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Abstract

The purpose of the literature on Research Joint Ventures (RJV),
pioneered by D�Aspremont and Jacquemin (1988) and Kamien, Muller,
and Zang (1992), has been to combine the best of two worlds: to ap-
propriately deal with R&D spillovers while preserving competition in
the product market. Moreover, RJVs eliminate duplication of R&D.
Thus, at least in theory, RJVs dominate other solutions such as sub-
sidies. If, however, we are concerned about risks of cartelization, then
Spence�s (1984) subsidy-based solution for independently acting Þrms,
is a viable alternative that cannot be dismissed. Indeed, in contrast to
the previous literature, we Þnd that in the presence of R&D subsidies,
market performance may unambiguously improve with the number of
Þrms in the market.
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1 Introduction
Despite the popular presumption that non-competitive behavior can-
not be reconciled with welfare maximization, it has long been under-
stood, at least since Schumpeter, that large Þxed costs of R&D are
incompatible with marginal cost pricing. More recently, the litera-
ture has also focused on the free-rider problem associated with R&D
spillovers. However, both issues, large Þxed costs and the free-rider
problem, can be successfully mended with appropriate subsidies, which
can restore the incentives to undertake R&D. The suggestion to al-
leviate the free-rider problem through subsidies was Spence�s (1984),
who argued that subsidy-based policy dominates patenting. He rea-
soned that patents are suboptimal since they assign a positive price
to knowledge, when, ideally, such a public good should be priced at
zero.
Indeed, in a framework where spillovers are in R&D input and

where Þrms are not allowed to cooperate, Spence showed that, absent
any government intervention, market performance eventually worsens
as the number of Þrms increases. Intuitively, this seminal result is
driven by the interaction of three factors: price-to-cost margins, free-
riding on other Þrms� R&D, and duplication of R&D efforts. More
speciÞcally, as the number of Þrms increases, competition forces Þrms
to price closer to marginal cost, while on the other hand, both free-
riding and losses to duplication increase.
Given the presence of free-riding, this result may not seem sur-

prising. Spence shows, however, that the free-riding problem can be
solved with appropriate subsidies. Interestingly, even when free-riding
is eliminated via subsidies, his result continues to hold: as the num-
ber of Þrms increases, duplication problems alone can outgrow the
beneÞts from increased competition. This points to a fundamental
incompatibility between R&D and a competitive environment when
Þrms are not allowed to coordinate their R&D efforts.
Given this incompatibility, various solutions combining competi-

tion in the product market with cooperation in the R&D sector have
been proposed. These solutions to the externality problems, such as
R&D coordination or Research Joint Ventures (RJV), have been pi-
oneered by the seminal works of D�Aspremont and Jacquemin (1988)
(henceforth DJ) and Kamien, Muller, and Zang (1992) (henceforth
KMZ).1 Whereas R&D coordination alleviates free-riding by internal-

1The subsequent literature includes Suzumura (1992), De Bondt, Slaets, and Cassiman
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izing externalities, RJVs, which are characterized by full spillovers,
have the additional beneÞt of solving the duplication problem.2

This approach appears to unambiguously dominate Spence�s solu-
tion since it solves all three problems simultaneously: allocative effi-
ciency, free-riding, and duplication. However, we show that Spence�s
result turns out to be sensitive to the assumed R&D technology, that
is, the functional form mapping R&D effort into cost reduction. In
other words, the presumed incompatibility of R&D and competition
among independently acting Þrms hinges on a critical modeling choice:
we will show that for a widely used class of R&D technology, the in-
compatibility disappears.
The modeling choices for R&D processes may be characterized by

two extreme categories: either spillovers are in R&D input, as is the
case in Spence and KMZ, or they are in R&D output, as is the case
in DJ. In reality, the nature of spillovers may involve a combination
of both and vary among sectors. We Þnd that, even though both
technologies exhibit diminishing returns to R&D expenditures, they
lead to diametrically opposite policy implications. If spillovers are
in R&D inputs, the efficiency with which an industry achieves cost-
reduction worsens as the number of Þrms increases. On the other
hand, if spillovers are in R&D output, we show that the efficiency with
which the industry achieves cost-reduction unambiguously improves
with the number of Þrms.
This implies that if spillovers are in R&D output, combining R&D

subsidies with competition would solve the incentive problems, while
eliminating the trade-off between duplication and allocative efficiency.
The incompatibility between competition and R&D disappears and
performance unambiguously improves with the number of Þrms. In
the absence of this incompatibility, Spence�s subsidy-based solution
thus becomes a viable alternative to RJVs, especially so if the latter
carry with them a risk of cartelization.

