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INTRODUCING HIGHER MOMENTS IN THE CAPM: SOME BASIC IDEAS*

Gustavo M. de Athayde   and   Renato G. Flôres Jr.

EPGE / Fundação Getúlio Vargas, Rio de Janeiro

Abstract

We show how to include in the CAPM moments of any order, extending the mean-variance or

mean-variance-skewness versions available until now. Then, we present a simple way to modify

the formulae, in order to avoid the appearance of utility parameters. The results can be easily

applied to practical portfolio design, with econometric inference and testing based on

generalised method of moments procedures. An empirical application to the Brazilian stock

market is discussed.

Keywords: CAPM, GMM, kurtosis, likelihood ratio tests, market portfolio, skewness.

1. Introduction

                                               
* We are indebted to the participants in the Forecasting Financial Markets (London, U.K.) conferences, since
1997, when these ideas were first discussed. Thanks are also due to Christian Dunis. All mistakes are ours.   
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Most models in finance are based on mean-variance analysis. The risk premium is therefore

derived from the second moment of a random variable. The basic assumption of this kind of

modelling is that agents are not concerned about moments higher than the variance. However, it

is known that these moments have an influence on investors’ decisions, which might explain the

bad empirical performance of the CAPM. Indeed, the Lintner-Mossin-Sharpe model1 is based on

the assumption that the investors’ goal is to minimise the variance and maximise the expected

return of their portfolios.

In general, agents not only care about higher moments, but also their preferences seem to follow

some standard behaviour, in which they like odd moments and dislike even ones. Consider, for

instance, these two lotteries: the first costs one pound, and there is a chance of 1/106 of winning

one million pounds; the second pays one pound upfront, but there exists a probability of 1/106 of

having to pay one million pounds. Which one looks more attractive?

What makes this example interesting is that returns from both lotteries have the same mean,

variance and even moments. Therefore the difference is on the odd moments. In fact, though the

skewnesses of both lotteries have the same absolute value, one is positive and the other

negative. The same thing goes with all the higher odd moments.

Most people would prefer the first lottery. Actually it bears the typical profile of existing

gambling schemes, like roulettes, horse racing and government lotteries. Individuals are in

general willing to trade a highly probable loss of a few cents, for a rather small chance of

winning a fortune. Intuition then suggests that agents prefer high positive values for the odd

moments.2

When the distributions are for instance symmetric, all the odd moments are null. The wider the

tails, the higher the even moments will be, and they all basically capture the dispersion of the

payoffs. It is also intuitive that agents dislike even moments.

All strictly increasing and concave utility functions have expected utilities that increase with odd

moments and decrease with even moments. This kind of behaviour coincides with the aspects

                                               
1 Sharpe (1964) is the classic reference.
2 One may ask how come that the opposite gambler, who offers these lotteries, is facing negative skewness and
still accepting these risks. It should then be reminded that government lotteries, horse racing and casinos always
receive some extra premiums, that do not make these bets so fair as in the example above...



3

just mentioned. Moreover, use of higher moments is the current concern of measures of risk like

the VaR (Value at Risk) and the downside risk of portfolios. They all emphasise the worst states

of the world, i.e., the left tails of the distributions. The higher the odd moments and the lower

the even ones, the lower the risks will be.

One theoretical way to avoid many complications, and get back to mean-variance analysis, is to

use the assumption that assets returns are normally distributed. In this case, all the odd moments

are null (because the distribution is symmetric) and, since linear combinations of normal

distributions are also normal, portfolios made of these assets will exhibit normal returns. As the

odd moments are null, optimisation, for the investor, is restricted to minimising the even

moments. However, normal distributions give us more; any even moment can be written as:

( ) ( )σ2

1
2 1n

i

n
i −

=
∏ ,              where 2n , n=1,2,... , is the order of the moment,

so that minimisation of 2σ is sufficient to minimise all the even moments. Thus, the traditional

mean-variance problem is justifiable in this context.

