
consumption. This motivates us to look at ways of deseasonalising the data
which will remove the effect.

Models like that of Davidson et al. seek to explain an annual growth rate
in consumption that is derived from quarterly data. The dependent variable
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Figure 1. The quarterly series of the logarithms of income (upper) and consumption

(lower) in the U.K., for the years 1955 to 1994, together with their interpolated trends.
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Figure 2. The squared gain of the four-period difference filter ∇4 = 1−L4 (contin-

uous line and left scale) and the frequency selection of the deseasonalised detrended

data (broken line and right scale).
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of the model is obtained by passing the logarithm of the consumption series,
which we shall denote by y(t), through a four-period difference filter of the form
∇4 = 1−L4 = (1−L)(1 +L+L2 +L3). Here, L is the lag operator, which has
the effect that Ly(t) = y(t− 1), where y(t) = {yt; t = 0± 1,±2, . . .} is a series
of observations taken at three-monthly intervals. The filter removes from y(t)
both the trend and the seasonal fluctuations; and it removes much else besides.

The gain of the filter is depicted in Figure 2. The operator nullifies the
component at zero frequency and it diminishes the power of the elements of
the trend whose frequencies are in the neighbourhood of zero. This is the effect
of ∇ = 1 − L, which is a factor of ∇4. The filter also removes the elements
at the seasonal frequency of π/2 and at its harmonic frequency of π, and it
attenuates the elements in the neighbourhoods of these frequencies. This is the
effect of the four-point summation operator S4 = 1 + L + L2 + L3, which is
the other factor of ∇4. It is also apparent that the filter amplifies the cyclical
components of the data that have frequencies in the vicinities of π/4 and 3π/4;
and, as we shall discover later, this is a distortion that can have a marked effect
upon some of the estimates that are derived from the filtered data.

The effect of the filter upon the logarithmic consumption series can be see
by comparing the periodograms of Figure 3 and Figure 4. The periodogram is
the sequence of the coefficients ρ2

j = α2
j + β2

j , scaled by T/2, that come from
the Fourier expression

(1)

yt =
[T/2]∑
j=0

ρj cos(ωjt− θj)

=
[T/2]∑
j=0

{αj cos(ωjt) + βj sin(ωjt)} ,

where T is the sample size and [T/2] is the integral part of T/2. Here, ωj =
2πj/T is the frequency of a sinusoid that takes j periods to complete a cycle. Its
amplitude is ρj , whilst ρ2

j/2 is its power which is, in other words, its contribution
to the variance of the sample {yt; t = 0, 1, . . . , T − 1}.

In the second expression, the parameters are αj = ρj cos θj and βj =
ρj sin θj , with β0 = 0 and β[T/2] = 0 if T is an even number. We shall describe
ρj cos(ωjt − θj) as the jth sinusoidal element in the Fourier decomposition of
the sample. (For a detailed exposition, see Pollock 1999).

The most striking effect of the filtering is the diminution of the power
at the frequencies in the vicinity of zero, which is where the elements of the
trend component are to be found, and in the vicinities of π/2 and π, where
the seasonal elements and their harmonics are to be found. The degree of the
amplification of the elements in the vicinities of π/4 and 3π/4, which is evident
in Figure 4, can be judged in comparison with a periodogram of the detrended
data, presented in Figure 5, which has been obtained by fitting a linear trend.

The methods for detrending and deseasonalising the data that we shall
propose are designed to remove the minimum amount of information from the
processed series. They avoid the distortions that are induced by the differencing
operator.
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Figure 3. The periodogram of the logarithms of consumption in the U.K., for the

years 1955 to 1994.
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Figure 4. The periodogram of the filtered series ∇4y(t) representing the annual

growth rate of consumption.
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3. The Error-Correction Model and its Implications

The consumption function of Davidson et al. (1978) was calculated originally
on a data set from the U.K. running from 1958 to 1970, which was a period of
relative economic quiescence. When the function is estimated for an extended
data period, running from 1956 to 1994, it yields the following results:
(2)
∇4y(t) = 0.70∇4x(t)− 0.156∇∇4x(t) + 0.068{x(t− 4)− y(t− 4)}+ e(t)

(0.39) (0.59) (0.14)

R2 = 0.77 D–W = 0.920.