The choice of R&D technology not only affects Spence�s result,
though, but, as we shall show later, also the analysis of alternative
solutions, such as RJVs. Moreover, other modeling assumptions also

(1992), Vonortas (1994), Leahy and Neary (1997), Salant and Shaffer (1998, 1999), Amir
and Wooders (1999), and Long and Soubeyran (1999a, b). For excellent surveys, see De
Bondt (1997) and Martin and Scott (1998).

2Other options, not discussed here, include publicly provided R&D and optimal patent
protection.
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affect the interaction between duplication and concentration. Two
important simplifying assumptions in the literature with far-reaching
implications are (1) equal treatment of all Þrms, i.e., the restriction to
symmetric equilibria and (2) constant returns to scale in the output
sector. We build on an insight by Salant and Shaffer (1998, 1999),
who have shown that for a wide class of two-stage models, interior
and asymmetric, yet superior, equilibria may exist. In essence, con-
stant returns to scale create a non-convexity which places the social
optimum at an equilibrium that is not only asymmetric but is in fact
a corner solution. It follows that the combination of symmetry and
constant returns to scale assumptions deÞnes a suboptimal benchmark
against which to gauge performance. In this paper, we shall keep the
constant returns to scale assumption and focus on relaxing the sym-
metry requirement.
Once we drop the symmetry requirement, we must distinguish be-

tween the number of R&D labs and the number of output plants: the
number of plants and labs facing shut-down can differ. More specif-
ically, we argue that in the absence of full spillovers (e.g., absence
of RJVs), a social planner controlling both stages of production will
play favorites and have a single plant supply the whole market in
the output sector. We also Þnd that the optimal number of labs in
the R&D sector depends crucially on the chosen R&D technology. If
spillovers are in R&D inputs, it is best to have all Þrms share a single
lab, whereas under spillovers in R&D output, each Þrm should have
its own separate lab. Conceivably, then, an optimal benchmark would
involve the operation of multiple labs but only a single plant.
The previously identiÞed benchmark, however, is not appropriate if

Þrms are constrained to Cournot competition at the second stage, as is
standard in the literature. We thus drop the social planner perspective
and assume that Þrms are required to engage in Cournot competition
in the second stage. In this new framework, the asymmetric multi-lab
result when spillovers are in R&D output remains unaffected, while
the single-lab result continues to hold for an important subclass of
R&D technology with spillovers in R&D input.
We thus show that severe asymmetry results at both the R&D and

at the output sectors, not only when Þrms are led by a social plan-
ner, but even when the plants must engage in Cournot competition.
Therefore, unless equal treatment is enforced, the mere requirement of
Cournot competition does not prevent a quasi-monopolistic outcome
in the output sector: genuine competition can no longer be guaran-
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teed. As such, the realistic implementation of RJVs may be more
difficult than previously thought and policy recommendations should
be revised accordingly. To maximize social welfare, regulatory agen-
cies must ensure that all plants continue to produce since, left to their
own devices, Þrms have a strong incentive to shut down all plants but
one.
The rest of the paper is organized as follows. First we analyze

the nature of the R&D process (section 2). Then we explore the
ideal arrangement under an omnipotent social planner (section 3) and
Þnally study the more realistic situation with multi-Þrm competition
at the second stage (section 4). We conclude with policy implications
of R&D in section 5.

2 Two Ways to Model the R&D Process
When studying the relative merits of policies designed to encourage
R&D, simplifying assumptions, such as the restriction to symmetric
equilibria, and critical modeling choices have been made. One such
choice concerns the R&D technology, i.e., the functional form mapping
R&D effort into cost reduction. R&D technologies can be character-
ized according to the nature of R&D spillovers: either spillovers are
in R&D inputs, that is, in money invested (Spence and KMZ), or
they are in R&D output, that is, in knowledge created (DJ).3 While
neither model is a generalization of the other, we can still place both
models in a common framework and thus facilitate interpretation of
the results.4

In the KMZ model, if Þrm i invests xi dollars in R&D, the constant
marginal cost of production of Þrm i is

ci = A− f(xi + βxj), (1)
3An alternative classiÞcation, provided by Beath et al. (1998), is to break the R&D

process down into two stages. In the Þrst stage, R&D investments generate knowledge,
then, in the second stage, knowledge reduces the (constant) marginal cost of production.
Under this interpretation, the speciÞcation common to Spence and KMZ assumes constant
returns to the generation of knowledge, but decreasing returns to cost reduction. The
speciÞcation in DJ, on the other hand, assumes decreasing returns in the generation of
knowledge, but constant returns to cost reduction.

