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Abstract. This paper studies the electricity hourly load demand in the area covered by a
utility situated in the southeast of Brazil. We propose a stochastic model which employs
generalized long memory (by means of Gegenbauer processes) to model the seasonal
behavior of the load. The model is proposed for sectional data, that is, each hour’s load
is studied separately as a single series. This approach avoids modeling the intricate
intra-day pattern (load profile) displayed by the load, which varies throughout days of
the week and seasons. The forecasting performance of the model is compared with a
SARIMA benchmark using the years of 1999 and 2000 as the out-of-sample. The model

clearly outperforms the benchmark. We conclude for general long memory in the series.
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1 -Introduction

Managing electricity supply is a complex task. The system operator is responsible for
the hourly scheduling of the generators and aims foremost at balancing power
production and demand. After this requirement is satisfied, it aims at minimizing
production costs, including those of starting and stopping power generating devices,
taking into account technical restrictions of electricity centrals. Finally, there must
always be a production surplus, so that local failures do not affect dramatically the
whole system. It is relevant for electric systems optimization, thus, to develop a
scheduling algorithm for the hourly generation and transmission of electricity. Amongst
the main inputs to this algorithm are hourly load forecasts for different time horizons.
Electricity load forecasting is thus an important topic, since accurate forecasts can avoid
wasting energy and prevent system failure. The former when there is no need to
generate power above a certain level and the latter when normal operation is unable to
withstand a heavy load. The importance of good forecasts for the operation of electric
systems is exemplified by many works in Bunn and Farmer (1985) with the figure that a
1% increase in the forecasting error would cause an increase of £10 M in the operating
costs per year in the UK.

There is also a utility-level reason for producing good load forecasts. Nowadays
they are able to buy and sell energy in the specific market whether there is shortfalls or
excess of energy, respectively. Accurately forecasting the electricity load demand can
lead to better contracts. Among the most important time horizons for forecasting hourly
loads we can cite: one to 168 hours ahead. This paper deals with forecasts of load
demand one to seven days (24 — 168 hours) ahead for a Brazilian utility situated in the
southeast of the country.

The data in study cover the years from 1990 to 2000 and consist of hourly load
demands. We work with sectional data, treating each hour as different time series, so
that 24 different models are estimated, one for each hour of the day. All models,
however, have the same structure. Ramanathan et al. (1997) won a load forecasting
competition at Puget Sound Power and Light Company using models individually
tailored for each hour. They also cite the use of hour-by-hour models at the Virginia
Electric Power Company. However, our approach differs from theirs in various ways,
including that we use only sectiona data in each model. Using hour-by-hour models
avoids modeling the daily load profile, which varies for different days of the week and

different parts of the year, increasing model complexity much more intensely than



allowing improvements in the forecast accuracy. Although temperature is an influential
variable to hourly loads, temperature records for the region in study are very hard to
obtain and we focus our work on univariate modeling.

Long memory in stationary processes has traditionally two aternative
definitions, one in the frequency-domain and the other in the time-domain. In the
frequency-domain, this feature implies that the spectrum is proportional to |)\|'2d as the
freqguency A approaches zero. In the time-domain, the autocorrelations decay
hyperbolically, instead of geometrically asin ARMA processes (px ~ Ck[** ask — oo,
where k is the lag and C is a constant). In both cases, d is the long memory parameter
and the above relationships characterize long memory and stationarity if d O (0, 0.5).
Good reviews of long memory literature are found in Beran (1994) and Baillie (1996).
Hosking (1981) and Granger and Joyeux (1980) proposed at the same time the
fractional integration, which has no physical but only mathematica sense. It is
represented by a noninteger power of (1 — B), where B is the backward-shift operator
such that BX; = X1, and can generate long memory while still keeping the process
stationary. Generalized (seasonal) long memory can be generated by a noninteger power
of the filter (1 — 2yB + B and the periodicity is implicit in the choice of the parameter
y. Gray, Zhang and Woodward (1989) call such processes as Gegenbauer process,
because they admit Gegenbauer polynomialsin the MA() representation. They explore
the properties of Gegenbauer and related processes, which present the generalized long
memory feature. The noninteger power of a finite polynomial filter is equivalent to an
infinite polynomial filter, which can be obtained by a Binomial expansion.

The time series modeling includes a stochastic trend, seasonal dummies to
model the weekly pattern and the influence of holydays. After filtering these features
from the log-transformed data, there remains a clear seasonal (annual) pattern.
Analyzing the autocorrelogram, a damped sinusoid is observed, consistent with a
general long memory (Gegenbauer) process. The forecasting performance 24 to 168
hours ahead for the years 1999 and 2000 (each year separately) is compared with that of
a benchmark, namely a SARIMA model, and the results are highly favorable to our
modeling. For one day (24 hours) ahead, the model yields mean absolute percentage
error (MAPE) going from 2.2% (21™ hour, 1999) to 4.4% (2" hour, 2000), and for
seven days (168 hours) ahead it goes from 3.1% (20" hour, 1999) to 8.4% (3™ hour,

2000). Given the characteristics observed in the data and the results obtained in



forecasting, we conclude for the presence of generalized long memory in the data
studied.

