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Abstract

In this paper, we propose a novel approach to econometric forecast-
ing of stationary and ergodic time series within a panel-data frame-
work. Our key element is to employ the (feasible) bias-corrected aver-
age forecast. Using panel-data sequential asymptotics we show that it
is potentially superior to other techniques in several contexts. In partic-
ular, it is asymptotically equivalent to the conditional expectation, i.e.,
has an optimal limiting mean-squared error. We also develop a zero-
mean test for the average bias and discuss the forecast-combination
puzzle in small and large samples. Monte-Carlo simulations are con-
ducted to evaluate the performance of the feasible bias-corrected aver-
age forecast in finite samples. An empirical exercise based upon data
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from a well known survey is also presented. Overall, theoretical and
empirical results show promise for the feasible bias-corrected average
forecast.

Keywords: Forecast Combination, Forecast-Combination Puzzle, Com-
mon Features, Panel-Data, Bias-Corrected Average Forecast.
J.E.L. Codes: €32, C33, E21, E44, G12.

1 Introduction

Bates and Granger(1969) made the econometric profession aware of the ben-
efits of forecast combination when a limited number of forecasts is consid-
ered. The widespread use of different combination techniques has lead to an
interesting puzzle from the econometrics point of view — the well known fore-
cast combination puzzle: if we consider a fixed number of forecasts (N < o0),
combining them using equal weights (1/N) fare better than using “optimal
weights” constructed to outperform any other forecast combination in the
mean-squared error (MSE) sense.

Regardless of how one combines forecasts, if the series being forecast
is stationary and ergodic, and there is enough diversification among fore-
casts, we should expect that a weak law-of-large-numbers (WLLN) applies
to well-behaved forecast combinations. This argument was considered in
Palm and Zellner (1992), who asked the question “to pool or not to pool”
forecasts? Recently, Timmermann (2006) used risk diversification — a prin-
ciple so widespread in finance — to defend pooling of forecasts. Of course,
to obtain this WLLN result, at least the number of forecasts has to diverge
(N — o0), which entails the use of asymptotic panel-data techniques. In our
view, one reason that pooling forecasts has not yet been given a full asymp-
totic treatment, with N,T — oo, is that forecasting is frequently thought
to be a time-series experiment, not a panel-data experiment.

In this paper, we propose a novel approach to forecasting stationary and
ergodic series within a panel-data framework. First, we use a two-way de-
composition for the forecast error (Wallace and Hussein (1969)), where indi-
vidual errors are the sum of a time-invariant forecast bias, an unforecastable
aggregate zero-mean shock, and an idiosyncratic (or sub-group) zero-mean
error term. Second, we show the equivalence between this two-way decom-
position and a model where forecasts are a biased and error-ridden version



of the conditional expectation of the series — the optimal forecast in the
MSE sense. Indeed, the latter is the common feature of all individual fore-
casts (Engle and Kozicki (1993)), while individual forecasts deviate from
the optimal because of forecast misspecification. Third, letting N, T — oo,
we use standard tools from panel-data asymptotic theory to show that the
pooling of forecasts delivers optimal limiting forecasts in the MSE sense. In
our key result, we prove that, in the limit, the feasible bias-corrected average
forecast — equal weights in combining forecasts coupled with an estimated
bias-correction term — is an optimal forecast identical to the conditional
expectation.

The feasible bias-corrected average forecast is also parsimonious besides
being optimal. The only parameter we need to estimate is the mean bias,
for which we show consistency under the sequential asymptotic approach
developed by Phillips and Moon (1999). Indeed, the only way we could
increase parsimony in our framework is by doing without any bias correction.
To test the usefulness of performing bias correction, we developed a zero-
mean test for the average bias which draws upon the work of Conley (1999)
on random fields.

As a by-product of the use of panel-data asymptotic methods, with
N, T — oo, we advance the understanding of the forecast combination puz-
zle. The key issue is that simple averaging requires no estimation of weights,
while optimal weights requires estimating N weights that grow unbounded
in the asymptotic setup. We show that there is no puzzle under certain
asymptotic paths for N and T, although that result does not hold generally.
We are also able to discuss the puzzle in small samples, linking its presence
to the curse of dimensionality which plagues so many estimators throughout
econometrics!.

Despite the scarcity of panel-data studies on the pooling of forecasts?,
there has been panel-data research on forecasting focusing on the pooling
of information; see Stock and Watson (1999 and 2002a and b) and Forni
et al. (2000, 2003). Pooling forecasts is related to forecast combination

!'We thank Roger Koenker for suggesting this asymptotic exercise to us, and an anony-
mous referee for casting the puzzle in terms of the curse of dimensionality.

2The notable exception is Palm and Zellner (1992), who discuss “to pool or not to
pool” forecasts using a two-way decomposition. They make very limited use of the panel
dimension of forecasts in their discussion. Davies and Lahiri (1995) use a three-way
decomposition, but focus on forecast rationality instead of combination.



and operates a reduction on the space of forecasts. Pooling information
operates a reduction on a set of highly correlated regressors. Forecasting
can benefit from the use of both procedures, since, in principle, both yield
asymptotically optimal forecasts in the MSE sense.

A potential limitation in the literature on pooling of information is that
pooling is performed in a linear setup, and the statistical techniques em-
ployed were conceived as highly parametric — principal-component and fac-
tor analysis. That is a problem if the conditional expectation is not a linear
function of the conditioning set or if the parametric restrictions used (if
any) are too stringent to fit the information being pooled. In this case,
pooling forecasts will be a superior choice, since the forecasts being pooled
need not be the result of estimating a linear model under a highly restric-
tive parameterization. On the contrary, these models may be non-linear,
non-parametric, and even unknown to the econometrician, as is the case of
using a survey of forecasts. Moreover, the components of the two-way de-
composition employed here are estimated using non-parametric techniques,
dispensing with any distributional assumptions. This widens the application
of the methods discussed in this paper.

The ideas in this paper are related to research done in two different
fields. From econometrics, it is related to the common-features literature
after Engle and Kozicki (1993). Indeed, we attempt to bridge the gap be-
tween a large literature on common features applied to macroeconomics,
e.g., Vahid and Engle (1993, 1997), Issler and Vahid (2001, 2006) and Vahid
and Issler (2002), and the econometrics literature on forecasting related to
common factors, forecast combination, bias and intercept correction, per-
haps best represented by the work of Bates and Granger (1969), Granger
and Ramanathan (1984), Palm and Zellner (1992), Forni et al. (2000, 2003),
Hendry and Clements (2002), Stock and Watson (2002a and b), Elliott and
Timmermann (2003, 2004, 2005), Hendry and Mizon (2005), and, more re-
cently, by the excellent surveys of Clements and Hendry (2006), Stock and
Watson (2006), and Timmermann (2006) — all contained in Elliott, Granger
and Timmermann (2006). From finance and econometrics, our approach
is related to the work on factor analysis and risk diversification when the
number of assets is large, to recent work on panel-data asymptotics, and
to panel-data methods focusing on financial applications, perhaps best ex-
emplified by the work of Chamberlain and Rothschild (1983), Connor and



Korajzcyk (1986), Phillips and Moon (1999), Bai and Ng (2002), Bai (2005),
and Pesaran (2005). Indeed, our approach borrows from finance the idea
that we can only diversify idiosyncratic risk but not systematic risk. The lat-
ter is associated with the common element of all forecasts — the conditional
expectation term — which is to what a specially designed forecast average
converges to.

The rest of the paper is divided as follows. Section 2 presents our main
results and the assumptions needed to derive them. Section 3 presents the
results of a Monte-Carlo experiment. Section 4 presents an empirical analy-
sis using the methods proposed here, confronting the performance of our
bias-corrected average forecast with that of other types of forecast combi-
nation. Section 5 concludes.

2 Econometric Setup and Main Results

Suppose that we are interested in forecasting a weakly stationary and er-
godic univariate process {y;} using a large number of forecasts that will
be combined to yield an optimal forecast in the mean-squared error (MSE)
sense. These forecasts could be the result of using several econometric mod-
els that need to be estimated prior to forecasting, or the result of using no
formal econometric model at all, e.g., just the result of an opinion poll on
the variable in question using a large number of individual responses. We
can also imagine that some (or all) of these poll responses are generated
using econometric models, but then the econometrician that observes these
forecasts has no knowledge of them.

Regardless of whether forecasts are the result of a poll or of the esti-
mation of an econometric model, we label forecasts of y;, computed using
conditioning sets lagged h periods, by l-}ft, 1 =1,2,...,N. Therefore, f[ft
are h-step-ahead forecasts and N is either the number of models estimated
to forecast y; or the number of respondents of an opinion poll regarding ;.