4Amir, Evstigneev, and Wooders (1999) provide a general framework of the two-stage
game where they endogenize the degree of spillovers. Amir (2000) provides an excellent
comparison of the two models.
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where β is the spillover rate (0 ≤ β ≤ 1). The R&D production
function f is assumed to be both increasing and concave, to reßect
diminishing returns to R&D expenditures. Here, spillovers are in R&D
input.
In contrast, we will now show that in the DJ model, the constant

marginal cost of production of Þrm i can be written as

ci = A− (f(xi) + βf(xj)) , (2)

where f is increasing and concave. Hence spillovers are in R&D
output. We justify the expression in equation (2) as follows: Sim-
ply let the cost of an amount yi of R&D undertaken by Þrm i be
C(yi) = g(yi), where g is strictly convex and g(0) = 0 and deÞne
h(·) ≡ g−1(·). If xi ≡ C(yi) denotes the amount of dollars invested
in R&D by Þrm i, then the marginal cost of Þrm 1 can be written as
c1 = A−h(x1)−βh(x2), where h is strictly concave since g is strictly
convex. For example, as in DJ�s original paper, if C(yi) = y2

i ≡ xi,
then c1 = A−√x1 − β√x2.

The importance of this distinction arises out of its policy impli-
cations. Indeed, spillovers in R&D output would reverse Spence�s
conclusions. As mentioned in the introduction, Spence investigates,
among other things, the effect of competition on market performance
in a framework where Þrms are acting independently. A central re-
sult in Spence is that market performance eventually decreases as
the number of Þrms, n, increases. This is due to the interaction of
three factors: free riding, duplication, and allocative efficiency: as the
number of Þrms increases, the losses from duplication and free riding
outweigh the gains from allocative efficiency. Given the severity of the
free rider problem, the result may not be surprising.
Spence then introduces R&D subsidies to solve the free rider prob-

lem. Surprisingly, even then, performance eventually deteriorates as
n increases. Thus duplication losses alone outweigh the gains from al-
locative efficiency. This result, however, hinges on the choice of R&D
technology.
In Spence�s original formulation, R&D spillovers are in R&D in-

puts. In a symmetric equilibrium where each Þrm invests x/n in R&D,
the constant marginal cost of each Þrm is given by

c = A− f
µ

1 + β(n− 1)

n
x

¶
,
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which, clearly, is increasing in n. Hence duplication worsens with the
number of Þrms. In other words, the efficiency with which an industry
achieves a certain amount of cost reduction worsens as n increases.
If however spillovers are in R&D output, as is the case in DJ, then

if each Þrm invests x/n in R&D, then the marginal cost of each Þrm
is given by

c = A− (1 + β(n− 1))f (x/n) .

It is straightforward to show that dc
dn < 0 if

f(x/n)

x/n
>

µ
1 + β(n− 1)

βn

¶
f 0(x/n). (3)

The inequality reduces to

f(x/n)

x/n
> f 0(x/n)

as n → ∞. Thus for n sufficiently large, and since f is concave, the
latter inequality is satisÞed. Note that for some speciÞc functions, we
can get a stronger result, where inequality (3) holds for all n. For
example, if f(·) =

√·, as in DJ�s original model, it is easy to show
that inequality (3) will be satisÞed if β > 1/(1 + n).
We therefore conclude that, if spillovers in R&D output are not too

small, then the efficiency with which an industry achieves a certain
amount of cost reduction increases with n. Since allocative efficiency
increases with n as well, market performance unambiguously improves.
In light of this result, Spence�s subsidy-based solution becomes a viable
alternative to RJVs, especially so if the latter carry with them a risk
of cartelization. RJVs are studied next.

3 Social Planner and Optimal Market
Structure
The dynamic models studied in the R&D literature stipulate two
stages: In the Þrst stage, each Þrm can invest in R&D to reduce
its marginal cost of production. Because of spillovers, however, its in-
vestment also lowers, to some degree, its competitors� marginal costs.
Then, in the second and Þnal stage, and depending on the model, the
Þrms must either engage in Cournot or Bertrand competition or they
may form a cartel. The results in this literature indicate, in a nutshell,
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(1) that allowing cooperation in R&D while forcing Þrms to compete
in the output market is welfare improving � provided spillovers are
large, (2) that research joint ventures dominate all the other arrange-
ments, and (3) that the various R&D arrangements nevertheless lead
to underinvestment in R&D relative to the social optimum.
The literature started by DJ (1988) has analyzed whether it is

socially optimal to allow Þrms to form research cartels, research joint
ventures (RJVs), or full cartels.5 In the Þrst two scenarios, Þrms are
allowed to cooperate only in the R&D stage and must compete in the
production stage. In the last scenario, Þrms are allowed to cooperate
in both stages. In these investigations, previous studies have limited
their analyses to symmetric equilibria. As such, they implicitly ruled
out the possibility of corner solutions. Here we shall use an insight by
Salant and Shaffer (1998, 1999) and show that if a social planner or a
research cartel controls both stages of production, the optimum is an
asymmetric equilibrium, possibly even an extreme equilibrium, akin
to a natural monopoly, where it is best for a single Þrm to operate in
both sectors.6

