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Abstract

We unify and generalize the existence results in Werner (1987), Dana,
Le Van and Magnien (1999), Allouch, Le Van and Page (2006) and Allouch
and Le Van (2008). We also show that, in terms of weakening the set of
assumptions, we cannot go too far.
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1 Introduction

When agents trade securities, due to the possibility of short sales, the set of port-
folios is not bounded from below. This implies that the set of feasible portfolios
may not be bounded and the classical existence results of Arrow and Debreu
(1954) and McKenzie (1959) cannot be applied. Existence results for mod-
els with unbounded action sets have been provided by Hart (1974), Hammond
(1983) and Page (1987) for security markets. In these models the utility V i(q, θ)
of a portfolio θ is defined by the expected utility of its return Eµi(q)(r · θ) with
respect to price-dependent beliefs µi(q). In a different context where the util-
ity function does not depend on prices, existence results have been provided by
Werner (1987), Nielsen (1989), Page and Wooders (1996), Dana et al. (1999),
Page, Wooders and Monteiro (2000), Allouch, Le Van and Page (2002) and
Le Van, Page and Wooders (2001). To prove existence, several conditions have
been proposed to limit arbitrage opportunities. In all cases the role played by
those no-arbitrage conditions was to bound the economy endogenously. Dana
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et al. (1999) proved that all these conditions imply the compactness of the indi-
vidually rational utility set,1 which in turn is a sufficient condition for existence.2

In models with bounded from below consumption sets, a crucial assumption
imposed (e.g. Arrow and Debreu (1954) and McKenzie (1959)) is that agents’
preferences satisfy a non-satiation property (e.g. monotonicity). Actually, what
is needed is to assume that non-satiation holds only over individually feasible ac-
tions. In security markets models (like CAPM), satiation of preferences is rather
a rule than an exception (see, among others, Werner (1987), Nielsen (1989),
Allingham (1991), Dana et al. (1999) and Won, Hahn and Yannelis (2008)).
In his seminal paper, Werner (1987) allows for satiation but he imposes that
all arbitrage opportunities are uniform among agents and that each agent has
a useful portfolio. His existence result was extended by Allouch et al. (2006)
where a weaker non-satiation condition (ANS) is imposed: useless net trades are
uniform among agents and each agent who is satiated has a non-empty set of useful
net trades. Recently, a weaker non-satiation condition (WNS) was proposed by
Allouch and Le Van (2008): satiation is possible provided that each agent has sati-
ation points available to him outside the set of individually feasible consumptions.
They prove that this condition is sufficient for existence of a quasi-equilibrium
provided that the set of individually rational and feasible allocations is compact.

The main objective of this paper is to investigate if it is possible to unify the
aforementioned existence results. There are two kinds of assumptions used to
prove existence: the first one deals with satiated preferences while the second
one relies on a compactness condition. Allouch et al. (2006) and Allouch and
Le Van (2008) impose the weakest condition on satiation3 while Dana et al.
(1999) impose the weakest compactness condition. Therefore, one may conjec-
ture that existence is guaranteed under the two weakest conditions:

(a) the compactness condition (CU), i.e., the individually rational utility set is
compact;

(b) the weak non-satiation condition (WNS), i.e., satiation is possible provided
that each agent has satiation points available to him outside the set of
individually feasible consumptions.

We prove that such a conjecture is not correct provided that they are more
than two agents in the economy. We subsequently introduce a new condition,
called strong compactness of the individually rational utility set (SCU) and we
prove that it is sufficient for existence of a quasi-equilibrium when agents’ pref-
erences satisfy the weak non-satiation condition (WNS). We also show that, in

1That we call compactness condition (CU).
2Allouch (2002) introduced a weaker condition than the compactness of the individually ra-

tional utility set. In particular, an existence result was proved without assuming that preference
relations are complete.

3They allow for satiation while Dana et al. (1999) do not.
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general, condition (SCU) is stronger than the compactness of the individually ra-
tional utility set (CU)4 but weaker than the two compactness conditions imposed
in Allouch et al. (2006) and Allouch and Le Van (2008).

2 The Model

Consider an economy (Xi, ui, ei)i∈I where I is a finite set, for each i ∈ I, the
set Xi is a subset of RJ with J a finite set, ei is a vector in RJ and ui is a real-
valued function defined on Xi. As in Werner (1987), each j ∈ J represents a
commodity which can be a consumption good as well as a financial asset. Each
i ∈ I represents an agent, Xi his action set, ei his initial endowment and ui his
utility function. Once for all the sets (Xi)i∈I and the vectors (ei)i∈I are fixed.
The economy (Xi, ui, ei)i∈I is then denoted by E(u).

We denote by F the set of feasible allocations, i.e., those vectors x = (xi)i∈I
in X :=

∏
i∈I X

i satisfying ∑
i∈I

xi =
∑
i∈I

ei

and by Ir(u) the set of individually rational allocations, i.e., those vectors x =
(xi)i∈I in X satisfying

∀i ∈ I, ui(xi) > ui(ei).

We shall denote by A(u) the set F∩ Ir(u) and by Ai(u) the projection of A(u)
onto Xi. An action xi ∈ Ai(u) is said individually rational and feasible. We
denote by Ai

c(u) the set Xi \ Ai(u) the set of actions xi ∈ Xi that are not
individually rational and feasible. We let U(u) denote the utility set defined by

U(u) = {λ ∈ RI : ∃x ∈ F∩ Ir(u), ∀i ∈ I, ui(ei) 6 λi 6 ui(xi)}.