Here y(t) and x(t) represent, respectively, the logarithms of the consumption
sequence and the income sequence, without seasonal adjustment. The operators
∇ = 1−L and ∇4 = 1−L4 are, respectively, the one-period and the four-period
difference operator. Therefore, ∇4y(t) and ∇4x(t) represent the annual growth
rates of consumption and income, whilst ∇1∇4x(t) represents the acceleration
or deceleration in the growth of income.

This specification reflects an awareness of the difficulty of drawing mean-
ingful inferences from a regression equation that incorporates nonstationary
variables. The difference operators are effective in reducing the sequences x(t)
and y(t) to stationarity. The synthetic sequence x(t − 4) − y(t − 4) is also
presumed to be stationary by virtue of the cointegration of x(t) and y(t); and
its role within the equation is to provide an error-correction mechanism, which
tends to eliminate any disproportion that might arise between consumption
and income.

The specification also bears the impress of some of the earlier experiences in
modelling the consumption function that we have described in the introduction.
The variable∇1∇4x(t) with its associated negative-valued coefficient allows the
growth of consumption to lag behind the growth of income when the latter is
accelerating. This is the sort of response that the analysts of the late 1940’s
and 1950’s, who were intent on reconciling the Keynesian formulations with
the empirical findings, were at pains to model.

We can evaluate the roles played by the terms of the RHS of equation
(2) by modifying the specification and by observing how the coefficients of the
fitted regression are affected and how the goodness of fit is affected.

The first modification is to replace x(t−4)−y(t−4) by a constant dummy
variable. The result is a slight change in the estimates of the remaining param-
eters of the model and a negligible loss in the goodness of fit. This suggests
that we can dispense with the error-correction term at little cost:

(3)

∇4y(t) = 0.006 + 0.682∇4x(t)− 0.160∇∇4x(t) + e(t)
(0.001) (0.52) (0.65)

R2 = 0.76 D–W = 0.93.

In this connection, we should note that several analysts, including Hylle-
berg et al. (1990), have found that the logarithmic series of consumption and
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income in the U.K. fail a test for cointegration. This seems to fly is the face
of the evident relatedness of the two quantities. However, the finding may be
taken as an indication that the relationship is not readily amenable to the linear
dynamics of a simple error-correction mechanism.

We should also mention that, in a recent paper, Fenandez-Corugedo, Price
and Blake (20003) have found evidence for an error-correction mechanism
within a vector autoregressive system of four equations. Their system has
non-durable consumption, labour or non-assets income, the stock of assets and
the relative price of durables to non-durables as its variables. However, the
factor loadings on the single cointegrating vector indicate that the correction
mechanism is present only in the equation of the assets. It is not present in the
consumption equation.

The second modification is to eliminate both the error-correction term and
the acceleration term ∇1∇4x(t) and to observe how well the annual growth in
consumption is explained by the annual growth of income. In this case, we
observe that the coefficient of determination of the fitted regression is 0.72,
compared with 0.77 for the fully specified model, while the error sum of squares
increases to 0.053 from 0.044. We conclude from this that the acceleration term
does have some effect:

(4)

∇4y(t) = 0.769∇4x(t) + e(t)
(0.27)

R2 = 0.72 D–W = 1.15.

The fact that the acceleration term enters the consumption function with
a negative coefficient seem to suggest that the response of consumption to rapid
changes in income is laggardly more often that not. This would fit well with the
various hypotheses regarding consumer behaviour that have been mentioned in
the introduction. However, the significance of the estimated coefficient is not
very great and it is considerably reduced when the coefficient is estimated using
only the first third of the data. We shall reconsider the acceleration term at
the end of the paper, where we shall discover that its effect is reversed when
we analyse the relationship between the trends depicted in Figure 1.