We consider 3 consecutive distinct time sub-periods, where time is in-
dexedbyt=1,2,...,11,...,15,...,T. The first sub-period F is labeled the
“estimation sample,” where models are usually fitted to forecast y; in the
subsequent period, if that is the case. The number of observations in it is
E =T, =Ky T, comprising (t =1,2,...,T1). For the other two, we follow
the standard notation in West (1996). The sub-period R (for regression) is



labeled the post-model-estimation or “training sample”, where realizations
of y; are usually confronted with forecasts produced in the estimation sam-
ple, and weights and bias-correction terms are estimated, if need be. It has
R =T, —T; = kg T observations in it, comprising (t =71 +1,...,T). The
final sub-period is P (for prediction), where genuine out-of-sample forecast
is entertained. It has P = T — T = k3 - T observations in it, comprising
(t = To+1,...,T). Notice that 0 < k1,ko,k3 < 1, kK1 + ko + kK3 = 1,
and that the number of observations in these three sub-periods keep a fixed
proportion with T — respectively, k1, ko and k3 — being all O (T'). This is
an important ingredient in our asymptotic results for T — oo.

We now compare our time setup with that of West. He only considers
two consecutive periods: R data points are used to estimate models and the
subsequent P data points are used for prediction. His setup does not require
estimating bias-correction terms or combination weights, so there is no need
for an additional sub-period for estimating the models that generate the
fi}ft’sg. In the case of surveys, since we do not have to estimate models, our
setup is equivalent to West’s. Indeed, in his setup, R, P — oo as T" — o0,
and lim R/P = € [0, 00]. Here®:

T—o00

TIEI;OF:K—?)ZWG (0,00) .

In our setup, we also let N go to infinity, which raises the question of
whether this is plausible. On the one hand, if forecasts are the result of
estimating econometric models, they will differ across ¢ if they are based
either upon different conditioning sets or upon different functional forms of
the conditioning set (or both). Since there is an infinite number of func-
tional forms that could be entertained for forecasting, this gives an infinite
number of possible forecasts. On the other hand, if forecasts are the result
of a survey, although the number of responses is bounded from above, for
all practical purposes, if a large enough number of responses is obtained,
then the behavior of forecast combinations will be very close to the limiting
behavior when N — oo.

3Notice that the estimated models generate the fi’ft’s, but model estimation, bias-
correction estimation and weight estimation cannot be performed all within the same
sub-sample in an out-of-sample forecasting exercise.

*To inlcude the endpoints of 7 € [0, 00] we must give up either a training sample or a
genuine out-of-sample period, asymptotically.



Recall that, if we are interested in forecasting ¥, stationary and ergodic,
using information up to h periods prior to t, then, under a MSE risk func-
tion, the optimal forecast is the conditional expectation using information
available up to t — h: E;_j (y). Using this well-known optimality result,
Hendry and Clements (2002) argue that the fact that the simple forecast

N
average % g fh usually outperforms individual forecasts f, shows our
7 b}
=1

inability to approximate E;_p, (y;) reasonably well with individual models.
However, since E;_j (y¢) is optimal, this is exactly what these individual
models should be doing.
With this motivation, we write the fz-’:”t’s as approximations to the optimal
forecast as follows:
£l =Bon (o) + ki + eig, (1)

where k; is the individual model time-invariant bias and ¢;; is the individual
model error term in approximating Ey_p, (y;), where E (g;+) = 0 for all ¢ and
t. Here, the optimal forecast is a common feature of all individual forecasts

5

and k; and ¢;; arise because of forecast misspecification”. We can always

decompose the series y; into E;_p, (y;) and an unforecastable component (;,
such that BE;_j ({;) = 0 in:

ye = Be_n (y¢) + (o (2)

Combining (1) and (2) yields,

fif,Lt = Yyt — Q¢+ ki + iy, or,
i}}t = Yt + kl + Tt + Ei,t7 Where7 e = _Ct' (3)

Equation (3) is indeed the well known two-way decomposition, or error-
component decomposition, of the forecast error fz-ht — Y

o= wtm, i=12...N, t>T, (4)
i = ki +mn. + it
PIf an individual forecast is the conditional expectation By_j (y:), then k; = ;; = 0.
Notice that this implies that its MSE is smaller than that of % XN: fi’ft, something that is
i=1

rarely seen in practice when a large number of forecasts are considered.



It has been largely used in econometrics dating back to Wallace and Hus-
sein (1969), Amemiya (1971), Fuller and Battese (1974) and Baltagi (1980).
Palm and Zellner (1992) employ a two-way decomposition to discuss fore-
cast combination in a Bayesian and a non-Bayesian setup®, and Davies and
Lahiri (1995) employed a three-way decomposition to investigate forecast
rationality within the “Survey of Professional Forecasts.”

By construction, our framework in (4) specifies explicit sources of fore-
cast errors that are found in both y; and fl-}ft; see also the discussion in Palm
and Zellner and Davies and Lahiri. The term £; is the time-invariant forecast
bias of model i or of respondent . It captures the long-run effect of forecast-
bias of model ¢, or, in the case of surveys, the time invariant bias introduced
by respondent 7. Its source is i},Lt' The term 7, arises because forecasters
do not have future information on y between ¢ — h + 1 and t. Hence, the
source of 7, is y¢, and it is an additive aggregate zero-mean shock affecting
all forecasts equally’. The term €;,¢ captures all the remaining errors affect-
ing forecasts, such as those of idiosyncratic nature and others that affect
some but not all the forecasts (a group effect). Its source is fi}ft.

From equation (4), we conclude that k;, €;; and 1, depend on the fixed
horizon h. Here, however, to simplify notation, we do not make explicit
this dependence on h. In our context, it makes sense to treat h as fixed
and not as an additional dimension to ¢ and ¢. In doing that, we follow
West (1996) and the subsequent literature. As argued by Vahid and Issler
(2002), forecasts are usually constructed for a few short horizons, since, as
the horizon increases, the MSE in forecasting gets hopelessly large. Here, h

will not vary as much as ¢ and ¢, especially because N, T — oo®.

SPalm and Zellner show that the performance of non-Bayesian combinations obey the
following MSE rank: (i) the unfeasible weighted forecast with known weights performs
better or equal to the simple average forecast, and (ii) the simple average forecast may
perform better than the feasible weighted forecast with estimated weights. Our main result
is that the feasible bias-corrected average forecast is optimal under sequential asymptotics.
We also propose an explanation to the forecast-combination puzzle based on the curse of
dimensionality. Critical to these results is the use of large N, T asymptotic theory.

"Because it is a component of y;, and the forecast error is defined as f[ftfyt, the forecast
error arising from lack of future information should have a negative sign in (4); see (3). To
eliminate this negative sign, we have defined 7, as the negative of this future-information
component.

$Davies and Lahiri considered a three-way decomposition with h as an added dimension.
The focus of their paper is forecast rationality. In their approach, n, and €;; depend on



From the perspective of combining forecasts, the components ;, €; ; and
1, play very different roles. If we regard the problem of forecast combination
as one aimed at diversifying risk, i.e., a finance approach, then, on the one
hand, the risk associated with ¢;; can be diversified, while that associated
with 7, cannot. On the other hand, in principle, diversifying the risk asso-
ciated with k; can only be achieved if a bias-correction term is introduced
in the forecast combination, which reinforces its usefulness.

We now list our set of assumptions.

Assumption 1 We assume that k;, €; ; and 1, are independent of each other
for all 7 and ¢.

Independence is an algebraically convenient assumption used throughout
the literature on two-way decompositions; see Wallace and Hussein (1969)
and Fuller and Battese (1974) for example. At the cost of unnecessary
complexity, it could be relaxed to orthogonality, something we avoid here.

Assumption 2 k; is an identically distributed random variable in the
cross-sectional dimension, but not necessarily independent, i.e.,

ki ~i.d.(B,o?), (5)

where B and ai are respectively the mean and variance of k;. In
the time-series dimension, k; has no variation, therefore, it is a fixed
parameter.

The idea of dependence is consistent with the fact that forecasters learn
from each other by meeting, discussing, debating, etc. Through their ongo-
ing interactions, they maintain a current collective understanding of where
their target variable is most likely heading to, and of its upside and downside
risks. Given the assumption of identical distribution for k;, B represents the
market (or collective) bias. Since we focus on combining forecasts, a pure
idiosyncratic bias does not matter but a collective bias does. In principle, we

h but k; does not, the latter being critical to identify k; within their framework. Since, in
general, this restriction does not have to hold, our two-way decomposition is not nested
into their three-way decompostion. Indeed, in our approach, k; varies with h and it is
still identified. We leave treatment of a varying horizon, within our framework, for future
research.



could allow for heterogeneity in the distribution of k; — means and variances
to differ across i. However, that will be a problem in testing the hypothesis
that forecast combinations are biased.