From now on we assume that the economy (Xi, ui, ei)i∈I satisfies the follow-
ing list of standard conditions:

(A.1) the set Xi is closed convex containing ei;

(A.2) the function ui is upper semi-continuous and strictly quasi-concave.5

3 Existence under a non-satiation condition (NS)

If xi ∈ Xi is such that the set P i(xi) := {yi ∈ Xi : ui(yi) > ui(xi)} is empty,
then xi is called a satiation point of ui. We shall denote by Si(ui) the set of

4Except if there are at most two agents in the economy. In that case, both conditions (SCU)
and (CU) coincide.

5The function ui is upper semi-continuous if for each c ∈ R, the upper level set {x ∈
Xi : ui(x) > c} is closed in Xi. The function ui is strictly quasi-concave if for every x and
y in Xi, if ui(y) > ui(x), then ui(λy + (1− λ)x) > ui(x) for every λ ∈ (0, 1].
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satiation points of ui on Xi, i.e.

Si(ui) := argmax{ui(xi) : xi ∈ Xi}.

When there is no satiation point in Xi, the set Si(ui) is empty. We recall now
the definition of a quasi-equilibrium.

Definition 3.1. Given an economy E(u), a couple (p,x) where 0 6= p ∈ RJ and
x = (xi)i∈I is a feasible allocation in F, is a quasi-equilibrium of E(u) if for
each i

(a) the action xi satisfies the budget restriction p · xi 6 p · ei;

(b) the action xi is weakly optimal in the budget set in the sense that for each
yi ∈ P i(xi), we have p · yi > p · ei.

If the individually rational utility set U(u) is compact then a sufficient condi-
tion for existence of a quasi-equilibrium is the following non-satiation condition:

(NS) the set Si(ui) ∩Ai(u) is empty for each i.

Theorem 3.1 (Dana, Le Van and Magnien). If the two following conditions are
satisfied

(a.1) the individually rational utility set U(u) is compact,

(b.2) the non-satiation condition (NS) is satisfied,

then there exists a quasi-equilibrium.

The proof of Theorem 3.1 follows from standard arguments: see e.g. Dana
et al. (1999). Observe that if the set A(u) = F∩ Ir(u) of feasible and individually
rational allocations is compact then the individually rational utility set U(u) is
trivially compact. However, the converse is not in general true.

4 A weak non-satiation condition (WNS)

Recently, Allouch and Le Van (2008) introduced a weaker non-satiation condi-
tion:

(WNS) for every individually rational and feasible action xi ∈ Ai(u), there ex-
ists a action yi ∈ Ai

c(u) which is not individually rational and feasible but
satisfies ui(yi) > ui(xi).

Condition (WNS) is obviously weaker than the non-satiation condition (NS).
The weak non-satiation condition (WNS) is satisfied if and only if,

∀i ∈ I, Si(ui) ∩Ai(u) 6= ∅ =⇒ Si(ui) ∩Ai
c(u) 6= ∅.
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In other words, under condition (WNS), each agent i may have satiation points
that are individually rational and feasible, but the set of satiation points must be
large enough such that there exists satiation actions which are not individually
rational and feasible.

Allouch and Le Van (2008) proved6 that if the set A(u) = F∩ Ir(u) of feasible
and individually rational allocations is compact, then the weak non-satiation
condition (WNS) is sufficient for existence.

Theorem 4.1 (Allouch and Le Van). If the two following conditions are satisfied

(a.3) the set A(u) = F∩ Ir(u) of feasible and individually rational allocations
is compact,

(b.1) the the weak non-satiation condition (WNS) is satisfied,

then there exists a quasi-equilibrium.

This result is not comparable with the one by Dana et al. (1999). Indeed,
Allouch and Le Van (2008) consider a weaker non-satiation condition but a
stronger compactness assumption. A natural question is whether an existence
result generalizing both results of Dana et al. (1999) and Allouch and Le Van
(2008) is possible. One may conjecture that the weakest conditions of both
results are sufficient for existence.

Conjecture 4.1. If the two following conditions are satisfied

(a.1) the individually rational utility set U(u) is compact,

(b.1) the weak non-satiation condition (WNS) is satisfied,

then there exists a quasi-equilibrium.

Our first result of the paper is to prove that Conjecture 4.1 is not correct. We
provide a counterexample in the following section. In Section 6 we prove that
Conjecture 4.1 is correct if there is at most two agents in the economy.

5 Conjecture 4.1 is false

In this section we consider an economy with three agents and two commodi-
ties such that the individually rational utility set is compact and the weak non-
satiation condition is satisfied, but for which there is no quasi-equilibrium.

We pose I = {i1, i2, i3} and J = {j1, j2}. The action set of agent i1 is given
by

Xi1 = [−1,∞)× [−1/2,∞);

6We propose in Appendix A an alternative proof based on a very general existence result by
Florenzano (2003).

5



his utility function is given by

ui1(x) =


xj2 + xj1
xj2 + 1

if −1 6 xj1 6 1;

xj1 if 1 6 xj1 ,

and he has no initial endowment, i.e., ei1 = 0. The action set of agent i2 is given
by

Xi2 = [−1, 2]× R;

his utility function is given by

ui2(x) = xj1 ,

and he has no initial endowment, i.e., ei2 = 0. The action set of agent i3 is given
by

Xi3 = [−3,∞)× {0};

his utility function is given by
ui3(x) = 0,

and he has no initial endowment, i.e., ei3 = 0.

