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Abstract

In this paper we revisit the relationship between the equity and the for-

ward premium puzzles. We construct return-based stochastic discount factors

under very mild assumptions and check whether they price correctly the equity

and the foreign currency risk premia. We avoid log-linearizations by using mo-

ments restrictions associated with euler equations to test the capacity of our

return-based stochastic discount factors to price returns on the relevant assets.

Our main finding is that a pricing kernel constructed only using information on

American domestic assets accounts for both domestic and international stylized

facts that escape consumption based models. In particular, we fail to reject the

null hypothesis that the foreign currency risk premium has zero price when the

instrument is the own current value of the forward premium. JEL Code: G12;
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1 Introduction

The Forward Premium Puzzle — henceforth, FPP — is how one calls the systematic

departure from the intuitive proposition that the expected return to speculation in the

forward foreign exchange market should be zero, conditional on available information.

One of the most acknowledged puzzles in international finance, the FPP was, in its

infancy, investigated by Mark (1985) within the framework of the consumption capital

asset pricing model — CCAPM. Perhaps, following Hansen and Singleton’s (1982,

1984) earlier method, Mark used a non-linear GMM approach, which revealed the

model’s inability, in its canonical version, to account for its implicit over-identifying

restrictions. The results found by Mark are similar to the ones found by Hansen and

Singleton with respect to the equity premium, an idea carried forward by Mehra and

Prescott (1985) who went on to propose what they have labelled the Equity Premium

Puzzle — henceforth, EPP.

At first sight, it may seem surprising that such similar results were never properly

linked, and we may only conjecture why the literature on the FPP and the EPP

drifted apart after the work of Mark. We list two alternative explanations. First,

the failure of the CCAPM was a great disappointment for the profession, since it

meant the absence of a fully specified economic model that could price assets. Such

unheartening finding may have lead to a momentary halt in research linking the

equity- and the forward-premium puzzles1. Second, the existence of a specificity of

the FPP with no parallel in the case of the EPP — the predictability of returns based

on interest rate differentials2 — may have led many to believe that even if the CCAPM

was capable of accounting for the equity premium it would not solve the FPP; see

Engel (1996).

Thinking deeper about these two puzzles, we are forced to conclude that proving

that they are related is currently an impossible task, since it requires the existence of

1While pricing failures for the CCAPM were found before, it was only with the work of Mehra

and Prescott (1985), published the same year as Mark’s work, that it became clear that there was

something fundamentally wrong with the CCAPM in its canonical form.
2We do not claim that returns on equity are not predictable. In fact we know that dividend-price

ratios and other variables “predict” returns. The point is that this empirical regularity was not seen,

in the early days of research with the CCAPM, as a defining feature of the EPP. Nowadays, however,

an empirically successful model ought to take care of this (and many other) non-trivial aspects of

asset behavior.
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a consumption model generating a pricing kernel that properly prices assets, showing

the shortcomings of previous models. Because we do not have such a proper model

today, we cannot relate the EPP and the FPP within a CCAPM framework. This

may explain why relating these two puzzles was not tried before and why two distinct

research agendas involving them appeared over time.

As is well known, research regarding the FPP is mostly done within the scope of

international economics, like in Fama and Farber (1979), Hodrick (1981) and Lucas

(1982). It emphasizes international affine term structure models and/or a microstruc-

ture approach. Research involving the EPP has focused on adding state variables to

standard consumption-based pricing kernels to change its behavior; see Epstein and

Zin (1989), Constantinides and Duffie (1996) and Campbell and Cochrane (1999).

In this paper we revisit the FPP and the EPP and ask whether they deserve two

distinct agendas, or whether they are but two symptoms of the same illness: the

incapacity of existing consumption-based models to generate the implied behavior of

a pricing kernel that correctly prices asset returns.

Given the limitations on proving that the FPP and the EPP are related, we use an

indirect approach. If these two puzzles are solely a symptom of the inappropriateness

of existing consumption-based pricing kernels, then they will not be manifest when

appropriate pricing kernels are used. Suppose we find a single pricing kernel that

is not a function of consumption and is compatible with all regularities in domestic

financial markets not accounted for by current consumption-based kernels. At the

same time, suppose that this pricing kernel accounts for the behavior of the forward

premium. Then, we have good reason to believe that we should not disperse our

research effort on two completely different agendas, but rather concentrate on a

single one focused on rethinking consumption-based pricing kernels3 — the common

suspect for the two puzzles.

A crucial issue of our approach is to find what an appropriate pricing kernel is

in this context. Hansen and Jagganathan (1991) have lead the profession towards

return-based kernels instead of consumption-based kernels; see also Connor and Ko-

rajczyk (1986), Chamberlain and Rothschild (1983), and Bai (2005). The idea is to

combine statistical methods with economic theory — the Asset Pricing Equation —

to devise pricing-kernel estimates as the unique projection of a stochastic discount

factor — henceforth, SDF — on the space of returns: the SDF mimicking portfolio.

3 In what follows, we use the terms pricing kernel and stochastic discount factor interchangeably.

3



The latter can be estimated without any assumptions on a functional form for pref-

erences, despite having a strong footing on theory as a consequence of the use of the

Asset Pricing Equation.

One way to rationalize the SDF mimicking portfolio is to realize that it is the

projection of a proper consumption model (yet to be written) on the space of payoffs.

Thus, the pricing properties of this projection are no worse than those of the proper

model — a key insight of Hansen and Jagganathan. An advantage of concentrating

on the projection is that we can approximate it arbitrarily well in-sample using

statistical methods and asset returns alone. Therefore, using such projection not only

circumvents the inexistence of a proper consumption model but is also guaranteed

not to underperform such ideal model.

Bearing in mind our stated goal, we extract a time series for the pricing kernel

that does not depend on preferences or on consumption data. Two techniques are

considered in this paper to estimate the SDF mimicking portfolio: i) Hansen and

Jagganathan’s mimicking portfolio, which is the projection of any stochastic discount

factor on the space of returns and ii) the unconditional linear multifactor model,

which is perhaps the dominant model in discrete-time empirical work in Finance.

As noted by Cochrane (2001), SDF estimates are just functions of data. Pricing

correctly a specific group of assets can be achieved by building non-parsimonious

SDF estimates, i.e., SDF estimates that price arbitrarily well that group of assets in-

sample but not necessarily assets outside that group.4 In order to avoid this critique,

we construct SDF mimicking portfolio estimates using domestic (U.S.) returns alone

— on the 200 most traded stocks in the NYSE, extracted from the CRSP database.

Assume we had a consumption-based model that did account for the equity pre-

mium. Then, the behavior of its projection on the space of domestic-asset returns

would have to coincide with that of an SDF mimicking portfolio built from these same

assets. We then use this domestic SDF projection to price the forward premium.

Tests are implemented for four countries within the G7 group, besides Switzerland,

for which there exists a relatively long-span data for spot and future foreign exchange

4 If we use all foreign and domestic assets to construct SDF estimates, we should expect to

price correctly both the equity and forward premium. If that was the case, we could rule out that

explanations based on market imperfections are needed to explain these puzzles, since the existence

of an SDF is only guaranteed if the law of one price holds. If we cannot price the equity and forward

premium in the exercise, all we can conclude is that the Asset Pricing Equation is inappropriate.
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markets. Here, our tests show their out-of-sample character, avoiding Cochrane’s cri-

tique.

Our tests make intensive use of the Asset Pricing Equation. They are all based

on euler equations, exploiting theoretical lack of correlation between discounted risk

premia and variables in the conditioning set, or between discounted returns and their

respective theoretical means, i.e., we employ discounted scaled excess-returns and

discounted scaled returns in testing. We investigate whether discounted risk premia

have mean zero or whether discounted returns have a mean of unity.

Our results are clear cut: return-based pricing kernels using U.S. assets alone

account for domestic stylized facts, pricing correctly the equity premium for the

U.S. economy — which shows no signs of the EPP — and also pricing most of the

Fama-French benchmark factor returns. At the same time, these same pricing-kernel

estimates show no signs of the FPP in pricing the expected return to speculation in

forward foreign-exchange markets for the widest group possible of developed countries

with a long enough span of future exchange-rate data (Canada, Germany, Japan,

Switzerland and the U.K.). This evidence raises the question of whether the FPP

and the EPP are two symptoms of the same illness.

We summarize our empirical results as follows. First, the null of zero discounted

excess returns on equities is not rejected even when potentially interesting forecasting

variables are used as instruments. Second, for most countries, the moment restrictions

associated with the euler equations (Asset Pricing Equations) are not rejected for

excess returns and returns on operations with foreign assets for any of the instruments

used. This includes the own current value of the forward premium, which shows no

signs of predictability of the expected return to speculation, contradicting one of the

defining features of the FPP. Only in the case of British bonds the results are, in

some sense, conflicting. In some occasions, we reject the null hypothesis that the

foreign currency risk premium has zero price.

Our results can be viewed as new evidence supporting the usefulness of reuniting

the research agendas on the EPP and the FPP. Although we cannot claim that a

consumption model that did account for the behavior of the equity premium would

also price correctly the forward premium, we can claim that its projection on the

space of domestic returns would.5 In our view, this is as far as one can go today in

5Therefore, the model would only have problems in prcing foreign assets if the residual of such

projection was correlated with the part of foreign assets return which has zero price. We do believe
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showing that these two puzzles are related.

As argued above, we search not for a consumption model of the SDF, but simply

for a procedure that identifies the SDF mimicking portfolio circumventing the fact

that we still lack a good model for pricing risk or risk premia. Employing SDF mim-

icking portfolio estimates allows to test directly the pricing of risk or risk premia by

using the theoretical restrictions associated with the Asset Pricing Equation. In our

context, there is neither the need to specify a full model for preferences (consumption

SDF) nor the need to perform a log-linearization of the Asset Pricing Equation in

pricing tests. In that sense, we are able to isolate possible causes for rejection of

theory (EPP and FPP) not isolated by the previous literature.

