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ECONOMIC LIFE OF EQUIPMENTS AND DEPRECIATION POLICIES

1. Introduction

A classical topic in capital theory is the determination of the economic life of

equipments.  That is, given a situation in which an  equipment is engaged in a productive

activity, one is concerned with the determination of the lenght of time that the equipment

should be kept in operation.  This lenght of time, which should be set taking into account that

net operating revenue decreases with time, mainly due to the fact that maintenance costs tend

to increase with the age of the equipment, is what is called the economic life .

Traditionally, the subject has been treated in  text-books of engineering economy

and capital budgeting (cf. Bierman and Smidt, 1993; de Faro, 1979; Grant and Ireson, 1970;

Oakford, 1970; and Smith, 1973). However, the traditional approach usually fails to take into

account the effect of depreciation on the determination of the economic life. On the contrary,

the usual approach is to select the particular depreciation policy, assuming given the

economic life

A notable exception is the work of Brenner and Venezia (1983), which developed

an analytical methodology that explicitly takes into account the depreciation policy on the

process of determining the economic life.  However, concentrating attention on changes of

both the tax rate and the rate of inflation, they did not investigate the effect that a change of

the depreciation policy may cause to the economic life. The purpose of the present paper is to

contribute to fill this gap in the literature. Specifically, in the absence of inflation and

considering both the straight-line and the constant rate policies, as well as a continuous time

version of the popular sum-of-the-years-digits (SOYD) method of depreciation, it will be

investigated the effect of each particular depreciation policy on the economic life.
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2. Continuous Time Approximations to the Discrete Case

As we are interested in deriving analytical solutions, the problem will be posed in a

continuous time framework. To this end, given that depreciation is effectively applied in a

discrete time setting, usually in annual terms, it seems appropriate to review the most

common depreciation policies. In doing so, we will have the opportunity to justify the

respective continuous time approximations that will be used in the study.

a) The Straight-Line Method

Given an economic life of n periods, an equipment whose value as new is P0, and

whose net salvage value at the end  of the economic life is Sn ≥ 0, the straight-line method

implies that the depreciation amount at the end of the k-th period is :

n1,2,...,k ,
n

S - P
  D n0

k == (1)

Obviously, the sum of the n parcels of depreciation satisfy the requirement of being

equal to the so-called depreciable-basis, P0-Sn.

Under the assumption of a continuous time framework, the corresponding

approximation, which was adopted in Brenner and Venezia (1983), is

[ ]T0,  t ,
T

S - P
 D T0

t ∈= (2)

where T is the economic life and, henceforth, the net salvage value tS  is assumed  to  be  a

non-increasing  function  of  time, that  is 0   S' t ≤  and  such that St < P0, t >0.

Notice that in the continuous time case, we must have

∫ =
T

0 T0t S - P dt  D (3)
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a  condition  that  is  easily seen to be satisfied by the approximation given by (2).

b) The Matheson Method

According to the Matheson method (cf. DeGarmo and Canada, 1973), also called

the constant-rate method of depreciation, assuming that Sn > 0, the book-value of the

equipment decreases at the constant periodic depreciation rate [ )0,1  ̂ with ,̂ ∈ββ , in such a

way that :

..n 1,2,. k ,)̂ - (1 P   ˆ k
0k ==Ρ β  (4)

where   P̂k denotes the book-value at the end of the k-th period, with nP̂  being made equal

to Sn.

As, by definition, ,P̂ - P̂   D k1-kk =  it follows then that :

1,2,...n  k  ,)̂ - (1 P ̂  P̂ ̂  D 1-k
01-kk === βββ  (5)

with the constant rate β̂  fixed in such a way that

1/n
0n )P / (S -1  ̂=β (6)

Noticing that  ,S - )̂ - (1 P  ˆ
n0

 
n

1k

1
0 Ρ=∑

=

−kββ it is interesting to point out that the

very popular double-declining-balance depreciation method is just a particular case of

Matheson’s. It suffices to set 2/n  ̂=β , which implies that, if the policy of switching to the

straight-line method is not adopted (see Bierman and Smidt, 1993),  we now must have the

net salvage value Sn fixed in such a way that Sn = P0 (1- 2/n)n.

