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1 Introduction

For exchange economies under uncertainty, Arrow and Debreu (1954) proved
that a competitive equilibrium exists if agents have a complete and symmetric
information about a finite set of possible states of nature. This seminal existence
result was generalized in several directions.

Asymmetric information was introduced in Radner (1968). Agents arrange
contracts at the first period that may be contingent on the realized state of na-
ture at the second period. But after the realization of state, they do not nec-
essarily know which state of nature has actually occurred. Agents have incom-
plete information and this information may differ across agents (differential in-
formation economies). Therefore they are restricted to sign contracts that are
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compatible with their private information. For such an economy Radner de-
fined a notion of competitive equilibrium (Walrasian expectations equilibrium)
which is an analogous concept to the Walrasian equilibrium in Arrow–Debreu
model with symmetric information. There is an important literature dealing with
competitive solutions for differential information exchange economies: Maus
(2004) for economies with production and Einy, Moreno and Shitovitz (2001)
for economies with a continuum of agents.1 All these contributions deal with ei-
ther a finite dimensional commodity space or with a commodity space for which
the positive cone has a non-empty interior.

For models with symmetric information, the existence result in Arrow and
Debreu (1954) was generalized to economies with infinitely many states. Since
the path-breaking papers of Peleg and Yaari (1970) and Bewley (1972), many
theorems have been proved on the existence of competitive equilibrium with an
infinite dimensional commodity space for which the positive cone may have an
empty interior. However, nearly all2 require that the consumption possibility
sets are the positive orthant. These results cannot be applied to models with
asymmetric information since informationally constrained consumption sets are
in general subsets of strict subspaces of the commodity space.

The main purpose of this paper is to extend the existence result in Arrow
and Debreu (1954) by considering both asymmetric information and infinitely
many states of nature. Uncertainty is represented by a probability space (Ω,F ,P)
where Ω represents the possibly infinite set of states of nature. Each agent i’s
private information is represented by a sub-tribe F i of F and the set of possible
consumption plans is the cone Lp+(Ω,F i,P) of p-integrable (1 6 p < +∞) and
F i-measurable functions from Ω to R+. When endowed with the norm topology,
the cone Lp+(Ω,F ,P) may have an empty interior. In the symmetric framework,
the Riesz-Kantorovich formula and properness assumptions are a powerful tool
(see e.g. Aliprantis, Tourky and Yannelis (2001) and Aliprantis et al. (2004)) to
prove existence of equilibrium when the positive cone of the commodity space
has an empty interior. However these techniques cannot be directly applied to

1See also Herves-Beloso, Moreno-Garcia and Yannelis (2005a), Herves-Beloso, Moreno-Garcia
and Yannelis (2005b), Einy, Haimanko, Moreno and Shitovitz (2005), Graziano and Meo (2005),
Correia-da-Silva and Hervés-Beloso (2006), Correia-da-Silva and Hervés-Beloso (2007a), Correia-
da-Silva and Hervés-Beloso (2007b) and many others. Recently, there has been a resurgent in-
terest on the execution of contracts at the second period. At issue are questions of enforceability.
Since information is incomplete, some agents may have incentives to misreport their information
and then contracts may not be executable. For the interested readers we refer to Daher, Martins-
da-Rocha and Vailakis (2007), Angeloni and Martins-da-Rocha (2007) and Podczeck and Yannelis
(2008).

2See Bewley (1972), Magill (1981), Aliprantis and Brown (1983), Jones (1984), Mas-Colell
(1986), Araujo and Monteiro (1989), Yannelis and Zame (1986), Mas-Colell and Richard (1991),
Podczeck (1996), Tourky (1998), Deghdak and Florenzano (1999), Aliprantis, Florenzano and
Tourky (2004), Aliprantis, Florenzano and Tourky (2005) and many others. There is a notable
exception: in Podczeck and Yannelis (2008) consumption sets need not be the positive orthant of
the commodity space.
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the asymmetric framework. This was already stressed in Podczeck and Yannelis
(2008) where uncertainty is represented by a finite set but for each possible
state of nature, an infinite dimensional spot market is considered. We differ
from the aforementioned work since we consider the polar case: uncertainty is
represented by an infinite set of possible states but for each state there is only
one commodity available for consumption.

Even when there is an incomplete and asymmetric information about in-
finitely many states of nature, it is straightforward to check that every com-
petitive equilibrium is actually a private Edgeworth equilibrium (see Yannelis
(1991)). In the symmetric case, properness assumptions on preferences play
a crucial role to prove that the converse is true, i.e., every private Edgeworth
equilibrium is a competitive equilibrium. Our main contribution is to provide
conditions on the information structure that are sufficient for this decentraliza-
tion result to be still valid when information is asymmetric.3 We assume that
each agent i knows at the first period that he will observe two signals at the
second period: a public signal κ and a private signal τ i. Agent i’s information is
then represented by the σ-algebra generated by the pair (κ, τ i). We don’t impose
any restrictions on the publicly observed signal κ which may take infinitely many
values. However, we only provide existence results when the private signal τ i

takes finitely many values, letting as an open question the general case where
both the public and the private signals may take infinitely many values. Under
suitable continuity conditions on preference relations, we prove existence of a
competitive equilibrium with a continuous price in Lq(F ,P).

The paper is organized as follows. Section 2 presents the model and the
equilibrium concepts. Conditions on the information structure are imposed in
Section 3 and the standard assumptions on preferences and initial endowments
are introduced in Section 4. Section 5 addresses existence of an Edgeworth
equilibrium and its decentralization as a competitive equilibrium. Finally, in
the last section, we discuss an alternative equilibrium concept by allowing for
free-disposal.

2 The Model

We consider a pure exchange economy with a finite set I of agents and, for
convenience, one good. The economy extends over two periods t ∈ {0, 1} with
uncertainty on the realized state of nature in the second one represented by a
probability space (Ω,F ,P). Each agent i knows at t = 0 that at t = 1 he will have
an incomplete and private information in the sense that he will only observe the
outcome of random variables measurable with respect to a sub-tribe F i of F .
The family (F i)i∈I is denoted by F . At t = 0, there is an anonymous market

3The non-emptiness of the set of Edgeworth equilibria, and then the existence of a competitive
equilibrium, follows from standard arguments: see e.g. Florenzano (2003).