The remainder of the paper is organized as follows. Section 2 gives an account

of the literature that tries to explain the FPP and is related to our current effort.

Section 3 discusses the techniques used to estimate the SDF and the pricing tests are

implemented in this paper. Section 4 presents the empirical results obtained in this

paper. Concluding remarks are offered in Section 5.

2 A Critical Literature Review

Most studies6 report the existence of the FPP through the finding that bα1 is
significantly smaller than zero when running the regression,

st+1 − st = α0 + α1(tft+1 − st) + ut+1, (1)

where st is the log of the exchange rate at time t, tft+1 is the log of time t forward

exchange rate contract and ut+1 is the regression error.7 Notwithstanding the possible

effect of Jensen inequality terms, testing the uncovered interest rate parity (UIP) is

equivalent to testing the null α1 = 1 and α0 = 0, along with the uncorrelatedness of

residuals from the estimated regression.

Although the null is rejected in almost all studies, it should be noted that α1
not being equal to one ought not to be viewed as evidence of market failure or some

form of irrationality and, per se, does not imply the existence of a ‘puzzle’ since

that a successful consumption model for domestic markets is very unlikely to present such pattern,

but our tests cannot rule it out.
6See the comprehensive surveys by Hodrick (1987) and Engel (1996), and the references therein.
7 In what follows, capital letters are used to represent variables in levels and small letters to

represent the logs of these same variables.
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the uncovered parity needs only to hold exactly in a world of risk-neutral agents, or

if the return on currency speculation is not risky. The probable reason why these

findings came to be called a puzzle was the magnitude of the discrepancy from the

null: according to Froot (1990), the average value of α̂1 is −0.88 for over 75 published
estimates across various exchange rates and time periods. This implies an expected

domestic currency appreciation when domestic nominal interest rates exceed foreign

interest rates, contrary to what is needed for the UIP to hold.

Log-linear regressions such as (1) have a long tradition in economics. As is well

known, getting to (1) from first principles requires stringent assumptions, something

that is usually overlooked when hypothesis testing is later performed using it. Next,

we shall make explicit how strong the assumptions that underlie the null tested in

(1) are. Our departing point is the Pricing Equation,

1 = Et [Mt+1Ri,t+1] ∀i = 1, 2, · · · , N. (2)

where Ri,t+1 is the return of asset i and Mt+1 is the pricing kernel or stochastic

discount factor, SDF (e.g. Hansen and Jagganathan (1991)), a random variable that

discount payoffs in such a way that their price is simply the discounted expected

value.

Given free portfolio formation, the law of one price — the fact that two assets

with the same payoff in all states of nature must have the same price — is sufficient to

guarantee, through Riesz representation theorem, the existence of a SDF,Mt+1. Log

linearizing (2) makes it is possible to justify regression (1), but not without unduly

strong assumptions on the behavior of discounted returns.

Gomes and Issler (2007) criticize the empirical use of the log-linear approximation

of the Pricing Equation (2) leading to (1). First, is the usual criticism that any hy-

pothesis test using results of a log-linear regression is a joint test which includes the

validity of the log-linearization being performed, i.e., includes an auxiliary hypothesis

in testing. Therefore, rejection can happen if the null is true but the log-linearization

is inappropriate. Second, they show that it is very hard to find appropriate instru-

ments in estimating log-linear regressions such as (1), since, by construction, lagged

variables are correlated with the error term.

To understand this latter point, consider a second-order taylor expansion of the

exponential function around x, with increment h,

ex+h = ex + hex +
h2ex+λ(h)h

2
, with λ(h) : R→ (0, 1) . (3)
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For a generic function, λ(·) depends on both x and h, but not for the exponential

function. Indeed, dividing (3) by ex, we get

eh = 1 + h+
h2eλ(h)h

2
, (4)

showing that λ (·) depends only on h.8 To connect (4) with the Pricing Equation (2),
we assume MtRi,t > 0 and let h = ln(MtRi,t) to obtain9

MtRi,t = 1 + ln(MtRi,t) + zi,t, (5)

where the higher-order term of the expansion is

zi,t ≡
1

2
× [ln(MtRi,t)]

2 eλ(ln(MtRi,t)) ln(MtRi,t).

It is important to stress that (5) is not an approximation but an exact relationship.

Also, zi,t ≥ 0. Taking the conditional expectation of both sides of (5), using past
information, denoted by Et−1 (·), imposing the Pricing Equation, and rearranging
terms, gives:

Et−1 {MtRi,t} = 1 + Et−1 {ln(MtRi,t)}+ Et−1 (zi,t) , or, (6)

Et−1 (zi,t) = −Et−1 {ln(MtRi,t)} . (7)

Equation (7) shows that behavior of the conditional expectation of the higher-

order term depends only on that of Et−1 {ln(MtRi,t)}. Therefore, in general, it de-
pends on lagged values of ln(MtRi,t) and on powers of these lagged values. This

will turn out to a major problem when estimating (1). To see it, denote by εi,t =

ln(MtRi,t)−Et−1 {ln(MtRi,t)} the innovation of ln(MtRi,t). LetRt ≡ (R1,t, R2,t, ..., RN,t)
0

and εt ≡ (ε1,t, ε2,t, ..., εN,t)
0 stack respectively the returns Ri,t and the forecast errors

εi,t. From the definition of εt we have:

ln(MtRt) = Et−1{ln(MtRt)}+ εt. (8)

8The closed-form solution for λ(·) is:

λ(h) =

⎧⎨⎩ 1
h
× ln

∙
2×(eh−1−h)

h2

¸
, h 6= 0

1/3, h = 0,

where λ(·) maps from the real line into (0, 1).
9This is not an innocuous assumption. By assuming no arbitrage (stronger than law of one price)

we guarantee the existence of a positive M. Uniqueness of M , however, requires complete markets:

a very strong assumption. Without uniqueness not all pricing kernels need to be positive.
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Denoting rt = ln (Rt), with elements ri,t, and mt = ln (Mt) in (8), and using (7) we

get

mt = −ri,t − Et−1 (zi,t) + εi,t, ∀i. (9)

Starting from (9), the covered, RC , and the uncovered return, RU , on foreign

government bonds trade are, respectively,

RC
t+1 =

tFt+1(1 + i∗t+1)Pt
StPt+1

and RU
t+1 =

St+1(1 + i∗t+1)Pt
StPt+1

, (10)

where tFt+1 and St are the forward and spot prices of foreign currency in terms of

domestic currency, Pt is the dollar price level and i∗t+1 represents nominal net return

on a foreign asset in terms of the foreign investor’s preferences.

Using a forward version of (9) on both assets, and combining results, yields:

st+1 − st = (tft+1 − st)− [Et (zU,t+1)− Et (zC,t+1)] + εU,t+1 − εC,t+1, (11)

where the index i in Et (zi,t+1) and εi,t+1 in (9) is substituted by either C or U ,

respectively for the covered and the uncovered return on trading foreign government

bonds.

Under α1 = 1 and α0 = 0 in (1), taking into account (11), allows concluding that:

ut+1 = − [Et (zU,t+1)− Et (zC,t+1)] + εU,t+1 − εC,t+1.

Hence, by construction, the error term ut+1 is serially correlated because it is a

function of current and lagged values of observables.10 However, in most empirical

studies, lagged observables are used as instruments to estimate (1) and test the

null that α1 = 1, and α0 = 0. In that context, estimates of α1 are biased and

inconsistent, which may explain the finding that the average value of cα1 is −0.88 for
over 75 published estimates across various exchange rates and time periods. As far

as we know, this is the first instance where FPP results are criticized in this fashion.

10Of course, one can get directly to (1) when α1 = 1 and α0 = 0 using (2) under log-Normality

and Homoskedasticity ofMtRi,t. One can also do it from (2) if [Et (zU,t+1)− Et (zC,t+1)] is constant.
However, the conditions are very stringent in both cases: there is overwhelming evidence that returns

are not log-Normal and homoskedastic, and to think that [Et (zU,t+1)− Et (zC,t+1)] is constant can
only be justified as an algebraic simplification for expositional purposes.

Even under log-Normality, if returns are heteroskedastic, then the term [Et (zU,t+1)− Et (zC,t+1)]
will be replaced by the difference in conditional variances. Again, this is projection on lagged values

of observables, and the same problems alluded above are present.
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Because our goal is to relate the two puzzles, it is important to rephrase the

FPP in the same language as the EPP. Recalling that rational expectations alone

does not restrict the behavior of forward rates, since it is always possible to include

a risk-premium term that would reconcile the time series behavior of the involved

data, e.g., Fama (1984), the rejection of the null that α1 = 0, in favor of α1 < 0,

only represents a true puzzle if reasonable risk measures cannot explain the empirical

regularities of the data.

Here is where an asset-pricing approach may help, which is our starting point.

The relevant question is whether a theoretically sound economic model is able to

provide a definition of risk capable of correctly pricing the forward premium.11 The

natural candidate for a theoretically sound model for pricing risk is the CCAPM of

Lucas (1978) and Breeden (1979).

Assuming that the economy has an infinitely lived representative consumer, whose

preferences are representable by a von Neumann-Morgenstern utility function u (·),
the first order conditions for his(ers) optimal portfolio choice yields

1 = βEt
∙
u0(Ct+1)

u0(Ct)
Ri,t+1

¸
∀i, (12)

and, consequently,

0 = Et
∙
u0(Ct+1)

u0(Ct)
(Ri,t+1 −Rj,t+1)

¸
∀i, j, (13)

where β ∈ (0, 1) is the discount factor in the representative agent’s utility function,
Ri,t+1 and Rj,t+1 are, respectively, the real gross return on assets i and j at time

t+1 and, Ct is aggregate consumption at time t. In other words, under the CCAPM,

Mt+1 = βu0(Ct+1)/u
0(Ct).