In the continuous time setting, denoting by 0  >β  the instantaneous rate of

depreciation, our approximation will require that ) Thus .-  td P̂( / ˆd tt β=Ρ :
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[ ]T0,  t ,e P  ˆ  t-
0t ∈=Ρ β (7)

This implies that, for a given economic life T, as we must have  TS  =

β  ,P̂ rateconstant    theT  must be fixed in such a way that :





=

0

T

P
S

 log  
T
1

 -  β (8)

Defining

 t
0tt e P   P̂   D βββ −== (9)

it is easily seen that ∫ =
T 

0 T0t S - P dt  D

Noticing that )̂ - (1  log -  ββ = , the corresponding continuous time approximation

for the double-declining balance implies that ( ){ };/T2-T log-  =β  which requires  that the

economic life T be greater than 2 periods.

c) The Sum-of-the-Years - Digits Method

An also very popular method of accelerated depreciation is the so called sum-of-the-

years-digits-method (SOYD). According to this method, we have :

( )( )
( ) n1,2,..., k ,

1nn 
S - P 1k -n 2

  D n0
k =

+
+= (10)

Taking into account that the condition n0

n

0k
k S-  D Ρ=∑

=
 is satisfied, our continuous

time approximation consists in taking

( )( ) [ ]T0,  t ,
T

S - P t-T 2
  D

2

0
t

T ∈= (11)
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which also satisfies the condition ∫ =
T 

0 T0t S - P dt D  and which is based in substituting the

sum of the digits ∑
=

+=
n

0k

1)/2)(nn  k(  by its continuous counterpart ∫ =
T 

0 

2 /2T tdt .

At this point, it is worth noticing that Brenner and Venezia (1983) adopted the

procedure of seeking to approximate both the Matheson and the sum-of-the years-digits

methods of depreciation by a version of an exponential method, with a constant  rate λ, such

that :1

[ ]T0,  t, )e - /(1e    D T-t- 
0t ∈Ρ= λλλ (12)

There are two drawbacks with the above formulation. The first is related to the fact

that it implies that the asset  is fully depreciated during its economic life T. As pointed out,

this is not compatible with the adoption  of Matheson’s method, which requires TS > 0. The

second is that, in principle, λ can take any positive value, regardless of the economic life T.

Instead of flexibility, this renders the analysis rather artificial, as the depreciation rate,

excluding the case of the double-declining method, must be a function of the economic life;

which is, precisely , the variable that has to be determined in an optimal way.

3. The Choice of the Depreciation Policy in the Case of Fixed Economic Life

Denoting  by δ the instantaneous rate of interest; by tR  the net  operating cash

flow at time t (which is assumed to be decreasing over time, that is tR'  < 0);  and by j , with

j  ∈  [0,1), the corporate tax rate, we have that, for a given economic life T, the present value

of the cash flow associated with the operation of the equipment is equal to :

( ) T - 
T

 t- 
t

T 

0 

 t- 
t

T 

0 0T e S dt  e D  dt  e R  -1   P -  V δδδ ϕϕ +++= ∫∫ (13)

                                                       
1 Actually, equation (16) in their paper seems to have been missprinted , as λappears on the denominator, rather
than on the numerator.
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with the flow of depreciation Dt depending of the particular depreciation method that is

chosen . To stress this last observation, it is convenient to denote by TV  the part of the

present value function that is independent of the depreciation policy; that is :

∫++=
T 

0 

 t -
t

T  - 
T0T dt e R e S  P -  V δδ (14)

Before proceeding with the determination of the economic life, which is achieved

by the maximization of the present value function VT, it is interesting to notice that, for a

given value of T, it follows from (13) that the best depreciation policy is the one which

maximizes the present value of the depreciation flow :

dt e D  D  t-T 

0 tT
δ∫= (15)

That is, as in the discrete time traditional analysis, where the economic life of the

equipment is assumed to be known in advance (cf. Bierman and Smidt, 1993), the

depreciation policy is chosen by selecting the method that gives the maximum value for TD .

As, if 0=δ , the three considered methods are equivalent (since, then, TD = P0 - TS , in each

case), we are going to focus the analysis in the more interesting and realistic situation where

0  >δ .

If the straight-line depreciation method is adopted, the corresponding present value

of the depreciation-flow is :

T)()/  e - (1 )S - (P  D T-
T0T,1 δδ= (16)

On the other hand, for the case of the sum-of-the-years-digits method, we have:

  )T  ( / 1) -  e  T( )S - (P 2  D 22T-
T0T,2 δδ δ+= (17)

Thus, whether or not the net salvage value ST is null or positive, we can conclude

that :
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0  )T ( / 2)- e T  e 2  T( )S - (P  D - D 22T-T-
T0T,1T,2 >++= δδδ δδ (18)

if 0T >δ .2

Therefore, corroborating the traditional discrete time analysis, it follows that, for a

fixed economic life of the equipment , one should always choose the SOYD method over the

straight-line one.