3



for consumption plans (or contingent contracts) in Lp+(F ,P) where p ∈ [1,+∞).
Each agent i knows that, contingent to the realization of the state ω, he will
have at t = 1 an initial endowment ei(ω) > 0 of the unique good. The random
variable ei is assumed to belong to Lp(F i,P) and the family (ei)i∈I is denoted by
e. At t = 0, agents make contracts on redistribution of their initial endowments
before the state of nature is realized. As in Radner (1968), these contracts have
to be consistent with their private information, i.e., we assume that each agent
i chooses a consumption plan in subset Xi of Lp+(F i, P ). In the second period
agents carry out previously made agreements, and consumption takes place. For
discussions on the interpretation of this model and on the enforceability of con-
tracts at t = 1, we refer to Daher et al. (2007, Section 2), Angeloni and Martins-
da-Rocha (2007, Section 6) and Podczeck and Yannelis (2008, Section 4). Agent
i’s (strict) preference relation on consumption plans is represented by a corre-
spondence P i from Xi to Xi. The economy is then defined by the collection

E = (F ,X, e,P )

where X is the family (Xi)i∈I and P is the family (P i)i∈I . The vector subspace
of Lp(F ,P) generated by the family X is denoted by X and the space of linear
functionals defined on X is denoted by X ?. The space X represents the com-
modity space and X ? the price space. The set Xi represents the consumption
set and a vector x ∈ Xi represents a possible consumption plan for agent i. If
x ∈ Xi the set P i(x) ⊂ Xi represents the set of strictly preferred consumption
plans by agent i ∈ I. An allocation x = (xi)i∈I is a family of consumption plans
xi ∈ Xi. An allocation x is said feasible if∑

i∈I
xi =

∑
i∈I

ei.

The aggregate initial endowment
∑

i∈I e
i is denoted by e. We now recall some

properties a feasible allocation may satisfy.

Definition 2.1. A feasible allocation x is:

1. weakly Pareto optimal if there is no feasible allocation y satisfying yi ∈
P i(xi) for each i ∈ I;

2. a core allocation, if it cannot be blocked by any coalition in the sense that
there is no coalition S ⊆ I and some (yi)i∈S ∈

∏
i∈S P

i(xi) such that∑
i∈S y

i =
∑

i∈S e
i;

3. an Edgeworth equilibrium if there is no 0 6= λ ∈ (Q∩ [0, 1])I and some allo-
cation y such that yi ∈ P i(xi) for each i ∈ I with λi > 0 and

∑
i∈I λ

iyi =∑
i∈I λ

iei;

4. an Aubin equilibrium if there is no 0 6= λ ∈ [0, 1]I and some allocation y
such that yi ∈ P i(xi) for each i ∈ I with λi > 0 and

∑
i∈I λ

iyi =
∑

i∈I λ
iei.
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Remark 2.1. The reader should observe that these concepts are “price free” in
the sense that they are intrinsic property of the commodity space. It is proved
in Florenzano (2003, Propositions 4.2.6) that the set of Aubin equilibria and the
set of Edgeworth equilibria coincide provided that for each i ∈ I, the set P i(xi) is
open4 in Xi or P i(xi) = {y ∈ Xi : U i(y) > U i(xi)} for a concave utility function
U i.

We denote by ‖·‖p the standard norm in Lp(F ,P) defined by

∀y ∈ Lp(F ,P), ‖y‖p :=
[∫

Ω
| y(ω) |p P(dω)

] 1
p

,

and let q be the (extended) real number in (0,∞] satisfying 1
q + 1

p = 1.
We now recall the concept of competitive (or Walrasian expectations) equi-

librium.

Definition 2.2. A couple (x, p) is said to be a competitive equilibrium if x is a
feasible allocation and p ∈ X ? is a price such that p(xi) = p(ei) and if yi ∈ P i(xi)
then p(yi) > p(ei). If a function ψ ∈ Lq(F ,P) representing the price p, in the
sense that

∀x ∈ X , p(x) = 〈ψ, x〉 = E[ψx]

exists, then (x, p) is said to be a continuous competitive equilibrium.

3 The information structure

The commodity space X is a subspace of Lp(∨i∈IF i,P), where ∨i∈IF i is the
coarsest tribe containing each F i. Therefore, without any loss of generality, we
may assume that

Assumption (I). The tribe F coincides with ∨i∈IF i.

We denote by Fc the common knowledge information, i.e., Fc is the meet of
the family (F i)i∈I :

Fc = {A ∈ F : ∀i ∈ I, A ∈ F i}.

For each x ∈ Lp(F ,P), we write x > 0 if x ∈ Lp+(F ,P), we write x > 0 if x > 0
and x 6= 0, and we write x � 0 if P{x > 0} = 1. A vector x � 0 is said strictly
positive.

As in Radner (1968) and Mas-Colell (1986), we don’t allow for restrictions
on possible consumption bundles.

Assumption (II). For each i ∈ I, the consumption setXi coincides with Lp+(F i,P).

4In a linear topology on X .
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Under Assumptions I and II, the commodity space X coincides with the space

Σ :=
∑
i∈I

Lp(F i,P).

We now introduce the two main restrictions on the information structure F .

Assumption (III). There exist

• a measurable space (S,S) and a measurable mapping κ : (Ω,F) −→ (S,S),

• for each i, a finite set T i and a measurable mapping τ i : (Ω,F) −→ T i,

such that the information available for each agent i comes from the observation of
κ and τ i, i.e.

F i = σ(κ, τ i)

in the sense that F i is the coarsest tribe containing σ(κ) = {κ−1(A) : A ∈ S} and
σ(τ i) = {(τ i)−1(C) : C ⊂ T i}.

The set 2T of subsets of T =
∏
i∈I T

i is denoted by T . We denote by Pκ×τ

the probability on S ⊗ T defined by

∀(A,B) ∈ S × T , Pκ×τ (A×B) = P({κ ∈ A} ∩ {τ ∈ B})

where τ is the measurable mapping from (Ω,F) to T defined by τ (ω) = (τ i(ω))i∈I .
We let Pκ and Pτ be the marginal probabilities defined on S and T by

∀A ∈ S, Pκ(A) = P{κ ∈ A} and ∀B ∈ T , Pτ (B) = P{τ ∈ B}.

Observe that if Pκ(A)Pτ{t} = 0 then Pκ×τ (A× {t}) = 0. This implies that given
t ∈ T , the measure

Pκ×τ (., t) : A 7−→ Pκ×τ (A× {t})

defined on S is absolutely continuous with respect to the measure Pτ{t}Pκ. In
particular there exists a Pκ-integrable and strictly positive function ψ(., t) : S →
(0,∞) such that

∀A ∈ S, Pκ×τ (A× {t}) =
∫
A
ψ(s, t)Pτ{t}Pκ(ds).

