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PURE STRATEGY EQUILIBRIA OF MULTIDIMENSIONAL AND

NON-MONOTONIC AUCTIONS

ALOISIO ARAUJO, LUCIANO I. DE CASTRO FILHO, AND HUMBERTO MOREIRA

Abstract. We give necessary and sufficient conditions for the existence of symmetric equilib-
rium without ties in interdependent values auctions, with multidimensional independent types
and no monotonic assumptions. In this case, non-monotonic equilibria might happen. When
the necessary and sufficient conditions are not satisfied, there are ties with positive probability.
In such case, we are still able to prove the existence of pure strategy equilibrium with an all-pay
auction tie-breaking rule. As a direct implication of these results, we obtain a generalization
of the Revenue Equivalence Theorem. From the robustness of equilibrium existence for all-pay
auctions in multidimensional setting, an interpretation of our results can give a new justification
to the use of tournaments in practice.
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1. Introduction

The received literature on pure strategy equilibria on auctions is mainly restricted to the
setting of unidimensional types and monotonic utilities. Although recent efforts have been
made to treat the case of multidimensional types (see McAdams (2003), for instance), the
monotonicity assumption is usually maintained. In dealing with multidimensional types, this is
obviously restrictive (see also our examples in section 5).
Thus, to develop a satisfactory theory of equilibria with multidimensional types, it is necessary

to take in account the possibility of non-monotonic utility functions.
However, even in the unidimensional case, non-monotonic auctions are problematic. To see

why, consider a symmetric first-price auction between two buyers with payoff function v (ti, t−i)
= α+ ti+ βt−i and independent types distributed on [0, 1].
The received theory ensures the existence of a monotonic pure strategy equilibrium only if

β > 0. See Milgrom andWeber (1982), Maskin and Riley (2000), Athey (2001). If β < 0, we only
know that there exists a tie-breaking rule (endogenously defined) that guarantees the existence
of mixed strategy equilibrium (see Jackson, Simon, Swinkels and Zame (2002), henceforth JSSZ).
That the case β < 0 is problematic can be seen through particular examples. Indeed, if α = 5,

β = −4 and the distribution is uniform on [0, 1], this is exactly example 1 of JSSZ. If α = 3,
β = −2 and types assume values 0 or 1 with probabilities 2

3 and
1
3 , respectively, it is example

3 of Maskin and Riley (2000). Both cases are counterexamples to the existence of equilibrium,
even with special tie-breaking rules. Maskin and Riley (2000) show that there is no equilibrium
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for their example neither under the standard tie-breaking rule (that assigns the object randomly
to tying bidders), nor under the Vickrey auction tie-breaking rule, defined as “if a tie occurs for
the high bid, a Vickrey auction is conducted among the high bidders”. JSSZ make the claim,
corrected in Jackson, Simon, Swinkels and Zame (2004), that there is no tie-breaking rule that
is type-independent and ensures the existence of equilibrium for their example.
Some questions arise from the contrast between the theoretical results for β > 0 and β < 0: For

which set of β the standard tie-breaking rule is sufficient to ensure the existence of equilibrium? Is
it possible to define a specific tie-breaking rule for all β? For which set of β there is no equilibrium
in pure strategy? Are the results valid only for first-price auctions? Is the equilibrium unique?
Is the Revenue Equivalence Theorem still valid for β < 0?
The framework of this paper includes JSSZ’s example as a special case. Our results provide

the following answers to the above questions: If β > −1, there exists equilibrium in pure
strategies under the standard tie-breaking rule. If we adopt an all-pay auction tie-breaking rule,
that consists in conducting an all-pay auction among tying bidders in the case of a tie, then
there exists a pure strategy equilibrium for all β (provided α > max {0,−β}, otherwise the
object would have negative values). Moreover, the all-pay auction tie-breaking rule works for all
standard type of auctions and the equilibria obtained under it obey the Revenue Equivalence
Theorem. We also prove that there is a unique equilibrium if β > −1, but there are multiple
equilibria otherwise.
It is important to note that the all-pay auction tie-breaking rule is type-independent, in the

sense that it does not require private information. This does not contradict the example of
Jackson et. al. (2004), that does not have equilibrium with type-independent tie-breaking rule.
The reason is that the example is not a standard auction: there is an uncertainty about the
number of objects in the auction.
Our results hold for symmetric auctions with independent non-atomic types, for a wide class

of auction formats where bidders have unitary demands (first-price, second-price, all-pay, war of
attrition).1 Moreover, we impose no restriction on the dimension of the set of types and make
no monotonic assumptions about the value of the object. All the answers provided above for the
specific example are given in a general setting (of weakly separable utilities – see assumption H3
in section 5). Of course, the condition for the equilibrium existence is something more complex
for the general case, but it is still easy to verify.
From the equilibrium existence for all-pay auctions, an interpretation of our results can give

a new justification to the use of tournaments in practice. Indeed, tournaments (for job or re-
search) are well-modeled as all-pay auctions or war of attrition. We prove that the existence
of equilibrium for these kind of auctions require weaker assumptions than other kind of auction
mechanisms, because they better reveal information. If we are in a situation where the revela-
tion of information is crucial for a strategically stable allocation of the product, then our results
can be read as saying that all-pay auctions are better. It is interesting to observe that the
situations where tournaments are routinely conducted are exactly those where the information
is multidimensional and can be non-monotonic for the players. For instance, the better capac-
ity for conducting a research depends on a multidimensional vector of characteristic: technical

1The non-atomicity is a standard but crucial assumption for our method. Thus, example 3 of Maskin and
Riley (2000) does not satisfy our assumptions.
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knowledge and abilities, experience, organizational and financial structures, criativity, motiva-
tion and even honesty. Such a complex information environment requires a better mechanism
for revelation of information.
Our results are based in what we call indirect auctions, which we describe in subsection 1.1

below.

1.1. The Indirect Auction. For standard auctions, higher bids correspond to higher probabil-
ity of winning. If a bidding function b (·) is fixed and followed by all participants in a symmetric
auction, we can associate to each bid (and thus, to each type), the probability of winning. All
types that bid the same bid under b (·) have the same probability of winning. This allows us
to introduce the concept of conjugation. If b (t) = b (s), and hence, t and s have the same
probability of winning, we say that t and s are conjugated.
Sometimes in the literature, what we call conjugation is named reduced form: “The function

relating a bidder’s type to his probability of winning is the reduced form of the auction.” (Border,
1991, p. 1175).2 Therefore, what we will call indirect auction can be also called reduced form
auction. The papers about reduce form auctions analyze problems related to the characterization
and existence of optimal auctions. Hence, the auction is treated, as Myerson (1981) does, only
by considering the probability of winning and the payments. In turn, our problem is to find
the equilibrium for fixed auction rules. Moreover, our indirect auction is not equivalent to the
direct one. Thus, it is not merely a reduced form of the auction. (See remarks after Theorem
1 in section 4). In the light of these differences and in the attempt not to confuse terms, we
decided to use a different terminology.
This terminology comes from the Taxation Principle which allows us to implement any direct

truthful mechanism through some convenient indirect one.3 In this case, we are implementing
the equilibrium in the auction using an indirect auction obtained from the reparametrization of
types through the probability of winning.
This method allows us to deal with non-monotonic bidding in equilibrium. Indeed, we give

examples where bidders’ types are multidimensional and the values are non-monotonic.4 An
important part of the method is the necessary condition (i) in Theorem 1, which says that the
types of the bidder choosing the same bid have the same marginal benefit. A similar property
was derived by Araujo and Moreira (2000) in the monopolistic principal-agent screening problem
where non-monotonic optimal contracts emerge.
Returning to the description of our method, the main idea is to reparameterize types and to

associate them to the probability of winning the auction. As stated, this idea seems unpromising
at first, since the probability of winning will be different for each different bidding function that
we begin with. Moreover, if we do not previously fix a bidding function, no conjugation can be
defined.
To overcome these problems, we define conjugations without using bidding functions, as

a suitable reparametrization of the types. Once we defined conjugations, we can define the
Indirect Auction.5 For this, we simply integrate the utilities of the direct auction for all types
that are conjugated. From our definition of conjugation, the indirect auction is now an auction

2See also Matthews (1984) and Chen (1986).
3See Guesnerie (1998).
4See sections 4 and 5.
5See section 3.
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with the same format of the direct one (for instance, a first-price auction if the original auction
is a first-price auction) between two players with independent signals, uniformly distributed on
[0, 1]. This makes the analysis of equilibrium existence easier.
In section 2, we describe the model. Section 3 formally presents the indirect auction. Section

4 develops the theory for general auctions, obtaining necessary and sufficient conditions for the
existence of equilibrium. Section 5 particularizes to the case of weakly separable utilities and
gives a concise condition for equilibrium existence. Moreover, the all-pay auction tie-breaking
rule is introduced and the equilibrium existence proved. As a corollary, we obtain the Revenue
Equivalence Theorem. Section 6 concludes with a discussion about the limitations of our results
and reviews the contributions of the paper in light of the related literature. All proofs are
collected in appendices.

2. The Model

There are N bidders in an auction of L < N homogenous objects, but each bidder is in-
terested in just one object. Player i (i = 1, ..., N) receives a private information, ti, possibly
multidimensional, and chooses a bid bi ∈ B ≡ {bOUT } ∪ [bmin,+∞), where bmin > bOUT is the
minimal valid bid and if bi = bOUT , bidder i does not participate in the auction and gets a payoff
of 0.
Let t = (ti, t−i) be the profile of all signals and b = (bi, b−i), the profile of submitted bids.

Let b−i(m) be the m-th order statistic of (b1, ..., bi−1, bi+1, ..., bN ), that is, b
−i
(1) > b

−i
(2) > ... > b

−i
(N−1).

Since there are L objects, the value that determines the winning and loosing events for bidder

i is b(−i) ≡ max
n
bmin, b

−i
(L)

o
. That is, the bidder i receives an object if bi > b(−i) and none if

bi < b(−i). Ties (bi = b(−i)) are broken by the standard tie-breaking rule, that is, the object is
randomly divided among the tying bidders. More specifically, the payoff of bidder i is given by

ui (t, b) =


v (ti, t−i)− pW

¡
bi, b(−i)

¢
, if bi > b(−i)

−pL ¡bi, b(−i)¢ , if bi < b(−i)
v(ti,t−i)−bi

m , if bi = b(−i)
where v is the value of the object for all bidders, pW and pL are the payments made in the
events of winning and losing, respectively, and m is the number of bidders tying.
Our setting is given by the following assumptions:

(H0) The types are independent and identically distributed in the same compact set S,
according to a non-atomic probability measure µ on S. v is positive (v > 0), continuous and
symmetric in its lastN−1 arguments, that is, if t0−i is a permutation of t−i, v

¡
ti, t

0
−i
¢
= v (ti, t−i).

The restrictive aspect of (H0) is the symmetry. The others are very natural. For instance,
the assumption that v is positive is not restrictive, since S is compact and, hence, v assumes a
minimum M. Then, if we add M + 1 to the value of the object, v becomes positive.
The specific auction is determined by pW and pL. We will consider alternatively, two cases.

The first one, embodied in (H1)-1 below, cover first-price auctions, for instance. The second
case is defined by (H1)-2 and covers second price auctions, among other more exotic formats.

(H1) Over the domain B ×B, pW and pL are non-negative, differentiable, pL (bOUT , ·) = 0,
∂1p

W > 0, ∂1pL > 0 and, alternatively:
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(H1)-1: ∂1p
W (·) > 0 or ∂1pL (·) > 0 or

(H1)-2: ∂1p
W = ∂1p

L ≡ 0 and ∂2
¡
pW − pL¢ > 0.

Observe that assumption (H1) is rather weak. It covers virtually all kind of standard single-
objetc auctions or multi-unit auctions with unitary demands, and allows the use of entry fees.
Some examples are:

(F) First-price auctions: pW
¡
bi, b(−i)

¢
= bi and p

L
¡
bi, b(−i)

¢
= 0.

(S) Second-price auctions: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= 0.

(A) All-pay auctions: pW
¡
bi, b(−i)

¢
= bi and p

L
¡
bi, b(−i)

¢
= bi.

(W) War of attrition: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= bi.

An active reserve price, that is, bmin that excludes some bidders, makes the statement of our
equilibrium results more complex. So, we will postpone the analysis of this case to Appendix B
and through the paper we will make use of the following assumption:

(H2) v, pW , pL and bmin are such that no bidder plays bOUT , that is, no bidder prefers to
stay out of the auction.

We denote the auction described above by (S, µ, v). Observe that we make no restriction
about the dimension of S. Also, we are considering just symmetric auctions. Thus, throughout
the paper, when we talk about a strategy, we always mean a symmetric one. Under these
assumptions we will introduce a new approach to prove existence of equilibria in auctions. We
call it the “Indirect Auction Approach”. This is the subject of the next section.

3. The Indirect Auction

In the subsection 3.1, we describe the basic element of our method: the conjugation. In
subsection 3.2, the indirect auction is defined and its basic properties derived.

3.1. Conjugations. We will be interested in regular bidding functions as defined below:

Definition 1. A bounded measurable function b : S → R is regular if the c.d.f.
Fb (c) ≡ Pr {s ∈ S : b (s) < c}

is absolutely continuous and strictly increasing in its support, [b∗, b∗].