The plan of the paper is as follows. The next Section briefly explains ordinary
and generaized long memory, both used in the modeling process. Section 3 describes
the data and the model proposed to fit the load demand, while Section 4 shows the
forecasting results of this modeling. Section 5 offers some concluding remarks.

2 — (Generalized) Long Memory

2.1 -Ordinary Long Memory

Stationary long memory processes are defined by the behavior of the spectral density
function near the frequency zero, asfollows. Let f(A) be the spectral density function of

the stationary process X:. If there exists a positive function ¢, (A), AU (-7, 7], which
varies slowly as A tendsto zero, such that d (1 (0, 0.5) and

f(A)~c, (MA| ™ asA - 0, 1)
then X; is a stationary process with long memory with (long-)memory parameter d.
Alternatively, let p(k) be the k-th order autocorrelation of the series X;. If there exists a
real number d [J (0, 0.5) and a positive function c,(k) slowly varying as k tends to
infinity, such that:

p(K) ~c,(K)k*™ ask - oo e
then X; is said to have long memory or long range dependence.

X¢ is said to follow an ARFIMA(p,d,q) model if ®(B)(1-B)‘X, =O(B)s,
where & is a mean-zero, constant variance white noise process, B is the backward shift
operator such that BX; = X1, d is not restricted to integer values as in the ARIMA
specification, and ®(B)= 1-@B-...-@B° and O(B)=1+6:B+...+6,B% are the
autoregressive and moving-average polynomials, respectively. ARFIMA processes are
stationary and display long memory if the roots of ®(B) are outside the unit circle and d
0 (0, 0.5). If d < 0 the process is short memory and said to be “antipersistent”
(Mandelbrot, 1977, p.232), and Equation (1) holds so that the spectrum has a zero at the
zero frequency. Note that in this case the process does not fit into the definition of long
memory, since the parameter d is outside the range imposed by this definition. If d =0
the ARFIMA process reduces itself to an ARMA. If the roots of ®(B) are outside the

unit circle and d < 0.5, the process is stationary and if the roots of ©(B) are outside the



unity circle and d > -0.5, the process is invertible. The autocorrelations of an ARFIMA
process follow p(k) ~ Ck*™* as the lag k tends to infinity and its spectral function
behaves as f(\) ~ C]\[*® as A tends to zero, satisfying thus (1) and (2). A non-integer
difference can be expanded into an infinite autoregressive or moving average

polynomial using the binomial theorem:

= (d
@-B)" = Z(kj(—B)k : ©)
where (dj = rd+1 and I"(.) isthe gamma function.
k) T(k+D)r(d-k+1

2.2 —Generalized Long Memory

Seasonal long memory is usually not defined in the literature, as different spectral
behaviors bear analogies with the definition in (1) within a seasonal context. Rather,
processes with these analogous properties are defined and their spectral and
autocovariance behaviors explored. We in this paper work with Gegenbauer processes
as in Gray, Zhang and Woodward (1989) and Chung (1996), but alternative models
have been used by Porter-Hudak (1990), Ray (1993) and Arteche (2002), for example.
The Gegenbauer processes were suggested by Hosking (1981) and later formalized by
Gray, Zhang and Woodward (1989) and are defined as follows. Consider the following

process
(-2yB+B?)'X, =¢,, (4)

where |y| < 1 and ¢ is a white noise. This process is called a Gegenbauer process,
because the Wold representation of (4) admits the important class of orthogonal
polynomials called Gegenbauer polynomials as the coefficients (Gray et a., 1989). This
Wold representation is achieved by using the binomial theorem as in (3), expanding the
representation to an MA(). If |y] < 1 and 0 < d < ¥, the autocorrelations of the process
defined in (4) can be approximated by

o(k) =Ccoskv)k®*®™ as k - o (5)

where C is a constant not depending on k (but depends on d and v) and v = cos™(y).
That means that the autocorrelations behave as a damped sinusoid of frequency v and
that y determines the period of the cycle (or seasonality). Moreover, the spectral density

function obeys



0.2

f(A)= 5{2|cos)l - cosv|}'2d (6)
behavingasA - v like
)~ |2 -v? ™ (7)

for 0 < A < 1t Note that if y = 1 then (4) is an FI(2d), or ARFIMA(0,2d,0), and that is
why we can call these processes as having the “generalized” long memory property.
Moreover, the (long memory) analogy of Gegenbauer processes with Fl processes
comes from the fact that the latter have a pole or zero at the zero frequency while the
former have a pole or zero at the frequency v, depending on whether d is respectively
positive or negative. Note that the Gegenbauer processes can be generalized into k-
factor Gegenbauer processes as in Gray et al. (1989) and Ferrara and Guégan (2001), by
allowing that different Gegenbauer filters (1 — 2yB + B?)®; i = 1, ..., k; apply to X;. We
work in this paper with a mix of Gegenbauer and ARFIMA process to model the
detrended load after the calendar effect is removed.