Proposition 5.1. The economy satisfies Assumptions (A.1) and (A.2). Moreover,
the individually rational utility set U(u) is compact and the weak non-satiation
condition (WNS) is satisfied.

Proof. It is immediate that Assumptions (A.1) and (A.2) are satisfied. We pro-
pose to prove that the utility set U(u) is bounded and closed. Let (λi1 , λi2 , λi3)
in U(u), then there exists x ∈ F such that

∀i ∈ I, 0 6 λi 6 ui(xi).

This implies that λi2 ∈ [0, 2] and λi3 = 0. Moreover, since xi1 = −xi2 − xi3 , it
follows that xi1 6 4 and λi1 6 4. As a consequence

U(u) ⊂ [0, 4]× [0, 2]× {0}

is a bounded set. In order to prove that U(u) is closed, consider a sequence λn
in U(u) converging to some λ.

If λi1 6 1 then
∀i ∈ I, 0 6 λi 6 ui(yi)

where7

yi1 = 1j1 , yi2 = 21j1 and yi3 = −31j1 .

Since y belongs to A(u) it follows that λ belongs to U(u).
7We denote by 1j1 the vector z ∈ Rj such that zj1 = 1 and zj2 = 0.
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Assume now that λi1 > 1. Since λn belongs to U(u), there exists a sequence
xn in A(u) such that

∀i ∈ I, 0 6 λin 6 ui(xin).

For each n, we have

xi1n + xi2n + xi3n = 0 and (xi1j1,n, x
i2
j1,n

, xi3j3,n) > (−1,−1,−3).

Passing to a subsequence if necessary, we can suppose that the sequence

(xi1j1,n, x
i2
j1,n

, xi3j3,n)n

converges to a vector (xi1j1 , x
i2
j1
, xi3j1) in R3 satisfying

xi1j1 + xi2j1 + xi3j1 = 0.

Since λi1 > 1, for n large enough we have xi1j1,n > 1, implying that ui1(xi1n ) =
xi1j1,n. It follows that for n large enough

λi1n 6 xi1j1,n, λi2n 6 xi2j1,n and λi3n = 0.

Passing to the limit, we get

λi1 6 xi1j1 , λi2 6 xi2j1 and λi3 = 0.

This implies that
∀i ∈ I, 0 6 λi 6 ui(zi)

where
zi1 = xi1j11j1 , zi2 = xi2j11j1 and zi3 = xi3j11j1 .

Since z belongs to A(u) it follows that λ belongs to U(u).
Agent i1 satisfies the non-satiation Assumption (NS). Agents i2 and i3 satisfy

Assumption (WNS). Indeed, if x belongs to F then

(xi1j1 , x
i2
j1
, xi3j1) ∈ [−1, 4]× [−1, 4]× [−3, 2].

implying that the action 31j1 belongs to Si3(ui3)∩Ai3
c (u). Now since x ∈X, we

have
xi1 > −1 and xi3 = 0

implying by feasibility that xi2 6 1. It follows that the vector 21j1 + 21j2 belongs
to Si2(ui2) ∩Ai2

c (u).

Remark 5.1. Consider the sequence (xn)n of feasible allocations defined by

xi1n = −1j1 + n1j2 , xi2n = 1j1 − n1j2 and xi3n = 0.
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For each n, we let λin := ui(xin). The sequence (λn)n belongs to the utility set
and

lim
n→∞

(λi1n , λ
i2
n , λ

i3
n ) = (1, 1, 0).

The limit λ := (1, 1, 0) belongs to the utility set since ui(xi) = λi with

xi1 = 1j1 , xi2 = 1j1 and xi3 = −21j1 .

The role of third agent to ensure the compactness of the utility set is crucial in
this example. Indeed, if we consider the same economy but with only agents i1
and i2, then for each n the pair (λi1n , λ

i2
n ) belongs to the utility set but the limit

(1, 1) does not.

Proposition 5.2. There is no quasi-equilibrium.

Proof. Assume that (p,x) is a quasi-equilibrium. For each i, we have p · xi 6
p · ei = 0. Since the allocation x is feasible, it follows that p · xi = 0, in other
words the vector xi belongs to the budget line L(p) defined by

L(p) := {x ∈ RJ : p · x = pj1xj1 + pj2xj2 = 0}.

Case 1: Assume xi2j1 < 2. For every y ∈ Xi2 with yj1 > 0, we have xi2 +
αy ∈ P i2(xi2) for α > 0 small enough. This implies that p · y > 0. Then
necessarily pj2 = 0 and pj1 > 0. This implies that L(p) = {x ∈ RJ : xj1 =
0}. Therefore xi1j1 = 0. But, for α > 0 small enough, we have xi1 + 1j2 −
α1j1 ∈ P i1(xi1) implying by weak optimality that pj1(−α) + pj2 > 0. This
contradicts the fact that pj2 = 0 and pj1 > 0.

Case 2.1: Assume xi2j1 = 2 and xi2j2 6= 0. Since xi2 belongs to the budget line
L(p) it follows that pj1 6= 0. Then the only possibility for xi3 to belong to
L(p) ∩ Xi3 is that xi3 = 0. It then follows that xi1j1 = −2 which yields a
contradiction with the fact that xi1 ∈ Xi1 .