Before we turn to a more formal discussion, we provide some intu-
ition for our results: suppose that a given amount of research effort x
is to be allocated in amounts x1 and x2 between two research labs, so
that x = x1 +x2. Suppose, furthermore, that we allow for asymmetry,
i.e., for the possibility of one plant providing more output than the
other. Then it is optimal to minimize the marginal cost of one plant
only. Without loss of generality, let plant 1 be the chosen plant. In
the KMZ case, it clearly pays off to set x1 = x and x2 = 0, since
x1 + β(x− x1), hence f(x1 + β(x− x1)), is maximized at x1 = x. In
the DJ case, on the other hand, the concavity of f implies an inte-
rior solution in general. Thus, in DJ, even though only a single plant
would be in operation, both labs would get positive, though generally
uneven, funding.

5In both research cartels and RJVs, Þrms are constrained to Cournot competition in
the second stage, but are allowed to maximize joint proÞts in choosing the level of R&D.
Unlike RJVs, however, Þrms in research cartels do not share the results of R&D. Full
cartels, Þnally, are not constrained to Cournot competition.

6Long and Soubeyran (1999a) provide a global characterization of asymmetric equilibria
for two-stage games. Amir andWooders (1998) show that R&D competition may dominate
RJVs if asymmetric equilibria are considered.

8



3.1 Spillovers in R&D Input
When spillovers are in R&D input, such as in the Spence/KMZ frame-
work, it is wasteful to have more than one Þrm in either sector.

Proposition 1 When spillovers are in R&D input, the total cost of
producing any level of output is minimized by having a single lab at
the R&D stage and a single plant at the output stage.

Proof: See Appendix.

The objective of the RJV literature has been to evaluate the com-
bined beneÞts from product competition and from internalization of
R&D spillovers. However, models that stipulate a cost advantage to
a monopoly while simultaneously asserting the existence of multiple
Þrms are ill-suited to analyze the beneÞts from RJVs among the many
Þrms.
One may thus wonder how much of the beneÞts to RJVs are borne

to research consolidation and how much to the restructuring of the
output sector. In fact, in the KMZ case, by coordinating at the second
stage and shutting down all but one plant, we can completely solve
the duplication problem without involving RJVs. The violation of the
ceteris paribus condition is an alternative explanation for why previous
evaluations may be ßawed: RJVs and second stage restructuring are
simultaneous and their beneÞts cannot be dissociated and measured
individually. The gains from RJVs may thus be overestimated.

3.2 Spillovers in R&D Output
In the DJ framework, there is a tradeoff between duplication of R&D
efforts and diminishing returns to R&D expenditures. The following
proposition shows that, independently of the degree of spillovers, it
is wasteful to have more than one plant. It also shows that provided
spillovers are not too small, it will be optimal to have multiple labs.
Unless we have full spillovers, the labs will have different sizes.

Proposition 2 When spillovers in R&D output are small, the total
cost of producing any level of output is minimized by having a single lab
in the R&D sector and a single plant at the output stage. If spillovers
in R&D output are large, the total cost is minimized by having a single
plant at the output stage and multiple labs at the R&D stage.

9



Proof: If Þrm 1 invests δx and Þrm 2 invests (1− δ)x dollars in R&D
(δ ∈ [0, 1]), then the marginal costs of Þrm 1 and 2 are given by

c1(δ) = A− h[δx]− βh[(1− δ)x]

and
c2(δ) = A− h[(1− δ)x]− βh[δx]

Without loss of generality let δ ≥ 1/2, this implies that c1(δ) ≤ c2(δ).
Therefore, the total minimum cost of producing an arbitrary quantity
of output Q, C(Q), is obtained by

min
1
2
≤δ≤1

c1(δ) ·
·
Q

2
+ k(δ)

¸
+ c2(δ) ·

·
Q

2
− k(δ)

¸
= min

1
2
≤δ≤1

c1(δ) ·Q since c1(δ) ≤ c2(δ)

= min
1
2
≤δ≤1

[A− h[δx]− βh[(1− δ)x]] ·Q

To minimize c1(δ), we should maximize B ≡ h[δx] + βh[(1− δ)x].
Note that d

2B
dδ2 = x2 (h00[δx] + βh00[(1− δ)x]) < 0 since h00 < 0.

dB

dδ
= x

¡
h0[δx]− βh0[(1− δ)x]

¢
If dB

dδ > 0 for any δ, then δ = 1 maximizes B. This happens if
h0[δx] > βh0[(1− δ)x] for any δ. A sufficient condition for this is

min
1
2
≤δ≤1

h0[δx] > max
1
2
≤δ≤1

βh0[(1− δ)x]