4. A Fourier Method for Detrending the Data

We have seen how the difference operator 1−L and the four-point summation
operator S4 = 1 + L + L2 + L3 are liable to remove a substantial part of the
information that is contained in the data of the consumption series. In this
section and the next, we shall propose alternative devices for detrending and
for deseasonalising the data that leave much of the information intact. Our
basic objective is to remove from the data only those Fourier elements that
contribute to the trend or to the seasonality, and to leave the other components
of the data unaffected.

A normal requirement for the use of the standard methods of statistical
Fourier analysis is that the data in question should be generated by stationary
processes, and this requirement is a hardly ever satisfied in econometric analy-
sis. To understand the problems that can arise in applying Fourier methods to
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trended data, one must recognise that, in analysing a finite data sequence, one
is making the implicit assumption that it represents a single cycle of a periodic
function that is defined over the entire set of positive and negative integers.
This function may be described as the periodic extension of the data sequence.

In the case of a trended sequence, there are bound to be radical disjunctions
in the periodic function where one replication of the data sequence ends and
another begins. Thus, for example, if the data follow a linear trend, then the
function that is the subject of the Fourier analysis will have the appearance of
the serrated edge of a saw blade. The saw tooth function has a spectrum that
extends across the entire range of frequencies, with ordinates whose absolute
values are inversely proportional to corresponding frequencies—see for example,
Hamming (1989). These effects of the trend are liable to be confounded with
the spectral effects of the other motions that are present in the data.

The problem is resolved by using an approach that is familiar from the
forecasting of ARIMA processes. We begin by differencing the data sequence
as many times as may be necessary to reduce it to a state of stationarity. We
proceed to eliminate the low-frequency sinusoidal elements from the differenced
data. Then, by cumulating or ‘integrating’ the resulting sequence, we will
obtain the detrended version of the data. The trend of the data can be obtained,
likewise, by cumulating the sum of the low-frequency elements that have been
extracted from the differenced data.

The process by which the trend component is cumulated after it has been
extracted from the differenced data sequence calls for some initial conditions or
starting values. To provide expressions for these values, we need to describe the
matrix versions of the difference operator and of the summation or cumulation
operator, which is its inverse.

Let the identity matrix of order T be denoted by

(5) IT = [e0, e1, . . . , eT−1],

where ej represents a column vector that contains a single unit preceded by j
zeros and followed by T − j − 1 zeros. Then, the finite-sample lag operator is
the matrix

(6) LT = [e1, . . . , eT−1, 0],

which has units on the first subdiagonal and zeros elsewhere. The matrix that
takes the d-th difference of a vector of order T is given by ∆ = (I − LT )d.

Taking differences within a vector entails a loss of information. Therefore,
if ∆ = [Q∗, Q]′, where Q′∗ has d rows, then the d-th differences of a vector
y = [y0, . . . , yT−1]′ are the elements of the vector g = [gd, . . . , gT−1]′ that is
found in the equation

(7)
[
g∗
g

]
=
[
Q′∗
Q′

]
y.

The vector g∗ = Q′∗y in this equation, which is a transform of the vector
[y0, . . . , yd−1] of the leading elements of y, is liable to be discarded.
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Figure 5. The periodogram of the residuals obtained by fitting a linear trend through

the logarithmic consumption data of Figure 1.

The inverse of the difference matrix is the matrix ∆−1 = Σ = [S∗, S]. This
has the effect that

(8) S∗g∗ + Sg = y.

The vector y can be recovered from the differenced vector g only if the vector
g∗ of initial conditions is provided.

Now let z represent the differenced version of the trend component that
requires to be cumulated to form x = S∗z∗+Sz. Then the initial conditions in
z∗ should be chosen so as to ensure that the trend is aligned with the data as
closely as possible. The criterion is

(9) Minimise (y − S∗z∗ − Sz)′(y − S∗z∗ − Sz) with respect to z∗.

The solution for the starting values is

(10) z∗ = (S′∗S∗)
−1S′∗(y − Sz).