Case 2.2: Assume xi2j1 = 2 and xi2j2 = 0. Since xi2 belongs to the budget line
L(p) it follows that pj1 = 0. As a consequence we must have xi1j2 = 0. But,
for α > 0 small enough, we have xi1 + 1j1 − α1j2 ∈ P i1(xi1) implying by
weak optimality that pj1 + pj2(−α) > 0. Since pj1 = 0 this implies pj2 < 0.
Similarly, for α > 0 small enough, we have xi1 − 1j1 + α1j2 ∈ P i1(xi1)
implying by weak optimality that −pj1 + pj2(α) > 0. This contradicts the
fact that pj1 = 0 and pj2 < 0.
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6 General existence result under Assumption (WNS)

Keeping the generality of the non-satiation condition introduced by Allouch and
Le Van (2008), we propose to investigate under which additional conditions
Conjecture 4.1 is correct. Actually, we introduce a condition called strong com-
pactness of the utility set (SCU) under which Conjecture 4.1 is correct.

Definition 6.1. The individually rational utility set U(u) is strongly compact if

(SCU) for every sequence (xn)n in F∩ Ir(u) of feasible and individually rational
allocations there exist a feasible allocation y and a subsequence (xnk

)k
satisfying

∀i ∈ I, ui(yi) > lim
k→∞

ui(xink
) (6.1)

together with8

∀i ∈ I, lim
k→∞

1Si(ui)(xink
)

1 + ‖xink
‖2

(yi − xink
) = 0. (6.2)

Remark 6.1. It is straightforward to check that the strong compactness of the in-
dividually rational utility implies its compactness. Indeed, assume that U(u)
is strongly compact and let (λn)n be sequence in U(u). There exists a se-
quence (xn)n in F∩ Ir(u) of feasible and individually rational allocations sat-
isfying ui(xin) > λin > ui(ei). From (SCU), there exists a feasible allocation y
and a subsequence (xnk

)k satisfying

∀i ∈ I, ui(yi) > lim
k→∞

ui(xink
). (6.3)

This implies that for each i the subsequence (λink
)k is bounded. Passing to an-

other subsequence if necessary, we can assume without any loss of generality
that the sequence (λink

)k converges to some λi. From (6.3) it follows that λ
belongs to U(u).

Remark 6.2. Observe that if (xn)n in F∩ Ir(u) then for each i we have

1Si(ui)(x
i
n) = 1Si(ui)∩Ai(u)(x

i
n).

This implies that under the usual non-satiation Assumption (NS), the individu-
ally rational utility set U(u) is strongly compact if and only if it is compact.

Remark 6.3. Passing to subsequences, it is possible to prove that the strong com-
pactness of individually rational utility set U(u) is equivalent to the following
statement: For every sequence (xn)n in F∩ Ir(u) of feasible and individually

8If A is a subset of RJ then 1A is the function from RJ to {0, 1} defined by 1A(x) = 1 if x ∈ A
and 1A(x) = 0 elsewhere.
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rational allocations there exist a feasible allocation y and a subsequence (xnk
)k

satisfying
∀i ∈ I, ui(yi) > lim

k→∞
ui(xink

)

and such that I = Is ∪ Ic ∪ Iu where

Is = {i ∈ I : xink
6∈ Si(ui), ∀k ∈ N}, Ic := {i ∈ I \ Is : lim

k→∞
xink

= yi}

and
Iu = {i ∈ I \ Is : lim

k→∞
‖xink

‖ =∞}.

The main existence result of this paper is the following generalization of
Theorem 3 in Dana et al. (1999) (see Theorem 3.1) and Theorem 2 in Allouch
and Le Van (2008).

Consider a strongly standard economy E(u) satisfying Assumption (WNS),
then there exists a quasi-equilibrium.

Theorem 6.1. If the two following conditions are satisfied

(a.2) the individually rational utility set U(u) is strongly compact,

(b.1) the weak non-satiation condition (WNS) is satisfied,

then there exists a quasi-equilibrium.

Proof of Theorem 6.1. Let E(u) be an economy satisfying the weak non-satiation
condition (WNS) and such that the individually rational utility set U(u) is strongly
compact.

Lemma 6.1. For each agent i, the set

argmax{ui(x) : x ∈ Ai(u)}

is non-empty.

Proof of Lemma 6.1. There exists a sequence (xin)n in Ai(u) such that

lim
n→∞

ui(xin) = supui(Ai(u)).

Since xin belongs to Ai(u) there exists (xkn)k 6=i ∈
∏
k 6=iX

k such that (xkn)k∈I be-
longs to A(u). For each n the family (uk(xkn))k∈I belongs to U(u). It follows from
Assumption (A.3) that there exists ξ ∈ A(u) such that (passing to a subsequence
if necessary)

∀k ∈ I, uk(ξk) > lim
n→∞

uk(xkn).