It is desirable to discuss the nature of the term k;, which is related to
the question of why we cannot focus solely on unbiased forecasts, for which
k; = 0. The role of k; is to capture the long-run effect, in the time dimension,
of the bias of econometric models of y, or of the bias of respondent 7. We
first discuss survey-based forecasts. In this case, a relevant question to
ask is: why would forecasters introduce bias under an MSE risk function?
Laster, Bennett and Geoum (1999), Patton and Timmermann (2006), and
Batchelor (2007) list different arguments consistent with forecasters having
a non-quadratic loss function. Following their discussion, we assume that
all forecasters employ a combination of quadratic loss and a secondary loss
function. Bias is simply a consequence of this secondary loss function and
of the intensity in which the forecaster cares for it. The first example is that
of a bank selling an investment fund. In this case, the bank’s forecast of the
fund return may be upward-biased simply because it may use this forecast as
a marketing strategy to attract new clients for that fund. Although the bank
is penalized by deviating from E;_j (y;), it also cares for selling the shares
of its fund. The second example introduces bias when there is a market
for pessimism or optimism in forecasting. Forecasters want to be labeled as
optimists or pessimists in a “branding” strategy to be experts on “worst-
” or on “best-case scenarios,” respectively. Batchelor lists governments as
examples of experts on the latter.

In the case of model-based forecasts, bias results from model misspec-
ification. Here, it is important to distinguish between in-sample and out-
of-sample model fitting. The fact that, in sample, a model approximates
well the data-generating process (DGP) of y; does not guarantee that it
will in out-of-sample forecasting; see the discussion in Clements and Hendry
(1996) and in Hendry and Clements (2002). Notice that bias correction is a
form of intercept correction. Intuitively, if k; > 0, model ¢ will consistently
overpredict the target variable y; and it is reasonable to correct its forecasts
downwards by the same amount as k;. The equivalence between bias correc-
tion and intercept correction was discussed by Hendry and Clements (2002);
we discuss this equivalence below. Alternatively, Palm and Zellner (1992)
list the following reasons for bias in forecasts: carelessness; the use of a poor

10



or defective information set or incorrect model; and errors of measurement.

Assumption 3 The aggregate shock 7, is a stationary and ergodic M A
process of order at most h — 1, with zero mean and variance 0727 < 00.

Since h is a bounded constant in our setup, 7, is the result of a cumulation
of shocks to y; that occurred between ¢t — h 4+ 1 and ¢. Being an M A (+) is a
consequence of the Wold representation for y; and of (2). If y; is already an
M A (-) process of order smaller than h—1, then its order will be the same as
that of n,. Otherwise, the order is h—1. In any case, it must be stressed that
7, is unpredictable, i.e., that E;,_, (n,) = 0. This a consequence of (2) and of
the law of iterated expectations, simply showing that, from the perspective
of the forecast horizon h, unless the forecaster has superior information, the
aggregate shock 7, cannot be predicted.

Assumption 4: Let ¢, = (14,62, - EN,t), be a N x 1 vector stacking the
errors ¢;; associated with all possible forecasts, where E (g;¢+) = 0 for
all 7 and ¢. Then, the vector process {&;} is assumed to be covariance-
stationary and ergodic for the first and second moments, uniformly on
N. Further, defining §;; = €;+ — Bt (¢it), the innovation of €;;, we
assume that

fim % DIPMLIGH NI (6)

Because the forecasts are computed h-steps ahead, forecast errors g;
can be serially correlated. Assuming that €;; is weakly stationary is a way
of controlling its time-series dependence. It does not rule out errors dis-
playing conditional heteroskedasticity, since the latter can coexist with the
assumption of weak stationarity; see Engle (1982).

Equation (6) limits the degree of cross-sectional dependence of the er-
rors €;¢. It allows cross-correlation of the form present in a specific group
of forecasts, although it requires that this cross-correlation will not pre-
vent a weak law-of-large-numbers from holding. Following the forecasting
literature with large N and T, e.g., Stock and Watson (2002b), and the fi-
nancial econometric literature, e.g., Chamberlain and Rothschild (1983), the
condition A}gnooﬁ Zf\il Zjvzl }E (gi,tgj,t){ = 0 controls the degree of cross-

sectional dependence decay in forecast errors. It is noted by Bai (2005, p. 6),

11



that Chamberlain and Rothschild’s cross-sectional error dependence decay
requires:
T
A}EHOON Z Z B (&5485.)| < o0 (7)
i=1 j=1
Notice that this is the same cross-sectional dependence decay used in Stock
and Watson. Of course, (7) implies (6), but the converse is not true. Hence,
Assumption 2 has a less restrictive condition than those commonly employed
in the factor-model literature.
We state now basic results related to the classic question of “to pool or

not to pool forecasts,” when only simple weights (1/N) are used; see, for
example, Granger (1989) and Palm and Zellner (1992).

Proposition 1 Under Assumptions 1-4, the mean-squared error in fore-
2

casting y;, using the individual forecast f{}t, is B (fz-]ft — yt> == k? + 0727 —i—ofi,

2

where o, is the variance of €;1, 1 =1,2,,...,N.

Proposition 2 Under Assumptions 1-4, as N — oo, the mean-squared er-
ror in forecasting y, combining all possible individual forecasts fi’?t, 18

N 2
MSEaverage =E (phm]{[ Zfi’?t - yt) = B2 + 0'727-

N—oo i—1

We can now compare the MSE of a generic individual forecast with that
of an equally weighted (1/N) forecast combination by using the usual bias-
variance standard decomposition of the mean squared error (MSE)

MSE = Bias®>+ VAR.

Proposition 1 shows that we can decompose individual MSE’s, M SE;,
as:
MSE; = kl+op+o0?
= Bias? +VAR;,i=1,2,...N
where Bias? = k? and VAR; = 0127 + Ji. Proposition 2 shows that
averaging forecasts reduces variance, but not necessarily MSE,
MSEqaerage = B*>+ o} (8)
= Biasz +VARcwerage>

average

12



where VAR yerage = a% < VAR; = 0727 + 02, but comparing Biasfwemge =
B? with Bz’as? = kf requires knowledge of B and k;. If B = 0, i.e., we are
considering unbiased forecasts, on average, then M SE; = k?—i—a%—kaé, while
MSEerage = o%. Therefore, if the number of forecasts in the combination
is large enough, combining forecasts with a zero collective bias will lead
to a smaller MSE — as concluded in Granger (1989). However, if B # 0,
we cannot conclude that the average forecast has MSE lower than that of
individual forecasts, since B may be larger or smaller than k? + azi.

One way to eliminate the term B? in (8) is to perform bias correction
coupled with equal weights (1/N) in the forecast combination. The next set
of results investigates the properties of the bias-corrected average forecast

(BCAF).

Proposition 3 If Assumptions 1-4 hold, then, the bias-corrected average
N N

N N
forecast, given by % Z ffft—% Z k;, obeys Zelim (1{, Z f{ft — % kz> =
i=1 i=1 0 i=1 i=1
Yyt + 1, and has a mean-squared error as follows:

N N 2

MSEpcar = E [plim (11/ E fiht - % g k’@> —yt] = 0727. Therefore, it

N—oo X ’ -
=1 i=1

is an optimal forecasting device in the MSE sense.

Proposition 3 shows that the bias-corrected average forecast is an optimal
forecast in the MSE sense. Bias correction eliminates the term B? from the
MSE expression, while the use of equal weights naturally eliminates the
variance of idiosyncratic components and group effects. The only term left
in the MSE is 0727, related to unforecastable news to the target variable after
the forecast combination was computed — something we could not eliminate
unless we had superior (future) information. From a finance perspective,
all risks associated with terms that could be diversified were eliminated
by using the bias-corrected average forecast. We were left only with the
undiversifiable risk expressed in 0127. Therefore, the optimality result.

There are infinite ways of combining forecasts. We now present an al-
ternative weighting scheme to equal weights 1/N.

Corollary 4 Consider the sequence of deterministic weights {wi}f\il, such
N

that |w;| # 0, w; = O (N™1) uniformly, and Y w; =1, even when N — occ.
i=1

13



Then, under Assumptions 1-4,

N N
plim (Z wifi},lt — Zwiki - yt) = 1y and,
=1 =1

N—oo
N N 2
E | plim (Zwifﬁt - szkz) —yt] = 0727.
N—oo \ ;54 i—1

and the same result of Proposition 8 follows when a generic {wi}i]\il s used

instead of 1/N.

This corollary to Proposition 3 shows that there is not a unique optimum
in the MSE sense. Indeed, any other combination scheme consistent with a
WLLN will be optimal as well. Of course, optimal population weights, con-
structed from the variance-covariance structure of models with stationary
data, will obey the structure in Corollary 4. Hence, theoretically, optimal
population weights cannot perform better than 1/N under bias correction.
Therefore, there is no forecast-combination puzzle in the context of popula-
tion weights.