Let the standing representative agent be a U.S. investor who can freely trade

domestic and foreign assets.12 Define the covered and the uncovered return on trading

foreign government bonds as in (10) and substitute RC for Ri and RU for Rj in (12)

11Frankel (1979) argues that most exchange rate risks are diversifiable, there being no grounds for

agents to be rewarded for holding foreign assets.
12Here, we are implicitly assuming the absence of short-sale constraints or other frictions in the

economy. Our assumption is in contrast with that of Burnside et al. (2006) for whom bid-ask

spreads’ impact on the profitability of currency speculation plays the main role in generating the

FPP.

10



to get

0 = Et
∙
u0(Ct+1)

u0(Ct)

Pt(1 + i∗t+1)[tFt+1 − St+1]

StPt+1

¸
. (14)

Assuming that preferences exhibit constant relative risk aversion, Mark (1985)

estimated the parameter α in u(C) = C1−α (1− α)−1, applying Hansen’s (1982)

Generalized Method of Moments (GMM) to (14), reporting an estimated coefficient of

relative risk aversion, bα, above 40. He then tested the over-identifying restrictions to
assess the validity of the model, rejecting them when the forward premium and its lags

are used as instruments. Similar results were reported later by Modjtahedi (1991).

Using a different, larger data set, Hodrick (1989) reported estimated values of bα above
60, but did not reject the over-identifying restrictions, while Engel (1996) reported

some estimated bα’s in excess of 100. A more recent attempt to use euler equations to
account for the FPP is Lustig and Verdelhan (2006 a), where risk aversion in excess

of 100 is needed to price the forward premium on portfolios of foreign currency.

Are we to be surprised with these findings? If we recall that the EPP is identified

with the failure of consumption-based kernels to explain the excess return of equity

over risk-free short term bonds — Ri,t+1 = (1 + iSPt+1)Pt/Pt+1 and Rj,t+1 = (1 +

ibt+1)Pt/Pt+1, in (13), where iSPt+1 is nominal return on S&P500 and ibt+1 nominal

return on the U.S. Treasury Bill — with reasonable parameters of risk aversion for

(13),13 why should we expect these same consumption-based models not to generate

the FPP? Indeed, we should expect the opposite.

The inexistence of a widely accepted model to account for risk is partly to blame

for the separation of the research agendas involving the two puzzles. There is, how-

ever, an additional reason. Another characteristic of the FPP may have played a

role in the separation of these two research agendas: the predictability of returns on

currency speculation. Because cα1 < 0 and significant, given that the auto-correlation
of risk premium is very persistent, interest-rate differentials predict excess returns.

Although predictability in equity markets has by now been extensively documented,

it was not viewed as a defining feature of the EPP, back then. It was, however, a

defining feature of the FPP, which has lead Engel (1996, p. 155), for example, to

write: “International economists face not only the problem that a high degree of risk

aversion is needed to account for estimated values of [the risk premium demanded

by a rational agent]. There is also the question of why the forward premium is such

13These asset choices follow Hansen and Singleton (1982, 1984) and Mehra and Prescott (1985).
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a good predictor of st+1 −t ft+1. There is no evidence that the proposed solutions to
the puzzles in domestic financial markets can shed light on this problem.”

Predictability is now acknowledged to be present in domestic markets as well, in

the context of the equity premium. Dividend-to-price ratio, and other variables are

capable of predicting returns, which means that, once again, we should be suspicious

that the same underlying forces may account for asset behavior in both markets.

Before describing our strategy it is important to draw attention to the fact that

pricing excess returns is crucial, but should not be the sole goal of asset-pricing

theory. Returns, and not only excess returns need to be priced, and accomplishing

both is a much harder task. To make the point as stark as possible, let us get back

to (12). When we substitute RC for Ri and RU for Rj , we get

1 = Et
∙
β
u0(Ct+1)

u0(Ct)

tFt+1(1 + i∗t+1)Pt
StPt+1

¸
and 1 = Et

∙
β
u0(Ct+1)

u0(Ct)

St+1(1 + i∗t+1)Pt
StPt+1

¸
.

(15)

It turns out that in the canonical model, e.g., Hansen and Singleton (1982, 1983,

1984), the parameter of risk aversion is the inverse of the intertemporal elasticity of

substitution, meaning that if one wants to accept a high risk aversion, one generates

implausibly high and volatile interest rates.

Accordingly, if one wants to identify the structural parameter β, in an econometric

sense, one cannot resort to direct estimation of excess returns (e.g., 14), but rather

to joint estimation of the two euler equations for returns (e.g., 15), or to any linear

rotation of them. It is, therefore, important to make a distinction between studies

that test the over-identifying restrictions jointly implied by returns and those that

test the ones implied by excess returns. For the latter no-rejection may be consistent

with any value for β, including inadmissible ones.14

In our view, a successful consumption-based model must account for asset prices

everywhere (domestically and abroad), as well as price returns, excess returns, and

many new facts recently evidenced in the extensive empirical research that has been

in a great deal sparked by the theoretical developments of the late seventies - see, for

example, Cochrane (2006).

14This is for example the case of Lustig and Verdelhan (2006 b), as they point out in their footnote

8.
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3 Our Strategy

The stated purpose of this paper is to relate the EPP and the FPP. The fact

that, as of this moment, no satisfactory consumption-based model derived from the

primitives of the economy can account for asset behavior in either market is a hint

that it is generating the two puzzles. We argue here in favor of an indirect approach.

We do not need a proper consumption model for the pricing kernel to link the two

puzzles. All we need is a strategy to extract a proper pricing kernel from return data,

showing that it prices both the domestic and the foreign-exchange returns and excess

returns. This isolates current consumption-based kernels as the most likely culprits

for mispricing these two markets. Of course, a final proof that these puzzles are linked

in this fashion can only be obtained when we finally have a proper consumption-based

model to price assets. That will explain why current models fail, something we cannot

do here.

Following Harrison and Kreps (1979) Hansen and Richard (1987), and Hansen

and Jagganathan (1991), we write the system of asset-pricing equations,

1 = Et [Mt+1Ri,t+1] , ∀i = 1, 2, · · · ,N , (16)

leading to

0 = Et [Mt+1 (Ri,t+1 −Rj,t+1)] , ∀i, j. (17)

We combine statistical methods with these Asset Pricing Equations to devise

pricing-kernel estimates as projections of SDF’s on the space of returns, i.e., the SDF

mimicking portfolio, which is unique even under incomplete markets. We denote the

latter by M∗
t+1. These pricing kernels do not depend on any assumptions about a

functional form for preferences, but solely on returns. In this sense, these methods

are preference free, despite the fact that they have a strong footing on theory as a

consequence of the use of the Asset Pricing Equation.

Our exercise consists in exploring a large cross-section of U.S. time-series stock

returns to construct return-based pricing kernel estimates satisfying the Pricing Equa-

tion (16) for that group of assets. Then, we take these SDF estimates and use them

to price assets not used in constructing them. Therefore, we perform a genuine

out-of-sample forecasting exercise using SDF mimicking portfolio estimates, avoiding

in-sample over-fitting.
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We cannot overstress the importance of out-of-sample forecasting for our pur-

poses. Our main point in this paper is to show that the forward- and the equity-

premium puzzle are intertwined. Under the law of one price, an SDF exists that prices

all assets, necessarily. Thus, an in-sample exercise would only provide evidence that

the forward-premium puzzle is not simply a consequence of violations of the law of

one price. We aim at showing more: a SDF can be constructed using only domestic

assets, i.e., using the same source of information that guides research regarding the

equity premium puzzle, and still price foreign assets. It is our view that this SDF is

to capture the growth of the marginal utility of consumption in a model yet to be

written.15

The main rationale for our methodological choice is the fact that, however suc-

cessful, a consumption-based model will not perform better in pricing tests than

its related mimicking portfolio. This is the main trust of Hansen and Jagganathan

(1991). The mimicking portfolio, thus, represents an upper bound on the pricing

capability of any model. Given our purposes an alternative approach would be to

try and relate the EPP and the FPP using a volatile consumption kernel constructed

with high aversion values. The trouble with this approach is that the work by Hansen

and Singleton (1982, 1983, 1984) generated a consensus that the over-identifying re-

strictions of traditional consumption models are often rejected when used to price

not only excess returns but also returns, i.e., when both the discount factor β and the

risk-aversion coefficient γ are identified in an econometric sense in canonical models.

We show that this pattern is present in our data set as well.

Before moving on to the description of our methodology it is worth mentioning

that, in dispensing with consumption data, our paper parallels those of Hansen and

Hodrick (1983), Hodrick and Srivastava (1984), Cumby (1988), Huang (1989), and

Lewis (1990), all of which implemented latent variable models that avoid the need for

specifying a model for the pricing kernel by treating the return on a benchmark port-

folio as a latent variable. 16 Also related is Korajczyk and Viallet (1992). Applying

the arbitrage pricing theory — APT — to a large set of assets from many countries,

15Though important in themselves, market imperfections are sometimes invoked to explain the

FPP; see Burnside et al. (2006).
16Their results met with partial success: all these papers reject the unbiasedness hypothesis but

are in conflict with each other with regards to the rejection of restrictions imposed by the latent-

variable model. However, contrary to what we do here, this line of research does not try to relate

the EPP and the FPP.
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they test whether including the factors as the prices of risk reduces the predictive

power of the forward premium. They do not perform any out-of-sample exercises and

do not try to relate the two puzzles.