Assumption (IV). There exists ε > 0 such that

dPκ×τ

dPκ ⊗ dPτ
> ε

or equivalently ψ(s, t) > ε for Pκ ⊗ Pτ -a.e. (s, t).
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Remark 3.1. If the public information is independent of the private information,
i.e., the mappings κ and τ are P-independent, then Assumption IV is automati-
cally satisfied since we have dPκ×τ = dPκ ⊗ dPτ . Note that we do not assume
that the family of private signal functions (τ i)i∈I is pairwise independent. Two
different agents i 6= j may have the same information F i = F j . It then follows
that σ(κ) is a subtribe of Fc but the inclusion may be strict (e.g. if τ i = τ j for
every pair (i, j)).

We let L0(F ,P) be the space (of P-equivalent classes of) real valued and F -
measurable functions. If x ∈ L0(F ,P) then from Assumption I, there exists a
unique (up to Pκ×τ -equivalent classes) S ⊗ T -measurable function

fx : S × T −→ R

such that
x(ω) = fx(κ(ω), τ (ω)) for P–a.e. ω ∈ Ω.

We denote by F : x 7→ Fx the mapping from L0(F ,P) to L0(S⊗T ,Pκ×τ ) defined
by Fx := fx. Observe that if x belongs to Lp(F ,P) then∫

Ω
|x(ω)|pP(dω) =

∫
S×T
|Fx(s, t)|pψ(s, t)Pκ(ds)Pτ (dt).

4 Assumptions

It is straightforward to check that every competitive equilibrium is an Edgeworth
equilibrium. In order to prove the converse, we consider the following list of
assumptions that an economy may satisfy.

Definition 4.1. A differential information economy is said standard if Assump-
tions I and II and the following Assumptions C and P are satisfied.

Assumption (C). There exists a strictly positive function a in Lp+(Fc,P) such that
for each i ∈ I,

C.1 the preference P i is irreflexive,5 strictly monotone6, with weakly-open lower
sections,7and ‖·‖p-open convex upper sections;8

C.2 there exists µ > 0 such that e 6 µa;

C.3 there exists bi ∈ Lp+(Fc,P) such that 0 6= bi 6 ei and a =
∑

i∈I b
i.

5In the sense that for each xi ∈ Xi, xi 6∈ P i(xi).
6In the sense that for each x ∈ Xi, x+ Lp

+(F i,P) ⊂ P i(x) ∪ {x}.
7In the sense that for each y ∈ Xi, the set P−1(y) = {x ∈ Xi : y ∈ P i(x)} is σ-open in Xi,

where σ is the weak topology σ(Lp(F ,P), Lq(F ,P)).
8In the sense that for each x ∈ Xi, the set P i(x) is convex and open for the ‖.‖p-topolgy.
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Remark 4.1. Observe that under Assumptions C.2 and C.3, the aggregate ini-
tial endowment e belongs to the order interval [a, µa].9 When the information
is symmetric, i.e., F i = F for every i ∈ I, then Assumptions C.2 and C.3 are
automatically satisfied if for every i ∈ I, the initial endowment ei is not zero.
When F has finitely many atoms (e.g. if the state space Ω is finite) then As-
sumptions C.2 and C.3 are automatically satisfied if for every i ∈ I, the initial
endowment ei is strictly positive.

Assumption (P). For each feasible allocation x and for each i ∈ I, there exists
a convex set P̂ i(xi) ⊂ Lp(F i,P) with a non-empty ‖·‖p-interior in Lp(F i,P) such
that

P̂ i(xi) ∩Axi ∩ Lp+(F i,P) ⊂ P i(xi)
for some subset Axi ⊂ Lp(F i,P) radial at xi and such that

∀y ∈ P̂ i(xi), ∀α ∈ (0, 1], αy + (1− α)xi ∈ P̂ i(xi).

Assumption P is taken from Podczeck (1996) and related to properness con-
ditions introduced by Mas-Colell (1986).

Remark 4.2. When F has finitely many atoms, Assumption P is automatically
satisfied. Indeed, it is sufficient to pose

P̂ i(xi) = xi + Lp+(F i,P) \ {0}.

We consider now preference relations defined by utility functions. Consider
the following conditions on utility functions.

Assumption (U). For each i ∈ I there exists a function U i : Xi → R such that

∀xi ∈ Xi, P i(xi) = {yi ∈ Xi : U i(yi) > U i(xi)}.

Moreover there exists a strictly positive function a in Lp+(Fc,P) such that for each
i ∈ I,

U.1 the function U i is continuous for the ‖.‖p-topology, quasi-concave and strictly
increasing;10

U.2 there exists µ > 0 such that e 6 µa;

U.3 there exists bi ∈ Lp+(Fc,P) such that 0 6= bi 6 ei and a =
∑

i∈I b
i;

U.4 for each xi ∈ Xi, there exists a vector ∇U i(xi) 6= 0 in Lq(F i,P) such that

∀v ∈ Si(xi), lim
t↓0

U i(xi + tv)− U i(xi)
t

= 〈∇U i(xi), v〉

where Si(xi) = {v ∈ Lp(F i,P) : xi + tv ∈ Xi for some t > 0}.
9If a and b are two vectors in Lp(F ,P) then the order interval [a, b] is the set of all vectors x in

Lp(F ,P) satisfying a 6 x 6 b.
10That is for each x, y in Xi, if y > x then U i(y) > U i(x).
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Remark 4.3. Note that since U i is increasing then ∇U i(xi) belongs to Lq+(F i,P).
Observe that Assumptions U.2 and U.3 are just repetition of C.2 and C.3.

We claim that Assumption U implies Assumptions C and P.

Proposition 4.1. If an economy satisfies Assumption U then it satisfies Assump-
tions C and P.

Proof. Consider an economy satisfying Assumption U. It is straightforward to
check that Assumptions U.1 to U.3 imply Assumption C. Now fix i ∈ I, xi ∈ Xi

and consider the following set

P̂ i(xi) = {yi ∈ Ei : 〈∇U i(xi), yi − xi〉 > 0}.

This set is convex, non-empty and ‖·‖p-open. It is now straightforward to prove
that Assumption U4 implies Assumption P. Q.E.D

We consider hereafter the special case of separable utility functions.

Definition 4.2. A family U = (U i)i∈I of utility functions from Xi to R is said
separable if for each i ∈ I there exists V i : Ω× R+ → R+ such that

(a) the function V i is F i ⊗ B(R+)-measurable;

(b) for almost every ω ∈ Ω, V i(ω, .) : R+ → R+ is continuous, concave and
strictly increasing;11

(c) for every x ∈ Lp+(F i,P), the function ω 7→ V i(ω, x(ω)) belongs to L1(F i,P)
and

U i(x) =
∫

Ω
V i(ω, x(ω))P(dω).