Since h0 is decreasing

min
1
2
≤δ≤1

h0[δx] = h0[x]

Similarly,
max

1
2
≤δ≤1

βh0[(1− δ)x] = βh0[0]

Hence if β ≤ h0[x]
h0[0] , then δ = 1 maximizes B. This implies that for

sufficiently small spillovers, it is cheaper to have one Þrm invest in
R&D in the Þrst stage and one Þrm produce the total output in the
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second stage. Similarly, if h0[δx] < βh0[(1− δ)x] for any δ, then δ = 1
2

maximizes B. A sufficient condition for this is

max
1
2
≤δ≤1

h0[δx] < min
1
2
≤δ≤1

βh0[(1− δ)x]

or h0[
x

2
] < βh0[

x

2
]

But this is not possible since β ≤ 1. Hence for β > h00[x]
h0[0] , an inte-

rior solution δ∗ exists and satisÞes the Þrst order condition h0[δ∗x] =

βh0[(1− δ∗)x] or h0[δ∗x]
h0[(1−δ∗)0 . Note that

h0[δx]
h0[(1−δ)x] is decreasing in δ since

h00 < 0. It follows that δ∗ is decreasing in β. If β ≤ h0[x]
h0[0] , then δ

∗ = 1.

If β > h0[x]
h0[0] , then δ

∗ < 1 and reaches a minimum δ∗ = 1
2 when β = 1.

This implies that for large spillovers, it is cheaper to have two Þrms
invest in R&D in the Þrst stage and one Þrm produce the total output
in the second stage.

11



As shown in Figure 1, the socially optimal allocation δ∗ of invest-
ments among labs is decreasing in the degree of spillovers β. Therefore,
the smaller β, the more R&D efforts will be allocated to a preferred
lab over all others. At one extreme, for β sufficiently low, all resources
go to a single lab; at the other extreme, with full spillovers (β = 1),
all labs are treated equally.7

Once again, we ask how much of the beneÞts to RJVs are borne
to research consolidation and how much to the restructuring of the
output sector. Note that unlike the KMZ case, RJVs are necessary to
solve the duplication problem. Still, the ceteris paribus condition does
not hold since RJVs and second stage restructuring are simultaneous.
Therefore, as before, the gains from RJVs may be overestimated when
there is more than one Þrm.
Our investigation has, so far, focused on a framework where a so-

cial planner or a cartel controls both stages of production. If, however,
antitrust laws force Þrms to compete in the output market, we inves-
tigate a setting where Þrms engage in Cournot competition in the
second stage output sector.

4 Competition in the Second Stage
We now focus on the RJV literature�s standard framework, in which
multiple Þrms are required to be Cournot competitors in the second
stage. They are, however, allowed to cooperate in the choice of R&D
investment levels so as to maximize joint proÞts. While we neces-
sarily assume the existence of multiple plants, here also we drop the
equal treatment requirement and look into the optimal allocation of
R&D effort among the Þrms� various labs. Salant and Shaffer (1998,
1999) Þnd that asymmetric equilibria can be more efficient and they
provide sufficient conditions under which asymmetric investments in
R&D generate not only higher industry proÞts but also a higher social
surplus. We use this valuable insight to show that for an important
subclass of Spence/KMZ R&D technology �speciÞcally, for linear cost
reducing technologies�, a single lab maximizes not only industry prof-
its but also social welfare when spillovers are large. As for the DJ

7Amir and Wooders (1999) explore the role of the spillovers rate on intra industry
heterogeneity.
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model, if spillovers are large, the optimal allocation is also asymmet-
ric, although not a corner solution.

4.1 The Basic Model
Firms now engage in Cournot competition in the second stage where
the inverse demand function is given by P = a − P

iQi, P is the
market price, and Qi is the quantity produced by Þrm i.
As in the previous section, we analyze, in turn, both the Spence/KMZ

and the DJ R&D technologies.

4.2 Spillovers in R&D Input
Here, we restrict our attention to a particular subclass of the KMZ-
type R&D technology, namely the identity function8, i.e., f(x) = x.
Thus, if Þrm i invests xi dollars, then Þrm i�s constant marginal cost
is given by ci = A− xi − βxj , where 0 < β < 1.
Just as in Salant and Shaffer (1998, 1999), we make use of Bergstrom

and Varian�s (1985) result, that in Cournot models with constant mar-
ginal costs, if the individual marginal costs are changed without alter-
ing their sum, then total industry output and price will not change as
long as all Þrms continue to produce, i.e., as long as Qi > 0, i = 1, 2.
Since this implies that consumer surplus remains unaffected, it suf-
Þces to minimize aggregate production costs when either maximizing
industry proÞt or social surplus. Using this insight, we now show that
the optimal number of R&D labs is equal to one when spillovers are
large.

