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Abstract. This paper studies the electricity hourly load demand in the area covered by a 

utility situated in the southeast of Brazil. We propose a stochastic model which employs 

generalized long memory (by means of Gegenbauer processes) to model the seasonal 

behavior of the load. The model is proposed for sectional data, that is, each hour’s load 

is studied separately as a single series. This approach avoids modeling the intricate 

intra-day pattern (load profile) displayed by the load, which varies throughout days of 

the week and seasons. The forecasting performance of the model is compared with a 

SARIMA benchmark using the years of 1999 and 2000 as the out-of-sample. The model 

clearly outperforms the benchmark. We conclude for general long memory in the series.  

 

Keywords. Long Memory, Generalized Long Memory, Load Forecasting. 
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1 – Introduction 

Managing electricity supply is a complex task. The system operator is responsible for 

the hourly scheduling of the generators and aims foremost at balancing power 

production and demand. After this requirement is satisfied, it aims at minimizing 

production costs, including those of starting and stopping power generating devices, 

taking into account technical restrictions of electricity centrals. Finally, there must 

always be a production surplus, so that local failures do not affect dramatically the 

whole system. It is relevant for electric systems optimization, thus, to develop a 

scheduling algorithm for the hourly generation and transmission of electricity. Amongst 

the main inputs to this algorithm are hourly load forecasts for different time horizons. 

Electricity load forecasting is thus an important topic, since accurate forecasts can avoid 

wasting energy and prevent system failure. The former when there is no need to 

generate power above a certain level and the latter when normal operation is unable to 

withstand a heavy load. The importance of good forecasts for the operation of electric 

systems is exemplified by many works in Bunn and Farmer (1985) with the figure that a 

1% increase in the forecasting error would cause an increase of £10 M in the operating 

costs per year in the UK.  

There is also a utility-level reason for producing good load forecasts. Nowadays 

they are able to buy and sell energy in the specific market whether there is shortfalls or 

excess of energy, respectively. Accurately forecasting the electricity load demand can 

lead to better contracts. Among the most important time horizons for forecasting hourly 

loads we can cite: one to 168 hours ahead. This paper deals with forecasts of load 

demand one to seven days (24 – 168 hours) ahead for a Brazilian utility situated in the 

southeast of the country. 

The data in study cover the years from 1990 to 2000 and consist of hourly load 

demands. We work with sectional data, treating each hour as different time series, so 

that 24 different models are estimated, one for each hour of the day. All models, 

however, have the same structure. Ramanathan et al. (1997) won a load forecasting 

competition at Puget Sound Power and Light Company using models individually 

tailored for each hour. They also cite the use of hour-by-hour models at the Virginia 

Electric Power Company. However, our approach differs from theirs in various ways, 

including that we use only sectional data in each model. Using hour-by-hour models 

avoids modeling the daily load profile, which varies for different days of the week and 

different parts of the year, increasing model complexity much more intensely than 
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allowing improvements in the forecast accuracy. Although temperature is an influential 

variable to hourly loads, temperature records for the region in study are very hard to 

obtain and we focus our work on univariate modeling. 

Long memory in stationary processes has traditionally two alternative 

definitions, one in the frequency-domain and the other in the time-domain. In the 

frequency-domain, this feature implies that the spectrum is proportional to |λ|-2d as the 

frequency λ approaches zero. In the time-domain, the autocorrelations decay 

hyperbolically, instead of geometrically as in ARMA processes (ρk ~ C|k|1-2d as k → ∞, 

where k is the lag and C is a constant). In both cases, d is the long memory parameter 

and the above relationships characterize long memory and stationarity if d ∈ (0, 0.5). 

Good reviews of long memory literature are found in Beran (1994) and Baillie (1996). 

Hosking (1981) and Granger and Joyeux (1980) proposed at the same time the 

fractional integration, which has no physical but only mathematical sense. It is 

represented by a noninteger power of (1 – B), where B is the backward-shift operator 

such that BX t = X t-1, and can generate long memory while still keeping the process 

stationary. Generalized (seasonal) long memory can be generated by a noninteger power 

of the filter (1 – 2γB + B2) and the periodicity is implicit in the choice of the parameter 

γ. Gray, Zhang and Woodward (1989) call such processes as Gegenbauer process, 

because they admit Gegenbauer polynomials in the MA(∞) representation. They explore 

the properties of Gegenbauer and related processes, which present the generalized long 

memory feature. The noninteger power of a finite polynomial filter is equivalent to an 

infinite polynomial filter, which can be obtained by a Binomial expansion.  

The time series modeling includes a stochastic trend, seasonal dummies to 

model the weekly pattern and the influence of holydays. After filtering these features 

from the log-transformed data, there remains a clear seasonal (annual) pattern. 

Analyzing the autocorrelogram, a damped sinusoid is observed, consistent with a 

general long memory (Gegenbauer) process. The forecasting performance 24 to 168 

hours ahead for the years 1999 and 2000 (each year separately) is compared with that of 

a benchmark, namely a SARIMA model, and the results are highly favorable to our 

modeling. For one day (24 hours) ahead, the model yields mean absolute percentage 

error (MAPE) going from 2.2% (21th hour, 1999) to 4.4% (2nd hour, 2000), and for 

seven days (168 hours) ahead it goes from 3.1% (20th hour, 1999) to 8.4% (3nd hour, 

2000). Given the characteristics observed in the data and the results obtained in 
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forecasting, we conclude for the presence of generalized long memory in the data 

studied.  