From the fact that Fb (·) is absolutely continuous we conclude that Fb (c) = Pr {s ∈ S :
b (s) 6 c}. Let S denote the set of regular functions. Observe that S contains non-monotonic
bidding functions. It is formed by functions b that do not induce ties with positive probability
(because Fb is absolutely continuous) and that do not have gaps in the support of the bids
(because Fb is increasing).
If a bidding function b ∈ S is fixed, let us call the c.d.f. of the maximum bid of the opponents,

P̃ b. That is, we define the transformation P̃ b : R+ → [0, 1] by:

P̃ b (c) = (Pr {ti ∈ S : b (ti) < c})N−1(1)

= Pr
©
t−i ∈ SN−1 : b (tj) < c, j 6= i

ª
.
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By the definition of S, P̃ b is strictly increasing and its image is the whole interval [0, 1].
Now, we will denote by P b : S → [0, 1] the composition P b = P̃ b ◦ b. So, for a fixed b ∈ S,

followed by all players, P b (ti) is the probability of player i of type ti wins the auction:

P b (ti) = Pr
©
t−i ∈ SN−1 : b(−i) (t−i) < b (ti)

ª
(2)

= Pr
©
t−i ∈ SN−1 : b (tj) 6 b (ti) ,∀j 6= i

ª
.

The following observation is important: from the symmetry required by (H0), the above function

does not depend on i and P b (ti) S P b (tj) if and only if b (ti) S b (tj). Obviously, two players
have the same probability of winning if and only if they play the same bids. So, we have the
following: ©

t−i ∈ SN−1 : b(−i) (t−i) < b (ti)
ª
=
n
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

o
,

where P b(−i) (t−i) ≡ maxj 6=i P b (tj). The equality of these events and (2) imply that

P b (ti) = Pr
n
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

o
.

This observation will allow us to define conjugations without mentioning bidding functions. This
will be very important in order to state our results. We have the following:

Definition 2. A conjugation for the auction (S, µ, v) is a measurable and surjective function
P : S → [0, 1] such that for each i = 1, ... N ,

(3) P (ti) = Pr{t−i ∈ SN−1 : P(−i) (t−i) 6 P (ti)} = [Pr{tj ∈ S : P (tj) < P (ti) , j 6= i}]N−1 .

Observe that in the above definition, we do not need to mention the strategy b ∈ S. It is
also clear from the previous discussion that definition 2 is not empty, that is, for any regular
function b ∈ S there exists a conjugation defined by (2) that satisfies the above definition.
Observe also that, since the range of P is [0, 1], we have, for all c ∈ [0, 1],

(4) Pr
©
t−i ∈ SN−1 : P(−i) (t−i) < c

ª
= c.

The above equation will be important in the sequel. It simply means that the distribution of
P(−i) (t−i) is uniform on [0, 1].
Given b ∈ S, equation (2) defines just one conjugation compatible with it. On the other

hand, given a conjugation P , any function b ∈ S that is an increasing transformation of P is
compatible with P . To see this, suppose that there is an increasing function h : [0, 1] → R+,
such that b (ti) = h (P (ti)) for µ−almost all ti ∈ S. Then,

P (ti) = Pr {t−i : P (tj) < P (ti) ,∀j 6= i}
= Pr {t−i : h (P (tj)) < h (P (ti)) ,∀j 6= i}
= Pr {t−i : b (tj) < b (ti) ,∀j 6= i} .

That is, given a conjugation P , there are many functions b ∈ S compatible with it. In particular,
b = P is a bidding function compatible with P .
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3.2. Indirect Auctions. We proceed to define the indirect auction
³
S̃, µ̃, ṽ

´
related to the

direct auction (S, µ, v). The relation between them is given by the conjugation P : S → [0, 1].

If the direct type of a player is ti ∈ S, the indirect type will be P (ti). So, S̃ is just [0, 1]. Each
direct strategy b : S → R corresponds to an indirect strategy b̃ : [0, 1]→ R, such that the direct
strategy will be the composition of the indirect strategy and the conjugation, that is, b = b̃ ◦P ,
where P = P b. What is this indirect strategy? Remember that P b = P̃ b ◦b and P̃ b is increasing.
So, given b, if we take the indirect strategy as b̃ ≡

³
P̃ b
´−1

, then b = b̃ ◦ P , as we want. On
the other hand, if it is given an indirect strategy b̃ and a conjugation P , we have the associated
direct strategy b = b̃ ◦ P . So we have just to define the indirect payoffs:

Definition 3. Fix a conjugation P for an auction (S, µ, v). The indirect utility function of

bidder i associated to this conjugation is ṽ : [0, 1]2 → R, given by

(5) ṽ(x, y) ≡ E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y].

Now, fix a conjugation P and define the following function:

(6) Π̃ (x, c) ≡ E [Π (ti, c) |P (ti) = x] ,
where, Π (ti, c) is the interim payoff of the direct auction. The notation should suggest to the

reader that Π̃ (x, c) will be the interim payoff of the indirect auction. Indeed, we have the
following:

Proposition 1. Assume (H0). Given b ∈ S, consider the corresponding conjugation P = P b
(defined by (2)) and the indirect bidding function b̃ =

³
P̃ b
´−1

. Alternatively, given a conjugation

P and an indirect bidding function b̃, let b = b̃ ◦P be the corresponding direct bidding function.
Thus,
(i)

(7) Π̃ (x, c) =

Z b̃−1(c)

0

h
ṽ (x,α)− pW

³
c, b̃ (α)

´i
dα−

Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα.

(ii) Assume that P is such that for all s with P (s) = x, and for all x, y ∈ [0, 1],
(8) ṽ (x, y) = E[v(t)|P (ti) = x,P(−i)(t−i) = y] = E[v(t)|ti = s, P(−i)(t−i) = y].
Then, for all ti such that P (ti) = x and for all c ∈ B,
(9) Π̃ (x, c) = Π (ti, c) .

Proof. See Appendix A.¥

Observe that, because of (7), Π̃ (x, c) is formally equivalent to the interim payoff of an auction
between two bidders, with signals uniformly distributed on [0, 1], where the opponent is following

the strategy b̃ (·) and the (common-value) utility function is given by ṽ (x,α). So, we define the
indirect auction as follows:
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Definition 4. Given an auction (S, µ, v) and a conjugation P for it, the associated indirect
auction is an auction between two players with independent types uniformly distributed on [0, 1]

and where the utility function is ṽ defined by (5). The indirect auction is denoted by
³
S̃, µ̃, ṽ

´
where µ̃ is the Lebesgue measure in S̃ = [0, 1].

The reader should keep in mind that the indirect auction is just an auxiliary and fictitious
auction that will help in the analysis of the “direct” one. It is clear through definitions 1-4 how
a conjugation relates the direct and the indirect auction. Obviously, a function b̃ : [0, 1] → R+
is equilibrium of the indirect auction if for almost all x ∈ [0, 1], Π̃

³
x, b̃ (x)

´
> Π̃ (x, c), ∀c ∈

B = {bOUT } ∪ [bmin,+∞).
4. Necessary and Sufficient Conditions for Regular Equilibria

The results and definitions of the two previous subsections allow us to show that the existence
of a direct equilibrium implies the existence of the indirect one (Theorem 1, below). Conversely,
(with an extra relatively weak assumption of consistency of payoffs) the existence of equilibrium
in indirect auctions implies the existence in direct ones (Theorem 2).

Theorem 1 (Necessary Conditions). Assume (H0)-(H2). If there is a pure strategy equilib-
rium b ∈ S for the direct auction (S, µ, v) and there exists ∂bΠ (s, b (s)) for all s, then:
(i) the associated conjugation P = P b (given by (2)) satisfies the following property: if s ∈ S

is such that P (s) = x, then6

(10) ṽ (x, x) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P(−i)(t−i) = x];

(ii) the indirect bidding function b̃ =
³
P̃ b
´−1

, where P̃ b is given by (1), is the increasing

equilibrium of the indirect auction.

Moreover, if ṽ is continuous (i.e., if it has a continuous representative), then:

(iii) (H1)-1 implies that b̃ is differentiable and

(11) b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ,
and (H1)-2 implies that

(12) ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0;

(iv) the expected payment of a bidder with type ti is given by

p (ti) =

Z P (ti)

0
ṽ (α,α) dα;

6This condition is related to an analogous one derived by Araujo and Moreira (2000) for the screening problem
and Araujo and Moreira (2001) for signaling model. In these papers, the violation of the single crossing property
leads to non-monotonicity.
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(v) for all x and y ∈ [0, 1],

(13)

Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0.

Proof. See Appendix C.¥

Theorem 1 says that if a multidimensional auction has a regular equilibrium, then it can be
reduced to a unidimensional auction with two players (the indirect one). However, the reader
should note that such reduction is non-trivial and that the indirect auction is not equivalent
to the direct one. The indirect auction is a “fictitious” game, where each bidder is facing up a
“fictitious” player, the “opponent”, that does not correspond to a real player. So, the dimension
reduction is meant in this particular sense.
The expression in condition (iv) does not depend on the specific format of the payment rules,

pW and pL, but it does depend on the conjugation. For the class of auctions considered in the
next section, we are able to prove that the conjugation is unique and the Revenue Equivalence
Theorem holds. On the other hand, condition (iv) plays an important role to prove the existence
of equilibrium in the next result.
Theorem 2 is a kind of converse of Theorem 1. The main difference is that we do not require

ṽ to be continuous and we need condition (i)’, which is slightly stronger than condition (i) in
Theorem 1.

Theorem 2 (Sufficient Conditions). Assume (H0)-(H2). Consider a direct auction (S, µ, v),

a conjugation P and its associated indirect auction
³
S̃, µ̃, ṽ

´
. Assume that

(i)’ for all s ∈ S such that P (s) = x, and all y ∈ [0, 1],

(14) ṽ (x, y) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y] = E[v(ti, t−i)|ti = s, P(−i)(t−i) = y];
(ii) for all x and y ∈ [0, 1], Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0;

(iii) there is an increasing function b̃, such that

p̂ (y) ≡
Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα,

where p̂ (P (ti)) = p (ti) is the expected payment of a bidder of type ti.

Then, b̃ is the equilibrium of the indirect auction and b = b̃◦P is the equilibrium of the direct
auction. Moreover, if ṽ is continuous, there exists ∂bΠ (s, b (s)) for all s (which implies that all
conditions of Theorem 1 are satisfied).

Proof. See Appendix C.¥

Remark 1. For the four specific formats, namely, the first-price auction (F), second-price

auction (S), all-pay auction (A) and war of attrition (W), the function b̃ is given, respectively,
by
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(F) b̃ (x) =
1

x

Z x

0
ṽ (α,α) dα(15)

(S) b̃ (x) = ṽ (x, x)(16)

(A) b̃ (x) =

Z x

0
ṽ (α,α) dα(17)

(W) b̃ (x) =

Z x

0

ṽ (α,α)

1− α
dα(18)

Conditions (iii) and (iv) reduce to the requirement that the function b̃ above is increasing. In
particular, the equilibrium may exist for an all-pay auction, for instance, but not for a first-price
auction.

Remark 2. Although natural, condition (i)’ can be still too restrictive. We need it in order
to apply Proposition 1 and reach the conclusion that for all ti such that P (ti) = x and for all

c ∈ R, we have: Π̃ (x, c) = Π (ti, c) (see (9) in Proposition 1). In turn, this implies that the
equilibrium of the indirect auction is equilibrium of the direct auction. So, instead of assuming
condition (i)’ above, it would be sufficient to require the (necessary) condition (i) of Theorem 1

and that (9) is valid. For instance, when v (ti, t−i) is given by
PK
k=1 fk (ti) gk (t−i), condition (i)

is sufficient to have (9) and Theorem 2 is valid with the (necessary) condition (i) in the place of
the condition (i)’.7

Theorem 2 reduces the problem of equilibrium existence to find a conjugation that meets
requirements (i)’, (ii) and (iii). In the next section we treat a still general case (weakly separable
auctions) where such conjugation can be easily defined. Nevertheless, we would like to give two
examples where the assumptions of the next section are not satisfied. These examples illustrate
a kind of heuristics for the existence problem. In example 1, we have a monotonic equilibrium
and also a U-shaped one, which shows that the conjugation is not unique. In example 2, there
is no monotonic equilibrium, but there is a bell-shaped equilibrium. Another example where
Theorem 2 can be applied is an example provided by Jehiel, Meyer-ter-Vehn, Moldovanu and
Zame (2004).

Example 1 – Consider a symmetric first-price auction with two bidders, types uniformly
distributed on [0, 1] and utility function given by

v(ti, t−i) = ti +
¡
3− 4ti + 2t2i

¢
t−i.

Observe that ∂tiv (ti, t−i) = 1−4t−i+4tit−i can be negative. Thus, the received theory cannot be
applied. Nevertheless, there exists a monotonic equilibrium. Indeed, in this case, the conjugation
will be given by P (ti) = ti and we obtain

ṽ(x, y) = x+
¡
3− 4x+ 2x2¢ y.

ṽ clearly satisfies condition (i)’. Condition (ii) follows from the fact that x > y implies

7See also an extension of Example 1 in the Appendix D, which exemplifies the method in this case.
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Figure 1. Equilibrium bidding function in Example 1.

Z x

y
[ṽ(x, z)− ṽ(z, z)] dz = (x− y)2

6

£
3 + 3x2 − 8y + 3y2 + x (−4 + 6y)¤ > 0.

Condition (iii) is also satisfied, because the function

b̃ (x) =
1

x

Z x

0
ṽ (z, z) dz =

x
¡
24− 16x+ 3x2¢

12

is increasing. Clearly, the above function satisfies condition (iv). Thus, there exists a monotonic
equilibrium by Theorem 2.
Nevertheless, this is not the unique equilibrium. If we assume that there exists a U-shaped

equilibrium, the conjugation can be expressed by P (ti) = |c (ti)− ti|, where c (ti) is the type
that bids as ti (see Figure 1). Observe that c ◦ c (ti) = ti. Condition (i) of Theorem 1 requires
that

s+
¡
3− 4s+ 2s2¢ s+ c (s)

2
= c (s) +

³
3− 4c (s) + 2c (s)2

´ s+ c (s)
2

,

that is,

s− c (s) = [s− c (s)] [4− 2c (s)− 2s] s+ c (s)
2

,

which simplifies to [s+ c (s)] [2− s− c (s)] = 1 ⇒ s + c (s) = 1. Then, c (s) = 1 − s and
P (s) = |1− 2s|. This gives the expression:

ṽ (x, y) =
5 + x2

4
and condition (i)’ and (ii) are easily seen to be satisfied. Also, condition (iii) and (iv) are
satisfied, since

b̃ (x) =
1

x

Z x

0
ṽ (z, z) dz =

5

4
+
x2

12

is increasing. Then, b (s) = 5
4 +

(1−2s)2
12 is a direct equilibrium, plotted in Figure 1.
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Figure 2. Equilibrium bidding function in Example 2.