Finally, Backus et al. (1995) ask whether a pricing kernel can be found that

satisfies, at the same time, log-linearized versions of

0 = Et
∙
M∗

t+1

Pt(1 + i∗t+1)[tFt+1 − St+1]

StPt+1

¸
and, (18)

Rf
t+1 =

1

Et(M∗
t+1)

, (19)

where Rf
t+1 is the risk-free rate of return. The nature of the question we implicitly

answer is similar to the one posed by Backus et al. (1995), albeit adding a pricing

test of the excess return on equity over risk free short term bonds in the U.S.17

3.1 Econometric Tests

Assume that we are able to approximate well enough a time series for the pricing

kernel, M∗
t+1. Next, we show how to use this approximation to implement direct

pricing tests for the forward and the equity-premium, in an euler equation framework.

In Section 3.2 we discuss how to construct this time series forM∗
t+1 using asset-return

information.

3.1.1 Pricing Test

In the context of the SDF mimicking portfolio, euler equations (16) and (17)

must hold for all assets and portfolios. If we had observations on M∗
t , then we would

only need return data to test directly whether they held. Of course, M∗
t is a latent

variable. Despite that, if we had a consistent estimator forM∗
t based on return data,

and a large enough sample, so that M∗
t and their estimators are “close enough,” we

could still directly test the validity of these euler equations using return data alone:

the estimators of M∗
t are a function of return data and returns are also used to

verify the Asset Pricing Equation. In this case, we do not have to perform log-linear

approximations of these euler equations, nor do we have to impose the stringent

restrictions that returns are log-Normal and Homoskedastic to test theory. Because

17Jumping to our results, we should emphasize that we do not reject (19) for any of the instruments,

as well, which means that our SDF satisfies both conditions presented by Backus et al. (1995).
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we want our tests to be out-of-sample the returns used to construct the estimates of

M∗
t will not be the ones used directly in the euler equations when testing theory.

Consider zt to be a vector of instrumental variables, which are all observed up

to time t, therefore measurable with respect to Et (·). Employing scaled returns and
scaled excess-returns — defined as Ri,t+1× zt and (Ri,t+1−Rj,t+1)× zt, respectively —

we are able to test the conditional moment restrictions associated with the euler equa-

tions and consequently to derive the implications from the presence of information.

This is particularly important for the FPP, since, when the CCAPM is employed, the

over-identifying restriction associated with having the own current forward premium

as an instrument is usually rejected: a manifestation of its predictive power.

Multiply

0 = Et
∙
M∗

t+1

Pt(1 + i∗t+1)[tFt+1 − St+1]

StPt+1

¸
, and, (20)

1 = Et
∙
M∗

t+1

St+1(1 + i∗t+1)Pt
StPt+1

¸
(21)

by zt and apply the Law-of-Iterated Expectations to get, respectively,

0 = E
½∙

M∗
t+1

Pt(1 + i∗t+1)[tFt+1 − St+1]

StPt+1

¸
× zt

¾
, and, (22)

0 = E
½∙

M∗
t+1

St+1(1 + i∗t+1)Pt
StPt+1

− 1
¸
× zt

¾
(23)

Equations (22) and (23) form a system of orthogonality restrictions that can

be used to assess the pricing behavior of estimates of M∗
t+1 with respect to the

components of the forward premium or any linear rotation of them. Equations in

the system can be tested separately or jointly. In testing, we employ a generalized

method-of-moment (GMM) perspective, using (22) and (23) as a natural moment

restriction to be obeyed. Consider parameters μ1 and μ2 in:

0 = E
½∙

M∗
t+1

Pt(1 + i∗t+1)[tFt+1 − St+1]

StPt+1
− μ1

¸
× zt

¾
, and, (24)

0 = E
½∙

M∗
t+1

St+1(1 + i∗t+1)Pt
StPt+1

− (1− μ2)

¸
× zt

¾
(25)

We assume that there are enough elements in the vector zt for μ1 and μ2 to be over

identified. In order for (22) and (23) to hold, we must have μ1 = 0 and μ2 = 0,

and the over-identifying restriction T × J test in Hansen (1982) should not reject
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them. This constitutes the econometric testing procedure implemented in this paper

to examine whether the FPP holds when return-based pricing kernels are used.

A similar procedure can be implemented for the domestic market equations, in

order to investigate domestic stylized facts that escape consumption based models.

To analyze the EPP, the system of conditional moment restrictions is given by:

0 = E

("
M∗

t+1

(iSPt+1 − ibt+1)Pt

Pt+1
− μ1

#
× zt

)
, and (26)

0 = E

("
M∗

t+1

(1 + iSPt+1)Pt

Pt+1
− (1− μ2)

#
× zt

)
, (27)

where iSPt+1 and ibt+1 are respectively the returns on the S&P500 and on a U.S. gov-

ernment short-term bond, and we also test whether μ1 = 0 and μ2 = 0, and check

the appropriateness of the over-identifying restrictions using Hansen’s T × J test18.

Beyond the high equity Sharp ratio or the reported power of the dividend-price

ratio to forecast stock-market returns, the pattern of cross-sectional returns of assets

exhibit some “puzzling aspects” as the “size” and the “value” effects — e.g. Fama and

French (1996) and Cochrane (2006) —, i.e., the fact that small stocks and of stocks

with low market values relative to book values tend to have higher average returns

than other stocks.

We follow Fama and French (1993) in using our pricing kernels to try and account

for their stock-market factors; zero-cost portfolios which are able to summarize these

effects, explaining average returns on stocks and bonds. In this case, the system of

conditional moment restrictions is given by:

0 = E
©£
M∗

t+1(Rm −Rf )t+1 − μ1
¤
× zt

ª
, (28)

0 = E
©£
M∗

t+1HMLt+1 − μ2
¤
× zt

ª
and (29)

0 = E
©£
M∗

t+1SMBt+1 − μ3
¤
× zt

ª
, (30)

where Rm−Rf , the excess return on the market, is the value-weighted return on all

NYSE, AMEX, and NASDAQ stocks minus the one-month Treasury bill rate, HML

(High Minus Low) is the average return on two value portfolios minus the average

return on two growth portfolios and SMB (Small Minus Big) is the average return on

three small portfolios minus the average return on three big portfolios.19 We, again,
18An alternative to the GMM testing procedure described above is to test directly the zero-mean

restrictions, instead of estimating by GMM.
19See Fama and French (1993) for a complete description of them.
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test μ1 = 0, μ2 = 0 and μ3 = 0, and check the appropriateness of the over-identifying

restrictions using Hansen’s T × J test.

It worth recalling that we employ an euler-equation framework, something that

was missing in the forward-premium literature after Mark (1985). Since the two

puzzles are manifest in logs and in levels, by working directly with the Pricing Equa-

tion we avoid imposing stringent auxiliary restrictions in hypothesis testing, while

keeping the possibility of testing the conditional moments through the use of lagged

instruments along the lines of Hansen and Singleton (1982 and 1984) and Mark. We

hope to have convinced our readers that the log-linearization of the euler equation

is an unnecessary and dangerous detour. Any criticism arising from the use of the

log-linear approximation is avoided here.

An important feature of our testing procedure is its out-of-sample character. To

preserve the temporal structure of the euler equations, we perform out-of-sample tests

in the cross-sectional dimension, i.e., the returns used in estimatingM∗
t+1 exclude the

return of the assets appearing directly in our main tests. Therefore, there is no reason

for the Asset Pricing Equation to hold for the assets not used in estimating M∗
t+1.

3.1.2 Instruments

There seems to be a consensus in the return forecasting literature about the rejec-

tion of the time-invariant excess returns hypothesis. However, the question of which

variables can be considered as good predictors for returns is still open. Hence, the

choice of a representative set of forecasting instruments plays certainly an important

role and highlights the relevance of the conditional tests.

Taking into account the fact that expected returns and business cycles are corre-

lated, as documented in Fama and French (1989), for both domestic and international

markets, we use the following macroeconomic variables: real consumption instanta-

neous growth rates, real GDP instantaneous growth rates, and the consumption-GDP

ratio. However, since in our exercise, the forecasting variables, the pricing kernels,

and the excess returns, are all based on market prices, we also include specific fi-

nancial variables as instruments, carefully choosing them based on their forecasting

potential.

Regarding the FPP, besides using as instruments the past values for the cov-

ered and uncovered returns on trading of the respective foreign government bond,
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we also use the current value of the forward premium, since the well documented

predictability power of this variable is a defining feature of this puzzle.

For the Fama and French (1993) portfolios and the EPP, we use lagged values of

the returns on relevant assets as instruments, since one should not omit the possibility

that returns could be predictable from past returns for any financial market. Finally,

for the EPP we still use the dividend-price ratio, following Campbell and Shiller

(1988) and Fama and French (1988), who show evidences of the good performance

of this variable as a predictor of stock-market returns.

3.2 Return-Based Pricing Kernels and the SDFMimicking Portfolio

The basic idea behind estimating return-based pricing kernels with asymptotic

techniques is that asset prices (or returns) convey information about the intertem-

poral marginal rate of substitution in consumption. If the Asset Pricing Equation

holds, all returns must have a common factor that can be removed by subtracting

any two returns. A common factor is the SDF mimicking portfolio M∗
t+1. Because

every asset return contains “a piece” of M∗
t+1, if we combine a large enough number

of returns, the average idiosyncratic component of returns will vanish in limit. Then,

if we choose our weights properly, we may end up with the common component of

returns, i.e., the SDF mimicking portfolio.

Although the existence of a strictly positive SDF can be proved under no ar-

bitrage, uniqueness of the SDF is harder to obtain, since under incomplete markets

there is, in general, a continuum of SDF’s pricing all traded securities. However, each

Mt+1 can be written asMt+1 =M∗
t+1+νt+1 for some νt+1 obeying Et [νt+1Ri,t+1] = 0

∀i. Since the economic environment we deal with is that of incomplete markets, it
only makes sense to devise econometric techniques to estimate the unique SDF mim-

icking portfolio — M∗
t+1.