The plan of the paper is as follows. The next Section briefly explains ordinary 

and generalized long memory, both used in the modeling process. Section 3 describes 

the data and the model proposed to fit the load demand, while Section 4 shows the 

forecasting results of this modeling. Section 5 offers some concluding remarks. 

 

2 – (Generalized) Long Memory 

2.1 – Ordinary Long Memory 

Stationary long memory processes are defined by the behavior of the spectral density 

function near the frequency zero, as follows. Let f(λ) be the spectral density function of 

the stationary process X t. If there exists a positive function )(cf λ , ],( ππλ −∈ , which 

varies slowly as λ tends to zero, such that d ∈ (0, 0.5) and 

0 as )(~)(
2 →− λλλλ d

fcf ,       (1) 

then X t is a stationary process with long memory with (long-)memory parameter d. 

Alternatively, let ( )kρ  be the k-th order autocorrelation of the series Xt. If there exists a 

real number d ∈ (0, 0.5) and a positive function ( )c kρ  slowly varying as k tends to 

infinity, such that: 

2 1( ) ~ ( )  as kdk c k kρρ − → ∞         (2) 

then Xt is said to have long memory or long range dependence. 

Xt is said to follow an ARFIMA(p,d,q) model if Φ Θ( )( ) ( )B B X Bd
t t1− = ε , 

where εt is a mean-zero, constant variance white noise process, B is the backward shift 

operator such that BXt = Xt-1, d is not restricted to integer values as in the ARIMA 

specification, and Φ(B)= 1-φ1B-…-φpB
p and Θ(B)=1+θ1B+…+θqB

q are the 

autoregressive and moving-average polynomials, respectively. ARFIMA processes are 

stationary and display long memory if the roots of Φ(B) are outside the unit circle and d 

∈ (0, 0.5). If d < 0 the process is short memory and said to be “antipersistent”  

(Mandelbrot, 1977, p.232), and Equation (1) holds so that the spectrum has a zero at the 

zero frequency. Note that in this case the process does not fit into the definition of long 

memory, since the parameter d is outside the range imposed by this definition. If d = 0 

the ARFIMA process reduces itself to an ARMA. If the roots of Φ(B) are outside the 

unit circle and d < 0.5, the process is stationary and if the roots of Θ(B) are outside the 
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unity circle and d > -0.5, the process is invertible. The autocorrelations of an ARFIMA 

process follow ρ(k) ~ Ck2d-1 as the lag k tends to infinity and its spectral function 

behaves as f(λ) ~ C|λ|-2d as λ tends to zero, satisfying thus (1) and (2). A non-integer 

difference can be expanded into an infinite autoregressive or moving average 

polynomial using the binomial theorem:  

�
∞

=
−��

�

�
��
�

�
=−

0

)()1(
k

kd B
k

d
B ,        (3) 

where 
)1()1(

)1(

+−Γ+Γ
+Γ=��

�

�
��
�

�

kdk

d

k

d
 and Γ(.) is the gamma function. 

 

2.2 – Generalized Long Memory 

Seasonal long memory is usually not defined in the literature, as different spectral 

behaviors bear analogies with the definition in (1) within a seasonal context. Rather, 

processes with these analogous properties are defined and their spectral and 

autocovariance behaviors explored. We in this paper work with Gegenbauer processes 

as in Gray, Zhang and Woodward (1989) and Chung (1996), but alternative models 

have been used by Porter-Hudak (1990), Ray (1993) and Arteche (2002), for example. 

The Gegenbauer processes were suggested by Hosking (1981) and later formalized by 

Gray, Zhang and Woodward (1989) and are defined as follows. Consider the following 

process 

( ) tt

d
XBB ε=+− 2�21 ,       (4) 

where |γ| ≤ 1 and εt is a white noise. This process is called a Gegenbauer process, 

because the Wold representation of (4) admits the important class of orthogonal 

polynomials called Gegenbauer polynomials as the coefficients (Gray et al., 1989). This 

Wold representation is achieved by using the binomial theorem as in (3), expanding the 

representation to an MA(∞). If |γ| < 1 and 0 < d < ½, the autocorrelations of the process 

defined in (4) can be approximated by 

∞→= −  k   as   )cos()( 12dkkCk νρ        (5) 

where C is a constant not depending on k (but depends on d and ν) and ν = cos-1(γ). 

That means that the autocorrelations behave as a damped sinusoid of frequency ν and 

that γ determines the period of the cycle (or seasonality). Moreover, the spectral density 

function obeys 
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{ } d
f

2
2

coscos2
2

)(
−−= νλ

π
σλ       (6) 

behaving as λ → ν like 

d
f

222~)(
−

−νλλ         (7) 

for 0 ≤ λ ≤ π. Note that if γ = 1 then (4) is an FI(2d), or ARFIMA(0,2d,0), and that is 

why we can call these processes as having the “generalized”  long memory property. 