The function V i is called the kernel of U i. The left derivative of V i(ω, .) in
t > 0 is denoted by V i

−(ω, t) and the right derivative is denoted by V i
+(ω, t).

We denote by V i
+(ω, 0) the extended real number limt→0 V

i
+(ω, t) (we may have

V i
+(ω, 0) = ∞). If x ∈ Lp+(F i,P) then we denote by V i

−(x) the function in
L0(F i,P) defined by

V i
−(x) : ω 7−→ V−(ω, x(ω))

and V i
+(x) the function in L0(F i,P) defined by

V i
+(x) : ω 7−→ V+(ω, x(ω)).

Proposition 4.2. If U is a family of separable utility functions such that

∀x ∈ Xi, V i
+(x) ∈ Lq(F i,P) and V i

−(x) ∈ Lq(F i,P)

then Assumption U.4 is satisfied with

∀x ∈ Xi, ∀h ∈ Lp(F i,P), 〈∇V i(x), h〉 = E[V i
+(x)h+ − V i

−(x)h−].

For related results about properness of separable utility functions, we refer
to Le Van (1996) and Aliprantis (1997).

11A function f : R+ → R+ is strictly increasing if for each x, y ∈ R+, whenever x > y implies
f(x) > f(y).
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5 Decentralizing Edgeworth equilibrium allocations

As a consequence of Proposition 5.2.2 in Florenzano (2003), we get the follow-
ing non-emptiness result.

Proposition 5.1. For every standard differential information economy, the set of
Edgeworth equilibria is non-empty.

Proof. We let

X̂ =

{
x ∈

∏
i∈I

Xi :
∑
i∈I

xi = e

}
be the set of attainable allocations. In order to apply Proposition 5.2.2 in Flo-
renzano (2003), it is sufficient to prove that the set X̂ is compact for the weak-
topology.12 Denote that

X̂ ⊂
∏
i∈I

[0, e] ∩ Lp+(F i,P).

Since [0, e] is a weakly compact subset of Lp(F ,P) and Lp+(F i,P) is weakly closed
in Lp(F ,P), we get the desired result. Q.E.D

The main result of the paper is the following.

Theorem 5.1. Consider a standard differential information economy. Assume that
Assumptions III and IV are satisfied, then for every Edgeworth equilibrium x there
exists ψ ∈ Lq(F ,P) such that (x, 〈ψ, ·〉) is a competitive equilibrium with a contin-
uous price.

The proof of Theorem 5.1 follows from Propositions 5.2 and 5.3 below.

Remark 5.1. When (F ,P) has finitely many atoms, we get as a corollary of The-
orem 5.1 the existence result in Radner (1968). When the information is sym-
metric, i.e., when F i = F for each i ∈ I, we get as a corollary of Theorem 5.1
the existence result in Araujo and Monteiro (1989).

For technical reasons, we consider the following concept of competitive quasi-
equilibrium.

Definition 5.1. A couple (x, p) is said to be a (non-trivial) competitive quasi-
equilibrium if x is a feasible allocation and p ∈ X ? is a price with p(e) > 0 and
such that p(xi) = p(ei) and if yi ∈ P i(xi) then p(yi) > p(ei). If there exists
ψ ∈ Lq(F ,P) representing the price p, i.e., p = 〈ψ, ·〉 then (x, p) is said to be a
competitive quasi-equilibrium with a continuous price.

Obviously a competitive quasi-equilibrium is a competitive equilibrium. We
propose hereafter conditions under which the converse is true.

12The weak topology on Lp(F ,P) is the topology σ(Lp(F ,P), Lq(F ,P)).
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Proposition 5.2. Consider a standard economy, then every competitive quasi-
equilibrium is actually a competitive equilibrium.

Proof. Let (x, p) be a competitive quasi-equilibrium of a standard economy. In
particular we have that for each i ∈ I,

p(xi) = p(ei) and ∀yi ∈ P i(xi), p(yi) > p(ei).

Since preferences are strictly monotone, we have that p(z) > 0 for each z ∈
Lp+(F i,P). Now we know that p(e) =

∑
i p(e

i) > 0. Therefore there exists j ∈ I
such that p(ej) > 0. We first prove that if yj ∈ P i(xj) then p(yj) > p(ej). Assume
by way of contradiction that p(yj) = p(ej). From Assumption C.1, there exists
α ∈ (0, 1) such that αyj still lies in P j(xj). Therefore p(αyj) = αp(yj) > p(ej):
contradiction. Therefore for every 0 6= z ∈ Lp+(F j ,P), we have p(z) > 0. In
particular, since for each i ∈ I the vector bi belongs to Lp+(Fc,P) \ {0}, we have
p(ei) > p(bi) > 0 for each i ∈ I. Following the previous argument, we can prove
that for every i ∈ I, if yi ∈ P i(xi) then p(yi) > p(ei). Q.E.D

We say that any economy is quasi-standard if it satisfies Assumptions I, II, P,
C.1 and C.2 together with C.3’ defined by

C.3’ there exists b = (bi)i∈I ∈
∏
i∈I L

p
+(F i,P) such that bi 6 ei, a =

∑
i∈I b

i and
for some j ∈ I, ej > 0.

We present hereafter the main technical result of the paper.

Proposition 5.3. Consider a quasi-standard economy satisfying Assumptions III
and IV. For every Edgeworth equilibrium x there exists ψ ∈ Lq(F i,P) such that
(x, 〈ψ, ·〉) is a competitive quasi-equilibrium with a continuous price.

Proof. For notational convenience, we denote the spaces L(F ,P), L(F i,P) and
Lp(Fc,P) by L, Li and Lc. Let x be an Edgeworth equilibrium of a quasi-
standard differential information economy. From Proposition 4.2.6 in Floren-
zano (2003), the allocation x is an Aubin equilibrium and thus

0 6∈ G(x) := co
⋃
i∈I

[
P i(xi)− ei

]
.

Let a be the strictly positive function in Lc+ satisfying Assumption C. For each
i ∈ I, we let Li(a) be the subspace of Li defined by

Li(a) := L(a) ∩ Li =
⋃
λ>0

λ[−a, a] ∩ Li.