The facility that we have constructed for removing the trend from the data
allows us to select a cut-off point that marks the highest frequency amongst
the Fourier elements that constitute the trend. The decision of where to place
the cut-off point should be guided by an appraisal of the spectral structure of
the data. Figure 5 shows the periodogram of the residual sequence obtained by
fitting a linear trend through the logarithms of the consumption series. Fitting
a linear trend overcomes the problems of non-stationarity without destroying
the information relating to the trend component.
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We choose to place the cut-off point at π/8 radians, which is in a dead space
of the periodogram where there are no ordinates of any significant size. Given
that the observations are at quarterly intervals, this implies that the trend
includes all cycles of four years duration of more. The detrended consumption
series is show in Figure 6. A similar analysis of the income data suggests that
the same cut-off point is appropriate. The trends in the consumption and
income series that have been calculated on this basis are depicted in Figure 1.

5. A Fourier Method for Deseasonalising the Data

As well as removing the trend from the data, we also wish to remove the seasonal
fluctuations. This can be done in much the same way. At its simplest, we can
define the differenced seasonal component to consist only of those sinusoidal
elements, extracted from the differenced data {gd, . . . , gT−1}, that are at the
seasonal frequency and at the harmonically related frequencies. Let N = T −d,
where d is the degree of differencing. Then, in the case of quarterly data, and on
the supposition that N is an even number, the component would be described
by the equation

(11) ut = αN/4 cos
(
πt

2

)
+ βN/4 sin

(
πt

2

)
+ αN/2(−1)t,

wherein

(12)

αN/4 =
2
N

∑
t

gt cos
(
πt

2

)
,

βN/4 =
2
N

∑
t

gt sin
(
πt

2

)
,

αN/2 =
1
N

∑
t

gt(−1)t.

In fact, this scheme is equivalent to one that uses seasonal dummy variables
with the constraint that their associated coefficients must sum to zero. It will
generate a pattern of seasonal variation that is the same for every year.

A more complex pattern of seasonality, which will vary gradually over
the years, could be obtained by adopting a linear stochastic model with unit
roots at the seasonal frequencies or by combining such a model with a “deter-
ministic”trigonometrical or dummy-variable model in the manner suggested by
Osborn et al. (1988). However, the desired effect can also be achieved by com-
prising within the Fourier sum a set of sinusoidal elements whose frequencies
are adjacent to the seasonal frequency and to its harmonics.

The combined effect of two elements at adjacent frequencies depends upon
whether their sinusoids are in phase, in which case they reinforce each other, or
out of phase, in which case they tend to interfere with each other destructively.
Two sinusoids whose frequencies are separated by θ radians will take a take a
total of τ = 2π/θ periods to move from constructive interference to destructive
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Figure 6. The detrended consumption series.
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Figure 7. The estimated seasonal component of the consumption series.
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Figure 8. The annual differences of the trend of the logarithmic consumption series

(solid line) and of the trend of the logarithmic income series (broken line).

interference and back again. By this device, a pattern can be generated that
evolves over the length of the sample.

It remains to describe how the seasonal elements that have been extracted
from the differenced data are to be cumulated to provide an estimate of the
seasonal component. It seems reasonable to chose the starting values so as to
minimise the sum of squares of the seasonal fluctuations. Let w = S∗u∗ + Su
be the cumulated seasonal component, where u∗ is a vector of d starting values
and u is the vector of the seasonal component that has been extracted from
the differenced data. Then the criterion is

(13) Minimise (S∗u∗ + Su)′(S∗u∗ + Su) with respect to u∗.

The solution for the starting values is

(14) u∗ = −(S′∗S∗)
−1S′∗Su.

Figure 7 shows the estimated seasonal component of the consumption se-
ries. The seasonal series is synthesised from the trigonometric functions at the
seasonal frequency of π/2 and at its harmonic frequency of π, together with a
handful of elements at the adjacent non-seasonal frequencies. It comprises two
elements below π/2 and one above, and it also comprises one element below π.
These choices have resulted from an analysis of the periodogram of Figure 5.
Figure 2 indicates, via the dotted lines, the frequencies that are present in the
detrended and deseasonalised data.