Moreover, the (long memory) analogy of Gegenbauer processes with FI processes 

comes from the fact that the latter have a pole or zero at the zero frequency while the 

former have a pole or zero at the frequency ν, depending on whether d is respectively 

positive or negative. Note that the Gegenbauer processes can be generalized into k-

factor Gegenbauer processes as in Gray et al. (1989) and Ferrara and Guégan (2001), by 

allowing that different Gegenbauer filters (1 – 2γiB + B2)di; i = 1, …, k; apply to X t. We 

work in this paper with a mix of Gegenbauer and ARFIMA process to model the 

detrended load after the calendar effect is removed.  

 

3 – Data and model 

3.1 - Data 

The data comprise hourly electricity load demands from the area covered by the utility 

in study, ranging from the first day of 1990 to the last of 2000. The data set is then 

separated into 24 subsets, each containing the load for a specific hour of the day 

(“sectional”  data). Each subset is treated as a single series, all of them modeled 

following a same overall specification, although estimated independently of the others 

(univariate modeling). We use an estimation window of four years, believing it 

sufficient for a good estimation. Some experiments with longer and shorter estimation 

windows yielded results not much different from the ones obtained here. As the focus is 

in multiples of 24 hours ahead forecasts, the influence of lags up to 23 may be 

unconsidered without affecting predictability. Furthermore, using these “sectional”  data 

avoids modeling complicated intra-day patterns in the hourly load, commonly called 

load profile, and enables each hour to have a distinct weekly pattern. This last feature is 

desirable, since it is expected that the day of the week will affect more the middle hours, 

when the commerce may or not be open, compared to the first and last hours of the day, 

when most people are expected to sleep. Hippert, Pedreira and Souza (2001, p. 49), in 
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their review of load forecasting papers, report that difficulties in modeling the load 

profile are common to (almost) all of them. 

The hour-by-hour approach has been also tried by Ramanathan et al. (1997), 

who win a load forecast competition, but their modeling follows a diverse approach than 

ours. Unlike them, we use neither deterministic components to model the load nor 

external variables such as those related to temperature. This is a point to draw attention 

to, as some temperature measures (maximums, averages and others) could improve 

substantially the prediction if used, particularly in the summer period when the air 

conditioning appliances constitute great part of the load. The forecasting errors are in 

general higher in this period and we do not use this kind of data because it is 

unavailable to us. However, the temperature effect on load is commonly nonlinear as 

attested by a number of papers (see Hippert, Pedreira and Souza, 2001, p. 50), and 

including it in our linear model would probably add a nonlinear relationship to it. 

 

3.2 – Model 

A wide variety of models and methods have been tried out to forecast energy demand, 

and a great deal of effort is dedicated to artificial intelligence techniques, in particular to 

neural network modeling1. Against this tidal wave of neural applications in load 

forecasting, we prefer to adopt statistical linear methods, as they seem to explain the 

data to a reasonable level, in addition to give an insight into what is being modeled. The 

forecasting performance makes us believe the choice is correct for the data in study. A 

contemporaneous work of Soares and Medeiros (2003) analyses the same data set, 

adopting instead a deterministic components approach, modeling as stochastic only the 

residuals left after fitting these deterministic components. Their results are fairly 

comparable to ours (slightly better), but the deterministic components approach should 

not adapt well to the case where a structural break is present in the data, like during the 

2001 Brazilian energetic crisis, when the electricity consumption was reduced by about 

20%. On the other hand, our methodology is shown to yield good forecast results in this 

period (details in Souza and Soares, 2003). 

The model for a specific hour is presented below, omitting subscripts for the 

hour as the specification is the same. Let the load be represented by X t and Y t = log(X t). 

Then, 

                                                
1 Hippert, Pedreira and Souza (2001) provide a review of works that used varied techniques in predicting 
load demand, paying especial attention to evaluate the use of neural networks. 
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ttttt ZHWDLY +++= α          (8) 

where Lt is a stochastic level (following some trend, possibly driven by macroeconomic 

and demographic factors), WDt is the effect of the day of the week, Ht is a dummy 

variable to account for the effect of holidays (magnified by the parameter α) and Zt is a 

stochastic process following: 

( ) ( ) ttt
dd

ZBBBB εφ =−−+− )1(1�21 212 ,      (9) 

where εt is a white noise. The first multiplicative term on the left hand side of (9) takes 

the annual (long memory) seasonality into account, where γ is such that the period is 

365 days and d1 is the degree of integration. The second refers to the pure long 

memory, where d2 is the degree of integration. The third refers to an autoregressive 

term, with seven different and static values of φt, one for each day of the week (rather 

than φt being a stochastic parameter). 