Observe that from Assumption C.2, for each i ∈ I, ei and xi belong to Li+(a).
Let Σ(a) :=

∑
i∈I L

i(a), we endow Σ(a) with the topology σ for which a base of
0-neighborhoods is{∑

i∈I
αi[−a, a] ∩ Li : αi ∈ (0, 1], ∀i ∈ I

}
.

11



Observe that the topology σ is Hausdorff and locally convex. From Assumption C
we have

xi + a+ a+ [−a, a] ∩ Li ⊂ xi + a+ Li+ ⊂ P i(xi).

Therefore
2a+

1
#I

∑
i∈I

[−a, a] ∩ Li ⊂ G(x).

We have proved that G(x)∩Σ(a) is a non-empty convex subset of Σ(a) such that
2a belongs to its σ-interior. It then follows from a classical separation theorem
that there exists p ∈ (Σ(a), σ)′ such that p(a) > 0 and satisfying

∀i ∈ I, ∀yi ∈ P i(xi) ∩ Li(a), p(yi) > p(ei). (1)

Applying Assumption C, we get that p(xi) > p(ei) for every i ∈ I. Since x is
feasible, this implies that

∀i ∈ I, p(xi) = p(ei). (2)

Moreover, from strict monotonicity of preferences we have p(z) > 0 for every
z ∈ Li+(a).

Claim 5.1. For each i ∈ I, there exists πi ∈ (Li, ‖·‖p)′ such that

∀z ∈ Li+(a), πi(z) 6 p(z) and ∀z ∈ Li+(xi), πi(z) = p(z). (3)

The proof of this claim is standard (for a similar result we refer, among
others, to Podczeck (1996) and Deghdak and Florenzano (1999)) and is post-
poned to Appendix A.2. Note that from Assumption C.2, the ideal Li(xi) =
∪λ>0λ[−xi, xi] is a subspace of Li(a). For each i ∈ I, we let M i be defined by13

M i = sup{|πi(z)| : z ∈ Li and ‖z‖p 6 1}.

We propose now to prove that for each i ∈ I, the functional p is ‖·‖p-continuous
on Li(a).

Claim 5.2. There exists M > 0 such that for each i ∈ I,

∀x ∈ Li(a), |p(x)| 6 M ‖x‖p . (4)

Proof. For each i ∈ I, we let Ωi := {ω ∈ Ω : xi(ω) > (1/#I)a(ω)}. The set Ωi

belongs to F i and since ∑
i∈I

xi =
∑
i∈I

ei >
∑
i∈I

bi = a,

13Since πi belongs to (Li, ‖·‖p)′, it can be represented by a vector ψ in Lq(F i,P). The real
number M i coincides with ‖ψ‖q.
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we have
⋃
i∈I Ωi = Ω. Let h ∈ Lc+(a) = L(a) ∩ Lp+(Fc,P), then for each i ∈ I,

the vector h1Ωi belongs to Li+(xi). Indeed, since h belongs to Lc+(a), there exists
λ > 0 such that 0 6 h 6 λa, implying that h1Ωi 6 (#I)λxi. It then follows
from (3) that

p(h) 6
∑
i∈I

p(h1Ωi) =
∑
i∈I

πi(h1Ωi)

6

[
sup
i
M i

]∑
i∈I
‖h1Ωi‖

6 ‖h‖p (#I)
[
sup
i
M i

]
. (5)

Now fix i ∈ I and x ∈ Li(a). There exists µ > 0 such that |x| 6 µa.
Following Proposition A.1, there exists y ∈ Lc+ such that |x| 6 y. It follows that
|x| 6 (µa) ∧ y. This implies from (5) that

|p(x)| 6 p(|x|) 6 p((µa)∧y) 6 (#I)
[
sup
i
M i

]
‖(µa) ∧ y‖p 6 (#I)

[
sup
i
M i

]
‖y‖p .

It follows that

|p(x)| 6 (#I)
[
sup
i
M i

]
ρ(x) where ρ(x) := inf{‖y‖p : y ∈ Lc+ and |x| 6 y}

Applying Proposition A.1, if we let

M :=
1

[ε inf Pτ (T0)]
1
p

(#I)
[
sup
i
M i

]
then |p(x)| 6 M ‖x‖p. Q.E.D

As a consequence of the previous claim, we can prove that the linear func-
tional p is η-continuous on Σ(a) where η is the norm defined on Σ(a) by

∀x ∈ Σ(a), η(x) = inf

{∑
i∈I

∥∥xi∥∥
p

: (xi)i∈I ∈
∏
i∈I

Li(a) and
∑
i∈I

xi = x

}
.

Indeed, if x ∈ Σ(a) then for every sum decomposition x =
∑

i∈I x
i with xi ∈

Li(a) for each i, we have

|p(x)| 6
∑
i∈I
|p(xi)| 6 M

∑
i∈I

∥∥xi∥∥
p
.

It then follows that |p(x)| 6 Mη(x), i.e., p is η-continuous on Σ(a). From Propo-
sition A.4, we know that x 7→ η(x) is ‖·‖p-continuous on Σ(a), implying that p is
actually ‖·‖p-continuous on Σ(a).
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Since a is strictly positive, the space Li(a) is ‖·‖p-dense in Li. This implies
that the space Σ(a) is ‖·‖p-dense in Σ. Indeed, let x ∈ Σ. There exists a sum
decomposition x =

∑
i∈I x

i where xi ∈ Li for each i. The space Li(a) is ‖·‖p-
dense in Li. Therefore there exists a sequence (xin)n∈N of vectors in Li(a) which
‖·‖p-converges to xi. Let xn be the vector in Σ defined by xn =

∑
i∈I x

i
n. Since

‖x− xn‖p 6
∑
i∈I

∥∥xi − xin∥∥p
we get that the sequence (xn)n∈N is ‖·‖p-converging to x.

The linear functional p is ‖·‖p-continuous on Σ(a) which is a subspace of
Lp(F ,P). We directly obtain the following claim.14

Claim 5.3. There exists a ‖·‖p-continuous linear functional π ∈ (Lp(F ,P), ‖·‖p)′
which extends p.

We claim that (x, π) is a competitive quasi-equilibrium with a continuous
price. Fix i ∈ I and y ∈ P i(xi). There exists a sequence (yn)n∈N in Li(a) which
is ‖·‖p-converging to y. The correspondence P i has ‖·‖p-open upper sections. It
follows that for every n large enough, we have yn ∈ P i(xi)∩Li(a). Applying (1),
we have p(yn) > p(ei) and passing to the limit, we get π(y) > π(ei) = p(ei).
Now since a =

∑
i∈I b

i, there exists j ∈ J such that p(bj) > 0, which implies by
Assumption C.3 that π(ej) = p(ej) > 0. Q.E.D

6 Competitive equilibrium with free disposal

In the literature of asymmetric information, it is quite common to use the con-
cept of competitive equilibrium with free disposal.