Observe that no tie rules are needed in this case, because ties occur with zero probability.
However, for each equilibrium bid, exactly two types pool and have the same probability of
winning.
In Appendix D, we treat a slightly more general case, where the conjugation is more difficult

to find than in this example.¥

Example 2 – Consider again a symmetric first-price auction with two bidders and sig-
nals uniformly distributed in [1.5, 3] such that the value of the object is given by v (ti, t−i) =
ti
¡
t−i − ti

2

¢
. In Appendix D, we show that this auction does not have monotonic regular equi-

libria, but there is a bell-shaped equilibrium as shown in Figure 2.¥
Example 1 shows that it is possible for a standard auction to have multiple equilibria. Example

2 suggests that the correct conjugation can fail to exist – at least with a fixed shape (that we
began assuming). Thus, one would be interested in cases where it is possible to ensure the
uniqueness of the equilibrium and where it is possible to find explicitly the conjugation. We do
this under the context of assumption H3, to be presented in the next subsection.

5. Equilibrium Existence of Weakly Separable Auctions

Theorem 2 teaches us that the question of equilibrium existence is solved if we are able to find
the proper conjugation. In examples 1 and 2 of the previous section we have shown situations
where the conjugations could be obtained. However, there we assumed some features of the
conjugation that are not necessary and we were able to find the correct conjugation for those
settings. Now we will work in a setting where a conjugation always exists: the weakly separable
auctions. These are the auctions satisfying the following assumption:

(H3) (Weak Separability). v (ti, t−i) is such that if v (ti, t−i) < v (t0i, t−i) for some t−i then
v
¡
ti, t

0
−i
¢
< v

¡
t0i, t

0
−i
¢
for all t0−i. Moreover, if C ⊂ R has zero Lebesgue measure, then µ{s ∈ S :
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v1 (s) ∈ C} = 0, where
v1 (s) ≡ E [v (ti, t−i) |ti = s]

is the expected value of the object for bidder with type s.

Assumption (H3) is restrictive, but it is valid in many economic meaningful cases.8 Of course,
private values are included in (H3).
Under (H3), we can define explicitly the conjugation:

(19) P (ti) ≡ Pr
©
t−i ∈ SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
.

Moreover, we can give a necessary and sufficient condition for the equilibrium existence of
the direct auction: merely that the solution b̃ to the first-order condition of the indirect auction
be increasing. This is the content of the following:

Theorem 3 (Necessary and Sufficient Condition For Equilibrium Existence). Assume (H0)-
(H3). Let P be defined by (19) and let ṽ be given by (5) for this P . There exists an equilibrium

b ∈ S if there exists an increasing function b̃ that satisfies

(20)

Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα.

If this is the case, the equilibrium of the direct auction is given by b = b̃ ◦ P and the expected
payment of a bidder of type s is given by

(21) p (s) =

Z P (s)

0
ṽ (α,α) dα.

Additionally, if ṽ is continuous, then there exists an equilibrium b ∈ S and there exists ∂bΠ (s, b (s))
for all s if and only if there exists an increasing function b̃ that satisfies the following:

• For (H1)-1, b̃ is differentiable and

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ;
with initial condition

R 1
0 p

L
³
b̃ (0) , b̃ (α)

´
dα = 0;

• For (H1)-2, b̃ is continuous and satisfies, for all x ∈ (0, 1),
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0.

Moreover, if there is a unique b̃ that satisfies such properties, the equilibrium of the direct
auction in regular pure strategies is also unique.

Proof. See Appendix C.¥

8Theorem 3 of Debreu (1960) implies that if S is connected and v satisfies (H3), then v (ti, t−i) can be written
as h

(
u1 (ti) + u

2 (t−i)
)
, where h is an increasing function. In this case, (H3) would also imply that u1 (ti) does

not assume a value with positive probability.
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Remark 3. As explained in Remark 1, if a multidimensional auction has a regular equilib-
rium, it can always be reduced (in a non-trivial way) to a one dimension auction (the indirect
auction). So, for obtaining equilibrium existence, we have to consider auctions that can be
“reduced”. This is what assumption H3 allows us to explicitly do. It still encompasses cases
where such reduction is not trivial, as we show in examples 3 and 4 below. The reduction of the
dimension of types is not a novelty in auction theory. While studying the efficiency of auctions,
Dasgupta and Maskin (2000) use a condition close to H3 and Jehiel, Moldovanu and Stacchetti
(1996) made such reduction for revenue maximization. Nevertheless, to show equilibrium exis-
tence in auctions, one cannot use only H3 or the Dasgupta and Maskin’s condition, since the
received theory would require the monotonicity assumption of ṽ on the reparameterized types.
As we show in examples 4 and 5, this is not always possible. So, an important feature of Theorem
3 is that it does not require ṽ to be monotonic.

Example 3 (Spectrum Auction).9

Consider a first-price auction of a spectrum license. The license covers two periods of time:
(1) In the first period, the regulator lets the winner explore its monopoly power. Let t1i be the

estimative of bidder i of the monopolist surplus in this first period. Of course, the true surplus
will be better approximated by

¡
t11 + ...+ t

1
N

¢
/ N . If the bidder i (a firm) wins the auction, it

has to invest t2i , a privately known amount, to build the network that will support the service.
So, in the first period, the license gives to the firm

t11 + ...+ t
1
N

N
− t2i .

(2) In the second period, the regulator makes an estimate of the operational costs of the
firm. The regulator cannot observe the true operational cost, t3i , which is a private information
of the firm. Nevertheless, the regulator has a proxy that is a sufficient statistic for the mean
operational cost of all participants in the auction,

¡
t31 + ...+ t

3
N

¢
/ N . The regulator will fix a

price that will give zero profit for a firm with the mean operational costs.10 So, in the second
period, the license gives to the winner

t31 + ...+ t
3
N

N
− t3i .

So, the value of the object is given by

v (ti, t−i) =
t11 + ...+ t

1
N

N
− t2i +

t31 + ...+ t
3
N

N
− t3i .

Let the signals ti =
¡
t1i , t

2
i , t

3
i

¢
, i = 1, ..., N, be independent. Observe that the problem cannot

be reduced to a single dimension. Indeed, if we summarize the private information by, say,
si = t

1
i /N − t2i + t3i (1/N − 1), we lose the information about t1i and t3i that are needed for the

value function of bidders j 6= i. Also, the model cannot be reparameterized to an increasing one.
If we try to put −t3i in the place of t3i , then the dependence of v (ti, t−i) on the signals t3j will be
decreasing. So, the received theory does not ensure the existence of pure strategy equilibrium
for this case. Nevertheless, assumption (H3) is trivially satisfied. In Appendix D, we assume

9This example is more complex, but formally similar to example 5 of Dasgupta and Makin (2000).
10We assume that the regulator is institutionally constrained to follow such a procedure, so the optimality of

this regulation is not an issue here.
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the ti =
¡
t1i , t

2
i , t

3
i

¢
are independent and uniformly distributed on

£
s1, s1

¤ × £
s2, s2

¤ × £
s3, s3

¤
,

with s1, s2, s3 > 0 and we show that a sufficient condition for the existence of equilibrium in
pure strategy is

s1

N
− s2 − s3N − 1

N
− 1 > 0.

The derivation in Appendix D indeed provides necessary and sufficient conditions for the exis-
tence of equilibrium.¥

Example 4 (Job Market).
We model the job market for a manager as an auction among competing firms, where the

object is the job contract. It is natural to assume that the manager has a multidimensional vector
of characteristics, m = (m1, ..., mk). For the sake of simplicity, we assume that firms learn such
characteristics through interviews and curriculum analysis. Each firm also has a position to be
filled by the manager, with specific requirements for each dimension of the characteristics. For
instance, if dimension 1 is ability to communicate and the position is to be the manager of a
production section, there is level of desirability of this ability. An overly communicative person
may not be good. The same goes for the other characteristics. A bank may desire a sufficiently
(but not exaggeratedly) high level of risk loving or audacity on the part of the manager, while
a family business may desire a much lower level. Even efficiency or qualification can have a
level of desirability. Sometimes, the rejection of a candidate is explained by over-qualification.
Therefore, let ti = (t

1
i , ..., t

K
i ) be the value of the characteristics desired by the firm.

Since firms are competitors, then if one hires the employee, the other will remain with a
vacant position, at least for a time.11 In this way, the winning firm also benefits from the fact
that its competitors have a vacant position – and, then, are not operating perfectly well. The
higher the abilities required for the job, the more the competitor suffers.12 So, the utility in this
auction is as

v (ti, t−i) =
KX
k=1

akmk −
KX
k=1

bk
³
tki −mk

´2
+
X
j 6=i

KX
k=1

cktkj ,

where ak is the level of importance of characteristic k of the manager, bk > 0 represents how
important is the distance from the desired level tki of the characteristic k, and c

k is the weight
of the benefit that firm i receives from the fact that the competitors are lacking

P
j 6=i t

k
j of

the ability k. As in the previous example, we cannot simplify this model to a unidimensional
monotonic model. In Appendix D we analyze the case where there is just one dimension (K = 1),
2 players (N = 2) and types are uniformly distributed on [0, 1], b = b1 > 0. We show that when

11This model works only for non-competitive job markets. In other words, the buyers (the contracting firms)
have no access to a market with many homogenous employees to hire. This is implicit when we model it as an
auction. So, this is the reason why a firm that does not contract the manager suffers – it is not possible to find
a suitable substitute instantaneously.
12If firms act in a oligopolistic market, it is possible to justify such externality through the fact that the vacant

position influences the quality of the product delivered by the firms and, hence, the equilibrium in this market.
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Figure 3. Equilibrium bidding function in Example 4.

m1 = m > 1/2, there exists a pure strategy equilibrium in regular strategies if and only if

c ≡ c1 > max
½
2b (m− 2)

3
,
2b (1− 2m) (1 +m)

3

¾
and when m < 1/2, if and only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Observe that for both cases the value c = 0 ensures the existence of equilibrium. This is expected,
since it corresponds to a private value auction. For a = b = 1/5, c = 1/20 and m = 1/3, the
equilibrium bidding function is shown in Figure 3.¥

Now, we can return to the example given in the introduction. Theorem 3 gives the conditions
for the equilibrium existence.

Example 5 (JSSZ, example 1). Let us consider a first price auction with two bidders,
independent types uniformly distributed on [0, 1]. Let v1 (ti) = ti and v

2 (t−i) = α+ βt−i. It is
clear that P (ti) = ti in this case and ṽ (x, y) = α+ x+ βy. So, ṽ (x, x) = α + (1 + β)x and

b̃ (x) =
1

x

Z x

0
ṽ (z, z) dz =

1

x

·
αx+

(1 + β)x2

2

¸
= α+

(1 + β)x

2
,

which is increasing only if β > −1. Observe that for b̃ (·) > 0, it is necessary α > − (1 + β)x/2,
otherwise negative bids have to be allowed.¥

The example above is used by JSSZ to show that equilibrium may fail to exist under the
standard tie-breaking rule. They then provide a general existence result based on endogenous
tie-breaking rules. Nevertheless, their result has some undesirable properties. First, it is in
mixed strategies. Second, the tie-breaking rule is endogenous, so it is not possible to know what
rule has to be applied in order to guarantee the existence. Third, the rule requires that the
players announce their types, which is theoretically convenient but unfeasible in the real world.
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Instead, consider the following rule: if a tie occurs, conduct an all-pay auction among the
tying bidders. If another tie occurs, split randomly the object.13,14

We show now that the all-pay auction tie-breaking rule ensures the existence of equilibrium
for all auctions that we are considering.

Theorem 4 (General Existence). Assume (H0) - (H3) and that the all-pay auction tie-

breaking rule is adopted. If there is a continuous function b̃, not necessarily increasing, such
that Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα,

then there exists a pure strategy equilibrium.

Proof. See Appendix C.¥

Remark 4. The main ingredients in the proof of Theorem 4 are the payment expression and
the fact the bidding function of an all-pay auction is always increasing. This is so because in
the all-pay auction, the bid

b̃ (x) =

Z x

0
ṽ (α,α) dα

is exactly the expect payment, which implies (20). Since v is positive by (H0), ṽ is positive

which implies that b̃ is increasing. Thus, an auction that has an increasing b̃, as the war of
attrition, can be also used as the tie-breaking mechanism.