 No assumptions were made up on the trend driving the stochastic level, but it is 

reasonable to think it is related to macroeconomic and demographic conditions. Lt is 

estimated simply averaging the series from half a year before to half a year after the date 

t, so that the annual seasonality does not interfere with the level estimation. It is 

forecasted by extrapolating a linear trend estimated by local regression on the estimated 

Lt. The calendar effect, in turn, is modeled by WDt and αHt, where the former is 

constituted by dummy seasonals, Ht is a dummy variable which takes value 1 for 

holidays, 0.5 for “half-holidays”  and 0 otherwise, and α is its associated parameter. The 

days modeled as “half holidays”  are part-time holidays, holidays only in a subset of the 

area in study or even for a subset of the human activities in the whole region, in such a 

way that the holiday effect is smooth. For two examples of “half-holidays”, one can cite 

the Ash Wednesday after Carnival, where the trading time begins in the afternoon; and 

San Sebastian’s day, feast in honor of the patron saint of one of the cities within the 

region in study (holiday only in this city). Ht could allow values in a finer scale (e.g., 

measuring out the “holiday intensity”  of different holiday types), but there is a trade-off 

between the fit improvement and the measurement error in so doing. As it is, the huge 

forecast errors present when no account of the holiday effect is taken disappear. WDt 

and α are estimated using dummy variables by OLS techniques. Seasonal and ordinary 

long memory are estimated using the Whittle (1951) approach, details of which2 are 

                                                
2 Such as consistency and asymptotic normality. 
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found in Fox and Taqqu (1986) and in Ferrara and Guégan (1999) respectively for 

ordinary and generalized long memory. Chung (1996, p. 245) notes that when the 

parameter γ is known, as in the present case, the estimation of seasonal long memory is 

virtually identical to that of ordinary long memory. However, there are varied long 

memory estimators in the literature and we chose this one for its comparatively high 

efficiency. The weekly autoregressive terms are estimated with the remaining residuals, 

using for it OLS techniques. 

Figure 1 shows the autocorrelation function (ACF) of the series from December 

26, 1990 to December 25, 1998 (eight years), for selected hours, after the trend and the 

calendar effects (weekdays and holidays) are removed. The form of the ACF, which 

resembles a damped sinusoid as in (5), with annual period, highly justifies using 

Gegenbauer processes to model Zt. The exception is hour 20, in which either there is a 

sinusoidal component of semiannual period or there are two sinusoidal components, one 

with annual period and the other with semiannual period. This behavior does not occur 

with any other hour, being specific of hour 20. However, our modeling does not use a k-

factor (k would equal to 2 in this case) Gegenbauer process as proposed by Gray et al. 

(1989) and studied by Ferrara and Guégan (2000, 2001) to model hour 20, obtaining 

good results though. In fact, hour 20 obtains the lowest errors, the exception being one 

and sometimes two steps ahead, where it is beaten by hour 21. Figure 2 shows the 

periodogram (raw and smoothed by a Parzen lag window with degree of smoothness 

0.9, respectively represented by dots and a solid line) for the same series in log-log 

scale. Note the resemblance with the behavior described by (7). The eighth Fourier 

frequency, corresponding to an annual period as we use eight years of data, shows a 

sharp peak in the raw periodogram, whereas its vicinity shows a smooth decrease (in 

log-log scale) going farther to either side. The subfigure corresponding to hour 20 in 

Figure 2 is consistent with the ACF shown in Figure 1, since there are peaks at the 

eighth and the sixteenth Fourier frequencies, meaning that there may be one 

(semiannual) or two (annual and semiannual) Gegenbauer factors.  

We chose working with logarithms as the weekly seasonality and the holiday 

effect can be modeled additively while they are multiplicative in the original series X t. 

These effects are believed to be multiplicative while relating to consuming habits, 

varying proportionally when the number of consumers expands. However, we 

experimented applying the same modeling as in (8)-(9) to X t, instead of Y t, yielding 
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very similar results. The choice of the logarithm transformation is thus only to be 

coherent to our beliefs and not result-oriented.  

 

4 – Results 

We run a forecasting exercise with the data specified in the previous section, comparing 

the results of model (8)-(9) to a benchmark. The benchmark used is a SARIMA, like the 

works of Darbellay and Slama (2000) and Soares and Medeiros (2003), for example. It 

is modeled and estimated using EViewsTM software package. The “seasonal”  period 

considered for the SARIMA is one week, since there must be in general small variation 

between one week and the next within the context of annual seasonality. In fact the 

SARIMA performs quite well in the early hours, when the load is smoother. A different 

SARIMA is estimated for each hour of the day, as is done with model (8)-(9). 

The period used to estimate the models begins four years before December 25, 

1998, and ends on this date (in sample). That is, the model is estimated once using a 

four-year estimation window, as it seems to be enough. The estimated parameters for 

each hour are presented in Table 1. The degrees of fractional integration, both seasonal 

and ordinary, vary throughout the hours, though d1 is always positive (long memory) 

and d2 always negative (short memory). The (seasonal) long memory is stronger for the 

hours in the beginning and in the end of the day, coinciding with the hours where the 

load is smoother. The calendar effect, modeled by WDt and αHt, is also not the same for 

all the hours, as it is apparent that business days affect more the load in the middle hours 

(trading hours) than in the first or last ones. The use of one autoregressive parameter for 

each day is fully justified as one sees in Table 1 the difference in estimated values there 

can be (for instance, φt estimated for the hour 19 varies from –0.125 to 0.472; 

respectively φwe and φtu). Note that φtu corresponds to the effect of the residual (of the 

remaining model) of Monday on that of Tuesday, and so on. We experimented varying 

the estimation window from three to eight years but the results were practically the 

same. The out-of-sample, i.e., the period used to test the forecasting accuracy of the 

models ranges from the first day of 1999 to the last of 2000, split in two sets of one 

year. Note that the model is not re-estimated during this period. The reason why the out-

of-sample is split in two is that the trend is estimated at once (from 1998) for 1999 and 

2000 by a linear extrapolation. By visual inspection, there is an apparent break in the 

trend, as if this was piecewise linear, seeming to have occurred in 2000, so that results 
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for this year are likely to be worse than those for 1999. Indeed they are, as one can 

inspect by comparing Tables 2.1 and 3.1. The reason for this apparent break may relate 

to macroeconomic factors, being beyond the scope of this paper. In a practical 

application, it would be wise to frequently re-estimate the model, but in this illustration, 

not re-estimating the model allows one to observe that the model does not suffer from 

misspecification (remember the trend is forecasted as linear, but not modeled so).  