Although the discussion using population weights is useful, the puzzle
is associated with weights w; estimated using data. Then, the key question
to be answered analytically is why forecasts based on estimated weights are

N

not optimal. We now compare % Z fi’ft with a bias-corrected version of
i=1

N 7

Zwi fi}ft that uses estimated weights. We follow the discussion in Hendry

i=1

and Clements (2002) using N different forecasts instead of just 2. Weights

w; can be estimated (@;) by running the following regression, minimizing

N
MSE subject to Zwi =1:
i=1
y=di+wfitwfot+..+wnfn+u, (9)

where y denotes the R x 1 vector of observations of the target variable, fi,
f2, ..., fn denotes, respectively, the R x 1 vectors of observations of the N
individual forecasts, and i is a vector of ones. Estimation is done over the
time interval 77 + 1,...,T5 (i.e., over the training sample).
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There are two cases to be considered: the behavior of estimated weights
in small samples and asymptotically, when N,T — oo. In large samples,
consistent estimation of weights requires:

0< tim Yo ym YT it <1 (10)
N,T—POOR - N,Tﬂoo% - K2 ’

which implies not only that N — oo at a smaller rate than 7', but that
lim N/T < ky. Recall that ke = 1 — k1 — k3, hence, lim N/T < 1.

N, T—o0 N, T—oc0
As long as this condition is achieved, weights are estimated consistently in

(9) and we are back to Corollary 4: asymptotically, there is no forecast-
combination puzzle Notice that, because regression (9) includes an inter-
cept, the forecast f — Ji + w01f1 + @Waofs + ... + Oy fn is unbiased with ¢
playing the role of a bias-correction term.

Because there is no puzzle asymptotically, the low accuracy of ]? rel-

ative to that of %Z {ft must reflect a poor small-sample approxima-
i=1
tion of population weights w;s by the @;s. In small samples, estimation

of w; requires N < R. On the one hand, to get close to an optimal
We1ghted forecast, we need a large N. On the other hand, the forecast
f — Si+ W1 f1+ wWafo + ... + Wy fn is not immune to the “curse of dimen-
sionality,” since, as N increases, we need to estimate an increasing number
of weights. Increasing N contributes to raising the variance of estimated
weights, which works against the consistency of the @;s.

As shown in our simulation exercise below, when N approaches R from
below, the variance of ]/”\grows with IV and is typically big enough as to yield

N

an inferior forecast (MSE) relative to % Z f{ft, although the latter is biased.
i=1
Thus, the weighted forecast cannot avoid the “curse of dimensionality” that

plagues several estimates across econometrics. In this context, the curse of
dimensionality in f is an explanation to the forecast-combination puzzle.
Of course, if we make N/R close to zero in finite samples, with N large,
we allow &; = wj, since R will then be large. Moreover, the requirement of
large N guarantees the optimality result in Corollary 4.

The main question of this paper is: is there a forecast combination device
that is asymptotically equivalent to the optimal weighted forecast, in the
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MSE sense, but does not suffer from the curse of dimensionality? Our answer
to this question is the BCAF in Proposition 3. It borrows only the positive
properties of fixed-weight (1/N) and estimated-weight forecasts. From the
former, it inherits the fact that its variance decreases with N. From the
latter, it inherits bias correction.
Despite its optimal behavior, it is immediately seen that the BCAF
N

N

+ Z fi}ft -+ Zkzl is unfeasible since the k;’s are unknown. Therefore,
=1 =1

below, we propose replacing k; with a consistent estimator. The underlying

idea behind the consistent estimator of k; is that one observes the realizations
of y; and f{ft, i = 1...N, for the R training-sample observations. Hence, one
can form a panel of forecasts:

(flf,Lt_yt):ki"_nt"'g’i,tv i:1,27'--7N7 t:T1+1)"'7T27 (]‘1)

where it becomes obvious that k; represents the fixed effect of this panel.

We propose a non-parametric estimator of k;. It does not depend on any
distributional assumption on k; ~ i.d.(B, %) and it does not depend on any
knowledge of the models used to compute the forecasts fl-’?t. This feature
of our approach widens its application to situations where the “underlying
models are not known, as in a survey of forecasts,” as discussed by Kang
(1986).

Due to the nature of our problem, which consists of a large number of
forecasts and a time-invariant bias term (k;), we need to consider large N,
large T asymptotic theory to devise a consistent estimator for k;. Search-
ing for a method that allows robust asymptotic results without imposing
too many restrictions (on functional relations and the existence of higher
moments), we consider the sequential asymptotic approach developed by
Phillips and Moon (1999). There, one first fixes N and then allows 7' to
pass to infinity using an intermediate limit. Phillips and Moon write sequen-
tial limits of this type as (I, N — 00)seq- We now show how to estimate
consistently k;, B, n;, and €;4, in this context.

Proposition 5 If Assumptions 1-4 hold, the following are consistent esti-
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mators of ki, B, ny, and €+, respectively:

~ 1 T ]. T . =
ki = E ZtiTl—H il,lt - E ZtiTﬁ-l Yt, jl?hm (kz - kz) =0,
—00
. 1 _ .
B = —xk, plim B—B)zo,
(T',N—00)seq

1 N

~ h 3 . ~

= =7 f',t - B - Yt, phm (77t - 77t) = 07
N ; ' (TvNHOO)seq

Eit = fz'},Lt —yr — ki — 0, plim (€t —€iy) = 0.
(T,N—00)seq

We now state our most important result.

Proposition 6 If Assumptions 1-4 hold, the feasible bias-corrected aver-
N N

age forecast % Z fft - B obeys  plim (1{, Z i’ft — E) =y t+n =
i=1 (T\N—00)seq i=1

Ei—p (y:) and has a mean-squared error as follows:

N 2
E[ plim (1{,2 l-’ft - E) —yt] = 0727. Therefore it is an optimal
(T,N—00)seq i—1

forecasting device.

Proposition 6 shows that the feasible BCAF is asymptotically equivalent
to the optimal weighted forecast. Its advantage is that it employs equal
weights. As N — oo, the number of estimated parameters is kept at unity:
B. This is a very attractive feature of the BCAF compared to devices
that combine forecasts using estimated weights. Our answer to the curse
of dimensionality is parsimony, implied by estimating only one parameter —
B. Here, we need not limit the asymptotic path of N,T as is the case of
forecasts based on estimated weights.

We must stress that bias-correction can be viewed as a form of intercept
correction as discussed in Palm and Zellner (1992) and Hendry and Mizon
(2005), for example. From (9), we could retrieve B from an OLS regression
of the form:

y=0i+wifi+wafo+..+wnfn+v,

where the weights w; are constrained to be w; = 1/N for all 4. There is
only one parameter to be estimated, §, and 6 = — B, where B is now cast in
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terms of the previous literature?.

Finally, we propose a new test for the usefulness of bias correction (Hyp :
B = 0) using the theory of random fields as in Conley (1999). It is potentially
relevant when we view B as a market or a consensus bias, which is customary
in the finance and macroeconomics literature, respectively. When B = 0,

N
the feasible BCAF becomes % Z f’L'I;Lt'
=1

Proposition 7 Under the null hypothesis Hy : B = 0, the test statistic:

b 4, N(0,1),

%\:
\/‘7/ (T,N—00)seq

where V is a consistent estimator of the asymptotic variance of B = Z k;.

2.1 The BCAF and Nested Models

It is important to discuss whether and when the techniques above are ap-
plicable to the situation where some (or all) of the models we combine are
nested. The potential problem is that the innovations from nested mod-
els can exhibit high cross-sectional dependence, violating Assumption 4. In
what follows, we introduce nested models into our framework in the follow-
ing way. Consider a continuous set of models and split the total number
of models N into M classes (or blocks), each of them containing m nested
models, so that N = mM. In the index of forecasts, i = 1,.., N, we group
nested models contiguously. Hence, models within each class are nested but
models across classes are non-nested. We make the number of classes and
the number of models within each class to be functions of N, respectively
as follows: M = N9 and m = Nd, where 0 < d < 1. Notice that this
setup considers all the relevant cases: (i) d = 0 corresponds to the case in
which all models are non-nested; (ii) d = 1 corresponds to the case in which
all models are nested and; (iii) the intermediate case 0 < d < 1 gives rise to
N1=4 blocks of nested models, all with size N¢.

9Recall that B requires estimating only one 76\2 separately using R observations. For
forecasts based on estimated weights, joint estimation of N + 1 parameters is performed
using these same R observations.
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For each block of nested models, Assumption 4 may not hold because the
innovations from that block can exhibit high cross-sectional dependence!”.
Regarding the interaction across blocks of nested models, it is natural to
impose that the correlation structure of innovations across classes is such
that Assumption 4 holds, since we should expect that the cross-sectional
dependence of forecast errors across classes is weak. We formalize this by

using the following extension to equation (6) in Assumption 4.