Unfortunately, normality of asset returns has been widely rejected in empirical tests. The

persistence of skewness has been shown by Singleton and Wingender (1986), and the presence

of excess kurtosis in stock returns is widely known. Thus, the previous arguments claim for a

more complete model that takes higher moments into account when choosing a portfolio.

Jean (1971, 1973) and Samuelson (1970) approached the optimisation of portfolios taking into

account the skewness. Later, Ingersoll (1975) made an attempt at describing what might be a

portfolio frontier in three dimensions. Nevertheless, he did not arrive at a closed form for the

surfaces, especially because, like in Kraus and Litzenberger (1976), his main concern was the

asset pricing relation. The great inconvenience of Ingersoll’s and Kraus and Litzenberger’s

formulae is the presence of preference parameters, as opposed to the original CAPM, that

depends solely on observable variables.

In this paper we generalise the CAPM formula to include higher moments, like the kurtosis, and

show a way to get rid of preference parameters. The model obtained relies on quantifiable,
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observable variables. The way to do this is shown in section 2. Section 3 develops empirical

tests of the proposal, using data from the Brazilian stock market. A final section concludes.

2. The CAPM with Higher Moments

Ingersoll (1975) and later Kraus and Litzenberger (1976) provided a formula for the CAPM

where skewness is taken into account. Both papers assumed that there was an optimal portfolio

(which in equilibrium was the market portfolio) and, by total differentiation of the utility

function at this point, they arrived at:
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β          , ir
~  is the return of asset i , mr

~  is the

return of the market portfolio, rf  is the riskless rate of return and Uj stands for the marginal

utility of the jth moment.

The term 2im
σ is called the coskewness between asset i and the market portfolio. If it is high

and positive, returns ir
~  tend to go up when the market is turbulent, and to be lower – even

below their average - in peaceful, small volatility periods.

In contrast to the CAPM, which does not include utility parameters in its formula, expression

(1) requires specification of a utility function in case one wants to estimate its parameters. This

might be the reason why, for more than 20 years, formula (1) has not become so popular in

financial markets as the CAPM has. Unlike assets returns, preferences are not observable. Thus,

we shall be always facing the problem of mispecifying the utility function, when estimating the

coefficients.

All estimations of (1) in the literature were made using one of two approaches. The first, Kraus

and Litzenberger (1976), Friend and Westerfield (1980), Tan (1991), considered the betas as the

independent variables in (1) and used a panel of observations – i.e. return series for different
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assets. The time dimension was used to estimate, for each asset, the mean return and the

corresponding betas; then a linear regression was run in cross-section, taking as observations

these estimates.3 The second approach, Arditti (1971), Francis (1975), starting from the same

panel, used a linear regression of each asset’s average return on both its variance and skewness;

the three moments having been previously obtained from each time series. The intuition behind

this regression is to capture how much of the volatility and asymmetry would affect the average

return. Needless to say, this last method is totally incoherent with (1) in the sense that we can

not check specifically if a given utility function is rejected or not.

Lim (1989) made the first estimation of (1) respecting its original form. He used the generalised

method of moments - GMM, and assumed that the marginal rate of substitution between

variance and skewness (U3/U2) was constant. He then verified that this term was statistically

significant. It is immediate to see from (1) that when this term is zero, one is back to the mean-

variance CAPM.

A simple generalisation of (1), including higher moments like the kurtosis, can be made (see

Athayde and Flôres (1997)) generating:
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(3)

The term in the numerator of (3) is the cokurtosis and its properties resemble those of the

covariance. The only difference is that it captures how asset i responds to the cube of market

variations; thus, if positive, it magnifies huge market variations but, unlike the coskewness, it

preserves their sign.