 The favorite measure of forecasting accuracy in the load forecasting literature 

(c.f. Darbellay and Slama, 2000, Park et al., 1991, and Peng et al., 1992) is the Mean 

Absolute Percentage Error (MAPE), which is defined below, as it measures the 

proportionality between error and load. 

�
= +

++ −
=

n

i iT

iTiT

X

XX

n
MAPE

1

ˆ
1

,       (10) 

where Xt is the load at time t, tX̂  its estimate, T is the end of the in-sample and n is the 

size of the out-of-sample. Other measures could be used, as some works suggest that 

these measures should penalize large errors and others suggest that the measure should 

be easy to understand and related to the needs of the decision makers. For an example of 

the former, Armstrong and Collopy (1992) suggest the Root Mean Square Error 

(RMSE), while for an example of the latter, Bakirtzis et al. (1996) use Mean Absolute 

Errors (MAE). However, both measures lack comparability among different data sets, 

and, maybe because of that, the MAPE still remains as the standard measure. Some 

authors (c.f., Park et al., 1991, and Peng et al., 1992) achieve MAPEs as low as 2% 

when predicting the total daily load, but results of different methods cannot be 

compared on different data sets as some data are noisier than others. If different data 

sets are used, the same method(s) must be used, and the comparison be made among 

data sets and not methods. As to the present data, Table 2 shows the MAPE one to 

seven days ahead for the year of 1999 both for the model proposed in this paper and the 

SARIMA benchmark. The best method for each hour and number of steps ahead is 

shown in bold. The proposed model outperforms the benchmark for all hours at one step 

ahead. The benchmark is better mainly for the first five hours and more than one step 

ahead. The middle hours see a huge difference in the forecast ability, with our model 

performing well, attaining MAPEs of around 3% for one step ahead going to 4% for 

seven steps ahead. In contrast, the benchmark attains two-digit MAPEs for steps ahead 

higher than one. The peak hours (19-21) see the best MAPEs, in part because the load is 
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the highest in the day (but the proportional predictability is more accurate for both 

methods). Table 3 presents the same as Table 2, but for the year 2000. The results are 

slightly worse, mainly because the linear trend is not re-estimated but seems to suffer a 

break in 2000, as explained before. Even so, the results are good and are qualitatively 

equal to the year of 1999, the difference being that the SARIMA fares better also in the 

sixth hour for steps ahead higher than one. The worst MAPEs from the model (8)-(9), 

namely those for the first hours seven steps ahead, rise from below 7% in 1999 to above 

8% in 2000. As to one step ahead results, the best MAPE rises from 2,23% in 1999 to 

2,63% in 2000 (hour 21) and the worst from 3,76% (hour 1) to 4,43% (hour 2). The 

hour 20 is the best predictable hour for seven steps ahead using the MAPE as the 

criterion, yielding MAPEs of 3,12% in 1999 and 3,93% in 2000. It is important to note 

that when we speak of h steps ahead, we consider the sectional data and hence refer to 

days. As the primary data are hourly, one must interpret as 24h steps ahead, so that (1, 

2, …, 7) daily steps ahead actually correspond to (7, 14, …, 168) hourly steps ahead. In 

practice, it would be interesting to use the model proposed here and the benchmark, 

each one for the hours and time horizons in which each one fares better, or even in a 

combined way. The combination is out of the scope of this paper. 

 Figure 3 illustrates with a typical week the one step ahead forecasting 

performance of the proposed model and the benchmark. This week goes from May 9, 

1999 to May 15, 1999. One can notice that the forecasts from the proposed model fit 

more closely to the observed loads than those from the benchmark do, reflecting the 

smaller error obtained by (8)-(9) as presented in Table 2. However, both fits are 

reasonably good, and the benchmark is not a bad predictor for this horizon (24 hours 

ahead). Figure 4 illustrates the seven steps ahead forecasting performance of the 

proposed model and the benchmark, using the same week as Figure 3. The fits are 

looser than those for one step ahead, as expected, but the proposed model forecasts still 

track the realized loads. The benchmark forecasts, on the other hand, miss out the real 

loads too often for this horizon (168 hours ahead), corroborating the superiority of the 

proposed model. 

 

5 – Final remarks 

This paper proposes a stochastic model for the hourly electricity load demand from the 

area covered by a specific Brazilian utility. This model applies to sectional data, that is, 

the load for each hour of the day is treated separately as a series. This model can be 
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applied to other utilities presenting similar seasonal patterns, such as many in Brazil. 