There are two basic techniques employed here to estimate M∗
t+1. The first one

uses principal-component and factor analyses. It can be traced back to the work of

Ross (1976), developed further by Chamberlain and Rothschild (1983), and Connor

and Korajczyk (1986, 1993). A recent additional reference is Bai (2005). This method

is asymptotic: either N →∞ or N,T →∞, relying on weak law-of-large-numbers to
provide consistent estimators of the SDF mimicking portfolio — the unique systematic
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portion of asset returns. An alternative to this asymptotic method is to use a method-

of-moment approach, constructing algebraically the unique projection of any SDF on

the space of returns. This can be achieved through the following linear combination

of traded returns:

M∗
t+1 ≡ 10

£
E(Rt+1R

0
t+1)

¤−1
Rt+1,

where 1 and Rt+1 are N × 1 vectors of ones and of traded returns respectively.
This technique was proposed by Hansen and Jagganathan (1991) to estimate the

SDF mimicking portfolio using the Pricing Equation. For sake of completeness, we

present a summary account of these the first method in section 3.2.1, as well as a

more complete description of both of them in the Appendix.

3.2.1 Multifactor Models

Factor models summarize the systematic variation of the N elements of the vector

Rt = (R1,t, R2,t, ..., RN,t)
0 using a reduced number of K factors, K < N . Consider

a K-factor model in Ri,t:

Ri,t = ai +
KX
k=1

βi,kfk,t + ηit, (31)

where fk,t are zero-mean pervasive factors and, as is usual in factor analysis and

plim
N→∞

1

N

NX
i=1

ηi,t = 0.

Denote by Σr = E (RtR
0
t)−E (Rt)E (R0t) the variance-covariance matrix of returns.

The first principal component of the elements of Rt is a linear combination θ0Rt

with maximal variance subject to the normalization that θ has unit norm, i.e., θ0θ =

1. Subsequent principal components are identified if they are all orthogonal to the

previous ones and are subject to the same normalization. The first K principal

components of Rt are consistent estimates of the fk,t’s. Factor loadings can be

estimated consistently by simple OLS regressions of the form (31).

It is straightforward to connect principal-component and factor analyses with the

Pricing Equation, delivering a consistent estimator for M∗
t . Given estimates of ai,

βi,k, and fk,t in (31), one can write their respective expected-beta return expression:

E(Ri) = γ +
KX
k=1

βi,kλk, i = 1, 2, ..., N
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where λk is interpreted as the price of the k-th risk factor. The fact that the zero-

mean factors f ≡ f̃ − E(f̃) are such that f̃ are returns with unitary price allows us
to measure the λ coefficients directly by

λ = E(f̃)− γ

and consequently to estimate only γ via a cross-sectional regression20. Given these

coefficients, one can easily get an estimate of M∗
t ,

gM∗
t ≡ a+

KX
k=1

bkfk,t

where (a, b) is related to (λ, γ) through

a ≡ 1

γ
and b ≡ −γ

£
cov(ff 0)

¤−1
λ,

It is easy then to see the equivalence between the beta pricing model and the linear

model for the SDF. More, it is immediate that

E(gM∗
t Ri,t) = 1, i = 1, 2, ..., N.

The number of factors used in the empirical analysis is an important issue. We

expect K to be rather small. We followed Lehmann and Modest (1988) and Connor

and Korajczyk (1988), taking the pragmatic view whereby increasing K until the

estimate ofM∗
t changed very little due to the last increment in the number of factors.

4 Empirical Results

4.1 Data and Summary Statistics

In principle, whenever econometric or statistical tests are performed, it is prefer-

able to employ a large data set either in the time-series (T ) or in the cross-sectional

dimension (N). Regarding the FPP, the main limitation is the fact that the Chicago

Mercantile Exchange, the pioneer of the financial-futures market, only launched cur-

rency futures in 1972. In addition to that, only futures data for a few developed coun-

tries are available since then. In order to have a common sample for the largest set of

20Note that we are not assuming the existence of a risk free rate.
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countries possible, we considered here U.S. foreign-exchange data for Canada, Ger-

many, Japan, Switzerland and the U.K., covering the period from 1990:1 to 2004:3,

on a quarterly frequency. In order to extend the time span of used here, keeping a

common sample for all countries, we would have to accept a drastic reduction in the

number of countries, which we regard as an inferior choice.

Spot and forward exchange-rate returns were transformed into U.S.$ real returns

using the consumer price index in the U.S. The forward-rate series were extracted

from the Chicago Mercantile of Exchange database, while the spot-rate series were

extracted from Bank of England database. To study the EPP we used the U.S.$ real

returns on the S&P500 and on 90-day T-Bill. Real returns were obtained using the

consumer price index in the U.S.

A second ingredient for testing these two puzzles is to estimate return-based

pricing kernels. Again, in choosing return data, we had to deal with the trade-off

between N and T . In order to get a larger N , one must accept a reduction in

T : disaggregated returns are only available for smaller time spans than aggregated

returns. The database used here to estimate the SDF is comprised of U.S.$ real

returns on two hundred U.S. stocks — those with the 200 largest volumes according

to CRSP database. Therefore, it is completely U.S. based and available at a very

disaggregated level. Our choice of returns to estimate the SDF mimicking portfolio is

a direct response to Cochrane’s (2001) criticism of in-sample over-fitting: the return

data used to construct SDF estimates is not the same used to construct excess returns

in foreign markets. Hence, our pricing tests are out-of-sample in the cross-sectional

dimension (assets).

All macroeconomic variables used in econometric tests were extracted from FED’s

FRED database. We also employed additional forecasting financial variables that are

specific to each test performed, and are listed in the appropriate tables of results.

The Fama-French benchmark factors series were extracted from the French data

library. In terms of the notation used in the tables below, we adopted the following:

the estimate of M∗
t using multi-factor models is labelled gM∗

t , while that using the

projection in Hansen and Jagganathan (1991) is labelled M∗
t .

Table 1 presents a summary statistic of our database over the period 1990:1 to

2004:3. The average real return on the covered trading of foreign government bonds

range from 0.91% to 1.78% a year, while that of uncovered trading range from 1.69%

to 4.91%. The real return on the S&P500 is 8.78% at an annual rate, while that of
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the 90-day T-Bill is 1.42%, with a resulting excess return of 7.28%. As expected, real

stock returns are much more volatile than the U.S. Treasury Bill return — annualized

standard deviations of 16.82% and 1.10% respectively. Over the same period, except

for the Swiss case, the real return on covered trading of foreign bonds show means

and standard deviations quite similar to that of the U.S. Treasury Bill. Regarding

the return on uncovered trading, means range from 1.69% to 4.91%, while standard

deviations range from 5.52% to 15.50%.

We computed the Sharpe ratio for the U.S. stock market to be 0.44, while the

Sharpe ratio of the uncovered trading of foreign bonds ranges from −0.01 to 0.38.
According to Shiller (1982), Hansen and Jagganathan (1991), and Cochrane and

Hansen (1992), an extremely volatile SDF is required to match the high equity Sharpe

ratio of the U.S. Hence, the smoothness of aggregate consumption growth is the main

reason behind the EPP. Since the higher the Sharpe ratio, the tighter the lower bound

on the volatility of the pricing kernel, a natural question that arises is the following:

may we regard this fact as evidence that a kernel that prices correctly the equity

premium would also price correctly the forward premium? We will try to answer this

question here in an indirect way.

4.2 SDF Estimates

In constructinggM∗
t , from the real returns on the two hundred most traded (vol-

ume) U.S. stocks, we must first choose the number of factors, i.e., how many pervasive

factors are needed to explain reasonably well the variation of these 200 stock returns?

Following Lehmann and Modest (1988), Connor and Korajczyk (1988), and most of

the empirical literature, we took a pragmatic view, increasing the number of fac-

tors until gM∗
t changed very little with respect to choosing an additional factor. We

concluded that 6 factors are needed to account for the variation of our 200 stock re-

turns: starting from 3 factors, increasing this number up to 6, implies very different

estimates of M∗
t . However, starting from 6 factors, increasing this number up to 8,

implies practically the same estimate of M∗
t . Our choice (6 factors) is identical to

that of Connor and Korajczyk (1993), who examined returns from stocks listed on

the New York Stock Exchange and the American Stock Exchange.

Looking at the final linear combination of returns that comprise gM∗
t , we list

the following most relevant stocks in its composition: Informix Corporation (13th
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largest volume), AMR Corporation DEL (64th), Emulex Corporation (98th), Erics-

son L M Telephone Corporation (99th), Iomega Corporation (118th), LSI Corpora-

tion (124th), Lam Resch Corporation (125th), Advanced Micro Services Inc. (154th)

and 3-Com Corporation (193th).

In constructing M∗
t , a practical numerical problem had to be faced, which is how

to invert the second-moment matrix E
¡
Rt+1R

0
t+1

¢
— a square matrix of order 200.

Standard inversion algorithms broke down and we had to resort to the Moore-Penrose

generalized inverse technique.

The estimates of M∗
t — M

∗
t andgM∗

t — are plotted in Figure 1, which also includes

their summary statistics. Their means are slightly below unity, 0.962 and 0.977

respectively. Moreover, the mimicking portfolio estimate is about twice more volatile

than the multi-factor model estimate. The correlation coefficient between M∗
t andgM∗

t is 0.407.

4.3 Pricing-Test Results

Table 2 presents results of the over-identifying-restriction tests when consumption-

based kernels are employed and excess returns are represented by the equity premium

in the U.S. These results will be later compared to those using return-based kernels.

We considered three types of preference representations here: standard CRRA, fol-

lowing Hansen and Singleton (1982, 1983, 1984), Kreps-Porteus, following Epstein

and Zin (1991), and External Habit, following Abel (1990). Tests are conducted

separately for the euler equation for excess returns and for the two euler equations

for returns. In the former case, the discount rate β is not identified, which is not a

feature of the latter.