                                               
3 This means that the sample size for the regression was equal to the number of assets.
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Equation (2) can be improved in a way to get rid of preference parameters, making the model

more easily quantifiable. Consider the three portfolios z2 ,  z3  and z4  , such that:
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The existence of these portfolios is guaranteed if the number of assets is at least equal to the

number of moments being considered. The following equations are then immediate and show

that if the investor does not care for the jth moment (i.e. Uj=0), the expected return of portfolio

zj is equal to the riskless asset :
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Substituting (4), (5) and (6) in (2), we have:
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This equation says that the risk premium of a portfolio i is explained by its betas. It reminds us

of a multi-factor model, like Ross Arbitrage Price Theory – APT (see Ross (1976)). The

interesting aspect is that it provides the factors themselves: each of them represents the effect of

the respective moment on the asset risk premium. Indeed, the formula offers an orthogonalized

decomposition of the risk premium. In case the betas of portfolio i are null, its expected return

will equal that of the riskless asset.

As when asset i is the market portfolio itself, all βs are unitary, it is also true that:
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which provides a decomposition of the excess return of the market portfolio into the effects of

each single moment. Formula (8) thus enables to identify the role of each moment on the

market’s risk premium. It also follows that if a portfolio i has all its betas equal to 1, it will have

the same expected return as the market portfolio.

Combining (7) and (8) to get rid of portfolio z2 , we finally arrive at:
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An interesting case, which also serves as a cross-check of the above formulae, is when all

returns are normally distributed. Recalling Stein’s Lemma (see, for instance, Huang and

Litzenberger (1988), chapter 4), which says that if x and y are normally distributed, and f is a

function of class C1, then:
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and normality of returns implies:
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so that (9) becomes:
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This result shows that, as mentioned in the introduction, even if the investor cares for higher

moments, when returns are normally distributed, it is the classical CAPM that applies.

3. An Empirical Test

We have taken series of daily returns for the ten most liquid Brazilian stocks and constructed

the zjs portfolios from them. The IBA - Índice Brasileiro de Ações played the role of the market

portfolio. This index was chosen mainly because of its diversification. The best approximation to
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the riskless asset return was given by the future contracts of the interbank deposit rates; these

rates are exactly those which guarantee the hedge of interest rates.

The tests were performed on a sample running from January 2nd 1996 to October 23rd 1997,

giving a total of 450 observations. Estimation and testing were via the GMM, with the long run

covariance matrix estimated according to Newey-West (1987), using a truncation lag of 20.

Four models based on formula (9) were tested. The portfolios zjs were chosen to be the

minimum variance portfolios, with short sales allowed, subject to the constraints defining them –

i.e. that all the cross-moments with the market portfolio were null, except the one of order j.

The most complete model includes skewness and kurtosis, and is described by the following

moment conditions. (All returns mentioned from now on are already excess returns.)

The first three conditions define the expected return, variance and skewness of the market

portfolio:

[ ] 0~ =− mm MrE

                                                               [ ] 0)~( 2 =−− mmm VMrE

(11)

                                   [ ] 0)~( 3 =−− mmm SMrE                                 .

The next three conditions define the βs for each of the ten assets used, so that they refer to  i =

1, 2,..., 10   :
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and the following six to the portfolios z3 and z4 , in order to guarantee their properties:
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The final three conditions are the ones that will differ between the models. For the first model,

which takes skewness and kurtosis into account, they are given by:
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As ten assets were used, the total number of moment conditions is 51 (=3+10x3+6+2+10x1)

and that of parameters 37 (=3+10x3+4), resulting in 14 degrees of freedom.

The second model deals only with skewness. When the kurtosis is irrelevant, Mz4 will be null.

The last moment conditions (14) reduce to:
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In order to verify the gain of adding kurtosis to a model that already contains skewness, a

(GMM) Likelihood Ratio Test is used. This test is based on the difference between the two chi-

square values associated with the J-test for each model. Hansen’s J-test is a portmanteau

procedure to assess the validity of the moment conditions; the test statistic is asymptotically a

chi-square whose number of degrees of freedom is equal to the number of conditions less the

dimension of the vector of parameters.4 The difference of such chi-squares, in the (GMM)

Likelihood Ratio Test, is also (asymptotically) a chi-square and, in the case at stake, with one

degree of freedom.