Considering now the constant-rate of depreciation policy, which requires that the

net salvage value ST be positive and that the instantaneous rate of depreciation  β be given by

(8), we have :

)  ( /) e - (1 P   D T )  ( -
0T,3 δββ δβ += + (19)

or, as a function of the net salvage value ST

{ }T - ) P / (S log / )e S - (P )P / (S log  D 0T
T- 

T00TT,3 δδ= (19’)

A direct comparison  between T,3T,1 D and D , such as the one that we have been able

to do for T,2T,1 D and D , appears to be rather cumbersome. However, regardless of the value

of the positive constant rate β, as long as we set 0T e P  S Τ−= β , we can justify that

T,1T,3 D  D >  on the basis  of the following  arguments :

a) );e - (1 P  S-   D  D 0,  for   - 
0T0T,3T,1

Τ=Ρ=== βδ

b) T / )e - (1   D  e P   D 0,  e P  -  D' as T - 
0t,1

 t -
0t,3

 t -
0

2
t,3

βββ ββ Ρ=>=<=  for t< *t ,

  where *t T] ,(t for t  D  D with , /} / ) e - {(1 log -  *
t,1t,3

 TT - ∈<= βββ

                                                       
2 To  see  this,  leting  x = δT and y = x + 2 e-x   + x e-x –2, notice  that y  = 0 if x=0, with y'  = 1- (1+x) / ex > 0 if x
> 0.
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c) for  0,  >δ the present value of a given nominal amount is bigger the closer it is

located from the origin.

Therefore, confirming the traditional result of the discrete time analysis, (cf. Grant

and Ireson, 1970 and de Faro, 1969), the two considered accelerated depreciation policies,

the constant-rate and the SOYD, are always preferable  to the straight-line policy, if the

economic life of the equipment is fixed.

On the other hand, confirming again the discrete time analysis, when it comes to the

comparison between the Matheson and the SOYD policies, there is not a dominating

method. This can be seen considering the following two situations. In the first , fixing

P0 = 10,000, β = 10%, δ = 8% and T=15, we have = DT,2 4,993.58 and 5,182.9  DT,3 = .

Therefore, in this situation, the constant-rate policy should be the one chosen. However, if

the economic life is reduced to T = 10, keeping fixed the others parameters, we will have

 DT,2 = 4,650.88 and T,3D  = 4,637.23. Accordingly, the previous choice would be reversed.

4. The Impact of the Depreciation Policy on the Economic Life

In this section, selecting in each case one of the three considered depreciation

policies, it will be determined, in an optimal way, the corresponding economic life. The

purpose is, fixing all the other elements of the problem, to determine how the depreciation

policy affects the economic life.

a) the straight-line policy.

If the straight-line method of depreciation is adopted, regardless of whether or not

the salvage value TS  is null, the function to be maximized is:

 T)( / )e - (1 )S - (P   V   V T 
T0TT δϕ δ−+= (20)

with

)T (  /  )} e - (1 S' T - 1) -  e  T (  )S  - {(P   'V   V' 2T  -
T

T  -
T0TT δδϕ δδ++= (21)



9

where
T  -

TTTT  e }S  - S'  R ) - {(1  'V δδϕ += (22)

Therefore, assuming that the second order condition is satisfied, denoting by *
1T  the

corresponding optimal economic life, it will be the solution obtained by equating to zero

the expression given by (21).

b) the case of the constant-rate policy

In the most general situation , where the constant rate of depreciation is implicitly

defined via the specification of the net salvage value function St, which is not allowed to

become null, the adoption of the Matheson policy implies that the function to be maximized

is :

 
)P / (S log - T

)P/(S log )P - e (S 
   V  V

0T

0T0
T- 

T
TT δ

ϕ δ

+= (23)

with

T ( e )S  - [(S'   )S / S' P - e (S' T{ 
)}P/(S log - T{

  'V  V' T  - 
TTTT0

T - 
T2

0T
TT δδδ

δ
ϕ δδ ++=

)}P/(S log )]P - e (S  -  ))P/ (S log -           0T0
T - 

T0T
δδ (24)

Therefore, denoting by *
2T  the corresponding optimal economic life, it will be the

solution obtained equating to zero the expression  given by (24), and such that renders

negative the (rather cumbersome) second derivative of the function given by (23).

On the other hand, if the constant rate of depreciation  β is fixed a priori, what

implies that the net salvage value function has to be made equal to  ,e P  S  t - 
0t

β= the

function to be maximized may be written as :

 )  ( / ) e - (1 P    V  V T )  ( -
0TT δββϕ δβ ++= + (25)
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Therefore, in this particular situation, the optimal economic life *
2T  has to be such

that :

 0  e  ) -  - ( P  e R ) - 1(
*
2

*
2

*
2

)T  ( - 
0

T - 
T

=+ + δβδ δβϕβϕ (26)

with

0  e ) -  - ( P - R' ) - 1(
*
2

*
2

T - 
0T

<βδβϕββϕ (27)

c) the case of the sum-of-the-years-digits policy.