Definition 6.1. A couple (x, p) is said to be a competitive equilibrium with free
disposal if x is an allocation satisfying∑

i∈I
xi 6

∑
i∈I

ei

and if p ∈ X ? is a price such that p(xi) = p(ei) and if yi ∈ P i(xi) then p(yi) >
p(ei).

Remark 6.1. Obviously a competitive equilibrium is a competitive equilibrium
with free disposal. Note that markets may not clear but the value of the disposal∑

i∈I e
i − xi under the price p is zero.

14See Lemma 6.13 in Aliprantis and Border (1999).
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Remark 6.2. There is no measurability constraint on the disposal
∑

i∈I e
i − xi.

This assumption may be problematic in the context of asymmetric information.
Indeed, as it was shown in Glycopantis, Muir and Yannelis (2003), the free dis-
posal assumption may destroy the incentive compatibility of the competitive
equilibrium and thus the resulting trades (contracts) need not be enforceable
(see also Angeloni and Martins-da-Rocha (2007)).

As a corollary of Proposition 5.3, we get the following existence result.

Theorem 6.1. Consider a standard economy satisfying Assumptions III and IV.
There exists a competitive equilibrium with free disposal (x, p) such that the price
p can be represented by a non-negative functional ψ in Lq(F ,P), i.e., p = 〈ψ, ·〉.

Proof. Let E = (F i, Xi, ei, P i)i∈I be a standard economy. Fix ` 6∈ I and consider
E` the economy defined by

E` = (F j , Xj , ej , P j)j∈J

where J = I ∪ {`}, F ` = F , X` = Lp+(F ,P), e` = 0 and

∀x` ∈ Lp+(F ,P), P `(x`) = {y ∈ Lp+(F ,P) : E[y] > E[x]}.

It is straightforward to check that the economy E` is quasi-standard. Applying
Proposition 5.3 there exists ((xj)j∈J , p) which is a competitive quasi-equilibrium
of E` where p is a continuous price represented by a vector ψ ∈ Lq(F ,P). Note
first that ∑

i∈I
xi 6 x` +

∑
i∈I

xi =
∑
j∈J

ej = e` +
∑
i∈I

ei =
∑
i∈I

ei.

We already know that for every j ∈ J

p(xj) = p(ej) and yj ∈ P j(xj) =⇒ p(yj) > p(ej).

Since x` + Lp+(F ,P) \ {0} ⊂ P `(x`) we have p(z) > 0 for every z ∈ Lp+(F ,P),
implying that ψ is actually non-negative. Since p(x`) = p(e`) = 0, the value
of the excess

∑
i∈I e

i − xi is zero. Since ((xj)j∈J , p) is a competitive quasi-
equilibrium there exists k ∈ I such that p(ek) > 0. It is now straightforward
to prove that ((xi)i∈I , p) is a competitive equilibrium with free-disposal of the
economy E . Q.E.D

A Appendix

We denote by E the subspace of all vectors x ∈ Lp(F ,P) such that there exists
y ∈ Lp+(Fc,P) satisfying |x| 6 y, i.e.

E := {x ∈ Lp(F ,P) : ∃y ∈ Lp+(Fc,P), |x(ω)| 6 y(ω) for P–a.e. ω ∈ Ω}.
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We endow E with the norm ρ defined by

∀x ∈ E, ρ(x) := inf{‖y‖p : y ∈ Lp+(Fc,P) and |x| 6 y}.

It is straightforward to check that the ρ-topology is stronger than the ‖.‖p-
topology restricted to E, more precisely

∀x ∈ E, ‖x‖p 6 ρ(x).

Moreover, the ρ-topology and the ‖.‖p-topology coincide in Lp(Fc,P), more pre-
cisely

∀x ∈ Lp(Fc,P), ‖x‖p = ρ(x).

Proposition A.1. Under Assumptions I–IV, the topological spaces (Lp(F ,P), ‖.‖p)
and (E, ρ) coincide, more precisely

∀x ∈ Lp(F ,P), [ε inf Pτ (T0)]
1
p ρ(x) 6 ‖x‖p 6 ρ(x),

where

inf Pτ (T0) = inf{P{τ = t} : t ∈ T0} with T0 = {t ∈ T : P{τ = t} > 0}.

Proof. We have∫
S×T
|Fx(s, t)|pψ(s, t)Pκ(ds)Pτ (dt) =

∫
S

Pκ(ds)
∫
T
|Fx(s, t)|pψ(s, t)Pτ (dt)

> ε

∫
S

Pκ(ds)
∑
t∈T0

|Fx(s, t)|pP{τ = t}

> ε inf Pτ (T0)
∫
S

Pκ(ds)
{

max
t∈T0

|Fx(s, t)|
}p

.

If we let y be the function defined by y(ω) := maxt∈T0 |Fx(κ(ω), t)| for every
ω ∈ Ω, then y belongs to Lp+(σ(κ),P) ⊂ Lp+(Fc,P) and satisfies

|x| 6 y and ‖x‖p > [ε inf Pτ (T0)]
1
p ‖y‖p .

We then get the desired result. Q.E.D

We introduce on Σ =
∑

i∈I L
p(F i,P) the following norm χ:

χ(x) = inf

{∑
i∈I

∥∥xi∥∥
p

: (xi)i∈I ∈
∏
i∈I

Lp(F i,P) and
∑
i∈I

xi = x

}
.

It is straightforward to check that the χ-topology is stronger that the ‖·‖p-topology
restricted to Σ, more precisely

∀x ∈
∑
i∈I

Lp(F i,P), ‖x‖p 6 χ(x).
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Moreover, the χ-topology and the ‖·‖p-topology coincide in Lp(Fc,P) since

∀x ∈ Lp(Fc,P), ‖x‖p = χ(x).

We propose hereafter a description of χ-continuous linear functionals defined
on the space Σ.

Proposition A.2. A linear functional π ∈ Σ? is χ-continuous if and only if there
exists a family (ψi)i∈I with ψi ∈ Lq(F i,P) such that

∀x ∈ Xi, π(x) = 〈ψi, x〉 = E[ψix]

and such that the family (ψi)i∈I is consistent in the sense that

∀(i, k) ∈ I × I, E[ψi : Fc] = E[ψk : Fc].