The seasonal component of consumption accounts for the 93 percent of the
variation of the detrended consumption series. When the seasonal component
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is estimated for the income series using the same set of frequencies, it accounts
for only 46 percent of the variance of the corresponding detrended series.

6. A Re-appraisal of the Income–Consumption Relationship

In the previous section, we have described some new techniques for detrending
the data and for extracting the seasonal component. We have discovered that
the seasonal fluctuations in consumption are of a greater amplitude than those
of the income series. They also appear to be more regular. It is also the
case that Hylleberg et al. (1990) failed to find cointegration between the two
logarithmic series at the seasonal frequencies. These circumstances persuade
us to reject the notion that the fluctuations have been transferred from income
to consumption. It seems more reasonable to treat the seasonal fluctuations in
both series as if they derive from external influences. Therefore, in seeking to
establish a relationship between the detrended series, it is best to work with
the deseasonalised versions.

When we turn to the deseasonalised and detrended consumption series, we
find that its variance amounts to only 7 percent of the variance of the detrended
series. It is hardly worthwhile to attempt to model this series. Indeed, the
periodogram of Figure 5 also makes it clear that there is very little information
in the data of the consumption sequence that is not attributable either to the
trend or to the seasonal component.

If it is accepted that the seasonal component needs no further explanation,
then attention may be confined to the trend. The use of ordinary linear statis-
tical methods dictates that any explanation of the consumption trend is bound
to be in terms of data elements whose frequencies are bounded by zero and by
the cut-off point of π/8 radians. That is to say, the trend in consumption can
only be explained by similar trends in other variables.

Therefore, we turn to the essential parts of the income and the consumption
series, which are their trends. We take the annual differences of the logarith-
mic trends by applying the operator ∇4 = I −L4; and the results are a pair of
smooth series that represent the annual growth rates of income and consump-
tion. By combining the two series in one graph, which is Figure 8, we are able
to see that, in the main, the fluctuations in the growth in consumption precede
similar fluctuations in the growth of income.

It may be recalled the income-acceleration term ∇∇4x(t) enters the con-
sumption functions of equations (1) and (2) with a negative coefficient. This is
in spite of the clear indication of Figure 8 that the consumption-growth series
leads the income-growth series. However, when the smoothed growth series
∇4ŷ(t) and ∇4x̂(t) of Figure 8 are used in these equations in place of ∇4x(t)
and ∇4y(t), the sign on the coefficient of the acceleration term is reversed:

(15)

∇4ŷ(t) = 0.006 + 0.689∇4x̂(t) + 1.055∇∇4x̂(t) + e(t)
(0.001) (0.43) (0.169)

R2 = 0.87.

The explanation of this anomaly must lie in the nature of the gain of the
four-period difference filter ∇4 = I − L4, which is represented in Figure 2.
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Figure 9. The spectrum of the consumption growth sequence ∇4y(t) (the outer

envelope) and that of its auto-innovation component {α(L)/π(L)}ε(t) (the inner

envelope).
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Figure 10. The spectrum of the income growth sequence∇4x(t) (the outer envelope)

and that of its auto-innovation component {γ(L)/π(L)}η(t) (the inner envelope).
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The effect of the filter is to amplify some of the minor components of the data
that lie in the dead spaces of the periodogram of Figure 5 on either side of the
frequencies π/4 and 3π/4. Thus it can be concluded that, notwithstanding its
specious justification, the negative acceleration term is an artifact of the differ-
encing filter. This finding conflicts with the belief that consumption responds
in a laggardly fashion to rapid changes in income.