The top portion of Table 2 presents test results when excess returns (U.S. equity

versus U.S. government bonds) are considered, i.e., when β is not identified. In this

case, the over-identifying-restriction test does not reject the null at 5% significance

regardless of the type of the utility function we considered. Since β is not identified,

the euler equation for excess returns is consistent with any arbitrary value of β.

Notice that estimates of the constant relative-risk aversion coefficient are in excess

of 160 for all preference specifications used, which is similar to the results obtained

by Lustig and Verdelhan (2006 a).21

21 It is straightforward to understand why we obtain these results for CRRA utility. In this case,
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The lower portion of Table 2 presents test results for a system of two euler equa-

tions for U.S. equities and government bonds. Here, both the discount rate β and the

risk-aversion coefficient α are identified. A completely different result with respect

to Table 2 emerges in this case: with very high confidence, the over-identifying-

restriction test rejects the null regardless of the preference-specification being con-

sidered; estimates of α are relatively small, but significant; and β estimates are close

to unity and significant as well. Because of the overwhelming rejection of the over-

identifying-restriction test, we conclude that the EPP is a feature of our data set:

we cannot reconcile data and theory using standard econometric tests and at the

same time obtain “reasonable” parameter estimates. When testing did not reject the

over-identifying-restrictions — results in Table 2 — β was not identified, and estimates

of α were in excess of 160, which are far from what we may call reasonable.

Table 3 presents single-equation equity-premium test results when return-based

pricing kernel estimates are used in place of consumption-based kernels. A variety

of macroeconomic and financial instruments, including up to their own two lags, are

employed in testing. At the 5% significance level, whengM∗
t is used, there is only one

instance when the T × J statistic rejects the null. This happens when the dividend-

price ratio Dt
Pt
(up to its own two lags) is used as an instrument. When the mimicking

portfolio is estimated using M∗
t , there is no rejection of the T × J statistic at the

5% significance level. Also, in all instances, estimates of μ1and μ2 obey μ1 = 0 and

μ2 = 0 at the usual confidence levels.

Table 4 presents the first set of results regarding the forward-premium puzzle,

in a single-equation context, where gM∗
t and M∗

t , as estimators of M
∗
t , are used to

price the excess return of uncovered over covered trading with foreign government

bonds, while Table 5 presents tests, where gM∗
t and M∗

t are used to price the return

on uncovered trading with foreign government bonds. In both tables, at the 5%

significance level, there is not one single rejection either in mean tests for μ1and μ2

or for the T × J statistic.

Table 6 presents equity-premium tests for systems, when gM∗
t and M∗

t are used.

No theoretical restriction is rejected here either by individual tests for μ1and μ2 or for

Mt+1 =
³
Ct+1
Ct

´−α
, and GMM chooses α as to make a quadratic form using Mt+1

(iSPt+1−i
b
t+1)Pt

Pt+1
×zt

as close to zero as possible. A large value for α makes
³
Ct+1
Ct

´−α
=
³

Ct
Ct+1

´α
close to zero, since

Ct
Ct+1

is usually smaller than unity.
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the T ×J statistic. Table 7 presents system tests for the Fama-French portfolios. We

do not reject the null for the market excess return (Rm −Rf ) and for the small/big

(SMB) portfolio, but not for the high/low (HML) one. It is worth stressing that,

even then, the over-identifying-restriction test does not reject the null.

Finally, Table 8 presents system tests for the FPP when gM∗
t and M∗

t are used

respectively. At 5% significance, there is a single rejection (out of 10) of the over-

identifying-restriction test for German bonds withM∗
t . Also, for British bonds, there

is evidence that μ1 6= 0, although the T × J statistic does not reject the null.

4.3.1 Discussion

In this paper, we first questioned the standard testing procedure of the FPP,

relying on estimates cα0 and cα1, obtained from running

st+1 − st = α0 + α1(tft+1 − st) + ut+1,

from a theoretical point of view. Our key point is that tft+1 − st and ut+1 are

correlated, and that lagged observables are not valid instruments. Since these are

exactly the instrumental variables used in obtaining cα0 and cα1 , tests of the FPP
relying on such estimates are biased and inconsistent.

Next, we show evidence of the EPP in our data, if one takes the EPP to mean

“the failure of consumption-based kernels to explain the excess return of equity over

risk-free short term bonds with reasonable parameters values for risk aversion.” This

is a consequence of the results obtained in Table 2, where system tests involving the

returns of these two assets overwhelmingly rejected the implied over-identifying re-

strictions, and single-equation estimates of the risk-aversion coefficient were in excess

of 160, regardless of the preference specification employed. A risk-aversion coefficient

greater than 160 cannot be called “reasonable” under any circumstance, especially if

it is obtained only in models where the discount rate coefficient β is not identified

in the econometric sense. Recent work by Lustig and Verdelhan (2006a) estimates

the coefficient of relative risk aversion to fit an euler equation under more general

preferences than those used in Mark (1985) and Hodrick (1987) capable of pricing

the returns on eight different portfolios of foreign currencies. Because they do not

try to price returns on these portfolios, one cannot fully assess the adequacy of the

pricing kernels they generate.
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Next, we showed that, using return-based pricing kernels, in an euler-equation

setup, we are able to properly price returns and excess returns of assets that com-

prise the equity premium and the forward premium puzzles; see results presented in

Tables 3 through 8, where several econometric tests were performed, either in sin-

gle equations or in systems, and using two distinct estimates of M∗
t — M

∗
t and gM∗

t .

These test results are very informative for at least two reasons. First, even if we do

not have a consumption model that delivers a proper pricing kernel, the mimicking

portfolio is a valid kernel. Second, our tests have an out-of-sample character in the

cross-sectional dimension.

One important element of our testing procedure is that, when the ratio tFt+1/St

is used as an instrument, the theoretical restrictions tested were not rejected, leading

to the conclusion that tFt+1/St has no predictive power forM∗
t+1

Pt(1+i∗t+1)
Pt+1

tFt+1−St+1
St

.

Hence, although the excess returns on uncovered over covered trading with foreign

bonds are predictable, “risk adjusted” excess returns are not. This raises the question

that predictability results using (1) may just be an artifact of the log-linear approxi-

mation of the euler equation for excess returns. This is a very important result, since

predictability of st+1 − st in (1) is a defining feature of the forward-premium puzzle.

Given that Mark (1985) found evidence of the FPP in proper econometric tests,

also found by Hansen and Singleton (1982, 1984) regarding the EPP22, and that we

show enough evidence that proper estimates of M∗
t do not misprice returns com-

prising the equity premium and the forward premium, we conclude that the EPP

and the FPP are “two symptoms of the same illness” — the poor (although steadily

improving) performance of current consumption-based pricing kernels to price asset

returns or excess returns. Our result takes the correlation with the pricing kernel as

the appropriate measure of risk, and adds to the body of evidence that “explains”

the forward premium as a risk premium. The reason why we quote the term explains

is because, we have not tried to advance on the explanation of either puzzle, but

simply to show that the two are related.

Even though we believe that we have elements to give a positive answer to the

question posed in the title of this paper, a different question we may ask is: should the

forward premium be regarded as a reward for risk taking? If we take the covariance

with M∗
t+1 as the relevant measure of risk, then our answer is yes. In this sense

we side with the position implicit in Brandt et al. (2006), where the behavior of

22Corroborated by the evidence also shown in Table 2.
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the SDF is viewed as being equal to that of the marginal rate of substitution for a

model of preferences and/or market structure yet to be written. However, this is

not without controversy. Citing Engel (1996, p. 162): “If the [CAPM] model were

found to provide a good description of excess returns in foreign exchange markets,

there would be some ambiguity about whether these predicted excess returns actually

represent premiums.”

5 Conclusion

Previous research has cast doubt on whether consumption-based pricing kernels

were capable of correctly pricing the equity and the forward premium,23 generating

respectively the EPP and the FPP, with two different literatures. Here, we propose

a fresh look into the relationship between these well known puzzles. We employ an

asset-pricing approach. Our starting point is the Asset Pricing Equation, coupled

with the use of consistent estimators of the SDF mimicking portfolio. They are

a function of return data alone and do not depend on aggregate consumption or on

any parametric representation for preferences. In this context, we first show that, our

estimated return-based kernels price correctly the equity and the forward premium,

as well as the individual returns that compose them. Our estimates are constructed

using domestic (U.S.) returns alone.

Based on our empirical results, we go one step further and ask whether the EPP

and the FPP are but two symptoms of the same illness — the inability of standard

(and augmented) consumption-based pricing kernels to price asset returns or excess-

returns. Given the tendency in the profession of generating new research agendas

whenever a new empirical regularity that cannot be accounted for by our models is

discovered, it is important to always ask whether these are distinct phenomena or

if they are but two manifestations of a same problem. Otherwise, in the limit, we

could find as many puzzles as there were assets. Since the number of assets in any

real economy is large, would it make any sense to investigate all of them separately?

Obviously not. What we are able to show is that, indeed, regarding the EPP and

the FPP, finding a model that does account for either puzzle is bound to double its

prize by accounting for the other.

23A more optimistic viewpoint is offered by Cochrane (2006), who contrast the disheartening

results of the first years of this research with the recent success stories.
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Our empirical tests are robust to important sources of misspecification incurred by

the previous literature: inappropriate log-linear approximation of the euler equation

for returns and inappropriate models for consumption-based kernels.24

Our return-based pricing kernels, constructed using only U.S.-stock returns, are

orthogonal to past information that is usually known to forecast undiscounted excess

returns. Moreover, they are also able to price the equity premium for the U.S. and

the exchange-rate forward premium for five distinct developed economies: United

Kingdom, Canada, Germany, Japan and Switzerland. In our tests, we found that

the ex-ante forward premium is not a predictor of discounted excess returns, as

is usually found when a log-linear approximation of the Asset Pricing Equation is

employed in testing. This evidence, coupled with our theoretical discussion on the

log-linear approximation of the euler equation, cast doubt on the predictability of

exchange-rate changes. In our opinion predictability may be a consequence of the

inappropriateness of the log-linear approximations previously employed in testing

theory.