Example 5 (cont.) With the all-pay auction tie-breaking rule, the equilibrium of Example 5
is given, if β 6 −1, by the bid strategy b1 (x) = b̄, ∀x ∈ [0, 1], in the first price auction, where
b̄ ∈

h
α+ 1+β

2 ,α
i
, and the bid strategy

b2 (x) = αx+
1 + β

2
x2

for the tie-breaking (all-pay) auction.¥

Remark 5. When b̃ is not increasing, there are types that are not ordered correctly (as in

Example 5). This can be understood as a failure of b̃ in correctly revealing the information that
each bidder possesses. One can say that the tie-breaking rule has exactly the role of revealing
information, in this sense. Thus, Theorem 4 can be interpreted as saying that all-pay auctions
and war of attrition are better mechanisms for revelating information than first-price and second-
price autions. This can be another way of justifying the use of research tournaments in practice.15

Indeed, the characteristics needed to compete for a research is very intricated: it is needed

13Observe that in the tie-breaking auction, bids and payments may be less than in the first auction.
14Maskin and Riley (2000) used a similar tie-breaking rule. They propose to conduct a second price (Vickrey)

auction in the case of a tie.
15Research tournaments are theoretically modeled as all-pay auctions or war of attrition.
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Figure 4. Possible specifications for the level of the tie.

information not only on the technical capabilities, but also on discipline, honesty, creativity, etc.
This (multidimensional) information is better revealed through an all-pay auction.16,17

The reader should note that Theorem 4 does not claim the uniqueness of equilibrium. Indeed,
if b̃ is not increasing, there are many equilibria. There are two sources for this multiplicity.
The first source is that under the all-pay auction tie-breaking rule, any level of the bid in the

range where b̃ is not increasing can be chosen to be the level of the tie. This is shown in the
Figure 4. For instance, any a0 can be chosen between x0 and x1. Once one of the three elements
ak, bk or ck is determined, so are the other two. However, these possibilities lead to the same
expected payment and payoff for each bidder in the auction.
Another point is that the tie-breaking rule is not unique, in general. It can be shown, for

instance, that for cases where b̃ is decreasing (as in example 1 of JSSZ) and for some specifications
of v, there is a continuum of tie-breaking rules (like that defined by JSSZ for their example
1), which ensures the existence of equilibrium. All these tie-breaking rules nevertheless imply
different revenues. In light of this observation, the existence of equilibrium with an endogenous
tie-breaking rule seems even more problematic as a solution concept, since it can sustain many
different behaviors and payoffs at equilibrium.
This multiplicity is in contrast with the “ironing principle” usual in Contract Theory.18 The

unicity of the solution through the ironing principle comes from a Lagrangian condition that
must be satisfied by the contract. Here, we do not have the maximization function of the
principal. So, there is no additional condition that would fix the level of tieing bids.

16Standard explanations for the use of tournaments in research also appeals to the role of information. See,
for instance, Taylor (1995, p. 872): “Contracting for research is often infeasible because research inputs are
unobservable and research outcomes cannot be verified by a court”. Our point is somewhat different, but obviously
related to this explanation. The comparison among the information revealed by different auctions is the novelty.
17Obviously, these observations are valid only under the context of assumptions (H0)-(H3). It is a matter for

future research to determine the range of validity of the existence ensured by all-pay auction tie-breaking rule.
18See, for instance, Guesnerie and Laffont (1984).
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The reader may observe that the expression of the payment in Theorem 3 depends only on
the conjugation, which is fixed for all kind of auctions. Also, the payment is exactly the same
under the all-pay auction tie-breaking rule. So, we have the following:

Theorem 5 (Revenue Equivalence Theorem). Consider auctions that satisfy (H0) -(H3) and
with the all-pay auction tie-breaking rule. Then, any format of the auction gives the same
revenue, provided that bidders follow the symmetric equilibrium specified by Theorem 4.

Proof. See Appendix C.¥

6. Conclusion

Now we will briefly highlight what are the most important contributions of this paper and
discuss possible extensions.

6.1. The Contributions. Our contributions can be summarized as follows:

• Equilibrium Existence in the Multidimensional Setting – McAdams (2003a) generalizes
Athey (2001) for multidimensional types and actions. He works with discrete bids and
continuous types. Our approach gives the existence with continuum types and bids.
Our result provides the expressions of the bidding functions, while his is an existence
result only. His assumptions require monotonicity and are not on the fundamentals
of the model. On the other hand, our results do not cover multi-unit auctions nor
asymmetries as his. JSSZ give the existence for multidimensional games, including cases
with dependence, while we require independence. However, they need an endogenous
tie-breaking rule, and the existence is in mixed strategies, while our results are in pure
strategies. Jackson and Swinkels (2004) show the existence of equilibria for a large class
of multidimensional private value auctions. Their setting is private values, while ours is
interdependent values. They allow asymmetries, dependence of signals and multi-units,
but the existence is given in mixed strategies.

• Equilibrium Existence in Non-Monotonic Settings – We are not aware of any general
non-monotonic equilibrium existence results in pure strategies. Zheng (2001), Athey and
Levin (2001) and Ewerhart and Fieseler (2003) present cases where non-monotonicity
arises.
Thus, our method develops a theory to deal with the situations where the usual monotonic-
ity is not fulfilled.19 Araujo and Moreira (2000) use a similar method for the screening
problem without the single crossing property and Araujo and Moreira (2001) extend it
to signaling model.

• Uniqueness of Equilibrium – We are able to ensure the uniqueness of equilibrium in the
symmetric interdependent values auctions that satisfy assumption H3, extending the
well known uniqueness of unidimensional and monotonic auctions.

19Of course, papers that provide existence in distributional (mixed) strategies can treat non-monotonic settings
as well.
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• Necessary and Sufficient Conditions for the Existence of Equilibrium without Ties –
The results of JSSZ do not allow one to distinguish when special tie-breaking is needed
or when it is not. Our approach clarifies, under assumption H3, whether ties occur with
positive probability (and there is a potential need for special tie-breaking rules).

• All-Pay Auction Tie-Breaking Rule – When there is a need for a tie with positive
probability, we are able to offer an exogenous tie-breaking rule, which is implemented
through an all-pay auction. Moreover, the equilibrium that the rule implements is in
pure strategies. For private value auctions, Jackson and Swinkels (2004) show that the
equilibrium is invariant for any trade-maximizing tie-breaking rule. Nevertheless, this
does not need to hold for the interdependent values auctions that we treat here.

• Information Revelation – In the sense made precise by Remark 5, we show that all-pay
auction and war of attrition are better mechanisms to reveal information than first-price
and second-price auctions.

• Revenue Equivalence Theorem – We have also generalized the Revenue Equivalence
Theorem (Theorem 5). Furthermore, Theorem 2 and Appendix B show that there is
a deep connection between the revenue equivalence and the existence of equilibrium.
Riley and Samuelson (1981) and Myerson (1981) establish that revenue equivalence is a
consequence of the equilibrium behavior. Proposition 5 and Corollary 1 in Appendix B
show that the revenue equivalence is also sufficient for the existence of equilibrium (if an
extra condition is satisfied).

Thus, our results have clarified some aspects of the equilibrium existence problem in auctions.
The theory shows that, under assumption H3, there is no additional difficult in working with
the more general setting of multidimensional types and non-monotonic utilities besides those
difficulties already present in the unidimensional setting.20 Moreover, this approach allows the
equilibrium bidding functions to be expressed in a simple manner. This is so because the
equilibrium bidding function of a general auction can be expressed by the equilibrium bidding
function of an auction with two bidders and types uniformly distributed on [0, 1].

6.2. Limitations of the Method. Our theory makes two important assumptions: indepen-
dence of the types and symmetry.
The generalization of this approach for dependent types involves some difficulties, because the

conjugation would depend in a complicated way on types. Nevertheless, we believe that some
extension can be done if we assume conditional independence.21 It is worth remembering that
the problem with dependence is not specific to our approach. Jackson (1999) gives a counter-
example for the equilibrium existence of an auction with bidimensional affiliated types. Fang
and Morris (2003) also obtain negative results, not only for the existence of equilibrium but also
for the revenue equivalence.
On the other hand, asymmetry does not seem to impose severe restriction on the existence of

equilibrium. We believe that the approach of the indirect auction can be adapted to this case,

20Theorem 3 shows that the non-existence of the equilibrium comes from the non-monotonicity of the in-
direct bidding function. This can also occur in an unidimensional setting, although it can be more usual in
multidimensional models.
21de Castro (2004b) proposes the use of conditional independence as an alternative for affiliation.
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although not in a straightforward way. If this can be done, it is unlikely that we will obtain
simple expressions as in this paper.
Another limitation of our theory is that it is applied only to single-unit auctions. The risk

neutrality does not seem to be a fundamental assumption, although complications can arise in
extending the approach for risk aversion.
Finally, the relaxation of assumption H3 is an obvious direction to pursue, although H3 seems

to encompass many important economical examples.

Appendix A - Proof of the Basic Results

We will need the following result, which was proved, in a more general setting, by de Castro
(2004a).

Lemma 1 (Payoff Characterization) – Assume (H0)-(H2). Fix b (·) ∈ S. The bidder i’s
payoff can be expressed by

Π(ti, bi, b (·)) = Πi(ti, bmin) +
Z
(bmin,bi)

∂biΠ(ti,β, b (·))dβ,

where ∂biΠ(ti,β, b (·)) exists for almost all β with

∂biΠ(ti,β, b (·)) = E
h
−∂1pW

¡
β, b(−i) (t−i)

¢
1[β>b(−i)(t−i)] − ∂1p

L
¡
β, b(−i) (t−i)

¢
1[β<b(−i)(t−i)]

i
+E[v (ti, t−i)− pW (β,β) + pL (β,β) |b(−i) (t−i) = β]fb(−i) (β) .

a.e., where b(−i) (t−i) ≡ maxj 6=i b (tj) .

Proof. Let us define b(−i) (t−i) ≡ maxj 6=i b (tj). Since bi = b(−i) (t−i) with probability zero,
we have

Π(ti, bi, b (·)) =

Z
SN−1

£
v(ti, t−i)− pW

¡
bi, b(−i) (t−i)

¢¤
1[bi>b(−i)(t−i)]

Y
j 6=i
µ (dtj)

+

Z
SN−1

£−pL ¡bi, b(−i) (t−i)¢¤ 1[bi<b(−i)(t−i)]Y
j 6=i
µ (dtj) .

Take a sequence an → b−i , i.e., a
n < bi (the other case is analogous). We want to prove that

there exists limn→∞Dn (bi) / (bi − an) for almost all bi, where

Dn (bi) = Π(ti, bi, b (·))−Π(ti, an, b (·)).
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In the sequel, we will omit the measure
Q
j 6=i µ (dtj) and the terms t−i. We have:

Dn (bi) =

Z £
v(ti, ·)− pW

¡
bi, b(−i) (·)

¢¤
1[bi>b(−i)(·)]1[an>b(−i)(·)]

+

Z £−pL ¡bi, b(−i) (·)¢¤ 1[bi<b(−i)(·)]
−
Z £

v(ti, ·)− pW
¡
an, b(−i) (·)

¢¤
−
Z £−pL ¡an, b(−i) (·)¢¤ 1[an<b(−i)(·)]

=

Z £
v(ti, ·)− pW

¡
bi, b(−i) (·)

¢
+ pL

¡
an, b(−i) (·)

¢¤
1[bi>b(−i)(·)>an]

+

Z £−pW ¡bi, b(−i) (·)¢+ pW ¡an, b(−i) (·)¢¤ 1[an>b(−i)(·)]
+

Z £−pL ¡bi, b(−i) (·)¢+ pL ¡an, b(−i) (·)¢¤ 1[bi<b(−i)(·)]
Let us call the three last integrals as D1n (bi), D

2
n (bi) and D

3
n (bi), respectively. Since p

W and
pL are differentiable, we have

lim
n→∞

D2n (bi)

bi − an = − lim
n→∞

Z
pW

¡
an, b(−i) (·)

¢− pW ¡bi, b(−i) (·)¢
bi − an 1[bi>b(−i)(·)]

= −
Z

∂1p
W
¡
bi, b(−i) (·)

¢
1[bi>b(−i)(·)]

and

lim
n→∞

D3n (bi)

bi − an = − lim
n→∞

Z
pL
¡
an, b(−i) (·)

¢− pL ¡bi, b(−i) (·)¢
bi − an 1[an<b(−i)(·)]

= −
Z

∂1p
L
¡
bi, b(−i) (·)

¢
1[bi<b(−i)(·)].

everywhere. So, if we put a0 = bmin and bi > bmin, the Fundamental Theorem of Calculus gives

(22) D20 (bi) =

Z
(bmin,bi)

Z
−∂1pW

¡
α, b(−i) (·)

¢
1[bi>b(−i)(·)]dα

and

(23) D30 (bi) =

Z
(bmin,bi)

Z
−∂1pL

¡
α, b(−i) (·)

¢
1[bi<b(−i)(·)]dα.

Now, define the measure ρ over R+ by

ρ (V ) ≡
Z
SN−1

£
v(ti, t−i)− pW

¡
bi, b(−i) (t−i)

¢
+ pL

¡
bi, b(−i) (t−i)

¢¤
1[b(−i)(t−i)∈V ]

Y
j 6=i
µ (dtj) .

Observe that, since b ∈ S, ρ is absolutely continuous with respect the Lebesgue measure λ. We
have

lim
n→∞

D1n (bi)

bi − an = lim
n→∞

ρ ([an, bi))

bi − an = lim
an→bi

½
ρ ([an, bi))

λ ([an, bi))

¾
=
dρ

dλ
(bi) ,
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where dρ
dλ (.) is the Radon-Nikodym derivative of ρ with respect to λ. Indeed, the existence of

such limit is ensured by Theorem 8.6 of Rudin (1966) for almost all bi, that is,

λ

µ½
bi : @ lim

an→bi

½
ρ ([an, bi))

λ ([an, bi))

¾¾¶
= 0.

It is easy to see that the Radon-Nikodym derivative dρ
dλ (bi) is simply

E[v (ti, t−i)− pW (β,β) + pL (β,β) |b(−i) (t−i) = β]fb(−i) (β) ,

where fb(−i) (β) is the Radon-Nikodym derivative of the distribution of maximum bids,
R
1[b(−i)(t−i)∈V ].

Moreover, Theorem 8.6 of Rudin says that

(24) ρ ((bmin, bi)) =

Z
(bmin,bi)

dρ

dλ
(α) dα.

Thus, (22), (23) and (24) imply that

Π(ti, bi, b (·)) = Π(ti, bmin) +
Z
(bmin,bi)

∂biΠ(ti,β, b (·))dβ,

where

∂biΠ(ti,β, b (·)) = E
h
−∂1pW

¡
β, b(−i) (t−i)

¢
1[β>b(−i)(t−i)] − ∂1p

L
¡
β, b(−i) (t−i)

¢
1[β<b(−i)(t−i)]

i
+E[v (ti, t−i)− pW (β,β) + pL (β,β) |max

j 6=i
b (tj) = β]fb(−i) (β) .