Proposition 3 In the model of KMZ with linear cost-reducing tech-
nology and Cournot competition in the second stage, if spillovers are
sufficiently large, then the proÞt-maximizing, as well as socially op-
timal Þrst-period arrangement for R&D, concentrates production of
R&D in a single lab.

Proof: Consider a symmetric equilibrium in R&D investment (x/2, x/2)
and the corresponding second stage Cournot equilibrium Q1 = Q2 =
Q/2 > 0. Hence, the constant marginal cost of both Þrms is given by

c = A− x
2
− βx

2
= A− (1 + β)x

2
8Our results easily generalize to affine functions, f(x) = ax+ b.
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and the total industry cost of producing Q under symmetry is given
by

TCs =

·
A− (1 + β)x

2

¸
Q

We now introduce asymmetry in R&D in the Þrst stage. Let 0 ≤
δ ≤ 1 and consider asymmetric investments (δx, (1− δ)x). Hence, the
marginal cost of Þrm 1 is

c1(δ) = A− δx− β(1− δ)x
and the marginal cost of Þrm 2 is

c2(δ) = A− βδx− (1− δ)x
Without loss of generality, let δ ≥ 1

2 , it then follows that

c1(δ) ≤ c(δ) ≤ c2(δ)

The sum of the marginal costs under (x/2, x/2) and (δx, (1−δ)x) is the
same and is equal to 2A − (1 + β)x. Hence, Varian and Bergstrom�s
result applies. Therefore, it is sufficient to minimize total industry
costs in order to maximize total industry proÞts and social welfare
since the aggregate quantity and price remain constant.
Let Q1(δ) and Q2(δ) denote the Cournot equilibrium quantities.

The total industry cost under asymmetry is

TCδ = min
1
2
≤δ≤1

c1(δ) ·Q1(δ) + c2(δ) ·Q2(δ)

≡ min
1
2
≤δ≤1

c1(δ)

µ
Q

2
+ k(δ)

¶
+ c2(δ)

µ
Q

2
− k0(δ)

¶
where k(δ), k0(δ) ≥ 0 since c1(δ) ≤ c2(δ)

= min
1
2
≤δ≤1

c1(δ)

µ
Q

2
+ k(δ)

¶
+ c2(δ)

µ
Q

2
− k(δ)

¶
(By Varian and Bergstrom�s argument.

To use their argument, we need k(δ) < Q/2

and claim that k(δ) = k0(δ). Q2(δ) > 0, which

is shown in the appendix, guarantees that.)

= min
1
2
≤δ≤1

Q

2
(c1(δ) + c2(δ)) + k(δ) (c1(δ)− c2(δ))

= min
1
2
≤δ≤1

Q

µ
A− x

2
(1 + β)

¶
+ k(δ) [x(1− 2δ)(1− β)]
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= Q

µ
A− x

2
(1 + β)

¶
+ k(1) [(β − 1)x]

since δ ≥ 1/2 and k(δ) is increasing in δ

< Q

µ
A− x

2
(1 + β)

¶
= TCs

The total cost under asymmetry, TCδ, is always smaller than the
total cost under symmetry, TCs, and achieves a minimum at δ = 1,
i.e. at (x, 0). Recall, however, that the above argument is valid only
if both plants continue to produce in the second stage Cournot game
(Q1(δ) > 0 and Q2(δ) > 0), a necessary condition to apply Bergstrom
and Varian�s result. In the appendix we show that the condition does
indeed hold, provided the degree of spillover β exceeds 1/2.
Thus, unless Þrms are restricted from behaving asymmetrically, the

mere requirement of Cournot competition does not prevent a quasi-
monopolistic outcome in the output sector.

4.3 Spillovers in R&D Output
We now turn to the DJ speciÞcation, in which the cost of xi units of

R&D is γ x
2
i

2 . Intuitively, asymmetry is now sufficiently costly to pre-
vent corner solutions. Nevertheless, the allocation of R&D investment
to the various labs remains asymmetric.

Proposition 4 In the model of DJ with Cournot competition in the
second stage, it is proÞt maximizing as well as socially optimal to
spread production of R&D among multiple labs, provided spillovers
are sufficiently large.

Proof: See Appendix.