In our tests, although consumption-based kernels are not able to correctly price

returns, return-based kernels are. This provides the basis for believing that the two

puzzles are two symptoms of the same illness, being therefore more profitable to

concentrate efforts on a single research agenda, focused on rethinking consumption-

based pricing kernels. As stressed before, the final proof that these puzzles are linked

can only be obtained when we finally have a proper consumption-based model to

price assets. That will explain why current models failed, something we cannot do

today.
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A Return-Based Estimates of the SDF Mimicking Port-

folio

A.1 The Approach of Hansen and Jagganathan (1991)

Given a set ofN traded returns stacked in a vectorRt+1, Hansen and Jagganathan

construct algebraically the unique projection of any SDF on the space of returns. It

is given by the following linear combination of traded returns:

M∗
t+1 ≡ 10

£
E(Rt+1R

0
t+1)

¤−1
Rt+1, (32)

where 1 is N × 1 a vector of ones. It is straightforward to verify that the estimator
of M∗

t+1 will obey a vector version of the Pricing Equation, since:

E
©
M∗

t+1R
0
t+1

ª
=
n
10
£
E(Rt+1R

0
t+1)

¤−1 E £Rt+1R
0
t+1

¤o
= 10.

Even is all returns are non-negative, it is possible that the projection of the SDF

on the space of returns to be negative for some t, although this is not very common

empirically.
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A.2 The Multifactor-Model Approach

Principal components are simply linear combinations of returns. They are con-

structed to be orthogonal to each other, to be normalized to have a unit length and

to deal with the problem of redundant returns, which is very common when a large

number of assets is considered. They are ordered so that the first principal compo-

nent explains the largest portion of the sample variance-covariance matrix of returns,

the second one explains the next largest portion, and so on.

Factor models summarize the systematic variation of the N elements of the vector

Rt = (R1,t, R2,t, ..., RN,t)
0 using a reduced number of K factors, K < N . Consider

a K-factor model in Ri
t:

Ri,t = ai +
KX
k=1

βi,kfk,t + ηit (33)

where fk,t are zero-mean pervasive factors and, as is usual in factor analysis,

plim
1

N

NX
i=1

ηi,t = 0.

Denote by Σr = E (RtR
0
t) − E (Rt)E (R0t) the variance-covariance matrix of re-

turns. The first principal component of the elements of Rt is a linear combination

θ0Rt with maximal variance subject to the normalization that θ has unit norm, i.e.,

θ0θ = 1. Subsequent principal components are identified if they are all orthogonal

to the previous ones and are subject to the same normalization. The first K princi-

pal components of Rt are consistent estimates of the fk,t’s. Factor loadings can be

estimated consistently by simple OLS regressions of the form (33).

To understand why we need the unit-norm condition, recall that the variance of

the first principal component θ0Rt is θ0Σrθ. As discussed in Dhrymes (1974), because

we want to maximize this variance, the problem has no unique solution — we can make

the variance as large as we want by multiplying θ by a constant κ > 1. Indeed, we

are facing a scale problem, which is solved by imposing unit norm, i.e., θ0θ = 1.

When a multi-factor approach is used, the first step is to specify the number

of factors by means of a statistical or theoretical method and then to consider the

estimation of the model with known factors. Here, we are not particularly concerned

about identifying the factors themselves. Rather, we are interested in constructing
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an estimate of the unique SDF mimicking portfolio M∗
t . For that, we shall rely on a

purely statistical model, combined with the Pricing Equation.

Given estimates of the factor model of Ri
t in (33), one can write the respective

expected-beta return expression

E(Ri) = γ +
KX
k=1

βi,kλk, i = 1, 2, ..., N

where λk is interpreted as the price of the k-th risk factor. The fact that the zero-

mean factors f ≡ f̃ − E(f̃) are such that f̃ are returns with unitary price allows us
to measure the λ coefficients directly by

λ = E(f̃)− γ

and consequently to estimate only γ via a cross-sectional regression25.

Given these coefficients, one can easily get an estimate of M∗
t ,

gM∗
t ≡ a+

KX
k=1

bkfk,t

where (a, b) is related to (λ, γ) through

a ≡ 1

γ
and b ≡ −γ

£
cov(ff 0)

¤−1
λ,

It is easy then to see the equivalence between the beta pricing model and the linear

model for the SDF. More, it is immediate that

E(gM∗
t Ri,t) = 1, i = 1, 2, ..., N.

It is important to stress that we need to impose a scale whenever a factor-model

is used. Here, it is implicitly imposed that V AR
³gM∗

t

´
= 1; see Cochrane (2001).

The number of factors used in the empirical analysis is an important issue. We

expect K to be rather small, but have some flexibility for this choice.26 We followed

Lehmann and Modest (1988) and Connor and Korajczyk (1988), taking the pragmatic

view whereby increasing K until the estimate of M∗
t changed very little due to the

last increment in the number of factors. We also performed a robustness analysis for

the results of all of our statistical tests using different estimates of M∗
t associated

with different K’s. Results changed very little around our choice of K.
25One should note that we are not assuming the existence of a risk free rate. If this is the case,

rather then estimate the intercept γ, one set it equal to the real return of the risk free rate.
26Despite this relevance, the pure number of factors is not a meaninful question.
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B   Tables and Figures

Table 1: Data summary statistics

International quarterly data: observations from 1990:I to 2004:III

US$ real excess return on the uncovered over the covered 
trading of foreign government bonds

US$ real net return on the covered trading of foreign 
government bonds

US$ real net return on the uncovered trading of foreign 
government bonds

Government Sample Mean Sample S.D. Sample Mean Sample S.D. Sample Mean Sample S.D.
bonds (% per year) (% per year) (% per year) (% per year) (% per year) (% per year)

British 1.334 1.681 4.911 9.857 3.541 9.421

Canadian 1.746 1.122 1.956 5.517 0.207 5.605

German 0.913 2.824 3.123 11.138 2.195 11.818

Japanese 1.777 1.342 1.691 12.501 -0.084 12.590

Swiss 1.750 1.450 3.049 12.196 1.282 12.344

US quarterly data: observations from 1990:I to 2004:III

US$ real excess return on S&P500 over 90-day Treasury- 
BillUS$ real net return on 90-day Treasury-Bill US$ real net return on S&P500

Sample Mean Sample S.D. Sample Mean Sample S.D. Sample Mean Sample S.D.
(% per year) (% per year) (% per year) (% per year) (% per year) (% per year)

1.422 1.098 8.784 16.815 7.285 16.409
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Table 2: Testing overidentifying restrictions of consumption models 

Testing consumption models taking into account only excess return of S&P500 over 90 day Treasury-Bill

CRRA Preference Epstein and Zin (1991) Preference Abel (1990) Preference

α J-statistic α ρ J-statistic α κ J-statistic
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
160.252 0.157 181.205 84.562 0.168 164.622 -0.198 0.147

(0.003) (0.181) (0.015) (0.248) (0.086) (0.013) (0.699) (0.091)

Testing consumption models taking into account both return on S&P500 and excess return of S&P500 over 90 day Treasury-Bill

CRRA Preference Epstein and Zin (1991) Preference Abel (1990) Preference

β α J-statistic β α ρ J-statistic β α κ J-statistic
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

1.009 7.347 0.467 1.011 3.332 577.616 0.469 1.009 9.681 0.289 0.418

(0.000) (0.000) (0.007) (0.000) (0.000) (0.855) (0.004) (0.000) (0.000) (0.043) (0.012)

Notes:   Hansens`s (1982) Generalized Method of Moments (GMM) technique is used to test Euler equations and estimate the model parameters over the period from 1990:1 to 2004:3.
             Instrument set: real consumption and GDP instantaneous growth rates, consumption/GDP ratio, lagged value of the returns in question and dividend/price ratio and a constant.
             Parameters: β  is is the one-period discount rate, α  is the relative risk aversion coefficient, κ  is the time-separability parameter and ρ  equals the inverse elasticity of intertemporal substitution.
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Figure 1: Pricing kernels with US domestic financial market (1990:I - 2004:III):                and

Pricing kernel estimators summary statistics (quarterly)
Mean S.D. Max. Min.

Multifactor model 0.977 0.318 1.664 0.041

Mimicking portfolio 0.962 0.725 2.871 -0.428
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Table 3: Equity-Premium Puzzle tests (single-equation)

Testing the capacity of our return-based pricing kernels to price excess return of S&P500 over 90-day Treasury-Bill

Instrument sets:
(D/P)t; (D/P)t-1; 
(D/P)t-2; const

J-stat. J-stat. J-stat. J-stat. J-stat. J-stat.
Euler equations: (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

0.385 0.028 0.385 0.069 -0.065 0.069 0.385 0.047 0.385 0.056 0.385 0.130

(0.724) (0.673) (0.750) (0.285) (0.963) (0.275) (0.768) (0.456) (0.747) (0.382) (0.686) (0.063)

0.659 0.089 0.659 0.087 0.424 0.089 0.659 0.070 0.659 0.075 0.659 0.075

(0.571) (0.189) (0.495) (0.197) (0.715) (0.183) (0.640) (0.267) (0.542) (0.238) (0.516) (0.238)

Testing the capacity of our return-based pricing kernels to price return on S&P500 

Instrument sets:
(D/P)t; (D/P)t-1; 
(D/P)t-2; const

J-stat. J-stat. J-stat. J-stat. J-stat. J-stat.
Euler equations: (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

-2.014 0.071 -2.014 0.043 -1.272 0.006 -2.014 0.044 -2.014 0.111 -2.014 0.144

(0.403) (0.269) (0.489) (0.495) (0.680) (0.986) (0.490) (0.480) (0.470) (0.098) (0.470) (0.044)

-0.891 0.094 -0.891 0.046 -0.364 0.010 -0.891 0.117 -0.891 0.053 -0.891 0.087

(0.875) (0.169) (0.879) (0.470) (0.959) (0.903) (0.905) (0.087) (0.892) (0.407) (0.902) (0.191)

Notes:   Hansens`s (1982) Generalized Method of Moments (GMM) technique is used to test Euler equations and estimate the model parameters over the period from 1990:1 to 2004:3.
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Table 4: Forward-Premium Puzzle tests (single-equation)

Testing the capacity of our return-based pricing kernels to price excess return of uncovered over covered trading of foreign government bonds

British bonds Canadian bonds German bonds Japanese bonds Swiss bonds British bonds Canadian bonds German bonds Japanese bonds Swiss bonds

Instrument sets:
J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat.