Assumption 5: Consider the covariance matrix of innovations, given by
(E (fi’tg M)), and partition it into blocks. There are M main-diagonal
blocks, each with m? = N2? elements. These blocks contain the covari-
ance structure of innovations for each class of nested models. There
are also M? — M off-diagonal blocks which represents the across-block
covariance structure of innovations. Index the classes (blocks) of mod-
els by r = 1,.., M, and models within each class (block) by s = 1,..,m.
For all ¢, and any r and s, we may re-index &, ; 10 §(—1)mst = Sirs
i=1,...,N'"'. Within each block 7, we assume that:

Né Nd

1 1
0 S Tr%gnooﬁ Z Z ‘E (gr,k,tgr,s,t)‘ = ]\}EHOOW Z Z ‘E (fr,k,tfr,s,t)‘ < 09,

k=1 s=1 k=1 s=1
(12)

being zero when the smallest nested model is correctly specified. How-
ever, across any two blocks r and [, r # [, we assume that:

1 m m 1 Ne N4
n}gnoom ; 321 ‘E (fr,k,tfl,s,t)‘ = ]\}EHOOW 1; 521 ‘E’ (fr,k,tfl,s,t)‘ =0.

(13)

We now discuss how to implement the BCAF in the presence of nested
models. The matrix (E (fi,tfj,t)) has N2 = m2?M? elements, but only
m2M = N2N1-4 = N1+d represent covariances among nested models, in
which condition (12) holds. For the remaining elements, (13) holds. Unless
d = 1, the total number of elements representing covariances among nested

10As discussed in great detail below, Assumption 4 will hold for nested models if the
smallest nested model is correctly specified.

UFor example, §2.1,+ is the first innovation for the second block, and corresponds to
Emt1.> the (m + 1)-th cross-sectional observation.
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models (N'*9) will grow at a rate smaller than N2 — the total number of
elements. Therefore, Assumption 4 will still hold in the presence of nested
models when 0 < d < 1, and our result on optimality of the BCAF will still
follow. Notice that 0 < d < 1 corresponds to the case in which nested and
non-nested models are combined and the number of nested models grows
with N.

We now consider two special cases: if d = 0, there are only non-nested
models, since each class of models has only one element. Hence, Assumption
4 holds. If d = 1, we only have one class of models, and all models are nested.
In general, Assumption 4 will not hold, and a law-of-large numbers will not
apply to % ZZ]\L 1€it- We now discuss in detail the special case in which
d = 1 and the smallest model is correctly specified. It is easy to verify that,
for the smallest model, the following equation will hold with k; = ¢;; = 0 in
population:

£l =Bap () + ki + e4g- (14)

This happens because, under correct specification of the smallest model
in the nesting scheme, its population forecast will be E;_p (y;), making
ki = €;y = 0. This, in turn, makes &; ; = €;; —B;_1 (€;¢) = 0 for the smallest
model. When the smallest nesting model is correctly specified, all models
that nest it will have identical population errors, i.e., will have k; =¢;; =0
as well. This happens because any model that nests the smallest one will
have irrelevant estimated parameters that will converge to zero, in proba-
bility. Therefore, condition (12) will hold as an equality, and a law-of-large
numbers will apply to % Zf\; 1 €it as a degenerate case, where there is no
variation in population, among the elements being combined.

From an empirical point of view, d can be regarded as a choice variable
when implementing the BCAF. Choosing d = 1 (only one class of nested
models) is an “excellent” choice when the class of model chosen is correctly
specified (the smallest model is correctly specified). However, there is the
(potentially high) risk of incorrect specification for the whole class, which
will imply that the law-of-large numbers will not hold for % ZZ]\LI €t in im-
plementing the BCAF. On the other hand, in choosing d = 0 (all models are
non-nested), we completely eliminate nested models and the chance that the
law-of-large numbers will not hold. In the intermediate case, 0 < d < 1, we
have nested models but can still apply a law-of-large numbers for % ZZJ\L 1 Eit
and implement the BCAF successfully. Here, keeping some nested models
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poses no problem at all, since the mixture of models will still deliver the op-
timal forecast. From a practical point of view, the choice of 0 < d < 1 seems
to be superior. Here, we are back to the main theorem in finance about risk
diversification: do not put all your eggs in the same basket, choosing a large
enough number of diversified (classes of) models.

3 Monte-Carlo Study

3.1 Experiment design

We follow the setup presented in the theoretical part of this paper in which
each forecast is the conditional expectation of the target variable plus an ad-
ditive bias term and an idiosyncratic error. Our DGP is a simple stationary
AR(1) process:

Y = oaotary—1+&,t=1.10,..,1s..,T (15)
& ~ 1id.N(0,1), a9 =0, and oy = 0.5,

where &, is an unpredictable aggregate zero-mean shock. We focus on one-
step-ahead forecasts for simplicity. The conditional expectation of y; is
Ei—1 (y:) = ap + a1ye—1. Since &, is unpredictable, the forecaster should
be held accountable for f;; — ;1 (y¢). These deviations have two terms:
the individual specific biases (k;) and the idiosyncratic or group error terms
(€it). Because &, ~i.i.d.N(0, 1), the optimal theoretical MSE is unity in this
exercise.

The conditional expectation E;—; (y:) = ap + a1y;—1 is estimated using
a sample of size 200, i.e., E = T7 = 200, so that ag ~ ag and @1 ~ a1. In
practice, however, forecasters may have economic incentives to make biased
forecasts, and there may be other sources of misspecification arising from
misspecification errors. Therefore, we generate forecasts as:

fix = Qo+ a1yi—1+ ki +eig, (16)

= (ao + ki) + Q1yi—1 +egpfort=T1+1,---,T,1=1,..N,
where, k; = Bki—1 + w;, u; ~ii.d.Uniform(a,b), 0 < S < 1, and g =
(E1,t,€24, .- 5N7t)’, N x 1, is drawn from a multivariate Normal distribution

with size R + P = T — T}, whose mean vector equals zero and covariance
matrix equals X. We introduce heterogeneity and spatial dependence in the
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distribution of €; ;. The diagonal elements of ¥ = (o;;) obey: 1 < 043 < V10,
and off-diagonal elements obey: o;; = 0.5, if |i —j| = 1, 0;; = 0.25, if
li—j| = 2, and o4; = 0, if [ —j| > 2. The exact values of the o;’s
are randomly determined through an once-and-for-all draw from a uniform
random variable of size N, that is, o;; ~i.i.d.Uniform(1,/10)!2.

In equation (16), we built spatial dependence in the bias term k;'3. The
cross-sectional average of k; is 2(1117?6)' We set the degree of spatial depen-
dence in k; by letting 5 = 0.5. For the support of u;, we consider two cases:
(i) @ =0 and b = 0.5 and; (ii) @ = —0.5 and b = 0.5. This implies that the
average bias is B = 0.5 in (i), whereas it is B = 0 in (ii). Finally, notice that
the specification of €;; satisfies Assumption 4 in Section 2 as we let N — oo.

Equation (16) is used to generate different panels of forecasts in terms of
the number of forecasters (N) and the size of the training-sample (R). We
kept the number of out-of-sample observations equal to P = 50 in all cases.
First, for N = 10, 20,40, we let R = 50. For all these 3 cases, % may not
be small enough to guarantee a good approximation of optimal population
weights by the @;s. In order to approximate the asymptotic environment
needed for optimality of the forecasts based on estimated weights, i.e., equa-
tion (10), we also considered the case in which R = 500, and 1,000, while
keeping N = 10. For each N, we conducted 50, 000 simulations in the exper-
iment. In all cases, the total number of time observations used to fit models
equals F =T = 200.

3.2 Forecast approaches

In our simulations, we evaluate three forecasting methods: the feasible bias-
corrected average forecast (BCAF), the forecast based on estimated weights,
and the forecast based on fixed weights. For these methods, our results
include aspects of the whole distribution of their respective biases and MSEs.

For the BCAF, we use the training-sample observations to estimate EZ =

12The covariance matrix ¥ does not change over simulations.

""The additive bias k; is explicit in (16). Tt could be implicit if we had considered
a structural break in the target variable as did Hendry and Clements (2002). There,
an intercept change in y: takes place right after the estimation of econometric models,
biasing all forecasts. Hence, in their paper, intercept correction is equivalent to bias
correction, which would be the case here too. However, a structural break would violate
weak stationarity and that is why it is not attempted here.
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P R N
% S (v — fir) and B = % > k;. Then, we compute the out-of-sample

t=T1+1 i=1
— N ~
forecasts ftBCAF = % Yo fir—B,t=T+1,..,T, and we employ the last
i=1
T - 2
P observations to compute M SEgcar = % > (yt — ftBCAF) .
t=Th+1

For the forecast based on estimated weights (weighted average forecast),
we use R observations of the training sample to estimate weights (w;) by
OLS in:

y=0i+wifi twafo+..+wnfn+e,

N

where the restriction Zwi = 1 is imposed in estimation. The weighted
i=1

forecast is ftwelghwd =0+ ®1fit+wWafor+ ... + On SN, and the intercept

0 plays the role of bias correction. We employ the last P observations to

1 L Tweighted 2
compute MSEweighted =P Z <yt — Jt g ) .
t=T»+1
For the forecast based on fixed weights (average forecast), there is no pa-

rameter to be estimated using training-sample observations. Out-of-sample

N
forecasts are computed according to f;" " = + 3 fi;, t =To+1,..,T,
=1

T
and its MSE is computed as M SEqperage = 5 . (Yt — t‘wemge)2.
t=T>+1
Finally, for each approach, we also computed the out-of-sample mean

biases. In small samples, the weighted forecast and the BCAF should have
out-of-sample mean biases close to zero, whereas the mean bias of the average

_ _a+b
forecast should be close to B = =P

3.3 Simulation Results

With the results of the 50, 000 replications, we describe the empirical distrib-
utions of the bias and the MSE of all three forecasting methods. For each dis-
tribution we compute the following statistics: (i) kurtosis; (ii) skewness, (iii)
mean and (iv) 7-th unconditional quantile, with 7 = 0.01,0.25,0.50,0.75,
and 0.99. In doing so, we seek to have a general description of all three
forecasting approaches.