Thus under both the dictatorial Þrst-best and Cournot�s decentral-
ized approach, asymmetry prevails. Moreover, the results are sensitive
to the chosen R&D technology. In the DJ case, the result stems from
a trade-off between duplication and diminishing returns to R&D in-
vestments per lab: under duplication considerations alone, a unique
lab would be best, whereas diminishing returns considerations alone
call for the existence of multiple, equal-sized labs. In the KMZ case,
there are no such trade-offs: duplication strictly dominates and the
solution is extreme.
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How is the result in the DJ case to be interpreted? Assuming that a
large lab can simultaneously follow diverse research paths by creating
subdivisions within itself, it should be able to mimic a collection of
smaller labs. In this sense, a large lab should always do at least as well
as a collection of smaller labs, perhaps even more so if the small labs
do not coordinate their actions. Then the coexistence of multiple labs
may be attributed to the existence of a Þxed factor, namely research
directors. One possibility is that small labs operate independently
and with their own managers. They contribute to the joint research
product by supplying their own, possibly orthogonal, research. This
allows for a level of diversiÞcation that could not be attained under a
single R&D director.

5 Conclusion
Research Joint Ventures solve three problems associated with R&D:
allocative efficiency, free-riding, and duplication. Since duplication
cannot be eliminated via R&D subsidies, RJVs are, at least in theory,
the best option, independently of the nature of spillovers. However,
if we are concerned about risks of cartelization, then subsidies are
a viable alternative that cannot be dismissed, especially if spillovers
are large. Indeed, we showed that if spillovers are in R&D output,
Spence�s subsidy-based solution is fully compatible with competition.
Regarding the risks of cartelization, we showed that severe asym-

metry results at both the R&D and at the output sectors, not only
when Þrms are led by a social planner, but also when the plants must
engage in Cournot competition. Thus, unless Þrms are restricted from
behaving asymmetrically, the mere requirement of Cournot competi-
tion does not prevent a quasi-monopolistic outcome in the output
sector. Firms have strong incentives to consolidate, i.e., not only to
form a cartel, but also to shut down plants and research laboratories.
The temptation to collude in the product market is so much stronger,
because in addition to market power considerations, large cost savings
can be realized. In other words, while the Cournot outcome maximizes
social welfare and is locally stable, the danger is in the lure of a pure
monopoly.

16



References
[1] Amir, R. (2000): �Modeling Imperfectly Appropriable R&D via

spillovers,� International Journal of Industrial Organization 18,
1013�1032.

[2] Amir, R., I. Evstigneev, and J. Wooders (1999): �Noncooper-
ative R&D and Optimal R&D Cartels,� Games and Economic
Behavior, forthcoming.

[3] Amir, R. and J. Wooders (1998): �Cooperation vs. Competition
in R&D: The Role of Stability of Equilibria� Journal of Eco-
nomics67, 63�73.

[4] Amir, R. and J. Wooders (1999): �Effects of One-Way Spillovers
on Market Shares, Industry Price, Welfare, and R&D Coopera-
tion,� Journal of Economics and Management Strategy 8, 223�
249.

[5] Beath, J., J.P. Theotoky, and D. Ulph (1998): �Organization,
Design, and Information Sharing in a Research Joint Venture
with Spillovers,� Bulletin of Economic Research, 50, 47�59.

[6] Bergstrom, T. and H. Varian (1985): �When are Nash Equilib-
ria Independent of the Distribution of Agents� Characteristics?,�
Review of Economic Studies 52, 715�18.

[7] d�Aspremont, C. and A. Jacquemin (1988): �Cooperative and
Noncooperative R&D in Duopoly Spillovers,� American Eco-
nomic Review 78, 1133�1137.

[8] De Bondt, R. (1997): �Spillovers and Innovative Activities,� In-
ternational Journal of Industrial Organization 15, 1�28.

[9] De Bondt, R., P. Slaets, and B. Cassiman (1992): �The Degree
of Spillovers and the Number of Rivals for Maximum Effective
R&D,� International Journal of Industrial Organization 10, 35�
54.

[10] Kamien, M., E. Muller, and I. Zang (1992): �Research Joint
Ventures and R&D Cartels,� American Economic Review 82,
1293�1306.

[11] Leahy, D. and P. Neary (1997): �Public Policy Towards R&D in
Oligopolistic Industries,� American Economic Review 87, 642�
662.

17



[12] Long, N. and A. Soubeyran (1999a): �Cost Manipulation Games
in Oligopoly, with Cost of Manipulating,� CIRANO Working Pa-
per.

[13] Long, N. and A. Soubeyran (1999b): �Asymmetric Contribu-
tion to Research Joint Ventures,� Japanese Economic Review,
50, 122�137.

[14] Martin, M. and J. Scott (1998): �Market Failures and the Design
of Innovation Policy,� Manuscript.

[15] Salant, S. and G. Shaffer (1998): �Optimal Asymmetric Strate-
gies in Research Joint Ventures: A Comment on the Literature,�
International Journal of Industrial Organization 16, 195�208.

[16] Salant, S. and G. Shaffer (1999): �Unequal treatment of Identical
Agents in Cournot Equilibrium,� American Economic Review 89,
585�604.