This concludes the proof.¥

Proof of Proposition 1. Let us introduce the following notation:

Π+ (ti, c) =

Z £
v (ti, ·)− pW

¡
c, b(−i) (·)

¢¤
1[c>b(−i)(·)]Πj 6=iµ (dtj)

Π− (ti, c) =
Z
pL
¡
c, b(−i) (·)

¢
1[c<b(−i)(·)]Πj 6=iµ (dtj) ,

Π̃+,− (φi, c) ≡ E
h
Π+,−i (ti, c) |P (ti) = φi

i
.

Let us begin with the proof for Π̃+i and Π
+
i . Let us denote the conditional expectation by

(25) gti,c (α) ≡ E
h
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢ |P b(−i) (t−i) = α
i
.

The event
£
c > b(−i) (t−i)

¤
occurs if and only if

h
P̃ b (c) > P b(−i) (t−i)

i
occurs. Then, we have

Π+ (ti, c) =

Z
gti,c

³
P b(−i) (t−i)

´
1[
P̃ b(c)>P b

(−i)(t−i)
] Πj 6=iµ (dtj) .

Now we appeal to Lemma 2.2, p. 43, of Lehmann (1959). This lemma says the following: if R
is a transformation and if µ∗ (B) = µ

¡
R−1 (B)

¢
, thenZ

R−1(B)
g [R (t)]µ (dt) =

Z
B
g (α)µ∗ (dα) .
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In our case, R = P b(−i) and µ
∗ ([0, c]) = µ∗ ([0, c)) = τ−i

³¡
P b
¢−1
(−i) ([0, c))

´
= Pr{t−i ∈ SN−1 :

P b (tj) < c} = c, by (4). So, µ∗ is exactly the Lebesgue measure, and we have

(26) Π+ (ti, c) =

Z P̃ b(c)

0
gti,c (α) dα.

From this and the definition of Π̃+, we have

Π̃+ (φi, c) = E

"Z P̃ b(c)

0
gti,c (α) dα|P b (ti) = φi

#

=

Z P̃ b(c)

0
E
h
gti,c (α) |P b (ti) = φi

i
dα

=

Z P̃ b(c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα,

where the second line comes from a interchange of integrals (Fubbini’s Theorem) and the last
line comes from independency and the definition of ṽ (φi,α) and g

ti,c (α) (see (5) and (25)). Also

from the fact that b̃ =
³
P̃ b
´−1

, we can substitute P̃ b to obtain

(27) Π̃+ (φi, c) =

Z b̃−1(c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα.

Now, we can repeat the above procedures with Π− (φi, c) and obtain:

(28) Π̃− (φi, c) =
Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα.

Adding up, that is, putting Π̃ (φi, c) = Π̃
+ (φi, c)− Π̃− (φi, c), we obtain the interim payoff of

the indirect auction. This concludes the proof of the first part.
For the second part, observe that the equality (8) implies that for all ti such that P

b (ti) =
P b (s) = x,

E
h
gti,c (α) |P b (ti) = x

i
= E

h¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b (ti) = x, P b(−i) (t−i) = α
i

= E
h¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |ti = s, P b(−i) (t−i) = α
i

= E
h¡
v (s, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b(−i) (t−i) = α
i

= gs,c (α) .
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Then,

Π̃+ (x, c) = E

"Z P̃ (c)

0
gti,c (α) dα|P b (ti) = x

#

=

Z P̃ (c)

0
E
h
gti,c (α) |P b (ti) = x

i
dα

=

Z P̃ (c)

0
gs,c (α) dα

= Π+ (s, c) ,

where the last line comes from (26). Obviously, the same can be done for Π− and Π̃−. So, the
proof is complete.¥

Appendix B - Indirect Auction Equilibria

In this appendix, we will analyze auctions between two players, with independent types uni-
formly distributed on [0, 1]. Since this is the setting of the indirect auction, we will use notation
consistent with that, although the results of this appendix are independent from the results of
section 4. For (i,−i) = (1, 2) or (2, 1) let

ũi (x, b) =


ṽ (xi, x−i)− pW (bi, b−i) , if bi > b−i
−pL (bi, b−i) , if bi < b−i
ṽ(xi,x−i)−bi

2 , if bi = b−i

be the ex-post payoff. We will assume:

(H0)’ The types are independent and uniformly distributed on [0, 1]. ṽ is positive, measurable
and bounded above.

By the definition of the indirect auction, we are interested only in non-decreasing equilibria
b̃, strictly increasing in the range of winning types. That is, for a non-decreasing strategy b̃,
define x0 to be the minimum type that bids at least bmin. So we require b̃ to be increasing in
[x0, 1] and equal to b̃ (x) = −1 for x < x0. In order to be an equilibrium, b̃ must satisfy the
following:

(29)

Z x0

0

h
ṽ (x0,α)− pW

³
b̃ (x0) , b̃ (α)

´i
dα−

Z 1

x0

pL
³
b̃ (x0) , b̃ (α)

´
dα = 0.

Indeed, the above integral is the payoff of x0. If it is negative, then x0 can do better by bidding
−1. If the above integral is positive, then x0 > 0, otherwise the payoff of x0 = 0 would reduce to
− R 1x0 pL ³b̃ (x0) , b̃ (α)´ dα which is non-positive because pL is positive. If x0 > 0, for a x < x0
sufficiently close of x0, the payoffZ x0

0

h
ṽ (x,α)− pW

³
b̃ (x0) , b̃ (α)

´i
dα−

Z 1

x0

pL
³
b̃ (x0) , b̃ (α)

´
dα
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is still positive (because of the continuity of ṽ). So, x is receiving zero but could obtain a strictly

positive payoff by bidding b̃ (x0) = bmin.

So, for a fixed b̃, we assume the following:

(H2)’ There exists x0, the mininum indirect type that satisfies (29) and x0 ∈ [0, 1).

We have the following:

Proposition 2 (Case 1). Assume (H0)’, (H1)-1, that is, ∂1p
W (·) > 0 or ∂1pL (·) > 0, (H2)’

and that ṽ is continuous. Let b̃ be an increasing equilibrium of the indirect auction. Then, b̃ is
differentiable and satisfies

(30) b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
Proof. The proof is an adaptation of part of the proof of Theorem 2 of Maskin and Riley
(1984).22 Suppose that player −i follows b̃. The interim payoff of player i with (indirect) type
xi is

Π̃(xi, bi, b̃ (·)) =

Z £
ṽ(xi, x−i)− pW (bi, b (x−i))

¤
1[bi>b̃(x−i)]dx−i

−
Z
pL (bi, b (x−i)) 1[bi<b̃(x−i)]dx−i.

If b̃ is discontinuous, there exists x∗ > x0, with

lim sup
x<x∗

b̃ (x) < lim inf
x>x∗

b̃ (x) .

Consider bidders x+εi that bids β+ε = b̃
¡
x+εi

¢
= lim infx>x∗ b̃ (x) + ε and x−εi that bids β−ε =

b̃
¡
x−εi

¢
= lim supx<x∗ b̃ (x) − ε. We will prove that, for ε > 0 sufficiently small, the bid β−ε

is better than β+ε for a bidder with type x+εi . This will be the contradiction. The eventh
β+ε > b̃ (x−i)

i
is arbitrarily close to

h
β−ε > b̃ (x−i)

i
. So, the difference of expected utilitiesZ

ṽ(x+εi , x−i)1[β+ε>b̃(x−i)]dx−i −
Z
ṽ(x+εi , x−i)1[β−ε>b̃(x−i)]dx−i

=

Z
ṽ(x+εi , x−i)1[β+ε>b̃(x−i)≥β−ε]dx−i

is arbitrarily small. On the other hand, the difference of expected payments is

22Since our assumptions are different from theirs, we will reproduce the proof with details.
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−
Z h

pW
¡
β+ε, b (x−i)

¢
1[β+ε>b̃(x−i)] + p

L
¡
β+ε, b (x−i)

¢
1[β+ε<b̃(x−i)]

i
dx−i

+

Z h
pW

¡
β−ε, b (x−i)

¢
1[β−ε>b̃(x−i)] + p

L
¡
β−ε, b (x−i)

¢
1[β−ε<b̃(x−i)]

i
dx−i

=

Z £¡
pW

¡
β−ε, b (x−i)

¢− pW ¡β+ε, b (x−i)¢¢¤ 1[β−ε>b̃(x−i)]dx−i
+

Z £
pL
¡
β−ε, b (x−i)

¢− pL ¡β+ε, b (x−i)¢¤ 1[β−ε<b̃(x−i)]dx−i + r
=

Z Z β+ε

β−ε
−∂1pW (z, b (x−i)) 1[β−ε>b̃(x−i)]dx−i

+

Z Z β+ε

β−ε
−∂1pL (z, b (x−i)) 1[β−ε<b̃(x−i)]dx−i + r

where r denotes the integrals over the event
h
β+ε > b̃ (x−i) > β−ε

i
. Observe that the sum of

the two integrals is negative and bounded away from zero, because ∂1p
W (·) > 0 or ∂1pL (·) > 0.

So, it is not optimal for bidder x+εi to bid β+ε and this contradicts b̃ to be an equilibrium. So,

b̃ is continuous. Let us prove that it is differentiable.
We have

Π̃(x, b̃ (x) , b̃ (·))− Π̃(x, b̃ (y) , b̃ (·))

=

Z x

0

h
ṽ (x,α)− pW

³
b̃ (x) , b̃ (α)

´i
dα−

Z 1

x
pL
³
b̃ (x) , b̃ (α)

´
dα

−
Z y

0

h
ṽ (x,α)− pW

³
b̃ (y) , b̃ (α)

´i
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα

=

Z y

x

h
−ṽ (x,α) + pW

³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (y) , b̃ (α)

´i
dα

+

Z x

0

h
pW

³
b̃ (y) , b̃ (α)

´
− pW

³
b̃ (x) , b̃ (α)

´i
dα

+

Z 1

x

h
pL
³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (x) , b̃ (α)

´i
dα.

Since the first integrand is continuous, by the mean value theorem, there exists x∗ between x
and y such that Z x

y

h
ṽ (x,α)− pW

³
b̃ (y) , b̃ (α)

´
+ pL

³
b̃ (y) , b̃ (α)

´i
dα

= h
h
−ṽ (x, x∗) + pW

³
b̃ (y) , b̃ (x∗)

´
− pL

³
b̃ (y) , b̃ (x∗)

´i
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Since pW and pL are differentiable and b̃ is continuously increasing, there exist xW and xL

between x and y such that Z x

0

h
pj
³
b̃ (y) , b̃ (α)

´
− pj

³
b̃ (x) , b̃ (α)

´i
dα

=
h
b̃ (y)− b̃ (x)

i Z x

0
∂1p

j
³
b̃
¡
xj
¢
, b̃ (α)

´
dα,

where j =W,L. So, since Π̃(x, b̃ (x) , b̃ (·))− Π̃(x, b̃ (y) , b̃ (·)) > 0, we have, for y > x,

(31)
b̃ (y)− b̃ (x)
y − x >

h
ṽ (x, x∗)− pW

³
b̃ (y) , b̃ (x∗)

´
+ pL

³
b̃ (y) , b̃ (x∗)

´i
R x
0 ∂1pW

³
b̃ (xW ) , b̃ (α)

´
dα+

R 1
x ∂1p

L
³
b̃ (xL) , b̃ (α)

´
dα.

Analogously, interchanging x and y, and using Π̃(y, b̃ (y) , b̃ (·))− Π̃(y, b̃ (x) , b̃ (·)) > 0, with y > x,
we obtain, the existence of x̂, x̂W and x̂L in [x, y] such that

(32)
b̃ (y)− b̃ (x)
y − x 6

h
ṽ (y, x̂)− pW

³
b̃ (x) , b̃ (x̂)

´
+ pL

³
b̃ (x) , b̃ (x̂)

´i
R y
0 ∂1p

W
³
x̂W , b̃ (α)

´
dα+

R 1
y ∂1p

L
³
x̂L, b̃ (α)

´
dα

When x > y, we again obtain reverse inequalities. When we make y → x, the right hand side in
(31) and (32) both converge to

ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
So, b̃ is differentiable at x ∈ (x0, 1) and b̃0 (x) is equal to the expression above.¥

Proposition 3 (Case 2). Assume (H0)’, (H1)-2 and that ṽ is continuous. Let b̃ be an
increasing equilibrium of the indirect auction. Then,

(33) ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0,∀x ∈ (x0, 1) .

Proof. The proof is based on the proof of Theorem 3 of Maskin and Riley (1984). Given b,
b0, let us define the function h as

h (z) ≡ pW (b, z)− pL ¡b0, z¢ .
Since ∂1p

W = ∂1p
L ≡ 0 and ∂2

¡
pW − pL¢ > 0, h does not depend on b or b0 and is differentiable

and increasing.
By contradiction, assume that (33) is false, that is, there exists x∗ ∈ (x0, 1) such that

(34) ṽ (x∗, x∗) > h
³
b̃ (x∗)

´
.

Because ṽ is continuous and b̃ is increasing, for sufficiently small δ > 0, we have

ṽ (x∗ − δ, x∗ − δ) > h
³
b̃ (x∗)

´
> h

³
b̃ (x∗ − δ)

´
.
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Since the set of discontinuity points of b̃ is enumerable, we may assume that (34) holds for a

point x∗ where b̃ is continuous. Thus, for sufficiently small ε and δ > 0, ∀α ∈ [x∗, x∗ + ε],

ṽ (x∗,α) > h
³
b̃ (x∗) + δ

´
> h

³
b̃ (α)

´
.