It follows that ξi ∈ Ai(u) and ui(ξi) > supui(Ai(u)), in other words

ξi ∈ argmax{ui(x) : x ∈ Ai(u)}.
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Let ξi be an element of argmax{ui(x) : x ∈ Ai(u)}. Applying Assump-
tion (WNS), there exists ζi ∈ Ai

c(u) such that ui(ζi) > ui(ξi).
For each i, we let vi be the function defined on Xi by

∀x ∈ Xi, vi(x) = ui(x) + 1Si(ui)(x) exp{−d(x, ζi)} (6.4)

where 1Si(ui) is the indicator function of the set Si(ui). Observe that if the
economy E(u) satisfies the non-satiation assumption (NS) then, for each agent i,
we have vi = ui. We claim that the economy E(v) satisfies all the conditions
required to apply Theorem 3.1.

Claim 6.1. The economy E(v) is standard.

Proof of Claim 6.1. We only have to prove that Assumptions (A.2) and (A.3) are
satisfied. We denote by M i the extended real number defined by

M i = sup{ui(x) : x ∈ Xi}.

Let c ∈ R ∪ {∞} then

{x ∈ Xi : vi(x) > c} =


Si(ui) ∩B(ζi,− ln(c−M i)) if c > M i

{x ∈ Xi : ui(x) > c} if c < M i

where B(ζi, r) = {x ∈ Rj : d(ζi, x) 6 r} if r > 0 and B(ζi, r) = ∅ if r < 0.
It follows that the set {x ∈ Xi : vi(x) > c} is closed convex, implying that the
economy E(v) satisfies Assumption (A.2).

We prove now that the utility set U(v) is compact. Let (λn)n be a sequence
in U(v), there exists a sequence (xn)n of allocations in F∩ Ir(v) such that for
each n

∀i ∈ I, vi(ei) 6 λin 6 vi(xin). (6.5)

Since vi(ei) > ui(ei) the allocation xn also belongs to F∩ Ir(u). The individually
rational utility set U(u) is strongly compact, therefore, passing to a subsequence
if necessary, we may assume that there exists an allocation y in F∩ Ir(u) satis-
fying

∀i ∈ I, ui(yi) > lim
n
ui(xin). (6.6)

and such that I = Is ∪ Ic ∪ Iu where

Is = {i ∈ I : xin 6∈ Si(ui), ∀n ∈ N}, Ic := {i ∈ I \ Is : lim
n→∞

xin = yi}

and
Iu = {i ∈ I \ Is : lim

n→∞
‖xin‖ =∞}.

Claim 6.2. For each i we have

lim
n→∞

vi(xin) 6 vi(yi).
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Proof of Claim 6.2. Let i ∈ Is, by construction of vi we have vi(xin) = ui(xin) for
all n. It follows that

lim
n→∞

vi(xin) = lim
n→∞

ui(xin) 6 ui(yi).

The desired result follows from the fact that ui(yi) 6 vi(yi).
For each i ∈ Ic the result follows from convergence of sequence (xin)n to yi

and the upper semicontinuity of vi.
Now let i ∈ Iu, since

lim
n→∞

d(xin, ζ
i) = +∞

we have
lim
n→∞

vi(xin) = lim
n→∞

ui(xin).

The desired result follows from

lim
n→∞

ui(xin) 6 ui(yi) 6 vi(yi).

Combining (6.5) and Claim 6.2 we prove that the set U(v) is compact.

In order to apply Theorem 3.1, it is sufficient to prove that the non-satiation
condition (NS) is satisfied. This follows from the construction of the function vi.
Indeed, let xi be a vector in Ai(v). If there exists yi ∈ Xi satisfying ui(yi) >
ui(xi) then xi does not belong to Si(ui) and

vi(yi) > ui(yi) > ui(xi) = vi(xi)

implying that xi does not belong to Si(vi). Now assume that xi belongs to
Si(ui). There exists (xk)k 6=i such that (xk)k∈I belongs to A(v) = F∩ Ir(v). Since
for each vi(ei) > ui(ei), we have that (xk)k∈I also belongs to A(u) = F∩ Ir(u)
and therefore xi belongs to Ai(u). By construction the vector ζi does not belong
to Ai(u), implying that

vi(ζi) = ui(ζi) + 1Si(ui)(ζ
i) exp{0}

> ui(xi) + 1
> ui(xi) + exp{−d(xi, ζi)} = vi(xi). (6.7)

Therefore the action xi does not belong to Si(vi). We have thus proved that

Ai(v) ∩ Si(vi) = ∅

i.e., the economy E(v) satisfies Assumption (NS).
Applying Theorem 3.1 to the economy E(v) there exists a quasi-equilibrium

(p,x) of E(v). Therefore the allocation x is feasible and for each i
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(a) the action xi satisfies the budget restriction p · xi 6 p · ei;

(b) the action xi is weakly optimal for the utility function vi in the budget set,
i.e., for each yi ∈ Xi,

vi(yi) > vi(xi) =⇒ p · yi > p · ei. (6.8)

We claim that (p,x) is a quasi-equilibrium of the economy E(u). To see this it
is sufficient to prove that xi is weakly optimal for the utility function ui in the
budget set. Let yi ∈ Xi, if ui(yi) > ui(xi) then xi does not belong to Si(ui) and
ui(xi) = vi(xi). Since vi(yi) > ui(yi), we obtain that vi(yi) > vi(xi), implying
from (6.8) that p · yi > p · ei.

6.1 Economies with two agents

If there are two agents then Conjecture 4.1 is valid.

Proposition 6.1. If there are at most two agents, then the strong compactness
of the individually rational utility set follows from its compactness.