The main results are presented in Tables 1 through 4. In Table 1, where
B = 0.5, the average bias across simulations of the BCAF and the weighted
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forecast are practically zero. The mean bias of the simple average fore-
cast is between 0.39 and 0.46, depending on N. In terms of MSE, the
BCAF performs very well compared to the other two methods. The sim-
ple average forecast has a mean MSE at least 8.7% higher than that of the
bias-corrected average forecast, reaching 17.8% higher when N = 40'4. The
forecast based on estimated weights has a mean MSE at least 22.7% higher,
reaching 431.3% higher when N = 40. This last result is a consequence of
the increase in variance as we increase N, with R fixed, and N/R close to
unity. Notice that the average bias is virtually zero for N = 10, 20, 40. Since
the MSE triples when N is increased from 10 to 40, all the increase in MSE
is due to variance, revealing the curse-of-dimensionality working against the
forecast based on estimated weights.

Table 2 presents the results when B = 0. In this case, the optimal
forecast is the simple average, since there is no need to estimate a bias-
correction term. In terms of MSE, comparing the simple-average forecast
with the BCAF, we observe that they are almost identical — the mean MSE
of the BCAF is about 1% higher than that of the average forecast, showing
that not much is lost in terms of MSE when we perform an unnecessary
bias correction. The behavior of the weighted average forecast is identical
to that in Table 1.

Table 3 presents the result in which B = 0.5, % ~ 0, and N = 10, with
R =500, 1,000. As expected, the &;s are a very good approximation to opti-
mal population weights. Despite that, we are still combining a relatively low
number of forecasts: N = 10. Here, there is practically no difference in per-
formance between the BCAF and the estimated-weight forecast. However,
contrary to the results in Tables 1 and 2, equal-weight forecasts perform
worse than estimated-weight forecasts. Indeed, the MSE of the simple av-
erage is at least 8.9% higher than that of the estimated-weight forecast,
while the latter has an almost identical accuracy to the BCAF: no bias, and
a variance (and MSE) that is more than 50% than that of the theoretical
optimum 0727 = 1.

Table 4 presents the result in which B = 0.5, % ~ 0, and N = 40, with
R = 2,000, 4,000. Although the ratio % was kept identical to that in Table

4When we compare the MSE of the fixed-weight forecast with that of the optimal
forecast (which is unity in our simulation), we observe that the former converges towards
03, + B?. Such a result is expected since B converges in probability to B as N — oo.
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3, we have now increased both N and R proportionally. As in Table 3, the
wW;s are a very good approximation to optimal population weights, since R
is large. However, contrary to the results there, now we are also combining
an increasing number of forecasts: 40 vs. 10. As a result, not only BCAF
and the estimated-weight forecast outperform the fixed-weight forecast, but
they also are closer to the theoretical optimum 0% = 1 (about 15% worse
here as opposed to more than 50% in Table 3).

One key insight from the results in Tables 1-4 is that no combination
device outperforms the BCAF by a wide margin, and, even when the BCAF
is not constructed to be optimal — Table 2 — its performance is practically
identical to that of the optimal forecast.

4 Empirical Application

4.1 The Central Bank of Brazil’s “Focus Forecast Survey”

The “Focus Forecast Survey,” collected by the Central Bank of Brazil, is a
unique panel database of forecasts. It contains forecast information on al-
most 120 institutions, including commercial banks, asset-management firms,
and non-financial institutions, which are followed throughout time with a
reasonable turnover. Forecasts have been collected since 1998, on a monthly
frequency, and a fixed horizon, which potentially can serve to approximate
a large N,T environment for techniques designed to deal with unbalanced
panels — which is not the case studied here. Besides the large size of N and T,
the Focus Survey also has the following desirable features: the anonymity of
forecasters is preserved, although the names of the top-five forecasters for a
given economic variable are released by the Central Bank of Brazil; forecasts
are collected at different frequencies (monthly, semi-annually, annually), as
well as at different forecast horizons (e.g., short-run forecasts are obtained
for h from 1 to 12 months); there is a large array of macroeconomic time
series included in the survey.

To save space, we focus our analysis on the behavior of forecasts of the
monthly inflation rate in Brazil (7;), in percentage points, as measured by
the official Consumer Price Index (CPI), computed by FIBGE. In order
to obtain the largest possible balanced panel (N x T'), we used N = 18
and a time-series sample period covering 2002:11 through 2006:3 (7' = 41).
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Of course, in the case of a survey panel, there is no estimation sample.
We chose the first R = 26 time observations to compute B — the average
bias — leaving P = 18 time-series observations for out-of-sample forecast
evaluation. The forecast horizon chosen was h = 6, this being an important
horizon to determine future monetary policy within the Brazilian Inflation-
Targeting program.

The results of our empirical exercise are presented in Tables 5 and 6.
First, we note that all the 18 individual forecasts perform worse than com-
binations, which is consistent with the discussion in Hendry and Clements
(2002). The results in Table 5 show that the average bias is positive for the 6-
month horizon, 0.06187, and marginally significant, with a p-value of 0.063.
This is a sizable bias — approximately 0.75 percentage points in a yearly ba-
sis, for an average inflation rate of 5.27% a year. In Table 6, out-of-sample
forecast comparisons between the simple average and the bias-corrected av-
erage forecast show that the former has a MSE 18.2% bigger than that of
the latter. We also computed the MSE of the weighted forecast. Since we
have N = 18 and R = 26, N/R = 0.69. Hence, the weighted average cannot
avoid the curse of dimensionality, yielding an MSE 390.2% bigger than that
of the BCAF.

It is important to stress that, although the feasible BCAF was conceived
for a large IV, T environment, the empirical results here show an encouraging
performance even in a small N, T context. Also, the forecasting gains from
bias correction are non-trivial.

5 Conclusions and Extensions

In this paper, we propose a novel approach to the econometric forecast of
stationary and ergodic series y; within a panel-data framework, where the
number of forecasts and the number of time periods increase without bound.
The basis of our method is a two-way decomposition of forecast errors. As
shown here, this is equivalent to forecasters trying to approximate the op-
timal forecast under quadratic loss — the conditional expectation E;_p, (y;),
which is modelled as the common feature of all individual forecasts. Stan-
dard tools from panel-data asymptotic theory are used to devise an optimal
forecasting combination that delivers Ey_j (y;). This optimal combination
uses equal weights and an estimated bias-correction term. The use of equal
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weights avoids estimating forecast weights, which contributes to the reduc-
tion of forecast variance, although potentially at the cost of an increase in
bias. The use of an estimated bias-correction term eliminates any possi-
ble detrimental effect arising from equal weighting. We label this optimal
forecast as the (feasible) bias-corrected average forecast.

We show that the feasible BCAF delivers the optimality result even
under the presence of nested models and we fully characterize it by using
a novel framework. As a by-product of the use of panel-data asymptotic
methods, with N, T — oo, we advance the understanding of the forecast
combination puzzle by showing that the low accuracy of the forecasts based
on estimated weights, relative to those based on fixed weights, reflects a poor
small-sample approximation of optimal population weights w;s by estimated
weights. In small samples, estimation of w; requires N < R. On the one
hand, to get close to an optimal weighted forecast, we need a large N. On
the other hand, the forecast based on estimated weights is not immune to
the “curse of dimensionality,” since, as N increases, we need to estimate
an increasing number of weights. In our simulations, we show that the
curse of dimensionality works against forecasts based on estimated weights,
increasing their MSE as N approaches R.