Now, the function to be maximized is :

 
T 

1) - e  T( )S - (P  2
    V  V 22

T - 
T0

TT δ
δϕ δ++= (28)

with

T( ])S - (P 2  S' [T - )e - (1 )S - (P T{  2  'V   V' T0T
T - 

T0TT δδϕ δ ++=  )T ( / 1)} - e 32T - δδ+
(29)

Therefore, assuming that the second order condition is satisfied, denoting by *
3T  the

corresponding economic life, it will be the solution obtained equating to zero the expression

given by (29).

5. A Numerical Comparison

An analytical comparison of the economic lifes *
3

*
2

*
1 T and T ,T  appears, at least in

general, to be meaningless. Thus, to give at least an indication of how the choice of the

depreciation policy affects the economic life of the considered equipment, we are going to

limit the analysis to the numerical investigation of two very simple situations.

In the first situation it will be assumed that the net operating cash flow decreases

linearly with time, in such a way that t  -    R t λα= ; with α and λ being positive parameters.
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It is easily seen that the corresponding non-depreciation dependent contribution to the

present value function is









+










++=

δ
λ

δδ
λαϕ

δδ
δ

T  -T  -
T  -

T0T
 e  T

  
 e - 1

  -  ) - (1   e S  P -  V (30)

with

T  -
TTT  e }S  - S'  )T ( ) - {(1  'V δδλαϕ +−= (31)

On Table I, fixing ϕ=30% and P0=10,000, and considering some particular patterns

for the behavior of the net salvage value function St, it is presented, for each one of the

three considered depreciation policies, whenever aplicable, the corresponding value of the

economic life T, for some selected values of the parameters α and λ, and of the

(instantaneous) interest-rate δ.

Table I

Economic Life as a Function of the Depreciation Policy

α λ tS
δ

(%)
Straigth

Line Matheson SOYD

4,000 300 0 5 12.89 - 13.00
4,000 300 0 10 12.21 - 12.41

4,000 300 0 22  9.67 -  9.86

4,000 300 10,000 e-0,1t 5 11.36 11.53 11.52

4,000 300 10,000 e-0,2t 10 11.45 12.37 11.79

4,000 300 10,000 e-0,2t 20   9.15 11.81  9.90

4,000 300      1,000 10 11.86 12.08 12.05

4,000 300      1,000 30   7.29  7.59  7.46

4,000 300      5,000 10 10.43 10.47 10.54

2,000 200      1,000 10  8.00  8.34  8.30

2,000 200      1,000 25  4.56  5.18  5.06

2,000 200      1,000 40  2.01  2.76  2.65
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 With regard to the results presented on Table I, although we do not  have sufficient

evidence to generalize, there are two points that should be stressed. The first is that it

appears that the adoption of the straight-line policy implies the shortest economic life. The

second, is that we cannot be sure a priori of which one of  the two remaining policies

implies  the longest economic life.

Considering now the second situation, in which it will be assumed that

µα λ  -    R  t -
t = , with α, λ and µ  being positive parameters. In this case, concentrating

attention on the particular case  where  t -
0t  e P  S γ= , with γ being also a positive parameter,

we have that :

)  ( / ) e - (1   ) - (1  ) e - (1 P -  V T )  ( -T )  ( -
0T λδαϕ λδδγ ++= ++ (32)

with
T )  ( -T )  ( -

0T  e ) - (1     e P )  ( -  'V λδδγ ϕαγδ ++ ++= (33)

Thus, if  10,000,   P0 = α = 6,000, µ = 200, ϕ = 30%, δ = 10% and γ = λ = 20%, it

follows that the adoption of  the straight-line, the Matheson and the SOYD depreciation

policies will respectively make the economic  life equal  to 9.64,  12.77 and 10.61 periods.3

That is, and this is the point that we would like to stress, the lenght of the economic life

may be significantly  affected by the choice of the depreciation policy.

6. Conclusion

Extending the traditional text-book approach to the subject, proceeding along the

lines of the Brenner and Venezia (1983) contribution, we have developed an analytical

methodology for determining the economic life of an equipment engaged in some revenue

generating operation, as a function of the depreciation policy. Considering continuous

                                                       
3 Notice that, if µ = 0 and the Matheson policy is adopted, we would have the rather artificial situation where VT
would increase without bound.
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time approximations for the three most popular depreciation policies, the straight-line, the

Matheson and the SOYD methods, it has been shown that the choice of the particular

policy may significantly affect the economic life of the equipment.

In practice, given that the economic life is usually fixed as an integer number of

years, our analytical procedure may be used as a first approximation. Once the analytical

solution is obtained, the actual economic life would be determined considering both the

corresponding rounded-up and rounded-down integers. The one with the highest

corresponding present value being chosen.
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