Proof. Let π ∈ Σ? be a η-continuous linear functional on Σ. Denote by πi the re-
striction of π to the space Lp(F i,P). Since χ(x) = ‖x‖p for every x ∈ Lp(F i,P),
the linear functional πi is ‖·‖p-continuous and there exists ψi ∈ Lq(F i,P) repre-
senting πi in the sense that

∀x ∈ Lp(F i,P), πi(x) = 〈ψi, x〉 = E[ψix].

Consider two agents i and k. The restrictions of πi and πk to Lp(Fc,P) coincide
with the restriction of π to the same space. It follows that

∀z ∈ Lp(Fc,P), 0 = E[(ψi − ψk)z] = E[zE[ψi − ψk : Fc]]

implying that E[ψi − ψk : Fc] = 0.
We now prove that the converse is true. Let π ∈ Σ? be a linear functional

such that for each i there exists ψi ∈ Lq(F i,P) representing π on Lp(F i,P). Let
x ∈ Σ. For any sum decomposition x =

∑
i∈I x

i with xi ∈ Lp(F i,P) we have

|π(x)| 6
∑
i∈I
|π(x)| 6

∑
i∈I

∥∥ψi∥∥
q

∥∥xi∥∥
p
.

It then follows that

|π(x)| 6
[
max
i∈I

∥∥ψi∥∥
q

]
χ(x).

We have thus proved that π is χ-continuous. Q.E.D

Let π be a χ-continuous linear functional defined on Σ. We know that it is
possible to represent the restriction of π to Lp(F i,P) by a vector ψi ∈ Lq(F i,P).
There is a natural question to ask: Is it possible to find a common representa-
tion ψ ∈ Lq(F ,P) of the linear functional π when defined on the whole space
Lq(F ,P)? The answer is trivially yes if one of the following conditions is satis-
fied:
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(a) the σ-algebra F is a finite algebra;

(b) the union ∪i∈IF i coincides with F , i.e. for every event A ∈ F , there exists
at least one agent that can discern this event;

(c) the information structure is conditionally independent (see Daher et al.
(2007) for details).15

Actually the answer is also yes under Assumptions III and IV. In order to prove
this result, we first provide a sufficient condition for the ‖·‖-continuity on Σ of
the function χ.

Proposition A.3. Under Assumption III, the mapping x 7→ χ(x) is ‖·‖p-continuous
on Σ provided that there exists β > 0 such that

max
t∈T0

ψ(s, t) 6 βmin
t∈T0

ψ(s, t), for Pκ-a.e. s. (6)

Proof of Proposition A.3. 16 Let x be a vector in Σ and denote by Fx the function
defined on S × T by

Fx(s, t) =


x
(
(κ× τ )−1(s, t)

)
if (s, t) ∈ Im(κ× τ )

0 if (s, t) 6∈ Im(κ× τ )

where

Im(κ× τ ) = {(s, t) ∈ S × T : ∃ω ∈ Ω, s = κ(ω) and t = τ (ω)}.

Since x is σ(κ, τ )-measurable, this function is well defined and is S⊗T -measurable.
Moreover, since x belongs to Lp(F ,P) the function Fx belongs to Lp(S⊗T ,Pκ×τ ).
More precisely, we have

‖x‖pp =
∫

Ω
|x(ω)|pP(dω) =

∫
S×T
|Fx(s, t)|pPκ×τ (ds× dt).

Applying Assumption III, we obtain

‖x‖pp =
∫
S

Pκ(ds)
∑
t∈T
|Fx(s, t)|pψ(s, t)Pτ{t}.

15The information structure (F i)i∈I is conditionally independent if for each pair (i, k) of
agents with i 6= k and for every pair of events Ai ∈ F i and Ak ∈ Fk, we have that
P(Ai ∩ Ak : Fc) = P(Ai : Fc)P(Ak : Fc) almost everywhere. When the information structure
is conditionally independent we can prove (see Daher et al. (2007)) that the vector ψ ∈ Lq(F ,P)
represents π on the whole space Lp(F ,P) where ψ is defined by

ψ = ψc +
∑
i∈I

[
ψi − ψc

]
where ψc = E[ψi : Fc] for any i.

16An important part of the arguments of the proof are inspired by those used in Podczeck and
Yannelis (2008).
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We denote by T0 the trace of the σ-algebra T on T0 and for each i, we denote
by T i0 the sub σ-algebra of T0 generated by the projection mapping t 7→ ti. The
vector space

∑
i∈I L

0(T i,P) is generated by the family{
1A : A ∈

⋃
i∈I
T i0

}
.

There exists a sub-family A of ∪i∈IT i0 such that the family

{1A : A ∈ A}

is a minimal generating family of
∑

i∈I L
0(T i,Pτ ), in other words the family

{1A : A ∈ A} is generating and linearly independent. Since the mapping

RA −→
∑

i∈I L
0(T i0 ,Pτ )

(αA)A∈A 7−→
∑

A∈A αA1A

is a linear bijection, then it is continuous whatever the norms we consider on
each space. It follows that there exists 0 < m < M <∞ such that

∀α ∈ RA, mp

∫
T

∣∣∣∣∣∑
A∈A

αA1A(t)

∣∣∣∣∣
p

Pτ (dt) 6
∑
A∈A
|αA|p 6 Mp

∫
T

∣∣∣∣∣∑
A∈A

αA1A(t)

∣∣∣∣∣
p

Pτ (dt).

For each s ∈ S, the mapping t 7→ Fx(s, t) belongs to
∑

i∈I L
0(T i,Pτ ), implying

that there exits α(s) ∈ RA such that

∀(s, t) ∈ S × T, Fx(s, t) =
∑
A∈A

αA(s)1A(t).

The set A can be decomposed in a partition (Ai)i∈I where Ai ⊂ T i0 for each i. It
then follows that

Fx(s, t) =
∑
i∈I

∑
A∈Ai

αA(s)1A(t)

 .
We denote by xi the function defined on Ω by

∀ω ∈ Ω, xi(ω) =
∑
A∈Ai

αA(κ(ω))1A(τ(ω)).

It is straightforward to check that

x =
∑
i∈I

xi and xi ∈ Lp(F i,P), ∀i ∈ I.
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We denote by ψ and ψ the functions defined on S by

∀s ∈ S, ψ(s) = max
t∈T0

ψ(s, t) and ψ(s) = min
t∈T0

ψ(s, t).