Finally, we show that there is no forecast-combination puzzle under cer-
tain asymptotic paths for N and 7', but not in all cases. Indeed, if N — oo
at a rate strictly smaller than T, then w; is consistently estimated, the
weighted forecast with bias correction (intercept) is optimal, and there is
no puzzle. Our simulations approximate this asymptotic environment by
considering various cases in which N/T ~ 0. As expected, the forecast
based on estimated weights outperforms the simple fixed-weight combina-
tion and has the same performance as the BCAF. Since the case in which
N/T =~ 0 is rarely observed in practice, we should not expect forecasts based
on estimated-weight combinations to be accurate. On the other hand, the
feasible BCAF is asymptotically equivalent to the optimal-weight forecast
but has a superior performance in small samples.
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Appendix

A.1 Proofs of Propositions in Section 2

Proof of Proposition 1:. Start with:

fi},lt —yt = ki +n + it
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Then, the MSE of individual forecasts is:

2
MSE; = E (fi}?t - yt) =E(ki +n; +cir)? (17)
= E(k)+E @) +E(,)

) 2 2
= ki+an+a€i,

where O'zi is the variance of ¢;;. Assumption 1 is used in the second line of
(17). We also use the fact that k; is a constant in the time-series dimension
in the last line of (17). =

Proof of Proposition 2:. Start with the cross-sectional average of (4):

1 1 Y 1 Y
S g — LYk S e
Ni:1 f’i,t_yt_Ni::L kl+nt+NZ:1 E’L,t‘

Computing the probability limit of the right-hand side above gives,

1 & 1 &
plim — ki +n, + plim— Eite 18
N—>OON ; ’ ¢ N—>OON ; vt ( )

We will compute the probability limits in (18) separately. The first one
is a straightforward application of the law of large numbers:

1 N
pllmNzlki = B.
1=

N—oo

The second will turn out to be zero. Our strategy is to show that, in
N

the limit, the variance of % Zz—:i,t is zero, a sufficient condition for a weak
i=1
law-of-large-numbers to hold for {&,t}ij\il-
Because ¢; ¢ is weakly stationary and mean-zero, for every 4, there exists
a scalar Wold representation of the form:

o0
it = Zbi,jgi,t—j (19)
=0
where, for all 4, b; o =1, Z;?io b%j < o0, and &, ; is white noise.
N oo
In computing the variance of %Zzb@jgi,t*j we use the fact that
i=1 j=0
there is no cross correlation between &, , and &, ;, 4, k= 1,2,.... Therefore,
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we need only to consider the sum of the variances of terms of the form
% Zf\; 10i k& 1—i- These variances are given by:

| N
VAR <N Zbi,kﬁi,tk) = N2 ZZbZ b kB gltgﬂ) , (20)

i=1 =1 j=1

due to weak stationarity of ;. We now examine the limit of the generic
term in (20) with detail:

| N
VAR (N ;bakgm k) =

1 L& 1
W Z Z ‘bi,kbj,kE (é-i,té-_] t F

i=1 j=1
(max|bZ 1bj, k|> e Z Z }E §i S5, t)|

=1 j=1

bikbj kB (&485.) <

2|~

i Mz i Mz

zkbj k‘ ’E 51 té_] t)‘ < (21)

»al
st

(22)

Hence:

I i 3 i . .

im VAR (N Z bz,k;ﬁi,tk> < lgnoo <HZ13X|bz,kb],k|> %
| NN

Jim s >SS IB (Gl = 0,

since the sequence {b; ; }‘;10 is square-summable, yielding A}im <max|bi,kbj7k |> <
—00 1,]

. . . 1 N N _
oo, and Assumption 4 imposes A}gnoom Doim1 D1 ’E (gi,tgji)\ =0.

Thus, all variances are zero in the limit, as well as their sum, which gives:

li E = 0.
plim — N it
['herefore,

N 2
1
E | plim — h _ = E(B+mn,)?
(ﬁam N ;:1 i yt) (B +mn,)

= B’+o0}. (23)
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Proof of Proposition 3:. From the proof of Proposition 2, we have:

phm—Zf” Yt — phm—Zk = n+ phm—Zgzt

N—»ooN — N—>oo N—>oo
= ntv

leading to:

N—oo

phm( Zf,ht NZk) r:ag.

Proof of Proposition 5:.  Although v, 7, and €;; are ergodic for the

mean, fzht is non ergodic because of k;. Recall that, 71,75, R — oo, as

T — oco. Then, as T — oo,

[ — h l —r I | —"
R ZtiTlJ,-l it = R ZtiTH—l Yt + R ZtiTﬁ_l €it+ R ZtiTl-i-l N + ki

LB (ye) + ki +E(eir) + E(ny)
= E(y) + ki

Given that we observe fzht and y;, we propose the following consistent esti-

mator for k;, as T — oo:

~

ki = Zt =Ty +1 Zt n ¥ =1, N
I
= E ZtiT1+1(yt + ki +m +eit) — R Dottty Yt
L I <
= ki + R Dol Eit Tt R Dot e
or,
~ I —p 1 p
ki—ki = E Zt:Tl+1 it + E Zt:TlJrl M-
Using this last result, we can now propose a consistent estimator for B:

~ 1
B:NZzl 2—211[ Zt T1+1 Et Ti4+1 Yt

First let T — oo,
/k;i £> ki7 and,

1L, 1
NZ@-HNZ@.
=1 i=1

=z
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Now, as N — oo, after T' — oo,

L
Ly wrn,
i=1
Hence, as (T, N — 00)seqs

(T,]\If)l—i>2)seq (E — B> =0.

We can now propose a consistent estimator for n,:

1= 1= 1=

We let T' — oo to obtain:

1 & 1 & 1 1 &
. h o 4 R 1 L
] £ WCRED SR IR ST SR
=1 =1 =1 =1
| N
un + N Z Eit-
=1
N
Letting now N — oo, we obtain plim % Zai’t =0 and:
N—oo iy
plim (7 —n,) = 0.
(T,N—00)seq
Finally,
Six = flh—wy—ki =7, and Y, — g = ki +n, + €in
Hence
it —Eip = <’fz - Ez) + (g — 1) -

Using the previous results that plim </k\z - /-@J) =0and plim (7, —n) =
T—o0 (T,N_’oo)seq
0, we obtain:
plim (/6\1'7,5 — 81‘,15) = 0.
(T,N—00)seq
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Proof of Proposition 6:. We let T" — oo first to obtain:

1 1 Y 1L

T—o0 T—o00

T—o0

L L L
_ h - — .
= N;fi,t—N;’%—yt‘H]t‘f‘N;&z,t.

N
Letting now N — oo we obtain plim % Z it = 0 and:
N—oo ;
=1

N
. 1 B
plim ~ ¢—B>=w+m=mh@m
(T,N—00)seq (N ; ‘
from (2) and (3), which is the optimal forecast. The MSE of the feasible
bias-corrected average forecast is:

1 X 2

: h n 2

E [T plim (N E it~ B) — yt] =0y
( =1

7N4’00)seq

showing that we are back to the result in Proposition 3. m
Proof of Proposition 7:. Under Hy: B = 0, we have shown in Proposi-
tion 5 that B is a (T, N — 00)seq consistent estimator for B. To compute the
consistent estimator of the asymptotic variance of B we follow Conley(1999),
who matches spatial dependence to a metric of economic distance. Denote
by MSE; () and MSE; (-) the MSE in forecasting of forecasts i and j re-
spectively. For any two generic forecasts ¢ and j, we use MSE; (-) —MSE; ()
as a measure of distance between these two forecasts. For N forecasts, we
can choose one of them to be the benchmark, say, the first one, comput-
ing MSE; (1) —MSE; () for ¢ = 2,3,--- ,N. With this measure of spatial
dependence at hand, we can construct a two-dimensional estimator of the
asymptotic variance of B and B following Conley (1999, Sections 3 and 4).
We label V and V the estimates of the asymptotic variances of B and of B ,
respectively.

Once we have estimated the asymptotic covariance of B, we can test the
null hypothesis Hy : B = 0, by using the following t-ratio statistic:

t=

%\ &
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By the central limit theorem, ¢ Ni> N (0,1) under Hp : B = 0. Now

—00

consider ¢ = \%, where V is computed using k= (El,%, ...,/k;N)’ in place
v

of k = (ki1, ka2, ....,kx)". We have proved that 7{:\1 Pokias T — 00, then the
test statistics ¢ and ¢ are asymptotically equivalent and therefore

d

—  N(0,1).