3 —Data and model

3.1- Data

The data comprise hourly electricity load demands from the area covered by the utility
in study, ranging from the first day of 1990 to the last of 2000. The data set is then
separated into 24 subsets, each containing the load for a specific hour of the day
(“sectional” data). Each subset is treated as a single series, al of them modeled
following a same overall specification, although estimated independently of the others
(univariate modeling). We use an estimation window of four years, believing it
sufficient for a good estimation. Some experiments with longer and shorter estimation
windows yielded results not much different from the ones obtained here. Asthe focusis
in multiples of 24 hours ahead forecasts, the influence of lags up to 23 may be
unconsidered without affecting predictability. Furthermore, using these “sectional” data
avoids modeling complicated intra-day patterns in the hourly load, commonly called
load profile, and enables each hour to have a distinct weekly pattern. This last featureis
desirable, since it is expected that the day of the week will affect more the middle hours,
when the commerce may or not be open, compared to the first and last hours of the day,
when most people are expected to sleep. Hippert, Pedreira and Souza (2001, p. 49), in



their review of load forecasting papers, report that difficulties in modeling the load
profile are common to (almost) all of them.

The hour-by-hour approach has been aso tried by Ramanathan et al. (1997),
who win aload forecast competition, but their modeling follows a diverse approach than
ours. Unlike them, we use neither deterministic components to model the load nor
external variables such as those related to temperature. Thisis a point to draw attention
to, as some temperature measures (maximums, averages and others) could improve
substantially the prediction if used, particularly in the summer period when the air
conditioning appliances constitute great part of the load. The forecasting errors are in
general higher in this period and we do not use this kind of data because it is
unavailable to us. However, the temperature effect on load is commonly nonlinear as
attested by a number of papers (see Hippert, Pedreira and Souza, 2001, p. 50), and

including it in our linear model would probably add a nonlinear relationship to it.

3.2—Model
A wide variety of models and methods have been tried out to forecast energy demand,
and agreat deal of effort is dedicated to artificia intelligence techniques, in particular to
neural network modeling®. Against this tidal wave of neural applications in load
forecasting, we prefer to adopt statistical linear methods, as they seem to explain the
datato areasonable level, in addition to give an insight into what is being modeled. The
forecasting performance makes us believe the choice is correct for the data in study. A
contemporaneous work of Soares and Medeiros (2003) analyses the same data set,
adopting instead a deterministic components approach, modeling as stochastic only the
residuals left after fitting these deterministic components. Their results are fairly
comparable to ours (slightly better), but the deterministic components approach should
not adapt well to the case where a structural break is present in the data, like during the
2001 Brazilian energetic crisis, when the electricity consumption was reduced by about
20%. On the other hand, our methodology is shown to yield good forecast resultsin this
period (details in Souza and Soares, 2003).

The model for a specific hour is presented below, omitting subscripts for the
hour as the specification is the same. Let the load be represented by X; and Y+ = log(X4).
Then,

! Hippert, Pedreiraand Souza (2001) provide a review of works that used varied techniques in predicting
load demand, paying especial attention to evaluate the use of neural networks.



Y, =L, +WD, +aH, +Z, (8)
where L is a stochastic level (following some trend, possibly driven by macroeconomic
and demographic factors), WDy is the effect of the day of the week, H; is a dummy
variable to account for the effect of holidays (magnified by the parameter a) and Z; isa
stochastic process following:

(-2yB+B?)*(1-B)*1-¢B)Z, =¢,, 9)
where €; is a white noise. The first multiplicative term on the left hand side of (9) takes
the annual (long memory) seasonality into account, where y is such that the period is
365 days and dl is the degree of integration. The second refers to the pure long
memory, where d2 is the degree of integration. The third refers to an autoregressive
term, with seven different and static values of @, one for each day of the week (rather
than @ being a stochastic parameter).