Consider the following difference:

Π̃(x∗, b̃ (x∗ + ε) , b̃ (·))− Π̃(x∗, b̃ (x∗) , b̃ (·))

=

Z x∗+ε

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗ + ε) , b̃ (α)

´i
dα−

Z 1

x∗+ε
pL
³
b̃ (x∗ + ε) , b̃ (α)

´
dα

−
Z x∗

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗) , b̃ (α)

´i
dα+

Z 1

x∗
pL
³
b̃ (x∗) , b̃ (α)

´
dα

=

Z x∗+ε

x∗

h
ṽ (x∗,α)− h

³
b̃ (α)

´i
dα > 0

where we used the property ∂1p
W = ∂1p

L ≡ 0 in order to obtain the last equality. This
contradicts the optimality of b̃ (x∗) for x∗.
Analogously, if we assume that there is a x∗ ∈ (x0, 1) such that ṽ (x∗, x∗) < h

³
b̃ (x∗)

´
and

that x∗ is a point of continuity of b̃, we have for ε > 0 sufficiently small,

Π̃(x∗, b̃ (x∗) , b̃ (·))− Π̃(x∗, b̃ (x∗ − ε) , b̃ (·))

=

Z x∗

x∗−ε

h
ṽ (x∗,α)− h

³
b̃ (α)

´i
dα < 0.

This completes the proof of (33). So, we have

(35) b̃ (x) = h−1 (ṽ (x, x)) ,

which shows that b̃ is continuous. Moreover, b̃ is increasing if and only if x 7−→ ṽ (x, x) is also
increasing.¥

Now, we will analyze the equilibrium existence in both cases 1 and 2. Instead of assuming that
ṽ is continuous, as we did in the last two propositions, we will assume directly its consequence,
that is, we suppose that there exists a function b̃ that satisfies the following:

Case 1 : ∂1p
W (·) > 0 or ∂1pL (·) > 0, b̃ is differentiable and

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
Case 2 : ∂1p

W = ∂1p
L = 0, ∂2

¡
pW − pL¢ > 0, b̃ is continuous, and

x ∈ (x0, 1)⇒ ṽ (x, x) = h
³
b̃ (x)

´
= pW

³
b̃ (x) , b̃ (x)

´
− pL

³
b̃ (x) , b̃ (x)

´
.

Observe that we do not assume that b̃ is increasing. This is so because this is exactly the
setting of Theorem 4. To treat non-increasing b̃, we define the following:
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Modified Auction - The bidder submits a type y ∈ [0, 1]. In any event, the payment is
determined as if the bidder has submitted the bid b̃ (y). The bidder wins against opponents who
announce types below y and loses against opponents who announce types above y. If there is a
tie, the object is given with probability 1/2 for each bidder.

Observe that if b̃ is increasing, the modified auction is simply the indirect auction. If b̃ is
not increasing, the difference is that the winning events are not determined by b̃ but by the
announced type y. The rule of the modified auction implies the following interim payoff:

Π̂ (x, y) =

( R y
0

h
ṽ (x,α)− pW

³
b̃ (y) , b̃ (α)

´i
dα− R 1y pL ³b̃ (y) , b̃ (α)´ dα, if y > x0

0 if y < x0

We can simplify the above expression to

(36) Π̂ (x, y) =

½ R y
0 ṽ (x,α) dα− p̂ (y) , if y > x0
0 if y < x0

where

p̂ (y) ≡
( R y

0 p
W
³
b̃ (y) , b̃ (α)

´
dα+

R 1
y p

L
³
b̃ (y) , b̃ (α)

´
dα, if y > x0

0, if y < x0

In case 1, b̃, pW and pL are differentiable on (x0, 1), p̂ and Π̂ are also differentiable. So, for every
y ∈ (x0, 1), we have

p̂0 (y) = ∂y

½Z y

0
ṽ (x,α) dα− Π̂ (x, y)

¾
= ṽ (x, y)− ∂yΠ̂ (x, y) .

Truth-telling is always optimal if

(37) Π̂ (x, x)− Π̂ (x, y) > 0.

In case 1, this is equivalent to Z x

y
∂yΠ̂ (x,α) dα > 0

if x, y > x0. Also, if x, y > x0, ∂yΠ̂ (x, y) |y=x must be zero, so that

(38) ∂yΠ̂ (x, y) |y=x= 0⇒ p̂0 (x) = ṽ (x, x) .

Indeed, these are simply the second- and the first-order conditions, respectively. So, for y > x0,

p̂ (y) =

Z y

x0

ṽ (α,α) dα+ p̂ (x0) .
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Now, let us turn to case 2. Since b̃ is only continuous, p̂ is not necessarily differentiable.
Nevertheless, if y > x0,

p̂ (y) =

Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα

=

Z y

x0

h
pW

³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (y) , b̃ (α)

´i
dα+ p̂ (x0)

=

Z y

x0

h
³
b̃ (α)

´
dα+ p̂ (x0)

=

Z y

x0

ṽ (α,α) dα+ p̂ (x0) .

Observe that the expression above is exactly the same of case 1. For y < x0, the payment is
zero. For y = x0, p̂ (y) is obtained from (29):Z x0

0
ṽ (x0,α) dα−

Z x0

0
pW

³
b̃ (x0) , b̃ (α)

´
dα+

Z 1

x0

pL
³
b̃ (x0) , b̃ (α)

´
dα = 0.

So, we have proved the following:

Proposition 4 (Payment Rule). Assume (H0)’, (H1) and (H2)’. Then, both for case 1 or
case 2, we have

(39) p̂ (y) =


p̂ (x0) +

R y
x0
ṽ (α,α) dα, if y > x0R x0

0 ṽ (x0,α) dα, if y = x0
0, if y < x0

Now, we turn to the equilibrium existence.

Proposition 5 (Equilibrium). Assume (H0)’, (H1), (H2)’ and (39). Then, truth-telling is
equilibrium of the modified auction if and only if, for all x, y ∈ [0, 1],

(40)


R x
y [ṽ (x,α)− ṽ (α,α)] dα > 0, if x, y > x0R x
x0
[ṽ (x,α)− ṽ (α,α)] dα+ R x00 [ṽ (x,α)− ṽ (x0,α)] dα > 0, if x > x0 > y

0 >
R y
x0
[ṽ (x,α)− ṽ (α,α)] dα+ R x00 [ṽ (x,α)− ṽ (x0,α)] dα if y > x0 > x

Proof. Given (39), the optimality condition for truth-telling, namely Π̂ (x, x)− Π̂ (x, y) > 0,
is equivalent to Z x

0
ṽ (x,α) dα−

Z x

x0

ṽ (α,α) dα− p̂ (x0)

−
Z y

0
ṽ (x,α) dα+

Z y

x0

ṽ (α,α) dα+ p̂ (x0)

=

Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0(41)

if x, y > x0. The other cases are immediate.¥



32 ALOISIO ARAUJO, LUCIANO I. DE CASTRO FILHO, AND HUMBERTO MOREIRA

As we have said before, if b̃ is increasing, the modified auction is just the original (unmodified)
auction. Then, we have:

Corollary 1. Assume (H0)’, (H1), (H2)’ and that b̃ is increasing and implies (39). Then, if

(40) holds, b̃ is equilibrium of the indirect auction.

Observe that Corollary 1 does not require ṽ to be continuous.

Appendix C - Proofs of the Theorems

Proof of Theorem 1.
(i) If b ∈ S, it defines a conjugation P b by (2). The bid b (ti) = β is optimal for bidder ti

against the strategy b (·) of the opponents. This and the fact that ∂bΠ (s, b (s)) = 0 imply that
E
£
v (ti, ·) |ti = s, b(−i) (t−i) = β

¤
= pW (β,β)− pL (β,β)−

Et−i

h
∂bip

W 1[bi>b(−i)] + ∂bip
L1[bi<b(−i)]

i
fb(−i) (β)

.

Observe that the right-hand side does not depend on s (it depends on it only by the fact that
β = b (s) is the optimum bid for such bidder). Thus, the left-hand side has to be the same for
all s that are bidding the same bid in equilibrium, which implies that (10) holds.
(ii) If b (ti) maximizes Π (ti, c) for ti, and P (t

0
i) = P (ti) , then b (t

0
i) = b (ti). Then, b (ti)

maximizes Π̃ (P (t0i) , c) for all t
0
i such that P (t

0
i) = P (ti), from the definition of Π̃ (P (ti) , c)

given by (6). In other words, b̃ (x) =
³
P̃ b
´−1

(x) = b
¡
P−1 (x)

¢
is the equilibrium of the indirect

auction.
If ṽ is continuous, we appeal to the results of Appendix B. Propositions 2 and 3 prove (iii),

Proposition 4 proves (iv) and Proposition 5 gives (v).¥

Proof of Theorem 2. Corollary 1 of Appendix B proves that conditions (ii) and (iii) are

sufficient for b̃ to be the equilibrium of the indirect auction. Now, Proposition 1 proves that
condition (i)’ implies that for all s such that P (s) = x, Π̃ (x, c) = Π (s, c) (see (9)). Now, if we

put b (s) = b̃ (P (s)), then

Π (s, b (s)) = Π̃
³
P (s) , b̃ (P (s))

´
and

Π (s, c) = Π̃ (P (s) , c) .

But this is sufficient to show the equilibrium existence in the direct auction, since b̃ is the
equilibrium in the indirect auction, which implies that

Π̃
³
P (s) , b̃ (P (s))

´
> Π̃ (P (s) , c) ,

for all c ∈ R. If ṽ is continuous, Π̃ (x, c) is differentiable at all c ∈ R. This concludes the proof.¥
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Through the proof of Theorem 3, we will make successive use of the following fact:

Lemma 2. Assume (H1), (H2) and (H3). For any σ−field Σ on SN−1, we have

∃t−i : v
¡
s0, t−i

¢
> v (s, t−i)

⇔ ∀t−i : v
¡
s0, t−i

¢
> v (s, t−i)

⇔ E
£
v (ti, t−i) |ti = s0,Σ

¤
> E [v (ti, t−i) |ti = s,Σ] , a.s.

Proof. (H3) gives the first equivalence. By (H2), v is continuous over a compact. So, if ∀t−i :
v (s0, t−i) > v (s, t−i), there is δ > 0 so that d (t−i) ≡ v (s0, t−i) − v (s, t−i) − δ > 0 for all t−i.
Then, for any Σ, E [d (t−i) |Σ] > 0 almost surely.23 This implies that E[v (ti, t−i) | ti = s0,Σ] >

E[v (ti, t−i) | ti = s,Σ], a.s. On the other hand, E[v (ti, t−i) | ti = s0,Σ] > E[v (ti, t−i) |
ti = s,Σ] a.s. implies that ∃t−i : v (s0, t−i) > v (s, t−i).¥

Proof of Theorem 3. Equilibrium Existence. If we define P by (19), it is a conjugation. Let
us prove that it satisfies condition (i)’ of Theorem 2. If for some x, y and s, such that P (s) = x,
we have

ṽ (x, y) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y] < E[v(ti, t−i)|ti = s, P(−1)(t−i) = y],
then, for at least one t−i and s0, P (s0) = x, v (s, t−i) > v (s0, t−i). But then, by (H3), v (s, t−i) >
v (s0, t−i) for all t−i which implies v1 (s) > v1 (s0) and P (s) > P (s0), a contradiction with the
assumption that P (s) = P (s0) = x. So, condition (i)0 is satisfied.
Let us prove condition (ii) of Theorem 2. If x > y, for all ti and t

0
i such that P (t

0
i) = x and

P (ti) = y, we have v (t
0
i, t−i) > v (ti, t−i) for all t−i, by (H3). Then, for all z ∈ [0, 1] ,

ṽ (x, z) ≡ E £v (ti, t−i) |P (ti) = x, P(−i) (t−i) = z¤
> E

£
v (ti, t−i) |P (ti) = y, P(−i) (t−i) = z

¤
= ṽ (y, z) .

Then, if y < α < x, ṽ (x,α)− ṽ (α,α) > 0 and we have:Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0.

Now if x < α < y, we have ṽ (x,α) − ṽ (α,α) < 0 so that condition (ii) is satisfied. Since our
assumption is the condition (iii) of Theorem 2, this implies the existence of equilibrium, with

the equilibrium bidding function given by b = b̃ ◦ P .
Sufficiency. Conditions (i)’ and (ii) of the Theorem 2 was shown in the first part, above.

Proposition 4 in appendix B proves condition (iii) of Theorem 2. Then, there exists a equilibrium

b = b̃ ◦ P. Since ṽ is continuous, Theorem 2 shows the existence of ∂bΠ (s, b (s)) for all s.

Necessity. According to Theorem 1, given a b ∈ S, the associated conjugation P b (given by
(2)) is such that for all s ∈ ¡P b¢−1 (x),

E[v(ti, t−i)|P b(ti) = x, P b(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x].
23See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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If P b (s) = P b (s0) and there is some t−i such that v(s, t−i) < v (s0, t−i), Lemma 2 implies that

E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x] < E[v(ti, t−i)|ti = s0, P b(−i)(t−i) = x],
which contradicts the previous equality between the conditional expectations. We conclude that

(42) P b (s) = P b
¡
s0
¢⇒ v (s, t−i) = v

¡
s0, t−i

¢
for all t−i.

Let us define ṽ1 (x) as E
£
v (ti, t−i) |P b (ti) = x

¤
and prove that it is non-decreasing. Suppose by

absurd that there exist x and y, x > y, such that ṽ1 (x) < ṽ1 (y).
First, we claim that for all ti and t

0
i such that P

b (ti) = x and P
b (t0i) = y, we have v (ti, t−i) <

v (t0i, t−i) for all t−i. Otherwise, v (ti, t−i) > v (t0i, t−i) for some t−i and, by (H3), v
¡
ti, t

0
−i
¢
>

v
¡
t0i, t

0
−i
¢
for all t0−i. Then, Lemma 2 and (42) would imply that ṽ

1 (x) = E
£
v (ti, t−i) |P b (ti) = x

¤
>

E
£
v (ti, t−i) |P b (ti) = y

¤
= ṽ1 (y), a contradiction with our (absurd) assumption. Thus, the

claim is proved.
This claim and Lemma 2 imply that

ṽ (x, z) ≡ E
h
v (ti, t−i) |P b (ti) = x, P b(−i) (t−i) = z

i
< E

h
v (ti, t−i) |P b (ti) = y, P b(−i) (t−i) = z

i
= ṽ (y, z) ,

for all z ∈ [0, 1], a.s. Thus, Z x

y
[ṽ (x,α)− ṽ (y,α)] dα < 0.