(T,N—00)seq

t=

%‘ &)
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A.2 Tables and Figures

Table 1: Monte-Carlo Results
R=50a=0;b=0.5

Bias Distribution

MSE Distribution

BCAF ‘ Average ‘ Weighted

BCAF ‘ Average | Weighted

N =10
skewness -0.009 | 0.003 0.004 0.404 | 0.438 0.632
kurtosis 3.043 | 3.037 3.038 3.221 | 3.298 3.823
mean 0.000 | 0.391 -0.001 1.561 1.697 1.916
7-th= 0.01 quantile | -0.590 | -0.091 -0.643 0.911 | 0.989 1.080
7-th= 0.25 quantile | -0.169 | 0.252 -0.186 1.337 | 1.448 1.608
7-th= 0.50 quantile | -0.001 | 0.391 -0.001 1.540 | 1.672 1.872
7-th= 0.75 quantile | 0.167 | 0.530 0.184 1.763 | 1.918 2.179
7-th= 0.99 quantile | 0.578 | 0.879 0.641 2.394 | 2.642 3.138
N =20
skewness 0.010 | -0.013 0.011 0.442 0.444 0.961
kurtosis 3.115 | 3.084 3.138 3.321 | 3.321 5.011
mean 0.000 | 0.440 -0.002 1.286 | 1.466 2.128
7-th= 0.01 quantile | -0.532 | -0.001 -0.690 0.754 | 0.853 1.117
7-th= 0.25 quantile | -0.153 | 0.316 -0.195 1.098 | 1.247 1.723
7-th= 0.50 quantile | -0.001 | 0.440 -0.004 1.266 | 1.444 2.053
7-th= 0.75 quantile | 0.151 | 0.565 0.192 1.452 | 1.659 2.448
7-th=0.99 quantile | 0.535 | 0.876 0.687 1.987 | 2.275 3.851
N =40
skewness -0.015 | -0.006 -0.016 0.438 | 0.448 2.852
kurtosis 3.147 | 3.090 3.600 3.324 | 3.338 22.203
mean 0.000 | 0.465 0.000 1.147 | 1.351 6.094
7-th= 0.01 quantile | -0.515 | 0.050 -1.209 0.673 | 0.786 2.165
7-th= 0.25 quantile | -0.145 | 0.346 -0.315 0.980 1.150 4.021
7-th= 0.50 quantile | 0.000 | 0.465 0.002 1.130 | 1.331 5.337
7-th= 0.75 quantile | 0.141 | 0.583 0.312 1.295 | 1.529 7.243
7-th=0.99 quantile | 0.509 | 0.876 1.209 1.771 | 2.100 17.669
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Table 2: Monte-Carlo Results

R =50,a=-0.5b=0.5

Bias Distribution

MSE Distribution

BCAF ‘ Average | Weighted | BCAF ‘ Average | Weighted
N =10
skewness -0.009 | 0.005 0.004 0.404 | 0.395 0.632
kurtosis 3.043 | 3.016 3.038 3.221 | 3.228 3.823
mean 0.000 | 0.000 -0.001 1.561 | 1.547 1.916
7-th= 0.01 quantile | -0.590 | -0.511 -0.643 0.911 | 0.905 1.080
7-th= 0.25 quantile | -0.169 | -0.149 -0.186 1.337 | 1.326 1.608
7-th= 0.50 quantile | -0.001 | 0.000 -0.001 1.540 | 1.526 1.872
7-th= 0.75 quantile | 0.167 | 0.147 0.184 1.763 | 1.745 2.179
7-th= 0.99 quantile | 0.578 | 0.516 0.641 2.394 | 2.369 3.138
N =20
skewness 0.010 | -0.015 0.011 0.442 | 0.414 0.961
kurtosis 3.115 | 3.071 3.138 3.321 | 3.283 5.011
mean 0.000 0.000 -0.002 1.286 1.272 2.128
7-th= 0.01 quantile | -0.532 | -0.462 -0.690 0.754 | 0.746 1.117
7-th= 0.25 quantile | -0.153 | -0.130 -0.195 1.098 | 1.089 1.723
7-th= 0.50 quantile | -0.001 | 0.000 -0.004 1.266 | 1.254 2.053
7-th= 0.75 quantile | 0.151 0.130 0.192 1.452 1.435 2.448
7-th= 0.99 quantile | 0.535 | 0.456 0.687 1.987 | 1.951 3.851
N =40
skewness -0.015 | -0.005 -0.016 0.438 | 0.414 2.852
kurtosis 3.147 | 3.090 3.600 3.324 | 3.266 22.203
mean -0.002 | 0.000 0.000 1.147 | 1.133 6.094
7-th=0.01 quantile | -0.515 | -0.426 -1.209 0.673 | 0.667 2.165
7-th= 0.25 quantile | -0.145 | -0.123 -0.315 0.980 | 0.971 4.021
7-th= 0.50 quantile | -0.002 | 0.000 0.002 1.130 | 1.116 5.337
7-th= 0.75 quantile | 0.141 0.121 0.312 1.295 1.278 7.243
7-th=0.99 quantile | 0.509 | 0.424 1.209 1.771 1.733 17.669
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Table 3: Monte-Carlo Results
N =10, R =500,1,000, a =0;b=0.5

Bias Distribution

MSE Distribution

BCAF ‘ Average ‘ Weighted

BCAF ‘ Average | Weighted

N =10, R =500
skewness 0.001 -0.015 -0.002 0.408 0.452 0.408
kurtosis 3.058 | 3.065 3.066 3.308 | 3.390 3.314
mean 0.000 | 0.391 0.000 1.532 1.697 1.559
7-th= 0.01 quantile | -0.434 | -0.091 -0.437 0.893 | 0.982 0.913
7-th= 0.25 quantile | -0.124 | 0.254 -0.126 1.312 | 1.448 1.334
7-th= 0.50 quantile | 0.000 | 0.391 0.000 1.512 1.672 1.539
7-th= 0.75 quantile | 0.123 | 0.529 0.124 1.729 1.918 1.760
7-th= 0.99 quantile | 0.433 | 0.870 0.436 2.359 | 2.645 2.394

Bias Distribution

MSE Distribution

BCAF | Average | Weighted | BCAF | Average | Weighted
N =10, R =1,000
skewness 0.009 0.001 0.011 0.414 0.453 0.413
kurtosis 3.064 | 3.051 3.061 3.300 | 3.374 3.295
mean 0.000 | 0.392 0.000 1.535 | 1.695 1.541
7-th= 0.01 quantile | -0.424 | -0.088 -0.424 0.902 | 0.990 0.909
7-th= 0.25 quantile | -0.122 | 0.253 -0.122 1.310 1.447 1.321
7-th= 0.50 quantile | 0.000 | 0.392 0.000 1.507 | 1.670 1.520
7-th= 0.75 quantile | 0.122 | 0.531 0.122 1.724 | 1.916 1.739
7-th= 0.99 quantile | 0.428 | 0.876 0.430 2.343 | 2.635 2.360
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Table 4: Monte-Carlo Results
N =40, R =2,000,4,000, a =0;b=0.5

Bias Distribution

MSE Distribution

BCAF ‘ Average ‘ Weighted

BCAF ‘ Average | Weighted

N =40, R =2,000
skewness -0.024 | 0.006 -0.022 0.407 | 0.452 0.408
kurtosis 3.151 | 3.139 3.143 3.252 | 3.330 3.252
mean 0.000 | 0.466 0.000 1.127 | 1.355 1.149
7-th= 0.01 quantile | -0.370 | 0.049 -0.374 0.668 | 0.786 0.680
7-th= 0.25 quantile | -0.103 | 0.348 -0.103 0.965 | 1.153 0.983
7-th= 0.50 quantile | 0.000 | 0.464 0.000 1.121 1.334 1.133
7-th= 0.75 quantile | 0.103 | 0.582 0.105 1.271 1.533 1.296
7-th= 0.99 quantile | 0.363 | 0.879 0.366 1.728 | 2.109 1.760

Bias Distribution

MSE Distribution

BCAF | Average | Weighted | BCAF | Average | Weighted
N =40, R = 4,000
skewness 0.003 | 0.006 0.002 0.409 | 0.458 0.415
kurtosis 3.132 | 3.106 3.125 3.255 | 3.325 3.256
mean 0.000 | 0.465 0.000 1.127 | 1.355 1.137
7-th= 0.01 quantile | -0.361 | 0.053 -0.364 0.666 | 0.790 0.673
7-th= 0.25 quantile | -0.103 | 0.348 -0.103 0.966 | 1.153 0.975
7-th= 0.50 quantile | 0.000 | 0.464 0.000 1.111 | 1.333 1.122
7-th= 0.75 quantile | 0.102 | 0.581 0.103 1.271 | 1.533 1.283
7-th= 0.99 quantile | 0.363 | 0.878 0.364 1.725 | 2.112 1.739
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Table 5: The Brazilian Central Bank Focus Survey
Computing Average Bias and Testing the No-Bias Hypothesis

Horizon (h) | Avg. Bias B Ho: B =0
p-value
6 0.06187 0.063

Notes: (1) N =18, R =26, P =15, and h = 6 months ahead.

Table 6: The Brazilian Central Bank Focus Survey
Comparing the MSE of the Simple Average Forecast with that of
the Bias-Corrected Average Forecast and the Weighted Average

Forecast
Forecast Horizon | (a) MSE | (b) MSE (c) MSE (b)/(a) | (c)/(a)
(h) BCAF | Average | Weighted Avg.
Forecast Forecast
6 0.0683 0.0808 0.2665 1.182 | 3.902

Notes: (1) N =18, R =23 and P = 18, and h = 6 months ahead.
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