Proof of Proposition 6.1. Let E(u) be an economy with two agents, 9 i.e., I =
{i1, i2}. Assume that the individually rational utility set is compact. We have to
prove that Assumption (SCU) is satisfied. Let (xn)n be a sequence in F∩ Ir(u).
Since the individually rational utility set is compact, there exists a subsequence
(xnk

)k satisfying
∀i ∈ I, ui(yi) > lim

k→∞
ui(xink

).

If the sequence (xi1nk
)k is bounded then, by feasibility, the sequence (xi2nk

)k is also
bounded. Passing to a subsequence if necessary, there exists x such that

∀i ∈ I, lim
k→∞

(xi − xink
) = 0.

Since utility functions are upper semi-continuous, passing to a subsequence if
necessary we have

∀i ∈ I, lim
k→∞

ui(xink
) 6 ui(xi).

Assumption (SCU) follows from the fact that for each i the sequence (1+‖xink
‖)k

is bounded.
Assume now that the the sequence (xi1nk

)k is not bounded. By feasibility, it
follows that the sequence (xi2nk

)k is also unbounded. Passing to a subsequence if
necessary, we may assume that

∀i ∈ I, lim
k→∞

‖xink
‖ = +∞.

9We do not consider the trivial case of an economy with only one agent.
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But since

lim
k→∞

1
‖xink

‖2
‖yi − xink

‖ = lim
k→∞

‖xink
‖

‖xink
‖2

= lim
k→∞

1
‖xink

‖
= 0

Assumption (SCU) is satisfied.

As a direct consequence of Theorem 6.1 we obtain the following existence
result.

Corollary 6.1. Consider an economy with at most two agents. If

(a.1) the individually rational utility set U(u) is compact,

(b.1) the weak non-satiation condition (WNS) is satisfied,

then there exists a quasi-equilibrium.

6.2 Compactness of feasible and individually rational allocations

We propose to prove that our main existence result Theorem 6.1 generalizes
Theorem 2 in Allouch and Le Van (2008). If the set F∩ Ir(u) of feasible and indi-
vidually rational allocations is compact then every standard economy is strongly
standard.

Proposition 6.2. If the set F∩ Ir(u) of feasible and individually rational alloca-
tions is compact then the individually rational utility set U(u) is strongly com-
pact.

Proof of Proposition 6.2. Let E(u) be an economy such that the set F∩ Ir(u) is
compact. We have to prove that Assumption (SCU) is satisfied. Let (xn)n be a
sequence in F∩ Ir(u). By compactness, there exist a subsequence (xnk

)k and an
allocation x satisfying

∀i ∈ I, lim
k→∞

(xi − xink
) = 0

Since utility functions are upper semi-continuous, passing to a subsequence if
necessary we have

∀i ∈ I, lim
k→∞

ui(xink
) 6 ui(xi).

Assumption (SCU) follows from the fact that for each i the sequence (1+‖xink
‖)k

is bounded.

As a direct consequence of Theorem 6.1 we obtain the main existence result
in Allouch and Le Van (2008).

Corollary 6.2. If the two following conditions are satisfied
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(a.3) the set A(u) = F∩ Ir(u) of feasible and individually rational allocations
is compact,

(b.1) the the weak non-satiation condition (WNS) is satisfied,

then there exists a quasi-equilibrium.

6.3 Economies satisfying a no-arbitrage condition

In order to introduce a no-arbitrage condition, we recall some definitions. For
each action xi ∈ Xi, we denote by Asi(xi) the asymptotic (or recession) cone of
the set P̂ i(xi) = {yi ∈ Xi : ui(yi) > ui(xi)}, i.e.

Asi(xi) := {v ∈ RJ : ∀t > 0, ∀yi ∈ P̂ i(xi), yi + tv ∈ P̂ i(xi)}.

We denote by Li(xi) the lineality space defined by

Li(xi) := Asi(xi) ∩ −Asi(xi).

Let Span(Xi) the smallest linear subspace of RJ containing Xi. The lineality
space Li(xi) is the largest linear subspace of Span(Xi) contained in the Asi(xi).
We borrow from Allouch et al. (2006) the following concept of no-arbitrage
condition.

Definition 6.2. An economy satisfying the two following conditions

(a) for each agent i and for individually rational allocation xi ∈ P̂ i(ei) we have
Li(xi) = Li(ei);

(b) for every family (yi)i∈I with yi ∈ Asi(ei),∑
i∈I

yi = 0 =⇒ yi ∈ Li(ei), ∀i ∈ I

is called a no-arbitrage economy.

In Allouch et al. (2006) condition (a) is called weak uniformity and condi-
tion (b) is called weak no market arbitrage.

Proposition 6.3. For every no-arbitrage economy, the strong compactness of the
individually rational utility set follows from its compactness.

Proof of Proposition 6.3. To begin, let [Li(ei)]⊥ be the subspace of Span(Xi) or-
thogonal10 to L(ei). Every vector xi ∈ Xi can be uniquely decomposed on a sum
Ψi(xi) + Θi(xi) where Ψi(xi) ∈ [Li(ei)]⊥ and Θi(xi) ∈ Li(ei).

Consider now a no-arbitrage economy such that the individually rational util-
ity set is compact. Let (xn)n be a sequence of feasible and individually rational
allocations. Passing to a subsequence if necessary we can assume that I = Ic∪Iu
where

10For the usual scalar product in RJ .
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(a) for each i ∈ Ic, there exists xi ∈ Xi such that the sequence (xin)n converges
to xi,

(b) for each i ∈ Iu, the sequence (‖xin‖)n converges to +∞.