The model explains the seasonality by generalized (seasonal) long memory using 

Gegenbauer processes, having in addition a stochastic level (driven by some trend), and 

a calendar effects component (consisting of dummy variables for the days of the week 

and for holidays). The Gegenbauer processes fit in well the form of the autocorrelations 

observed after the estimated level and calendar effects are removed. 

 A forecasting exercise against a SARIMA model (the benchmark) is highly 

favorable to our modeling. This exercise included the entire years of 1999 and 2000, 

forecasting one to seven days ahead (24, 48, …, 168 hours ahead), using models 

estimated up to the end of 1998. We conclude for the presence of seasonal long memory 

in the data in study and suggest that it may be present in the load demand of other 

utilities with similar seasonal behavior as well. 
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Table 1: Parameter estimates of model (8)-(9) for each hour. 
 

hour d1 d2 WDsu WDmo WDtu WDwe WDth WDfr WDsa α φsu φmo φtu φwe φth φfr φsa 

1 0.361 -0.370 -0.013 -0.047 0.001 0.006 0.010 0.013 0.031 0.006 0.407 0.695 0.495 0.552 0.289 0.574 0.541 
2 0.374 -0.395 -0.013 -0.044 -0.001 0.007 0.010 0.013 0.030 0.015 0.434 0.687 0.513 0.560 0.301 0.558 0.550 
3 0.385 -0.407 -0.019 -0.041 0.001 0.010 0.011 0.013 0.025 0.016 0.473 0.665 0.485 0.525 0.335 0.607 0.606 
4 0.394 -0.411 -0.026 -0.039 0.003 0.012 0.012 0.015 0.022 0.010 0.450 0.646 0.480 0.582 0.316 0.624 0.639 
5 0.398 -0.408 -0.036 -0.034 0.006 0.015 0.015 0.018 0.017 -0.004 0.471 0.617 0.485 0.559 0.331 0.679 0.604 
6 0.396 -0.410 -0.063 -0.020 0.015 0.024 0.022 0.023 -0.002 -0.042 0.493 0.537 0.439 0.538 0.338 0.713 0.673 
7 0.350 -0.340 -0.121 0.006 0.035 0.042 0.038 0.039 -0.039 -0.126 0.537 0.291 0.400 0.406 0.363 0.700 0.751 
8 0.315 -0.280 -0.175 0.028 0.048 0.057 0.052 0.055 -0.066 -0.194 0.613 0.295 0.305 0.340 0.244 0.714 0.620 
9 0.280 -0.192 -0.220 0.046 0.059 0.068 0.065 0.068 -0.084 -0.252 0.494 0.309 0.286 0.304 0.096 0.789 0.401 
10 0.251 -0.112 -0.246 0.057 0.065 0.072 0.070 0.073 -0.091 -0.285 0.367 0.163 0.278 0.345 -0.002 0.739 0.171 
11 0.230 -0.072 -0.257 0.064 0.069 0.076 0.073 0.074 -0.099 -0.300 0.298 0.158 0.389 0.378 0.040 0.527 -0.109 
12 0.238 -0.126 -0.257 0.066 0.070 0.078 0.074 0.073 -0.105 -0.306 0.398 0.151 0.379 0.383 0.109 0.631 0.088 
13 0.239 -0.140 -0.249 0.066 0.069 0.076 0.072 0.073 -0.105 -0.297 0.439 0.183 0.379 0.354 0.125 0.599 0.089 
14 0.244 -0.160 -0.255 0.068 0.072 0.079 0.075 0.075 -0.115 -0.303 0.473 0.338 0.468 0.414 0.116 0.543 0.113 
15 0.248 -0.177 -0.261 0.072 0.077 0.085 0.078 0.076 -0.126 -0.311 0.481 0.409 0.511 0.289 0.126 0.547 0.147 
16 0.253 -0.201 -0.263 0.073 0.078 0.086 0.080 0.074 -0.128 -0.308 0.508 0.462 0.600 0.212 0.156 0.597 0.208 
17 0.219 -0.128 -0.253 0.072 0.075 0.086 0.079 0.066 -0.126 -0.297 0.321 0.336 0.648 -0.029 0.127 0.537 0.128 
18 0.198 -0.149 -0.192 0.053 0.054 0.066 0.061 0.048 -0.090 -0.257 0.441 0.165 0.567 -0.024 0.114 0.523 0.203 
19 0.271 -0.062 -0.131 0.032 0.039 0.044 0.041 0.030 -0.055 -0.207 0.409 0.086 0.472 -0.125 -0.040 0.296 0.112 
20 0.292 -0.121 -0.096 0.021 0.026 0.032 0.028 0.018 -0.029 -0.156 0.526 0.238 0.449 0.127 0.068 0.374 0.203 
21 0.279 -0.273 -0.081 0.019 0.023 0.029 0.025 0.015 -0.030 -0.114 0.755 0.457 0.695 0.329 0.439 0.508 0.312 
22 0.311 -0.355 -0.072 0.017 0.025 0.030 0.025 0.014 -0.039 -0.097 0.909 0.462 0.608 0.360 0.484 0.523 0.422 
23 0.330 -0.346 -0.058 0.010 0.020 0.025 0.023 0.017 -0.038 -0.063 0.776 0.481 0.639 0.350 0.468 0.493 0.461 
24 0.343 -0.349 -0.050 0.006 0.010 0.018 0.017 0.024 -0.024 -0.040 0.772 0.477 0.618 0.336 0.509 0.523 0.400 
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Table 2: MAPE for the entire year of 1999 (the best model in bold). 
 