By condition (v) of Theorem 1, we also have thatZ x

y
[ṽ (y,α)− ṽ (α,α)] dα 6 0.

Summing up these two integrals, we obtainZ x

y
[ṽ (x,α)− ṽ (α,α)] dα < 0,

which contradicts condition (v) of Theorem 1. This contradiction establishes that x > y ⇒
ṽ1 (x) > ṽ1 (y).
Suppose now that there exists x > y such that ṽ1 (x) = ṽ1 (y). Then, the monotonicity of ṽ1

(just proved) gives

(43) ∀φ ∈ [y, x] , ṽ1 (φ) = ṽ1 (x) = ṽ1 (y) .

Let S0 =
n
s ∈ S : b̃ (y) 6 b (s) < b̃ (x)

o
. From (2), for all s ∈ S0, P b (s) ∈ [y, x]. Then, (42) and

(43) imply that s ∈ S0 ⇒ v1 (s) = ṽ1 (x). Assumption (H3) requires that µ (S0) = 0. Observe
that S0 = A\B, where A ≡

n
s ∈ S : b (s) < b̃ (x)

o
and B =

n
s ∈ S : b (s) < b̃ (y)

o
. But then,

µ (A) = µ (B). However, from the definition of b̃ as the inverse of P̃ b, we have the following:

0 < x− y = P̃ b
³
b̃ (x)

´
− P̃ b

³
b̃ (y)

´
= (µ (A))N−1 − (µ (B))N−1 ,
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b(x)
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b3 

Figure 5. Indirect Equilibrium Bidding Function

which is a contradiction. So, we have proved that x = P b (s0) > P b (s) = y implies v1 (s0) =
ṽ1 (x) > ṽ1 (y) = v1 (s) and P b (s0) = P b (s) implies v1 (s0) = v1 (s). In other words, P b (s0) S
P b (s) if and only if v1 (s0) S v1 (s) which allows us to conclude that

P b (ti) = Pr
©
t−i ∈ T−i = SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
,

as we have defined in (19). In other words, the conjugation is unique.

Now, ṽ and b̃ in Theorem 1 are exactly those defined in the statement of Theorem 3. So,
Theorem 1 implies the claims about b̃.

Uniqueness. Since ṽ is continuous, Propositions 2 and 3 in Appendix B says that any equi-
librium b̃ satisfy the conditions given. If there is just one b̃ that satisfy such conditions, then
the equilibrium of the indirect auction is unique. Since the previous step (necessity) shows that
the conjugation is unique, the equilibrium of the direct auction is unique.¥

Proof of Theorem 4. If b̃ is strictly increasing, then b = b̃ ◦ P is an equilibrium of direct
auction, by Theorem 3.
So, we have to show that an equilibrium exists if b̃ is not increasing. For future use, remember

that in the first part of the proof of Theorem 3, we have established conditions (i)’ and (ii) of
Theorem 2 and that

(44) x > y ⇒ ṽ (x, z) > ṽ (y, z) ,∀z ∈ [0, 1] .
Let us define b (x) = supα∈[0,x] b̃ (α). As we discussed after the statement of Theorem 4, this is

just one of the possible specification for the equilibrium bidding function. The only exception is
when the tie is to occur including the highest bidder. In such a case, it is mandatory to have the
bid of tying bidders following the above definition. The reason will become clear in the sequel.
Remember that b̃ is absolutely continuous. Then, there is an enumerable set of intervals

[ak, ck] where b (x) is constant. Let bk ≡ b (x) for x ∈ [ak, ck]. (See Figure 5.)
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Therefore, there is a tie among the indirect types in [ak, ck] for the bidding function b. Let bk
be the specified bid for indirect types in [ak, ck], that is, b ([ak, ck]) = {bk}. The tie is solved by
an all-pay auction among tying bidders.
The unique information that bidders have for the second auction is that there is a tie in bk,

that is, P(−i) (t−i) ∈ [ak, ck].
By the definition of P in (19), P(−i) satisfies the following:

Pr
¡©
t−i ∈ SN−1 : P(−i) (t−i) < x

ª |P(−i) (t−i) ∈ [ak, ck]¢ = x− ak
ck − ak .

So, in the tie-breaking auction, the (direct) type ti of bidder i is competing against players tj
in the set {s ∈ S : P (s) ∈ [ak, ck]} and the equilibrium is to bid the increasing function24

b̃2 (x) =
1

ck − ak

Z x

ak

ṽ (α,α) dα.

Indeed, from condition (ii) of Theorem 2, we have that

1

ck − ak

·Z x

ak

ṽ (x,α) dα−
Z x

ak

ṽ (α,α) dα

¸
> 1

ck − ak

·Z y

ak

ṽ (x,α) dα−
Z y

ak

ṽ (α,α) dα

¸
for any x, y ∈ [ak, ck].
Thus, in the whole auction, the bidder of indirect type x ∈ [ak, ck] who follows the strategy

b (x) and, in case of a tie, the above strategy, will receive the expected payoffZ ak

0
[ṽ (x,α)− ṽ (α,α)] dα+ (ck − ak)

½
1

ck − ak

Z x

ak

[ṽ (x,α)− ṽ (α,α)] dα
¾

=

Z x

0
[ṽ (x,α)− ṽ (α,α)] dα

Deviation in the second auction is suboptimal. By deviating from b, but bidding in the range
of b, that is, bidding b (y) 6= b (x), he will get

Π̃i
¡
x, b (y)

¢
=

Z y

0
[ṽ (x,α)− ṽ (α,α)] dα,

if b (y) is not a bid with positive probability. This cannot be profitable by condition (ii). If it
is a bid with positive probability, the second stage will be again an all-pay auction, where the
bidder cannot improve its payoff, again by condition (ii).
Now, if x bids β < infx∈[0,1] b (x), then his payoff will beZ 1

0
pL
¡
β, b (α)

¢
dα 6 0,

because pL 6 0. Therefore, this deviation cannot be profitable.

24It is increasing because ṽ is positive.
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If x bids β > supx∈[0,1] b (x) = b̃ (x) > b̃ (1), for some x. Since ∂1pW (·) > 0, pW
¡
β, b (z)

¢
>

pW
³
b̃ (1) , b (z)

´
. Then,Z 1

0
pW

¡
β, b (α)

¢
>
Z 1

0
pW

³
b̃ (1) , b (α)

´
dα =

Z 1

0
ṽ (α,α) dα.

Then, the payoff of the bidder with indirect type x that bids β will beZ 1

0

£
ṽ (x,α)− pW ¡β, b (α)¢¤ dα

6
Z 1

0
[ṽ (x,α)− ṽ (α,α)] dα

=

Z x

0
[ṽ (x,α)− ṽ (α,α)] dα+

Z 1

x
[ṽ (x,α)− ṽ (α,α)] dα

<

Z x

0
[ṽ (x,α)− ṽ (α,α)] dα,

where the last inequality comes from (44). Thus, the deviation to β is unprofitable.
In Theorem 3, we also proved condition (i)’. Then, the equilibrium in the indirect auction

gives the equilibrium for the direct one.¥

Proof of Theorem 5. If y is an indirect type that is not involved in ties, the payment is
given by Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα.

If x ∈ [ak, ck], in the notation of the previous proof, the expected payment of x will beZ ak

0
ṽ (α,α) dα+ (ck − ak)

½
1

ck − ak

Z x

ak

ṽ (α,α) dα

¾
=

Z x

0
ṽ (α,α) dα.

So, if the equilibrium specified in the proof of Theorem 4 is followed, the expected payment does
not depend on the auction format.¥

Appendix D - Proofs for the Examples

Generalization of Example 1.
As in Example 1, consider a symmetric auction with two bidders whose utility functions are

given by:

v(ti, t−i) = ti + α(ti)t−i
where α : [0, 1] → R and ti is uniformly distributed on [0, 1]. If there are only two pooling
types, that is, types which bid the same for each equilibrium bidding, then, for each i and t, the
respective pooling type of t, ϕ = ϕ(t), in a symmetric equilibrium (b∗, b∗) satisfies the condition
(i) of Theorem 1:

t+ α(t)E[t2|b∗(t) = b∗(t2)] = ϕ+ α(ϕ)E[t2|b∗(t) = b∗(t2)].
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Since E[t2|b∗(t) = b∗(t2)] = (t+ϕ)/2, because of the symmetry and the uniform distribution,
then ϕ is the implicit solution of

(t+ ϕ)(α(ϕ)− α(t)) = 2(t− ϕ).

Claim. Assume the following conditions:
(i) α is differentiable, decreasing and convex such that α(0)− α(v̄) = 2;
(ii) α0 is strictly convex and α0(x) ≥ −1/x for all x ∈ (0, 1];
Then there exists an U-shaped symmetric equilibrium.
Proof. Define the conjugation

P (t) =
ϕ(t)− t
2

.

It is easy to see that P is decreasing.
Define ev(x, y) ≡ E [v(t1, t2)|P (t1) = x, P (t2) = y]

=
x+ ϕ (x)

2
+

α(x) + α (ϕ (x))

2

y + ϕ (y)

2

Observe that v(t1, t2) is of the form
P2
k=1 fk (ti) gk (t−i). Therefore, by Remark 2 and Theorem

2, the bidding function is an equilibrium if

x > y ⇒ ev(x, y) > ev(y, y).
Dividing by (y + ϕ(y))/2, we rewrite the above condition as

(45)
x+ ϕ(x)

y + ϕ(y)
+

α(x) + α(ϕ(x))

2
> 1 + α(y) + α(ϕ(y))

2

For each w ∈ (0, 1], define gw(z) = z
w + α(z), for z ∈ [w, 1]. It is easy to see that g is non-

decreasing (because g0w(z) =
1
w + α0(z) > 1

w − 1
z > 0). Let y and w =

y+ϕ(y)
2 be fixed and take

x > y. Since α is convex,
x+ ϕ(x)

y + ϕ(y)
+

α(x) + α(ϕ(x))

2
> x+ ϕ(x)

y + ϕ(y)
+ α

µ
x+ ϕ (x)

2

¶
= gw

µ
x+ ϕ (x)

2

¶
,

if x+ϕ (x) > y+ϕ (y). So, to show (45), it is enough to show that t+ϕ(t) is non-increasing in
t or, equivalently, ϕ0(t) ≤ −1.
The implicit derivative of ϕ with respect to t is:

ϕ0 (t) =
α(t)− α(ϕ (t)) + (t+ ϕ (t))α0(t) + 2
α(ϕ (t))− α(t) + (t+ ϕ (t))α0(ϕ) + 2

.

If ϕ0 (t) 6 −1, then the numerator and denominator of the fraction above should have opposite
sign. Without loss of generality (because ϕ ◦ ϕ(t) = t), we can assume that the denominator is
negative and ϕ > t. Thus,

ϕ0(t) 6 −1⇔ α0(t) + α0(ϕ)
2

> α(ϕ)− α(t)

ϕ− t .
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Figure 6. Equilibrium bidding function in Example 1.

Since α0 is a convex function, for the inequality above be attended it is enough to show

α0
µ
t+ ϕ

2

¶
≥ α(ϕ)− α(t)

ϕ− t = − 2

t+ ϕ

where the equality comes from the implicit definition of ϕ. However, this last equality is true
because α0(x) ≥ −1/x for all x ∈ (0, 1]. ¥

Proof of the claims in Example 2.
First, let us show that there is no monotonic equilibria for this auction. By contradiction,

assume that there is an increasing equilibrium bidding function. Then, P (ti) =
ti−1.5
1.5 and

condition (i)’ is trivial. We have

ṽ (x, y) = (1.5x+ 1.5)

·
1.5y + 1.5− 1.5x+ 1.5

2

¸
=
9 (x+ 1) (2y − x+ 1)

8
.

Thus, the necessary condition (ii) is not satisfied, because x > y impliesZ x

y
[ṽ(x,α)− ṽ(α,α)] dα = −3 (x− y)

3

8
< 0.

Thus, there is no monotonic equilibrium.
Now, we will show that there are multiple equilibria non-monotonic for this auction. Assume

that there exists a bell-shaped equilibrium and that, for each x, there are two types, f (x) and

g (x) , such that P (ti) = x =
3−g(x)+f(x)−1.5

1.5 , which implies that g (x) = f (x)+ 1.5 (1− x). (See
Figure 6).
Condition (i)’ requires
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f (x)

µ
f (y) + g (y)

2
− f (x)

2

¶
=
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

⇔ f (y) + g (y)

2

·
f (x)− f (x) + g (x)

2

¸
=
f (x)2 − g (x)2

4

⇔ f (y) + g (y)

2
=
f (x) + g (x)

2

Then, f (y) + g (y) is a constant, and we have f (x) = k + 3/4x. Since f (0) = 1.5, k = 1.5. We
obtain:

ṽ (x, y) =
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

=

µ
9

4

¶2
− (3/2 + 3/4x)

2 + (3− 3/4x)2
4

=

µ
9

4

¶·
1 +

x

4
− x

2

8

¸
,

which satisfies condition (ii) because it is increasing in x on [0, 1]. Condition (iii) and (iv) are
also satisfied, since

b̃ (x) =
1

x

Z x

0
ṽ (α,α) dα =

3
¡
24 + 3x− x2¢

32

is increasing on [0, 1].¥

Proof for Example 3 - Spectrum Auction
Let us assume that ti =

¡
t1i , t

2
i , t

3
i

¢
are independent and uniformly distributed on

£
s1, s1

¤ ×£
s2, s2

¤ × £s3, s3¤, with s1, s2, s3 > 0. We have
v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i +
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i

Let us denote by v1 the expression in the first line above, that is,

v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i .