For each i ∈ Iu, we let zin := Ψi(xin).

Claim 6.3. For each i ∈ Iu, the sequence (zin)n is bounded.

Proof of Claim 6.3. Let αn = max{‖zin‖ : i ∈ Iu} and assume by way of contra-
diction that the sequence (αn)n is not bounded. Passing to a subsequence if
necessary, we can assume that limn→∞ αn = +∞ and there exists (ξi)i∈Iu 6= 0
such that

∀i ∈ Iu, lim
n→∞

1
αn
zin = ζi.

Since xn is feasible we have∑
i∈Ic

xin +
∑
i∈Iu

xin =
∑
i∈I

ei.

Dividing by αn and passing to the limit, we obtain∑
i∈Iu

ζi = 0.

Recall that zin = xin − Θi(xin) with Θi(xin) ∈ Li(ei). Since xin ∈ P̂ i(ei) it follows
that zin belongs to P̂ i(ei). Following Exercice 1.17 in Florenzano and Le Van
(2001), we obtain that ζi belongs to Asi(ei). The economy satisfies the weak no
market arbitrage condition. It follows that ζi ∈ Li(ei) for each i ∈ Iu. But ζi also
belongs to [Li(ei)]⊥, implying that ζi = 0 for each i ∈ Iu: contradiction.

Passing to a subsequence if necessary we can assume that for each i ∈ Iu,
there exists zi ∈ Xi such that the sequence (zin)n converges to zi. For each n we
have ∑

i∈Ic

xin +
∑
i∈Iu

zin −
∑
i∈I

ei ∈
∑
i∈Iu

Li(ei).

Therefore there exists (ηi)i∈Iu such that ηi ∈ Li(ei) and∑
i∈Ic

xi +
∑
i∈Iu

zi −
∑
i∈I

ei =
∑
i∈Iu

ηi.

For each i ∈ Iu we let yi := zi − ηi and for each i ∈ Ic we let yi = xi. Since
zin ∈ P̂ i(ei) for each n it follows that zi ∈ P̂ i(ei). Since ηi ∈ Li(ei) it follows
that yi ∈ P̂ i(ei). Therefore the allocation y = (yi)i∈I is feasible and individually
rational, i.e., y ∈ F∩ Ir(u).
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Since ui is upper semi-continuous, passing to a subsequence if necessary we
have

∀i ∈ Ic, ui(yi) > lim
n→∞

ui(xin)

and
∀i ∈ Iu, ui(zi) > lim

n→∞
ui(zin).

Recall that zin = xin − Θi(xin) with Θi(xin) ∈ Li(ei). The economy satisfies the
weak uniformity condition. This implies that Θi(xin) ∈ Li(xin) and zin ∈ P̂ i(xin).
Therefore

∀i ∈ Iu, ui(zi) > lim
n→∞

ui(zin) > lim
n→∞

ui(xin).

In order to prove that the economy is strongly standard it is sufficient to prove
that

∀i ∈ I, lim
n→∞

1
‖xin‖2

(yi − xin) = 0.

If i ∈ Ic then

lim
n→∞

1
‖xin‖2

(yi − xin) =
1
‖yi‖2

lim
n→∞

(yi − xin) = 0.

Observe that for each i there exists M i > 0 such that

∀n ∈ N,
1
‖xin‖

‖yi − xin‖ 6 M i.

Passing to a subsequence if necessary we may assume that the sequence ((yi −
xin)/‖xin‖)n converges. Now fix i ∈ Iu, we have

lim
n→∞

1
‖xin‖2

(yi − xin) = lim
n→∞

1
‖xin‖

lim
n→∞

1
‖xin‖

(yi − xin) = 0.

As a direct consequence of Theorem 6.1 we obtain the following existence
result.

Corollary 6.3. Consider a no-arbitrage economy. If the following conditions are
satisfied

(a.1) the individually rational utility set U(u) is compact,

(b.1) the weak non-satiation condition (WNS) is satisfied,

then there exists a quasi-equilibrium.

Recently, Allouch et al. (2006) proved that every no-arbitrage economy with
a compact individually rational utility set, admits a quasi-equilibrium provided
that the following non-satiation condition is satisfied:
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(ANS) For every xi ∈ Ai(u), if xi ∈ Si(ui) then Asi(xi) \ Li(xi) 6= ∅.

Actually, for no-arbitrage economies, the non-satiation condition (ANS) im-
plies the weak non-satiation condition (WNS).

Proposition 6.4. Every no-arbitrage economy satisfying Assumption (ANS) ac-
tually satisfies Assumption (WNS).

As a consequence of Proposition 6.4, the existence result in Allouch et al.
(2006) is a particular case of Corollary 6.3.

Proof of Proposition 6.4. Consider a no-arbitrage economy satisfying Assumption (ANS).
Fix an agent k ∈ I and an action xk ∈ Ak(u) . Since Assumption (ANS) is sat-
isfied we can choose a vector ξk ∈ Ask(xk) \ Lk(xk). In order to prove that
Assumption (WNS) is satisfied, it is sufficient to prove that for some t > 0 the
vector xi + tξi does not belong to Ai(u). Assume by way of contradiction that
for every n ∈ N the vector xk + tnξ

k belongs to Ak(u) where tn = n + 1. For
each n, there exist a feasible and individually rational allocation yn in F∩ Ir(u)
such that ykn = xk + tnξ

k. In particular we have

∀n ∈ N, xk + tnξ
k +

∑
i∈I\{k}

Ψi(yin) + zn =
∑
i∈I

ei (6.9)

where zn is the vector in
∑

i∈I Li(ei) defined by

en :=
∑

i∈I\{k}

Θi(yin).