Suzumura, K. (1992): �Cooperative and Noncooperative R&D
with Spillovers in Oligopoly,� American Economic Review 82,
1307�1320.

[17] Vonortas, N.S. (1994): �Strategic R&D with Spillovers, Collusion
and Welfare,� International Journal of Industrial Organization
12, 413�435.

Appendix

Proof of Proposition 1
We look at the optimal allocation of an investment of x dollars in
R&D and the optimal allocation of an arbitrary quantity Q of output
between Þrms to minimize the cost of producing Q. If Þrm 1 invests
δx and Þrm 2 invests (1 − δ)x dollars in R&D (δ ∈ [0, 1]), then the
marginal costs of Þrms 1 and 2 are given by

c1(δ) = A− h[δx+ β(1− δ)x]

and
c2(δ) = A− h[(1− δ)x+ βδx]

Let δ ≥ 1/2, this implies that c1(δ) ≤ c2(δ) since β ≤ 1. A similar
argument applies for δ ≤ 1/2. Therefore, the total minimum cost of
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producing an arbitrary quantity Q of output is obtained by

min
1
2
≤δ≤1

c1(δ) ·
·
Q

2
+ k(δ)

¸
+ c2(δ) ·

·
Q

2
− k(δ)

¸
where 0 ≤ k(δ) ≤ Q/2 since δ ≥ 1/2

= min
1
2
≤δ≤1

c1(δ) ·Q since c1(δ) ≤ c2(δ)

= min
1
2
≤δ≤1

[A− h[δx+ β(1− δ)x]] ·Q

= [A− h(x)] ·Q

Proof of Proposition 4
As before, from (4) the cost saving from asymmetry is

TCs − TCδ = −k(δ)[x(1− 2δ)(1− β)] ≥ 0

where k(δ) ≥ 0 since δ ≥ 1/2 and (x2 ,
x
2 ) is the symmetric equilibrium

in R&D. Now there is a cost to asymmetry in the R&D sector. The
cost from asymmetry is

γ

2

h
(δx)2 + (1− δ)2x2 − [(x/2)2 + (x/2)2]

i
=

γ

2

·
2δ2 − 2δ +

1

2

¸
x2

DeÞne L(δ) as the net loss from asymmetry:

L(δ) = k(δ)[x(1− 2δ)(1− β)] +
γ

2

µ
2δ2 − 2δ +

1

2

¶
x2

If L(1) > 0, then the symmetric equilibrium is better than having one
Þrm in R&D.

L(1) = −k(1)x(1− β) + γ
x2

4

L(1) > 0 requires that

k(1) <
γx

4(1− β)

We showed above that if β > 1/2, Q2(1) = Q/2− k(1) > 0 and hence
k(1) is bounded above by Q/2

k(1) <
Q

2
=
a−A

3
+ (1 + β)

x

6
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Therefore, a sufficient condition for k(1) to be less than γx
4(1−β) is

a−A
3

+ (1 + β)
x

6
≤ γx

4(1− β)

or

x ≥ 8 (a−A) (1− β)

6γ − 4(1− β2)
(4)

Note that the right hand side of (4) is decreasing in β.
It is straightforward to show that

x

2
=

(β + 1)(a−A)

4.5γ − (β + 1)2

Hence, the left hand side of (4) is increasing in β. Let β∗ be s.t. (4) is
satisÞed with equality. Then for β > β∗, (4) will be satisÞed. Hence if
β ≥ max{1

2 ,β
∗}, it is optimal to have more than one Þrm in the R&D

sector.

Proof that the Cournot Quantities are Positive
Given (x1,x2), the Cournot equilibrium quantities in the second stage
are given by

Q1(x1, x2) =
(a−A) + (2− β)x1 + (2β − 1)x2

3

and

Q2(x1, x2) =
(a−A) + (2− β)x2 + (2β − 1)x1

3

Let (x1,x2) = (δx, (1− δ)x) then we have

Q1(δ) =
(a−A) + (2− β)δx+ (2β − 1)(1− δ)x

3

=
(a−A) + 3δx(1− β) + x(2β − 1) > 0

3

Note that Q1(δ) achieves a minimum at δ = 1
2 .

Q1|δ= 1
2

=
(a−A) + x

2 (β + 1)

3
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Hence Q1(δ) > 0 for any δ ≥ 1
2 . For Þrm 2, Q2(δ) is given by

Q2(δ) =
(a−A) + (2− β)(1− δ)x+ (2β − 1)δx

3

=
(a−A) + x ((2− β) + 3δ(β − 1))

3

Note that Q2(δ) achieves a minimum at δ = 1.

Q2|δ=1 =
(a−A) + x(2β − 1)

3

Hence a sufficient condition for Q2(δ) > 0 is β > 1/2.
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