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

0.694 0.055 -0.019 0.044 0.686 0.080 -0.306 0.081 0.308 0.077 0.840 0.048 -0.442 0.017 0.575 0.056 -1.285 0.057 0.212 0.080

(0.182) (0.398) (0.964) (0.486) (0.493) (0.224) (0.708) (0.220) (0.703) (0.265) (0.055) (0.454) (0.233) (0.812) (0.569) (0.390) (0.216) (0.382) (0.816) (0.246)

0.694 0.030 -0.019 0.030 0.686 0.038 -0.306 0.039 0.308 0.030 0.840 0.050 -0.442 0.018 0.575 0.061 -1.285 0.047 0.212 0.070

(0.120) (0.649) (0.962) (0.649) (0.428) (0.552) (0.715) (0.540) (0.617) (0.675) (0.067) (0.438) (0.234) (0.798) (0.549) (0.350) (0.287) (0.462) (0.798) (0.318)

1.007 0.025 0.057 0.040 0.879 0.075 0.038 0.069 0.568 0.081 0.990 0.051 -0.396 0.023 0.669 0.099 -1.092 0.097 0.343 0.106

(0.050) (0.704) (0.884) (0.519) (0.302) (0.238) (0.965) (0.275) (0.379) (0.237) (0.090) (0.423) (0.274) (0.728) (0.479) (0.143) (0.353) (0.151) (0.670) (0.144)

0.694 0.016 -0.019 0.054 0.686 0.071 -0.306 0.113 0.308 0.100 0.840 0.023 -0.442 0.017 0.575 0.043 -1.285 0.103 0.212 0.091

(0.140) (0.821) (0.950) (0.398) (0.472) (0.259) (0.721) (0.094) (0.677) (0.167) (0.106) (0.728) (0.115) (0.808) (0.496) (0.488) (0.211) (0.127) (0.791) (0.200)

0.694 0.027 -0.019 0.033 0.686 0.093 -0.306 0.092 0.308 0.048 0.840 0.101 -0.442 0.039 0.575 0.079 -1.285 0.111 0.212 0.078

(0.089) (0.679) (0.958) (0.605) (0.464) (0.167) (0.720) (0.171) (0.640) (0.475) (0.067) (0.135) (0.196) (0.532) (0.537) (0.222) (0.271) (0.098) (0.805) (0.248)

1.007 0.029 0.057 0.114 0.879 0.066 0.038 0.131 0.568 0.085 0.990 0.051 -0.396 0.108 0.669 0.079 -1.092 0.121 0.343 0.090

(0.076) (0.655) (0.878) (0.092) (0.240) (0.300) (0.966) (0.061) (0.376) (0.222) (0.090) (0.423) (0.254) (0.107) (0.473) (0.222) (0.250) (0.079) (0.628) (0.204)

Notes:   Hansens`s (1982) Generalized Method of Moments (GMM) technique is used to test Euler equations and estimate the model parameters over the period from 1990:1 to 2004:3.
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Table 5: Forward-Premium Puzzle tests (single-equation)

Testing the capacity of our return-based pricing kernels to price return on uncovered trading of foreign government bonds

British bonds Canadian bonds German bonds Japanese bonds Swiss bonds British bonds Canadian bonds German bonds Japanese bonds Swiss bonds

Instrument sets:
J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat. J-stat.

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

1.703 0.062 2.336 0.063 1.926 0.059 2.625 0.057 2.132 0.068 -1.085 0.089 0.123 0.091 -0.807 0.089 1.002 0.088 -0.202 0.061

(0.524) (0.342) (0.349) (0.334) (0.487) (0.366) (0.299) (0.382) (0.473) (0.332) (0.853) (0.189) (0.983) (0.181) (0.893) (0.189) (0.854) (0.193) (0.976) (0.385)

1.703 0.037 2.336 0.029 1.926 0.032 2.625 0.042 2.132 0.058 -1.085 0.039 0.123 0.045 -0.807 0.045 1.002 0.050 -0.202 0.038

(0.610) (0.564) (0.463) (0.661) (0.573) (0.625) (0.402) (0.504) (0.561) (0.407) (0.862) (0.540) (0.984) (0.478) (0.900) (0.478) (0.868) (0.438) (0.980) (0.585)

0.197 0.017 1.069 0.018 0.525 0.015 1.086 0.013 0.579 0.027 -0.943 0.011 0.370 0.013 -0.615 0.007 1.099 0.005 -0.028 0.007

(0.961) (0.808) (0.778) (0.794) (0.900) (0.835) (0.779) (0.862) (0.898) (0.702) (0.901) (0.890) (0.960) (0.862) (0.938) (0.940) (0.883) (0.962) (0.997) (0.946)

1.703 0.062 2.336 0.042 1.926 0.053 2.625 0.062 2.132 0.082 -1.085 0.060 0.123 0.113 -0.807 0.029 1.002 0.071 -0.202 0.146

(0.594) (0.333) (0.450) (0.497) (0.598) (0.406) (0.377) (0.333) (0.577) (0.233) (0.883) (0.349) (0.987) (0.094) (0.867) (0.655) (0.891) (0.259) (0.979) (0.052)

1.703 0.105 2.336 0.049 1.926 0.099 2.625 0.101 2.132 0.097 -1.085 0.082 0.123 0.031 -0.807 0.104 1.002 0.083 -0.202 0.046

(0.588) (0.119) (0.456) (0.439) (0.559) (0.143) (0.391) (0.135) (0.606) (0.178) (0.887) (0.210) (0.986) (0.630) (0.915) (0.123) (0.882) (0.206) (0.981) (0.490)

0.197 0.080 1.069 0.059 0.525 0.044 1.086 0.016 0.579 0.038 -0.943 0.048 0.370 0.071 -0.615 0.056 1.099 0.003 -0.028 0.071

(0.960) (0.218) (0.616) (0.357) (0.869) (0.480) (0.741) (0.821) (0.878) (0.577) (0.911) (0.447) (0.962) (0.259) (0.924) (0.382) (0.881) (0.982) (0.997) (0.300)

Notes:   Hansens`s (1982) Generalized Method of Moments (GMM) technique is used to test Euler equations and estimate the model parameters over the period from 1990:1 to 2004:3.
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Table 6: Equity-Premium Puzzle tests (system)

Testing the capacity of           and           to price jointly: return on S&P500 and also excess return of S&P500 over risk-free short-term bonds

and and

Instrument set:
J-stat. J-stat.

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

-0.016 1.775 0.241 -0.414 1.413 0.245

(0.985) (0.438) (0.309) (0.587) (0.796) (0.292)

Notes:   Hansens`s (1982) Generalized Method of Moments (GMM) technique is used to test Euler equations and estimate the model parameters over the period from 1990:1 to 2004:3.
            

Table 7: Fama-French portfolios pricing tests (system)

Testing the capacity of           and           to price jointly the Fama-French zero-cost portfolios 

                                            ,                                                     and                                             ,                                                     and

Instrument set:
J-stat. J-stat.

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

-1.167 1.900 -0.054 0.293 -0.702 2.166 0.199 0.253

(0.165) (0.003) (0.925) (0.707) (0.326) (0.000) (0.684) (0.829)

Notes:  Hansens`s (1982) Generalized Method of Moments (GMM) technique is used to test Euler equations and estimate the model parameters over the period from 1990:1 to 2004:3.
            Fama-French portfolios: (R m  - R f )  is the excess return on the market, HML is the average return on two value portfolios minus the average return on two growth portfolios and SMB  is the average return on three small

            portfolios minus the average return on three big portfolios.  
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Table 8: Forward-Premium Puzzle tests (system)

Testing the capacity of           to price jointly: return on uncovered trading of foreign government bonds and also excess return of uncovered over covered trading of foreign government bonds

     and

British bonds Canadian bonds German bonds Japanese bonds Swiss bonds

Instrument sets
J-stat. J-stat. J-stat. J-stat. J-stat.

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

1.101 0.657 0.184 0.075 1.606 0.242 0.882 1.072 0.281 0.038 1.642 0.259 0.649 1.093 0.241

(0.014) (0.831) (0.555) (0.787) (0.522) (0.305) (0.151) (0.728) (0.189) (0.951) (0.565) (0.241) (0.315) (0.734) (0.378)

Testing the capacity of           to price jointly: return on uncovered trading of foreign government bonds and also excess return of uncovered over covered trading of foreign government bonds

     and

British bonds Canadian bonds German bonds Japanese bonds Swiss bonds

Instrument sets
J-stat. J-stat. J-stat. J-stat. J-stat.

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

0.969 0.847 0.202 -0.390 2.134 0.187 0.657 1.166 0.380 1.073 2.849 0.247 0.333 1.877 0.232

(0.016) (0.878) (0.470) (0.146) (0.693) (0.540) (0.334) (0.824) (0.039) (0.176) (0.656) (0.284) (0.425) (0.695) (0.412)

Notes:  Hansens`s (1982) Generalized Method of Moments (GMM) technique is used to test Euler equations and estimate the model parameters over the period from 1990:1 to 2004:3.
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