For each n we let

αn := max
{
tn‖ξk‖, ‖zn‖,max

i 6=k
{‖Ψi(yin)‖}

}
.

Since (tn)n converges to +∞, the sequence (αn)n also converges to +∞11 and
passing to the limit in (6.9) we have∑

i∈I
ζi + η = 0 (6.10)

where (passing to a subsequence if necessary)

ζk = lim
n→∞

tn
αn
ξk, ζi = lim

n→∞

1
αn

Ψi(yin) and η = lim
n→∞

1
αn
zn.

By construction of αn, we have that ζ = (ζi)i∈I 6= 0 or η 6= 0.

Claim 6.4. For each i ∈ I, we have ζi ∈ Asi(ei) and η ∈
∑

i∈I Li(ei).

11Since ξk does not belong to Lk(ek) we cannot have ξk = 0..
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Proof of Claim 6.4. Fix i ∈ I with i 6= k. We know that ui(yin) > ui(ei). Since
Θi(yin) belongs to Li(ei) we have

ui(Ψi(yin)) = ui(yin −Θi(yin)) > ui(yin) > ui(ei),

implying that ζi ∈ Asi(ei). The relation η ∈
∑

i∈I Li(ei) comes from the fact that
the subspace

∑
i∈I Li(ei) is closed.

There exists a family (ηi)i∈I with ηi ∈ Li(ei) such that η =
∑

i∈I η
i. It then

follows from (6.10) that ∑
i∈I

(ζi + ηi) = 0. (6.11)

Since the economy satisfies the weak no market arbitrage condition, we have
ζi + ηi ∈ Li(ei). Recall that ζi ∈ [L(ei)]⊥, implying that ζi = 0 for each i and
η = 0: contradiction.

A An alternative proof of Theorem 2 in Allouch and Le
Van (2007)

Allouch and Le Van (2008) proved that if

(a.3) the set A(u) = F∩ Ir(u) of feasible and individually rational allocations
is compact,

(b.1) the the weak non-satiation condition (WNS) is satisfied,

then there exists a quasi-equilibrium. In this section we propose an alternative
proof of this result.

Proof of Theorem 4.1. Let E(u) = (Xi, ui, ei)i∈I be an economy with a compact
set A(u) of feasible and individually rational allocations and satisfying the weak
non-satiation Assumption (WNS). We split the set of agents in two parts: we
let Ins = {i ∈ I : Si(ui) = ∅} be the set of agents that are never satiated and
we let Is = {i ∈ I : Si(ui) 6= ∅} be the set of agents that may be satiated. We
propose to modify the characteristics of the agents that may be satiated. Fix
i ∈ Is. The set Ai(u) is compact and since ui is upper semi-continuous, there
exists ξi ∈ argmax{ui(x) : x ∈ Ai(u)}. Applying Assumption (WNS),

∃ζi ∈ Si(ui) \Ai(u), ui(ζi) > ui(ξi) = sup{ui(x) : x ∈ Ai(u)}.

We consider another economy G = (Y i, Qi, ei)i∈I with non-ordered preferences
and such that for each i the consumption set Y i is defined by

Y i = {xi ∈ Xi : ui(xi) > ui(ei)}
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and for each bundle yi ∈ Y i the set Qi(yi) of strictly preferred bundles is defined
by12

Qi(yi) =
{
P i(yi) ∪ {ζi} if i ∈ Is
P i(yi) if i ∈ Ins

where P i(yi) = {zi ∈ Xi : ui(zi) > ui(yi)}.
Applying Assumptions (A.1) and (A.2), the consumption set Y i is closed con-

vex and contains the initial endowment ei. Observe that the set of feasible al-
locations of the economy G coincides with the set A(u) of individually rational
and feasible allocations of the economy E(u). In particular it is compact. By
construction, for each feasible allocation y = (yi)i∈I the strictly preferred set
Qi(yi) is non-empty. Moreover, since ζi 6∈ Ai(u) we have yi 6∈ Qi(yi) for each
individually feasible bundle yi. In order to apply Proposition 3.2.3 in Florenzano
(2003) it is sufficient to prove the following claim.

Claim A.1. For each i the correspondence Qi has convex upper sections13 and
open lower sections.14

Proof of Claim A.1. The claim is obvious if i ∈ Ins. Let i ∈ Is. For each bundle
yi ∈ Y i, we have

Qi(yi) =
{
P i(yi) if yi 6∈ Si
{ζi} if yi ∈ Si.

It follows that Qi has convex values. For each zi ∈ Y i, we have

(Qi)−1(zi) =
{

(P i)−1(zi) ∩ Y i if zi 6= ζi

Y i if zi = ζi.

It follows that Qi has open lower sections.

We can now apply Proposition 3.2.3 in Florenzano (2003) to obtain the ex-
istence of a quasi-equilibrium of G which is obviously a quasi-equilibrium of
E(u).
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