The third model deals only with kurtosis on the asset pricing. This means that Mz3 will be null

and the set of moment conditions (14) are expressed as:

                                               
4 For more details see Davidson and MacKinnon (1993), chapter 17, or Flôres (1997). The basic reference on the
J-test is Hansen (1982).
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The way to verify the gain of adding skewness to a structure that already considers kurtosis is

analogous to the one in the previous case; the only difference is that now the chi-square of the

first model is subtracted from the one of the third model instead of the second.

The final set of conditions characterises the classical CAPM. Equations (14) must now take into

account that both Mz3  and Mz4  will be equal to zero, and the model has 16 degrees of freedom.

The gain of including skewness (kurtosis) to the classical CAPM is tested by the difference

between the J-values of the last and the second (third) model. To assess the gain of adding both

higher moments to the CAPM one takes the difference between the chi-squares of the last and

first models. This difference should be statistically significant in a chi-square with 2 degrees of

freedom.

The main results are shown in Table 1, displaying the statistics related to the J-test and their

respective degrees of freedom. These chi-squares check the validity of the moment conditions,

and the null that they are “correct” cannot be rejected in any of the four cases in the Table.

To test the significance of including kurtosis to the classical CAPM, we compare the value of

0.12 (13.19-13.07) with tail abscissae from a chi-square with one degree of freedom. The

conclusion is that the gain of adding kurtosis is statistically negligible. On the other hand, the

gain of adding skewness to the CAPM is statistically significant at 5%: the chi-square value at

95% is 3.84, and the difference between the statistics of the two models is 4.53 (13.19-8.66).

In a similar way, the gain of adding skewness to a model that contains kurtosis is significant at

5% (4.43=13.07-8.64), while that of adding kurtosis to a model that already has skewness is



13

negligible (0.02=8.66-8.64). Finally, in line with the results of the previous paragraph, it is

interesting to note that the gain from moving from the CAPM to the full skewness+kurtosis

model is not significant at 5% (the corresponding chi-square abscissa is now 5.99 , while  13.19-

8.64=4.55).

        Table 1: Values of the J-test for the four models

Model d.f. Chi-sq.

CAPM 16 13,19

KURT 15 13,07

SKEW 15 8,66

BOTH 14 8,64

We may then conclude that, for the Brazilian stock market, there is an unquestionable gain in

adding skewness in the design of portfolios, while kurtosis does not seem to play any significant

role.

As a second point, one of the most common complaints on the CAPM is that it tends to

overestimate the βs. One interesting aspect of our proposal is that the optimal model (the one

that deals with skewness) tends to provide lower estimations of the β2s compared to those of

the CAPM. Therefore, inclusion of the third moment seems to have corrected this

inconvenience. Figure 1 below shows this property in a dramatic way. Each point corresponds

to a stock, its coordinates being the β2s estimated by the optimal model and the CAPM. The 45°

line leaves no doubt about the improvement.
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                                  Figure 1: The CAPM and optimal betas for the ten stocks

4. Conclusion

This paper provides a general and applicable way of dealing with the CAPM formula when

moments higher than the variance are considered. Moment conditions ensue naturally from the

theory and the properties of the instrument portfolios, so that different models can be contrasted

through GMM – likelihood ratio tests. The instrument portfolios make it unnecessary to specify

a utility function, a stumbling block in the applications of higher moments CAPM-versions until

now.

Empirical tests made for the Brazilian market found that skewness played the most important

role, while the gain of adding kurtosis was negligible.

Further theoretical developments assessing the validity of additional results of the mean-variance

theory are however needed for a complete generalisation of the CAPM.
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