No assumptions were made up on the trend driving the stochastic level, but it is
reasonable to think it is related to macroeconomic and demographic conditions. L; is
estimated simply averaging the series from half ayear before to half ayear after the date
t, so that the annual seasonality does not interfere with the level estimation. It is
forecasted by extrapolating a linear trend estimated by local regression on the estimated
L;. The calendar effect, in turn, is modeled by WD; and aH;, where the former is
constituted by dummy seasonals, H; is a dummy variable which takes value 1 for
holidays, 0.5 for “half-holidays’ and O otherwise, and a is its associated parameter. The
days modeled as “half holidays’ are part-time holidays, holidays only in a subset of the
areain study or even for a subset of the human activities in the whole region, in such a
way that the holiday effect is smooth. For two examples of “half-holidays’, one can cite
the Ash Wednesday after Carnival, where the trading time begins in the afternoon; and
San Sebastian’s day, feast in honor of the patron saint of one of the cities within the
region in study (holiday only in this city). H; could alow values in afiner scale (e.g.,
measuring out the “holiday intensity” of different holiday types), but there is a trade-off
between the fit improvement and the measurement error in so doing. As it is, the huge
forecast errors present when no account of the holiday effect is taken disappear. WD:
and a are estimated using dummy variables by OL S techniques. Seasonal and ordinary
long memory are estimated using the Whittle (1951) approach, details of which® are

? Such as consistency and asymptotic normality.



found in Fox and Tagqu (1986) and in Ferrara and Guégan (1999) respectively for
ordinary and generalized long memory. Chung (1996, p. 245) notes that when the
parameter y is known, as in the present case, the estimation of seasonal long memory is
virtually identical to that of ordinary long memory. However, there are varied long
memory estimators in the literature and we chose this one for its comparatively high
efficiency. The weekly autoregressive terms are estimated with the remaining residuals,
using for it OLS techniques.

Figure 1 shows the autocorrelation function (ACF) of the series from December
26, 1990 to December 25, 1998 (eight years), for selected hours, after the trend and the
calendar effects (weekdays and holidays) are removed. The form of the ACF, which
resembles a damped sinusoid as in (5), with annual period, highly justifies using
Gegenbauer processes to model Z:. The exception is hour 20, in which either there is a
sinusoidal component of semiannual period or there are two sinusoidal components, one
with annual period and the other with semiannual period. This behavior does not occur
with any other hour, being specific of hour 20. However, our modeling does not use a k-
factor (k would equal to 2 in this case) Gegenbauer process as proposed by Gray et al.
(1989) and studied by Ferrara and Guégan (2000, 2001) to model hour 20, obtaining
good results though. In fact, hour 20 obtains the lowest errors, the exception being one
and sometimes two steps ahead, where it is beaten by hour 21. Figure 2 shows the
periodogram (raw and smoothed by a Parzen lag window with degree of smoothness
0.9, respectively represented by dots and a solid line) for the same series in log-log
scale. Note the resemblance with the behavior described by (7). The eighth Fourier
frequency, corresponding to an annual period as we use eight years of data, shows a
sharp peak in the raw periodogram, whereas its vicinity shows a smooth decrease (in
log-log scale) going farther to either side. The subfigure corresponding to hour 20 in
Figure 2 is consistent with the ACF shown in Figure 1, since there are peaks at the
eighth and the sixteenth Fourier frequencies, meaning that there may be one
(semiannual) or two (annual and semiannual) Gegenbauer factors.

We chose working with logarithms as the weekly seasonality and the holiday
effect can be modeled additively while they are multiplicative in the original series X:.
These effects are believed to be multiplicative while relating to consuming habits,
varying proportionally when the number of consumers expands. However, we
experimented applying the same modeling as in (8)-(9) to X, instead of Y, yielding



very similar results. The choice of the logarithm transformation is thus only to be

coherent to our beliefs and not result-oriented.

4 — Results
We run aforecasting exercise with the data specified in the previous section, comparing
the results of model (8)-(9) to a benchmark. The benchmark used isa SARIMA, like the
works of Darbellay and Slama (2000) and Soares and Medeiros (2003), for example. It
is modeled and estimated using EViews™ software package. The “seasona” period
considered for the SARIMA is one week, since there must be in general small variation
between one week and the next within the context of annua seasonality. In fact the
SARIMA performs quite well in the early hours, when the load is smoother. A different
SARIMA isestimated for each hour of the day, asis done with model (8)-(9).