The perception that the series of the annual growth rate in consumption is
leading the corresponding series in income can be reaffirmed within the context
of a bivariate vector autoregressive model. The model must be applied to the
unsmoothed growth rates obtained by taking the four-period differences of the
logarithms of the two series. It cannot be applied directly to the smoothed
growth-rate series of Figure 8, which have band-limited spectra. The reason
is that an autoregressive model presupposes a spectral density function that is
nonzero everywhere in the frequency range except on a set of measure zero.

The bivariate vector autoregressive model takes the form of

∇4y(t) = cy +
p∑
i=1

φi∇4y(t− i) +
p∑
i=1

βi∇4x(t− i) + ε(t),(16)

∇4x(t) = cx +
p∑
i=1

ψi∇4x(t− i) +
p∑
i=1

δi∇4y(t− i) + η(t).(17)

The terms cy and cy stand for small constants, which are eliminated from the
model when the differenced series are replaced by deviations about their mean
values. The deviations may be denoted by ỹ(t) = ∇4y(t) − E{∇4y(t)} and
x̃(t) = ∇4x(t) − E{∇4x(t)}. The expected values can be represented by the
corresponding sample means.

In the case of p = 2, the estimated equations are

ỹ(t) = 0.51ỹ(t− 1) + 0.34ỹ(t− 2) + 0.27x̃(t− 1)− 0.38x̃(t− 2) + e(t),
(0.85) (0.86) (0.72) (0.71)(18)

x̃(t) = 0.52x̃(t− 1)− 0.10x̃(t− 2) + 0.16ỹ(t− 1) + 0.25ỹ(t− 2) + h(t).
(0.92) (0.91) (0.10) (0.10)(19)

To facilitate the analysis of the model, it is helpful to write the equations
(16) and (17) in a more summary notation that uses polynomials in the lag
operator to represent the various sums. Thus

φ(L)ỹ(t)− β(L)x̃(t) = ε(t),(20)

−δ(L)ỹ(t) + ψ(L)x̃(t) = η(t),(21)

where φ(L) = 1−φ1L−· · ·−φpLp, β(L) = β1L+ · · ·+βpL
p, ψ(L) = 1−ψ1L−

· · · − ψpLp and δ(L) = δ1L+ · · ·+ δpL
p.

The notion that the sequence ỹ(t) is driving the sequence x̃(t) would be
substantiated if the influence of the innovations sequence ε(t) upon ỹ(t) were
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found to be stronger than the influence of η(t) upon the corresponding sequence
x̃(t). The matter can be investigated via the moving-average forms of the
equations, which express x̃(t) and ỹ(t) as functions only of the innovations
sequences ε(t) and η(t). The moving-average equations, which are obtained by
inverting equations (20) and (21) jointly, are

ỹ(t) =
ψ(L)
π(L)

ε(t) +
β(L)
π(L)

η(t),(22)

x̃(t) =
δ(L)
π(L)

ε(t) +
φ(L)
π(L)

η(t),(23)

where π(L) = φ(L)ψ(L)− β(L)δ(L).
Since there is liable to be a degree of contemporaneous correlation between

innovations sequences, the variance of the observable sequences ỹ(t) and x̃(t)
will not equal the sum of the variances of the components in ε(t) and η(t) on
the RHS. The problem can be overcome by reparametrising the two equations
so that each is expressed in terms of a pair of uncorrelated innovations. Such
a procedure has been adopted by Geweke (1982), for example.

Consider the innovation sequence η(t) within the context of equation (22),
which is for ỹ(t). We may decompose η(t) into a component that lies in the
space spanned by ε(t) and a component ζ(t) that is in the orthogonal comple-
ment of the space. Thus

(24)
η(t) =

σηε
σ2
ε

ε(t) +
{
η(t)− σηε

σ2
ε

ε(t)
}

=
σηε
σ2
ε

ε(t) + ζ(t),

where σ2
ε = V {ε(t)} is the variance of the consumption innovations and σ2

εη =
C{ε(t), η(t)} is the covariance of the consumption and income innovations.
Substituting (24) in equation (22) and combining the terms in ε(t) gives

(25) ỹ(t) =
α(L)
π(L)

ε(t) +
β(L)
π(L)

ζ(t),

where

(26) α(L) = ψ(L) +
σηε
σ2
ε

β(L).