Observe that

∥∥xi∥∥p
p

=
∫
S

Pκ(ds)
∫
T

∣∣∣∣∣∣
∑
A∈Ai

αA(s)1A(t)

∣∣∣∣∣∣
p

ψ(s, t)Pτ (dt)

6
1
m

∫
S

Pκ(ds)ψ(s)
∑
A∈Ai

|αA(s)|p

6
1
m

∫
S

Pκ(ds)ψ(s)
∑
A∈A
|αA(s)|p

6
M

m

∫
S

Pκ(ds)ψ(s)
∫
T

∣∣∣∣∣∑
A∈A

αA(s)1A(t)

∣∣∣∣∣
p

Pτ (dt)

6 β
M

m

∫
S

Pκ(ds)ψ(s)
∫
T

∣∣∣∣∣∑
A∈A

αA(s)1A(t)

∣∣∣∣∣
p

Pτ (dt)

6 β
M

m
‖x‖pp .

It then follows that

χ(x) 6
∑
i∈I

∥∥xi∥∥
p

6 (#I)
[
β
M

m

]1/p

‖x‖p .

Q.E.D

Since the set T is finite, we can prove that the function ψ is uniformly
bounded.

Lemma A.1. For every t ∈ T0 we have ψ(s, t)Pτ{t} 6 1 for Pκ-a.e. s ∈ S. In other
words,

∀t ∈ T0, Pκ{ψ(·, t)Pτ{t} > 1} = 0. (7)

Proof of Lemma A.1. Fix t ∈ T0 and let At be the set in S defined by

At = {s ∈ S : ψ(s, t)Pτ{t} > 1}. (8)

Assume by way of contradiction that Pκ(At) > 0. It then follows that

Pκ×τ (At × {t}) =
∫
At

ψ(s, t)Pτ{t}Pκ(ds)

>

∫
At

Pκ(ds)

> Pκ(At) = Pκ×τ (At × T ). (9)
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We thus obtain the following contradiction

Pκ×τ (At × {t}) > Pκ×τ (At × T ). (10)

Q.E.D

Combining Lemma A.1 and Proposition A.3, it is straightforward to prove the
following equivalence result.

Corollary 1. Under Assumptions III and IV, the two norms ‖·‖p and χ are equiva-
lent in Σ, i.e., they define the same topology on Σ.

A.1 Ideals

If a belongs to Lp+(Fc,P) we recall that L(a) is the vector subspace of Lp(F ,P)
defined by

L(a) := {x ∈ E : ∃µ > 0, |x(ω)| 6 µa(ω) for P–a.e. ω ∈ Ω}.

For each i ∈ I, the space Lp(F i,P) is denoted by Li(a). On Σ(a) =
∑

i∈I L
i(a),

we let η be the norm defined by

∀x ∈ Σ(a), η(x) = inf

{∑
i∈I

∥∥xi∥∥
p

: (xi)i∈I ∈
∏
i∈I

Li(a) and
∑
i∈I

xi = x

}
.

We obviously have

∀x ∈ Σ(a), ‖x‖p 6 χ(x) 6 η(x).

Actually these three norms define the same topology on Σ(a).

Proposition A.4. Under Assumptions III and IV, the two norms ‖·‖p and η are
equivalent in Σ(a), i.e., they define the same topology on Σ(a).

Proof of Proposition A.4. The arguments are very similar to those used to prove
Corollary 1. Only the proof of Proposition A.3 deserves some attention. Let
x be a vector in Σ(a). Since a belongs to Lp(Fc,P)+, there exists a function
h ∈ Lp+(S,Pκ) such that Fa(s, t) 6 h(s) for every (s, t). Following the notations
in the proof of Proposition A.3, the mapping

RA −→
∑

i∈I L
0(T i0 ,Pτ )

(αA)A∈A 7−→
∑

A∈A αA1A

is a linear bijection. Therefore, it is continuous whatever the norms we consider
in each space. It follows that there exists 0 < Ξ <∞ such that

∀α ∈ RA, max
A∈A
|αA| 6 Ξ sup

t∈T0

∣∣∣∣∣∑
A∈A

αA1A(t)

∣∣∣∣∣ .
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For each s ∈ S, the mapping t 7→ Fx(s, t) belongs to
∑

i∈I L
0(T i,Pτ ), implying

that there exits α(s) ∈ RA such that

∀(s, t) ∈ S × T, Fx(s, t) =
∑
A∈A

αA(s)1A(t).

Since there exists µ > 0 such that |Fx(s, t)| 6 µh(s) for every t ∈ T0, we deduce
that

∀A ∈ A, αA(s) 6 µΞh(s).

The set A can be decomposed in a partition (Ai)i∈I where Ai ⊂ T i0 for each i. It
then follows that

Fx(s, t) =
∑
i∈I

∑
A∈Ai

αA(s)1A(t)

 .
We denote by xi the function defined on Ω by

∀ω ∈ Ω, xi(ω) =
∑
A∈Ai

αA(κ(ω))1A(τ(ω)).

Since αA(s) 6 µΞh(s) for every A ∈ A and each s ∈ S, we get that |xi| 6 µΞa.
It is then straightforward to check that

x =
∑
i∈I

xi and xi ∈ Li(a), ∀i ∈ I.

The rest of the proof follows almost verbatim. Q.E.D

A.2 Proof of Claim 5.1

In order to prove Claim 5.1, we will need the following convexity result due
to Podczeck (1996). We also refer to Aliprantis et al. (2004, Lemma 4.3) for a
proof.

Lemma A.2. Let (Z, τ) be an ordered topological vector space, let M be a vector
subspace of Z (endowed with the induced order), let Y be an open and convex
subset of Z such that Y ∩M+ 6= ∅ and let z ∈ clY ∩M+. If p is a linear functional
on M satisfying

∀y ∈ Y ∩M+, p(y) > p(z)

then there exists some π ∈ (Z, τ)′ such that

∀m ∈M+, π(m) 6 p(m) and p(z) = π(z).

Proof of Claim 5.1. We proved the existence of a linear functional p ∈ (Σ, σ)′

with p(a) > 0 and satisfying17

∀i ∈ I, p(xi) = p(ei) and ∀yi ∈ P i(xi) ∩ Li(a), p(yi) > p(ei).
17See (1) and (2).
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Fix yi ∈ P̂ i(xi) ∩ Li(a)+, then for α > 0 small enough

αyi + (1− α)xi ∈ P̂ i(xi) ∩Axi ∩ Li+(a) ⊂ P i(xi) ∩ Li(a),

in particular p(yi) > p(xi). Applying Lemma A.2 with (Z, τ) = (Li, ‖·‖p), M =
Li(a), Y = P̂ i(xi) and z = xi, we get Claim 5.1. Q.E.D
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