   model (8)-(9)       SARIMA    

   steps ahead       steps ahead    

hour 1 2 3 4 5 6 7  1 2 3 4 5 6 7 

1 3.76% 5.14% 5.82% 6.08% 6.30% 6.49% 6.71%  3.93% 4.93% 5.63%  5.84%  5.83%  5.63% 4.72%  
2 3.68% 5.09% 5.84% 6.12% 6.33% 6.59% 6.81%  3.85% 4.79% 5.37%  5.51%  5.46%  5.40% 4.67%  
3 3.54% 4.97% 5.75% 6.00% 6.18% 6.47% 6.70%  3.67% 4.55% 5.21%  5.36%  5.26%  5.14% 4.40%  
4 3.35% 4.67% 5.54% 5.73% 5.92% 6.18% 6.40%  3.46% 4.39% 5.07%  5.24%  5.20%  5.02% 4.17%  
5 3.21% 4.39% 5.20% 5.39% 5.56% 5.83% 6.04%  3.37% 4.16% 4.95%  5.18%  5.16%  4.90% 4.01%  
6 2.91% 4.09%  4.70% 4.93%  5.07% 5.35%  5.54%  3.26% 4.31% 5.29% 5.90% 5.95% 5.43% 4.30%  
7 2.85% 3.69%  4.16% 4.30%  4.43% 4.63%  4.72%  3.62% 6.21% 8.24% 9.08% 9.16% 8.42% 6.27% 
8 2.74% 3.37%  3.75% 3.88%  4.04% 4.22%  4.31%  4.09% 8.43% 11.04% 11.80% 11.99% 11.38% 8.38% 
9 2.75% 3.45%  3.76% 3.86%  3.98% 4.12%  4.21%  4.63% 10.33% 13.18% 13.76% 13.98% 13.62% 10.05% 
10 2.82% 3.46%  3.78% 3.86%  3.93% 4.00%  4.07%  4.91% 11.38% 14.42% 14.89% 15.07% 14.84% 11.05% 
11 2.92% 3.59%  3.86% 3.97%  4.01% 4.04%  4.05%  4.95% 11.81% 15.19% 15.48% 15.67% 15.57% 11.40% 
12 2.89% 3.61%  3.88% 3.96%  3.97% 3.98%  4.00%  5.02% 12.06% 15.61% 15.81% 15.93% 15.96% 11.58% 
13 2.99% 3.79%  4.07% 4.17%  4.19% 4.19%  4.24%  5.04% 11.69% 15.32% 15.64% 15.72% 15.50% 11.19% 
14 3.15% 4.06%  4.40% 4.51%  4.49% 4.49%  4.52%  5.10% 12.01% 15.91% 16.14% 16.20% 16.04% 11.45% 
15 3.22% 4.16%  4.52% 4.63%  4.67% 4.67%  4.73%  5.16% 12.45% 16.78% 17.08% 17.16% 16.89% 11.79% 
16 3.21% 4.11%  4.48% 4.60%  4.70% 4.74%  4.77%  5.11% 12.40% 16.92% 17.33% 17.34% 16.93% 11.70% 
17 3.26% 3.84%  4.17% 4.27%  4.35% 4.40%  4.43%  4.82% 11.57% 16.16% 16.57% 16.64% 16.11% 10.97% 
18 2.95% 3.49%  3.71% 3.79%  3.81% 3.85%  3.90%  4.27% 8.97% 11.95% 12.46% 12.56% 12.19% 8.65% 
19 2.82% 3.38%  3.57% 3.73%  3.87% 3.94%  3.99%  3.54% 6.04% 7.55% 8.02% 8.01% 7.89% 6.12% 
20 2.35% 2.87%  2.93% 3.04%  3.05% 3.07%  3.12%  3.07% 4.90% 5.63% 5.98% 5.94% 5.77% 4.88% 
21 2.23% 2.83%  3.10% 3.21%  3.27% 3.35%  3.47%  2.85% 4.47% 5.44% 5.84% 5.82% 5.44% 4.42% 
22 2.56% 3.39%  3.75% 3.88%  3.93% 4.02%  4.13%  3.08% 4.85% 6.21% 6.73% 6.70% 6.09% 4.76% 
23 3.04% 3.99%  4.45% 4.66%  4.72% 4.87%  5.01%  3.35% 4.83% 6.18% 6.67% 6.55% 6.07% 4.63%  
24 3.54% 4.75%  5.33% 5.60%  5.72% 5.92%  6.10%  3.76% 4.97% 6.00% 6.38% 6.34% 5.93% 4.76%  
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Table 3: MAPE for the entire year of 2000 (the best model in bold). 
 