We may describe the sequence ε(t) as the auto-innovations of ỹ(t) and ζ(t) as
the allo-innovations.

By a similar reparametrisation, the equation (23) in x̃(t) becomes

(27) x̃(t) =
γ(L)
π(L)

η(t) +
δ(L)
π(L)

ξ(t),
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where

(28)
γ(L) = φ(L) +

σηε
σ2
η

δ(L),

ξ(t) = ε(t)− σηε
σ2
η

η(t),

and where η(t) and ξ(t) are mutually uncorrelated. These are, respectively, the
auto-innovations and the allo-innovations of x̃(t).

The relative influences of ε(t) on ỹ(t) and of η(t) on x̃(t) can now be
assessed by an analysis of the corresponding spectral density functions. Figure 9
shows the spectrum of ỹ(t) together with that of its auto-innovation component
{α(L)/π(L)}ε(t), which is the lower envelope. Figure 10 shows the spectrum
of x̃(t) together with that of its auto-innovation component {γ(L)/π(L)}η(t).

From a comparison of the figures, it is clear that the innovation sequence
ε(t) accounts for a much larger proportion of ỹ(t) than η(t) does of x̃(t). Thus,
the consumption growth series appears to be driven largely by its auto innova-
tions. These innovations also enter the income growth series to the extent that
the latter is not accounted for by its auto innovations. Figure 10 shows that
the extent is considerable.

The fact the consumption innovations play a large part in driving the bi-
variate system implies that the consumption function of Davidson et al. (1978),
which is equation (2), cannot be properly construed as a structural economet-
ric relationship. For it implies that the estimates are bound to suffer from a
simultaneous-equations bias. Nevertheless, in so far as the mechanisms gener-
ating the data remain unchanged, the above-mentioned function will retain its
status as an excellent predictor of the growth rate of consumption that is based
on a parsimonious information set.

7. Conclusions

The traditional macroeconomic consumption function depicts a delayed re-
sponse of consumption spending to changes in income; and many analysts would
expect this relationship to be readily discernible in the macroeconomic data.
Instead, the data seem to reflect a delayed response of aggregate income to
autonomous changes in consumption. Although the two responses can easily
coexist, it is the dominant response that is liable to be discerned in the data
at first sight.

A crucial question is whether both responses can be successfully disentan-
gled from the macroeconomics data. The construction of a bivariate autoregres-
sive model is the first step in the process of their disentanglement. However,
given the paucity of the information contained in the data, one is inclined to
doubt whether the process can be carried much further. Indeed, the efforts
that have been devoted to the microeconomic analysis of consumer behaviour
in the last twenty years can be construed as a reaction to limited prospects
facing macroeconomic investigations.

Much has already been accomplished in the microeconomic analysis of con-
sumer behaviour; and an excellent account of some of the numerous influences
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that affect consumer behaviour directly has been provided recently by Muell-
bauer and Latimore (1995). However, what is lacking is a methodology that
would enable the consumption behaviour of identifiable social and economic
groups to be aggregated into a macroeconomic consumption function.

We have found that, within a bivariate autoregressive system designed to
explain the growth rates on income and consumption, the innovations sequence
of the consumption equation dominates the corresponding innovations sequence
of the income equation. Thus the fluctuations in the growth rate of consumption
have been depicted mainly as the result of autonomous influences.

Although the innovations sequences are an artifact of the statistical anal-
ysis, they are not entirely devoid of worldly connotations. By a detailed study
of the historical circumstances, we should be able to relate the consumption
innovations to the fiscal policies of the central governments, the state of the
financial markets, the rate of inflation, the political and social climate, and to
much else besides. Although some of these influences have been included in
macroeconomic consumption functions, it seems that, in the main, there has
been a remarkable oversight of the circumstantial details in most attempts at
explaining the aggregate level of consumption. The present analysis is, regret-
tably, no exception.
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