The period used to estimate the models begins four years before December 25,
1998, and ends on this date (in sample). That is, the model is estimated once using a
four-year estimation window, as it seems to be enough. The estimated parameters for
each hour are presented in Table 1. The degrees of fractiona integration, both seasonal
and ordinary, vary throughout the hours, though d1 is always positive (long memory)
and d2 always negative (short memory). The (seasonal) long memory is stronger for the
hours in the beginning and in the end of the day, coinciding with the hours where the
load is smoother. The caendar effect, modeled by WD; and aH, is also not the same for
al the hours, asit is apparent that business days affect more the load in the middle hours
(trading hours) than in the first or last ones. The use of one autoregressive parameter for
each day isfully justified as one seesin Table 1 the difference in estimated values there
can be (for instance, @ estimated for the hour 19 varies from -0.125 to 0.472;
respectively @ue and @). Note that @, corresponds to the effect of the residual (of the
remaining model) of Monday on that of Tuesday, and so on. We experimented varying
the estimation window from three to eight years but the results were practically the
same. The out-of-sample, i.e., the period used to test the forecasting accuracy of the
models ranges from the first day of 1999 to the last of 2000, split in two sets of one
year. Note that the model is not re-estimated during this period. The reason why the out-
of-sampleis split in two is that the trend is estimated at once (from 1998) for 1999 and
2000 by a linear extrapolation. By visual inspection, there is an apparent break in the
trend, asif this was piecewise linear, seeming to have occurred in 2000, so that results

10



for this year are likely to be worse than those for 1999. Indeed they are, as one can
inspect by comparing Tables 2.1 and 3.1. The reason for this apparent break may relate
to macroeconomic factors, being beyond the scope of this paper. In a practical
application, it would be wise to frequently re-estimate the model, but in thisillustration,
not re-estimating the model allows one to observe that the model does not suffer from
mi sspecification (remember the trend is forecasted as linear, but not modeled so).

The favorite measure of forecasting accuracy in the load forecasting literature
(c.f. Darbellay and Slama, 2000, Park et al., 1991, and Peng et al., 1992) is the Mean
Absolute Percentage Error (MAPE), which is defined below, as it measures the

proportionality between error and load.

~

n | X o X +i
mapE = Ly 7T Tl (10)
n = XT+i

where X; isthe load at time t, )A(t its estimate, T is the end of the in-sample and n is the

size of the out-of-sample. Other measures could be used, as some works suggest that
these measures should penalize large errors and others suggest that the measure should
be easy to understand and related to the needs of the decision makers. For an example of
the former, Armstrong and Collopy (1992) suggest the Root Mean Square Error
(RMSE), while for an example of the latter, Bakirtzis et al. (1996) use Mean Absolute
Errors (MAE). However, both measures lack comparability among different data sets,
and, maybe because of that, the MAPE till remains as the standard measure. Some
authors (c.f., Park et a., 1991, and Peng et al., 1992) achieve MAPES as low as 2%
when predicting the total daily load, but results of different methods cannot be
compared on different data sets as some data are noisier than others. If different data
sets are used, the same method(s) must be used, and the comparison be made among
data sets and not methods. As to the present data, Table 2 shows the MAPE one to
seven days ahead for the year of 1999 both for the model proposed in this paper and the
SARIMA benchmark. The best method for each hour and number of steps ahead is
shown in bold. The proposed model outperforms the benchmark for all hours at one step
ahead. The benchmark is better mainly for the first five hours and more than one step
ahead. The middle hours see a huge difference in the forecast ability, with our model
performing well, attaining MAPEs of around 3% for one step ahead going to 4% for
seven steps ahead. In contrast, the benchmark attains two-digit MAPES for steps ahead
higher than one. The peak hours (19-21) see the best MAPEs, in part because the load is

11



the highest in the day (but the proportional predictability is more accurate for both
methods). Table 3 presents the same as Table 2, but for the year 2000. The results are
slightly worse, mainly because the linear trend is not re-estimated but seems to suffer a
break in 2000, as explained before. Even so, the results are good and are qualitatively
equal to the year of 1999, the difference being that the SARIMA fares better also in the
sixth hour for steps ahead higher than one. The worst MAPEs from the model (8)-(9),
namely those for the first hours seven steps ahead, rise from below 7% in 1999 to above
8% in 2000. Asto one step ahead results, the best MAPE rises from 2,23% in 1999 to
2,63% in 2000 (hour 21) and the worst from 3,76% (hour 1) to 4,43% (hour 2). The
hour 20 is the best predictable hour for seven steps ahead using the MAPE as the
criterion, yielding MAPEs of 3,12% in 1999 and 3,93% in 2000. It is important to note
that when we speak of h steps ahead, we consider the sectional data and hence refer to
days. As the primary data are hourly, one must interpret as 24h steps ahead, so that (1,
2, ..., 7) daily steps ahead actually correspond to (7, 14, ..., 168) hourly steps ahead. In
practice, it would be interesting to use the model proposed here and the benchmark,
each one for the hours and time horizons in which each one fares better, or even in a
combined way. The combination is out of the scope of this paper.