   model (8)-(9)       SARIMA    

   steps ahead       steps ahead    

hour 1 2 3 4 5 6 7  1 2 3 4 5 6 7 

1 4.37% 6.42% 7.38% 7.92% 8.18% 8.20% 8.16%  4.53% 5.77% 6.55%  6.71%  6.73%  6.65% 5.70%  
2 4.43% 6.54% 7.62% 8.15% 8.43% 8.45% 8.42%  4.53% 5.73% 6.42%  6.55%  6.54%  6.50% 5.65%  
3 4.37% 6.45% 7.61% 8.15% 8.46% 8.44% 8.45%  4.44% 5.58% 6.27%  6.36%  6.35%  6.33% 5.48%  
4 4.23% 6.24% 7.40% 7.93% 8.26% 8.28% 8.26%  4.35% 5.30% 6.05%  6.15%  6.15%  6.06% 5.24%  
5 4.03% 5.99% 7.12% 7.69% 8.01% 8.06% 8.09%  4.24% 5.07% 5.82%  5.92%  5.97%  5.87% 5.11%  
6 3.81% 5.60% 6.58% 7.05% 7.32% 7.40% 7.46%  4.14% 5.10% 6.21%  6.48%  6.46%  6.16% 5.14%  
7 3.60% 5.08%  5.88% 6.21%  6.43% 6.53%  6.59%  4.47% 6.93% 8.68% 9.12% 9.16% 8.72% 6.57%  
8 3.22% 4.61%  5.26% 5.54%  5.73% 5.81%  5.88%  4.70% 9.08% 11.41% 12.08% 12.13% 11.58% 8.61% 
9 3.03% 4.28%  4.75% 5.03%  5.22% 5.30%  5.35%  4.92% 10.69% 13.48% 14.28% 14.33% 13.86% 10.25% 
10 2.97% 4.06%  4.49% 4.67%  4.80% 4.86%  4.92%  5.24% 12.01% 15.02% 15.80% 15.85% 15.52% 11.48% 
11 3.00% 3.97%  4.39% 4.56%  4.69% 4.76%  4.81%  5.39% 12.69% 16.11% 16.81% 16.79% 16.53% 11.99% 
12 3.05% 3.99%  4.41% 4.56%  4.68% 4.73%  4.75%  5.60% 12.78% 16.47% 17.14% 17.12% 16.84% 12.10% 
13 3.00% 4.00%  4.44% 4.59%  4.71% 4.76%  4.78%  5.40% 12.56% 16.27% 16.94% 16.93% 16.49% 11.71% 
14 3.17% 4.29%  4.72% 4.93%  5.05% 5.10%  5.10%  5.55% 12.85% 16.80% 17.65% 17.60% 17.09% 12.11% 
15 3.38% 4.51%  4.98% 5.19%  5.31% 5.35%  5.36%  5.74% 13.29% 17.70% 18.40% 18.45% 17.89% 12.41% 
16 3.43% 4.55%  4.98% 5.23%  5.33% 5.41%  5.43%  5.77% 13.17% 17.77% 18.47% 18.57% 17.90% 12.29% 
17 3.60% 4.43%  4.77% 4.89%  4.98% 5.04%  5.02%  5.39% 12.19% 16.65% 17.26% 17.39% 16.63% 11.25% 
18 3.44% 4.19%  4.43% 4.52%  4.58% 4.58%  4.59%  4.79% 9.24% 12.18% 12.66% 12.68% 12.09% 8.67% 
19 3.21% 3.77%  4.07% 4.30%  4.44% 4.50%  4.53%  4.03% 6.43% 7.81% 8.13% 8.14% 7.80% 6.18% 
20 2.71% 3.30%  3.60% 3.74%  3.87% 3.93%  3.93%  3.47% 5.15% 5.74% 5.95% 6.05% 5.80% 4.99% 
21 2.63% 3.45%  3.85% 4.11%  4.16% 4.23%  4.22%  3.17% 4.89% 5.67% 5.84% 5.95% 5.69% 4.56% 
22 2.98% 4.12%  4.62% 4.94%  5.11% 5.17%  5.16%  3.36% 5.30% 6.61% 6.92% 6.90% 6.56% 4.92%  
23 3.58% 5.15%  5.82% 6.22%  6.41% 6.43%  6.41%  3.99% 5.64% 6.95% 7.28% 7.24% 6.79% 5.30%  
24 4.14% 5.96% 6.81% 7.34% 7.56% 7.60% 7.56%  4.50% 5.79% 6.78%  7.09%  6.98%  6.70% 5.59%  
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Figure 1: Autocorrelation function of the series from January 1, 1990 to December 31, 
1998, for hours 1, 8, 14 and 20, after removal of the trend and the calendar effects 
(weekdays and holydays), up to lag 1000. Note the resemblance to a damped sinusoid. 
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Figure 2: Raw and smoothed periodogram of the series from January 1, 1990 to 
December 31, 1998, for hours 1, 8, 14 and 20, after removal of the trend and the 
calendar effects.  
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Figure 3: Real versus predicted load (MWh), for both the model proposed here and the 
SARIMA benchmark, one step ahead, from May 9, 1999 to May 15, 1999 (one week, 
from Sunday to Saturday). 
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Figure 4: Real versus predicted load (MWh), for both the model proposed here and the 
SARIMA benchmark, seven steps ahead, from May 9, 1999 to May 15, 1999 (one 
week, from Sunday to Saturday). 
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