The conjugation P and the c.d.f. P̃ are given by:

P
¡
t1i , t

2
i , t

3
i

¢
=
£
Pr
©¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
< v1

¡
t1i , t

2
i , t

3
i

¢ª¤N−1
.

and

P̃ (k) =

·
Pr

½¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
+
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i < k¾¸N−1 .

We can reparameterize the problem so that

P̃ (k) =
h
Pr
n
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < l (k)

oiN−1
,



NON-MONOTONIC AUCTIONS 41

where a =
¡
s1 − s1¢ /N > 0, b = − ¡s2 − s2¢ < 0, c = − (N − 1) ¡s3 − s3¢ /N < 0 and

l (k) = k − s
1

N
+ s2 +

N − 1
N

s3 − N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i .

It is elementary to obtain that, for a uniform distribution on [0, 1]3 and a > 0, b < 0, c < 0 and
k > b+ c,

Pr
n
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < l

o
=
(l − b− c)3
6abc

.

So,

P̃ (k) =
[l (k)− b− c]
(6abc)N−1

3(N−1)

and

ṽ (x, y) =

½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i¾ y

+E

Pj 6=i
³
t1j + t

3
j

´
N

|max
j 6=i

P (tj) = y

 .
The candidate for the equilibrium on the first-price indirect auction is

b̃ (x) =
1

x

Z x

0
ṽ (α,α) dα,

which is differentiable, with b̃0 (x) = [ṽ (x, x)− x] /x. Then, Theorem 3 tells us that there exists
an equilibrium in regular pure strategies for this auction if and only if

ṽ (x, x)− x =
½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i− 1¾x
+E

Pj 6=i
³
t1j + t

3
j

´
N

|max
j 6=i

v1 (tj) = P̃
−1 (x)

 > 0.
Depending on the values of sn, sn, for n = 1, 2, 3, the above expression can be positive or
negative. If it is always positive, b̃ is increasing and it is the equilibrium of the indirect auction.
In the other case, there is no equilibrium without ties. For instance, a sufficient condition for

the existence of equilibrium in pure strategy is s
1

N − s2 − s3N−1N − 1 > 0.¥

Proof for Example 4 - Job Market
We assume that there are two players with unidimensional signals uniformly distributed on

[0, 1] and that m ∈ [0, 1], b > 0. Following the method given by Theorem 3, we first obtain

v1 (ti) = am+
c

2
− b (ti −m)2 .

We will consider two cases.

First case: m 6 1/2. We have
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P (ti) =

 1− 2m+ 2ti, if 0 6 ti < m
1− 2ti + 2m, if m 6 ti < 2m
1− ti, if 2m 6 ti 6 1.

So,

ṽ (x, y) =


am+ c (1− y)− b (1− x−m)2 , if 0 6 x, y < 1− 2m
am+ c (1− y)− b

4 (1− x)2 , if 0 6 y < 1− 2m 6 x 6 1
(a+ c)m− b (1− x−m)2 , if 0 6 x < 1− 2m 6 y 6 1
(a+ c)m− b

4 (1− x)2 , if 1− 2m 6 x, y 6 1.
Now, it is easy to obtain, for x < 1− 2m,

b̃ (x) =
1

x

Z x

0

h
am+ c (1− y)− b (1− y −m)2

i
dy,

= am+ c− b (1−m)2 − x
h c
2
+ b (m− 1)

i
− b
3
x2,

which is increasing if c 6 2b(m+1)
3 . For x > 1− 2m,

b̃ (x) =
1

x

½
1

6
(1− 2m) £6am+ 3c (1 + 2m)− 2b ¡1−m+m2

¢¤
+

Z x

1−2m

·
(a+ c)m− b

4
(1− y)2

¸
dy

¾
⇒ b̃ (x) =

(1− 2m) [2c− b (1− 2m)]
4x

+m (a+ c)− b
4
+
b
¡
3x− x2¢
12

whose derivative can be simplified to

b̃0 (x) = −(1− 2m) [2c− b (1− 2m)]
4x2

+
b (3− 2x)

12
.

Since the term x2 (3− 2x) is increasing, the bidding function will be increasing if and only if
b̃0 (1− 2m) > 0, that is,

c 6 2b (1− 2m) (1 +m)
3

.

We conclude that in the case of m < 1/2, there exists a pure strategy equilibrium in regular
strategies if and only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Second case: m > 1/2. We have

P (ti) =

 ti, if 0 6 ti < 2m− 1,
1− 2m+ 2ti, if 2m− 1 6 ti < m
1− 2ti + 2m, if m 6 ti 6 1
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and

ṽ (x, y) =


am+ cy − b (x−m)2 , if 0 6 x, y < 2m− 1
am+ cy − b

4 (1− x)2 , if 0 6 y < 2m− 1 6 x 6 1
(a+ c)m− b (x−m)2 , if 0 6 x < 2m− 1 6 y 6 1
(a+ c)m− b

4 (1− x)2 , if 2m− 1 6 x, y 6 1.
For x < 2m− 1,

b̃ (x) =
1

x

Z x

0

h
am+ cy − b (y −m)2

i
dy,

= am− bm2 + x
³ c
2
+ bm

´
− b
3
x2,

which is increasing in the considered interval if and only if c > 2
3b (m− 2).

For x > 2m− 1,

b̃ (x) =
−2c (2m− 1)− b (2m− 1)2

4x
+
12 (a+ c)m− b ¡3− 3x+ x2¢

12

which gives

b̃0 (x) =
2c (2m− 1) + b (2m− 1)2

4x2
+
b (3− 2x)

12
.

Following the same procedure of the first case, b̃0 (x) > 0,∀x ∈ [2m− 1, 1] if and only if

c > −2b (2m− 1) (1 +m)
3

.

We conclude that, if m > 1/2, there exists a pure strategy equilibrium in regular strategies if
and only if

c > max
½
2

3
b (m− 2) , 2b (1− 2m) (1 +m)

3

¾
.

¥

References

[1] Araujo, A. and H. Moreira (2000): “Adverse Selection Problems without the Spence-Mirrlees Condition,”
working paper, IMPA.

[2] Araujo, A. and H. Moreira (2003): “Non-Monotone Insurance Contracts and their Empirical Conse-
quences,” working paper 512, EPGE.

[3] Araujo, A. and L. I. de Castro (2004): “Equilibria in Auctions: From Fundamentals to Applications,”
working paper, IMPA.

[4] Araujo, A., L. I. de Castro and H. Moreira (2004): “Pure Strategy Equilibria of Multidimensional and
Non-Monotonic Auctions,” working paper, IMPA.

[5] Athey, S. (2001): “Single Crossing Properties and The Existence of Pure Strategy Equilibria in Games of
Incomplete Information,” Econometrica, 69, 861-899.

[6] Athey, S. and J. Levin (2001): “Information and Competition in U.S. Forest Service Timber Auctions,”
Journal of Political Economy, 109, 375-417.

[7] Battigalli P and M. Siniscalchi (2003): “Rationalizable Bidding in First-Price Auctions,” Games and
Economic Behavior, 45, 38-72.

[8] Bernheim, B. D. (1984): “Rationalizable Strategic Behavior,” Econometrica, 52, 1007-1028.



44 ALOISIO ARAUJO, LUCIANO I. DE CASTRO FILHO, AND HUMBERTO MOREIRA

[9] Border, K. (1991): “Implementation of Reduced Form Auctions, A Geometric Approach,” Econometrica,
59, 1175-1187.

[10] de Castro, L. I. (2004a): “The Basic Principle of Bidding,” Working paper. IMPA.
[11] de Castro, L. I. (2004b): “Is Affiliation a Good Assumption?,” Working paper. IMPA.
[12] Che, Y.-K. (1993): “Design Competition Through Multidimensional Auctions,” Rand Journal of Economics,

24, 668-680.
[13] Chen, Y.-M. (1986): “An Extension to the Implementability of Reduced Form Auctions,” Econometrica,

54, 1249-1251.
[14] Dasgupta, P. and E. Maskin (2000): “Efficient Auctions,” The Quartely Journal of Economics, 115,

341-388.
[15] Debreu, G. (1960): “Topological Methods in Cardinal Utility,” In: Mathematical Methods in the Social

Studies, 1959, edited by K. Arrow, S. Karlin and P. Suppes. Stanford, Calif.: Stanford University Press.
[16] Ewerhart, C. and K. Fieseler (2003): “Procurement Auctions and Unit-Price Contracts,” Rand Journal

of Economics, 34, 569-581.
[17] Fang, H. and S. Morris (2003): “Multidimensional Private Value Auctions,” Cowles Foundation Discussion

Paper No. 1423.
[18] Guesnerie, R. (1998): A Contribution to the pure theory of taxation. New York : Cambridge University

Press.
[19] Guesnerie, R. and Laffont, J.-J. (1984): “A Complete Solution to a Class of Principal-Agent Problems

with an Application to the Control of a Self-Managed Firm,” Journal of Public Economics, 25, 329-369.
[20] Harsanyi, J. C. (1967-8): “Games With Incomplete Information Played by Bayesian Players,” Management

Science, 14, 159—182, 320-334 and 486-502.
[21] Jackson, M. O. (1999): “The Non-Existence of Equilibrium in Auctions with Two Dimensional Types,”

working paper.
[22] Jackson, M. O., L. K. Simon, J. M. Swinkels and W. R. Zame (2002): “Communication and Equilibrium

in Discontinuous Games of Incomplete Information,” Econometrica, 70, 1711-1741.
[23] Jackson, M. O., L. K. Simon, J. M. Swinkels and W. R. Zame (2004a): “Corrigendum to ‘Communi-

cation and Equilibrium in Discontinuous Games of Incomplete Information”’, Econometrica, forthcoming.
[24] Jackson, M. O., L. K. Simon, J. M. Swinkels and W. R. Zame (2004b): “Supplement to Corrigendum

to ‘Communication and Equilibrium in Discontinuous Games of Incomplete Information’ ,” Econometrica,
available on line.

[25] Jackson, M. O. and J. M. Swinkels (2004): “Existence of Equilibrium in Single and Double Private Value
Auctions,” Econometrica, forthcoming.

[26] Jehiel, P., B. Moldovanu and E. Stacchetti. (1996): “How (Not) to Sell Nuclear Weapons,” American
Economic Review, 86, 814-829.

[27] Jehiel, P., M. Meyer-ter-Vehn and B. Moldovanu with W. Zame (2004): “The Limits of Ex-Post
Implementation,” discussion paper.

[28] Kagel, J. H. (1995): “Auctions, A Survey of Experimental Research,” in: Kagel, J. Roth, A. (Eds.): The
Handbook of Experimental Economics. Princeton Univ. Press, Princeton.

[29] Kallenberg, Olav (2002): Foundations of Modern Probability. 2nd. edition, Springer-Verlag, New York.
[30] Krishna, V. and J. Morgan (1997): “An Analysis of the War of Attrition and the All-Pay Auction,”

Journal of Economic Theory, 72, 343-362.
[31] Laffont, J.-J. (1997): “Game Theory and Empirical Economics: The Case of Auction Data,” European

Economic Review, 41, 1-35.
[32] Lebrun, B. (1999): “First-Price Auction in the Asymmetric N Bidder Case,” International Economic Review,

40, 125-142.
[33] Lehmann, E. L. (1959): Testing Statiscal Hypotheses. Wiley Series in Probability and Mathematical Statis-

tics.
[34] Lizzeri, A. and N. Persico (2000): “Uniqueness and Existence of Equilibrium in Auctions with a Reserve

Price,” Games and Economic Behavior, 30, 83-114.
[35] Maskin, E. and J. Riley (1984): “Optimal Auctions with Risk Averse Buyers,” Econometrica, 52, 1473-

1518.



NON-MONOTONIC AUCTIONS 45

[36] Maskin, E. and J. Riley (2000): “Equilibrium in Sealed High Bid Auctions,” Review of Economic Studies,
67, 439-454.

[37] Matthews, S. A. (1984): “On the Implemetability of Reduced Form Auctions,” Econometrica, 52, 1519-
1522.

[38] McAdams, D. (2003a): “Isotone Equilibrium in Games of Incomplete Information,” Econometrica, 71,
1191—1214.

[39] McAdams, D. (2003b): “Characterizing Equilibria in Asymmetric First-Price Auctions,” working paper,
MIT.

[40] Milgrom, P. R. and J. Weber (1982): “A Theory of Auctions and Competitive Bidding,” Econometrica,
50, 1089-1122.

[41] Myerson, R. (1981): “Optimal Auction Design,” Mathematics of Operations Research, 6, 58-73.
[42] Pearce, D. G. (1984): “Rationalizable Strategic Behavior and The Problem of Perfection,” Econometrica,

52, 1029-50.
[43] Reny, P. and S. Zamir (2004): “On the Existence of Pure Strategy Monotone Equilibria in Asymmetric

First-Price Auctions,” Econometrica, 72, 1105-1125.
[44] Riley, J. and W. Samuelson (1981): “Optimal Auctions,” American Economic Review, 71, 381-392.
[45] Rudin, W. (1966): Real and Complex Analysis. McGraw-Hill, N. York.
[46] Simon, L. K. and W. R. Zame (1990): “Discontinuous Games and Endogenous Sharing Rules,” Economet-

rica, 58, 861-872.
[47] Taylor, C. (1995): “Digging for Golden Carrots: An Analysis of Research Tournaments,” American Eco-

nomic Review, 85, 872-890.
[48] Williams, S. R. (1991): “Existence and convergence of equilibria in the buyer’s bid double auction,” Review

of Economic Studies, 58, 351-374.
[49] Zheng, C. Z. (2001): “High Bids and Broke Winners,” Journal of Economic Theory, 100, 129-171.
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