Figure 3 illustrates with a typical week the one step ahead forecasting
performance of the proposed model and the benchmark. This week goes from May 9,
1999 to May 15, 1999. One can notice that the forecasts from the proposed model fit
more closely to the observed loads than those from the benchmark do, reflecting the
smaller error obtained by (8)-(9) as presented in Table 2. However, both fits are
reasonably good, and the benchmark is not a bad predictor for this horizon (24 hours
ahead). Figure 4 illustrates the seven steps ahead forecasting performance of the
proposed model and the benchmark, using the same week as Figure 3. The fits are
looser than those for one step ahead, as expected, but the proposed model forecasts till
track the realized loads. The benchmark forecasts, on the other hand, miss out the real
loads too often for this horizon (168 hours ahead), corroborating the superiority of the
proposed model.

5—Final remarks

This paper proposes a stochastic model for the hourly electricity load demand from the
area covered by a specific Brazilian utility. This model applies to sectional data, that is,
the load for each hour of the day is treated separately as a series. This model can be

12



applied to other utilities presenting similar seasonal patterns, such as many in Brazil.
The model explains the seasonality by generalized (seasona) long memory using
Gegenbauer processes, having in addition a stochastic level (driven by some trend), and
a calendar effects component (consisting of dummy variables for the days of the week
and for holidays). The Gegenbauer processes fit in well the form of the autocorrelations
observed after the estimated level and calendar effects are removed.

A forecasting exercise against a SARIMA model (the benchmark) is highly
favorable to our modeling. This exercise included the entire years of 1999 and 2000,
forecasting one to seven days ahead (24, 48, ..., 168 hours ahead), using models
estimated up to the end of 1998. We conclude for the presence of seasonal long memory
in the data in study and suggest that it may be present in the load demand of other
utilities with similar seasonal behavior as well.
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Table 1. Parameter estimates of model (8)-(9) for each hour.

hour dl d2 WDy, WD, WDy, WDy, WDy, WDy WDg o (O Gho (oW Qe On O (0%
1 0.361 -0.370 -0.013 -0.047 0.001 0006 0.010 0.013 0.031 0006 0407 069 0495 0552 0289 0574 0541
2 0.374 -0395 -0.013 -0.044 -0.001 0.007 0.010 0013 0030 0015 0434 0687 0513 0560 0301 0558 0550
3 0.385 -0.407 -0.019 -0.041 0.001 0010 0.011 0013 0.025 0016 0473 0665 0485 0525 0335 0.607 0.606
4 0.394 -0411 -0.026 -0.039 0.003 0012 0.012 0015 0.022 0010 0450 0646 0480 0582 0316 0.624 0.639
5 0.398 -0408 -0.036 -0.034 0.006 0.015 0.015 0.018 0.017 -0004 0471 0617 0485 0559 0331 0.679 0.604
6 0.396 -0410 -0.063 -0.020 0.015 0.024 0.022 0.023 -0.002 -0.042 0493 0537 0439 0538 0338 0.713 0.673
7 0.350 -0.340 -0.121 0006 0.035 0042 0.038 0.039 -0.039 -0.126 0537 0291 0400 0406 0363 0.700 0.751
8 0.315 -0280 -0.175 0.028 0.048 0.057 0.052 0.055 -0.066 -0.194 0613 0.295 0305 0.340 0244 0.714 0.620
9 0.280 -0.192 -0.220 0.046 0.059 0.068 0.065 0.068 -0.084 -0252 0494 0309 0286 0304 009 0.789 0401

10 0.251 -0.112 -0.246 0.057 0.065 0072 0.070 0.073 -0.091 -0.28 0367 0163 0278 0.345 -0.002 0.739 0.171
11 0.230 -0.072 -0.257 0.064 0.069 0076 0.073 0.074 -0.099 -0.300 0298 0.158 0389 0.378 0.040 0.527 -0.109
12 0.238 -0.126 -0.257 0.066 0.070 0.078 0.074 0.073 -0.105 -0.306 0398 0.151 0379 0.383 0109 0.631 0.088
13 0.239 -0.140 -0.249 0.066 0.069 0076 0.072 0.073 -0.105 -0297 0439 0183 0379 0354 0125 0599 0.089
14 0.244 -0.160 -0.255 0.068 0.072 0.079 0.075 0075 -0.115 -0.303 0473 0338 0468 0414 0116 0543 0.113
15 0.248 -0.177 -0.261 0.072 0.077 0.085 0.078 0.076 -0.126 -0.311 0481 0409 0511 0.289 0.126 0547 0.147
16 0.253 -0.201 -0.263 0.073 0.078 0.08 0.080 0.074 -0.128 -0.308 0508 0462 0600 0.212 0.156 0.597 0.208
17 0.219 -0.128 -0.253 0.072 0.075 008 0.079 0.066 -0.126 -0.297 0321 0336 0648 -0.029 0.127 0537 0.128
18 0.198 -0.149 -0.192 0.053 0.054 0066 0.061 0.048 -0.090 -0.257 0441 0.165 0567 -0.024 0.114 0523 0.203
19 0.271 -0.062 -0.131 0032 0.039 0044 0.041 0.030 -0.055 -0.207 0409 0.08 0472 -0.125 -0.040 0.296 0.112
20 0.292 -0.121 -0.096 0.021 0.026 0032 0.028 0018 -0.029 -0.156 0526 0.238 0449 0127 0.068 0.374 0.203
21 0.279 -0273 -0.081 0019 0.023 0029 0.025 0015 -0.030 -0.114 0755 0457 0695 0329 0439 0508 0312
22 0.311 -0355 -0.072 0017 0.025 0030 0.025 0014 -0.039 -0.097 0909 0462 0608 0360 0484 0523 0422
23 0.330 -0.346 -0.058 0.010 0.020 0.025 0.023 0.017 -0.038 -0.063 0776 0481 0639 0350 0468 0.493 0461
24 0.343 -0.349 -0.050 0.006 0.010 0018 0.017 0.024 -0.024 -0.040 0772 0477 0618 0336 0509 0523 0400
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Table 2: MAPE for the entire year of 1999 (the best model in bold).

model  (8)-(9) SARIMA
steps  ahead steps ahead
hour 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 376% 514% 582% 6.08% 6.30% 649% 6.71% 393% 493% 563% 584% 583% 563% 4.72%
2 368% 509% 584% 6.12% 6.33% 6.59% 6.81% 385% 479% 537% 551% 546% 540% 4.67%
3 354% 497% 575% 6.00% 6.18% 6.47% 6.70% 3.67% 455% 521% 536% 526% 514% 4.40%
4 335% 4.67% 554% 573% 592% 6.18% 6.40% 3.46% 439% 507% 524% 520% 5.02% 4.17%
5 321% 439% 520% 539% 556% 5.83% 6.04% 337% 4.16% 4.95% 518% 516% 4.90% 4.01%
6 291% 4.09% 4.70% 493% 507% 535% 554% 326% 431% 529% 590% 595% 543% 4.30%
7 285% 369% 4.16% 4.30% 443% 463% 4.72% 362% 6.21% 824% 9.08% 9.16% 842% 6.27%
8 274% 337% 375% 388% 4.04% 422% 4.31% 409% 843% 11.04% 11.80% 11.99% 11.38% 8.38%
9 275% 345% 3.76% 3.86% 3.98% 4.12% 4.21% 463% 10.33% 13.18% 13.76% 13.98% 13.62% 10.05%
10 282% 346% 378% 3.86% 3.93% 4.00% 4.07% 491% 11.38% 14.42% 14.89% 15.07% 14.84% 11.05%
11 292% 359% 386% 397% 4.01% 4.04% 4.05% 495% 11.81% 15.19% 15.48% 1567% 1557% 11.40%
12 289% 361% 388% 396% 397% 3.98% 4.00% 502% 12.06% 15.61% 1581% 15.93% 15.96% 11.58%
13 299% 379% 4.07% 417% 41% 419% 4.24% 504% 11.69% 1532% 15.64% 15.72% 15.50% 11.19%
14 315% 4.06% 4.40% 451% 449% 4.49% 4.52% 510% 12.01% 1591% 16.14% 16.20% 16.04% 11.45%
15 322% 416% 452% 4.63% 4.67% 4.67% 4.73% 516% 12.45% 16.78% 17.08% 17.16% 16.89% 11.79%
16 321% 411% 448% 4.60% 4.70% 4.74% 4.77% 511% 12.40% 16.92% 17.33% 17.34% 16.93% 11.70%
17 326% 384% 4.17% 427% 4.35% 4.40% 4.43% 482% 11.57% 16.16% 16.57% 16.64% 16.11% 10.97%
18 295% 349% 371% 3.79% 3.81% 3.85% 3.90% 427% 897% 11.95% 12.46% 12.56% 12.19% 8.65%
19 282% 338% 357% 3.73% 3.87% 3.94% 3.99% 354% 6.04% 755% 8.02% 801% 7.89% 6.12%
20 235% 287% 293% 304% 305% 3.07% 3.12% 307% 490% 563% 598% 594% 577% 4.88%
21 223% 283% 310% 321% 327% 335% 347% 285% 447% 544% 584% 582% 544% 4.42%
22 256% 339% 3.75% 388% 393% 4.02% 4.13% 308% 485% 621% 6.73% 6.70% 6.09% 4.76%
23 3.04% 399% 445% 466% 4.72% 4.87% 5.01% 335% 483% 6.18% 6.67% 655% 6.07% 4.63%
24  354% 4.75% 533% 560% 572% 592% 6.10% 376% 497% 6.00% 6.38% 634% 593% 4.76%
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Table 3: MAPE for the entire year of 2000 (the best model in bold).

model  (8)-(9) SARIMA
steps  ahead steps ahead

hour 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 437% 642% 7.38% 7.92% 818% 820% 8.16% 453% 577% 655% 6.71% 6.73% 6.65% 5.70%
2 443% 654% 7.62% 8.15% 843% 845% 842% 453% 573% 642% 655% 6.54% 650% 5.65%
3 437% 645% 7.61% 8.15% 8.46% 8.44% 8.45% 444% 558% 6.27% 6.36% 6.35% 6.33% 5.48%
4  423% 624% 740% 7.93% 826% 828% 8.26% 435% 530% 6.05% 6.15% 6.15% 6.06% 5.24%
5 403% 599% 7.12% 7.69% 8.01% 8.06% 8.09% 424% 507% 582% 592% 597% 587% 5.11%
6 381% 560% 658% 7.05% 7.32% 7.40% 7.46% 414% 510% 6.21% 6.48% 6.46% 6.16% 5.14%
7 360% 508% 588% 6.21% 643% 653% 6.59% 447% 693% 868% 912% 9.16% 872% 6.57%
8 322% 461% 526% 554% 573% 581% 588% 470% 9.08% 11.41% 12.08% 1213% 11.58% 8.61%
9 303% 428% 475% 503% 522% 530% 5.35% 4.92% 10.69% 13.48% 14.28% 14.33% 13.86% 10.25%
10 297% 4.06% 449% 4.67% 4.80% 4.86% 4.92% 524% 12.01% 15.02% 15.80% 15.85% 15.52% 11.48%
11 3.00% 397% 439% 456% 4.69% 4.76% 4.81% 53% 12.69% 16.11% 16.81% 16.79% 16.53% 11.99%
12 3.05% 399% 441% 456% 4.68% 4.73% 4.75% 560% 12.78% 16.47% 17.14% 17.12% 16.84% 12.10%
13 3.00% 4.00% 4.44% 45% 4.71% 4.76% 4.78% 540% 1256% 16.27% 16.94% 16.93% 16.49% 11.71%
14 317% 429% 4.72% 493% 5.05% 510% 5.10% 555% 12.85% 16.80% 17.65% 17.60% 17.09% 12.11%
15 338% 451% 498% 519% 531% 535% 5.36% 574% 13.29% 17.70% 18.40% 18.45% 17.89% 12.41%
16 343% 455% 498% 523% 533% 541% 543% 577% 13.17% 17.77% 18.47% 1857% 17.90% 12.29%
17 360% 443% 477% 4.8% 4.98% 5.04% 5.02% 53% 12.19% 16.65% 17.26% 17.39%% 16.63% 11.25%
18 344% 419% 443% 452% 458% 4.58% 4.59% 479%  9.24% 12.18% 12.66% 12.68% 12.09% 8.67%
19 321% 377% 407% 430% 4.44% 450% 4.53% 403% 643% 781% 813% 814% 7.80% 6.18%
20 271% 330% 360% 374% 387% 393% 3.93% 347% 515% 574% 595% 6.05% 580% 4.99%
21 263% 345% 385% 411% 4.16% 4.23% 4.22% 317% 48% 567% 584% 595% 569%  4.56%
22 298% 412% 462% 494% 511% 517% 5.16% 336% 530% 6.61% 6.92% 6.90% 6.56% 4.92%
23 358% 515% 582% 622% 6.41% 6.43% 6.41% 399% 564% 695% 7.28% 7.24% 6.79% 5.30%
24 414% 596% 6.81% 7.34% 7.56% 7.60% 7.56% 450% 579% 6.78% 7.09% 6.98% 6.70% 5.59%
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Figure 1: Autocorrelation function of the series from January 1, 1990 to December 31,
1998, for hours 1, 8, 14 and 20, after removal of the trend and the calendar effects
(weekdays and holydays), up to lag 1000. Note the resemblance to a damped sinusoid.
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Figure 2. Raw and smoothed periodogram of the series from January 1, 1990 to
December 31, 1998, for hours 1, 8, 14 and 20, after removal of the trend and the
calendar effects.
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Figure 3: Real versus predicted load (MWh), for both the model proposed here and the
SARIMA benchmark, one step ahead, from May 9, 1999 to May 15, 1999 (one week,

from Sunday to Saturday).
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Figure 4: Real versus predicted load (MWh), for both the model proposed here and the
SARIMA benchmark, seven steps ahead, from May 9, 1999 to May 15, 1999 (one

week, from Sunday to Saturday).
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