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Abstract

In this paper, we propose a novel approach to econometric forecast-

ing of stationary and ergodic time series within a panel-data frame-

work. Our key element is to employ the bias-corrected average fore-

cast. Using panel-data sequential asymptotics we show that it is po-

tentially superior to other techniques in several contexts. In particular,
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it delivers a zero-limiting mean-squared error if the number of fore-

casts and the number of post-sample time periods is su¢ ciently large.

We also develop a zero-mean test for the average bias. Monte-Carlo

simulations are conducted to evaluate the performance of this new

technique in �nite samples. An empirical exercise, based upon data

from well known surveys is also presented. Overall, these results show

promise for the bias-corrected average forecast.

Keywords: Panel-Data Econometrics, Pooling of Forecasts, Forecast
Combination Puzzle, Common Features.

J.E.L. Codes:C14, C32, C33, C53, G11.

1 Introduction

Bates and Granger(1969) made the econometric profession aware of the bene-

�ts of forecast combination when a limited number of forecasts is considered.

The widespread use of di¤erent combination techniques has lead to an inter-

esting puzzle from the econometrics point of view �the well known forecast

combination puzzle: if we consider a �xed number of forecasts (N <1),
combining them using equal weights (1=N) fare better than using �optimal

weights�constructed to outperform any other forecast combination.

Regardless of how one combine forecasts, if the series being forecast is

stationary and ergodic, and there is enough diversi�cation among forecasts,

we should expect that a weak law-of-large-numbers (WLLN) applies to well-

behaved forecast combinations. Indeed, Timmermann(2006) uses �nancial-

economic arguments based upon risk diversi�cation to defend the idea of

pooling of forecasts. This motivates labeling it �a �nancial approach to eco-

nomic forecasts,�since it is based on a principle so keen on �nance; see, e.g.,

Ross (1976), Chamberlain and Rothschild (1983), and Connor and Korajzcyk

(1986, 1993). Of course, to obtain this WLLN result, the number of fore-

casts has to diverge (N !1), which entails the use of asymptotic panel-data
techniques. In our view, one of the reasons why pooling forecasts has not
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yet been given a full asymptotic treatment is that forecasting is frequently

thought to be a time-series experiment, not a panel-data experiment. As far

as we know, despite its obvious bene�ts, there has been no work where the

pooling forecasts was considered in a panel-data context, with the number

of forecasts (N) and time-series observations (T ) diverging without bounds.

In this paper, we propose a novel approach to econometric forecasting

of stationary and ergodic series within a panel-data framework. First, we

decompose individual forecasts into three components: the series being fore-

cast, a time-invariant forecast bias, and a zero-mean forecast error. We show

that the series being forecast is a common feature of all individual forecasts;

see Engle and Kozicki(1993). Second, when N; T ! 1, and we use stan-
dard tools from panel-data asymptotic theory, we show that the pooling of

forecasts delivers optimal limiting forecasts in the sense that they have a

zero mean-squared error. The key element of this result is the use of the

bias-corrected average forecast �equal weights in combining forecasts cou-

pled with a bias-correction term. The use of equal weights avoids estimating

forecast weights, which contributes to reduce forecast variance, although po-

tentially at the cost of an increase in bias. The use of a bias-correction term

eliminates any possible detrimental e¤ect arising from equal weighting. One

important element of our technique is to use the forecast combination puzzle

to our advantage, but now in an asymptotic context.

The use of the bias-corrected average forecast is a parsimonious choice in

forecasting that delivers optimal forecasts in a mean-squared error sense �

zero limiting mean-squared error. The only parameter we need to estimate is

the mean bias, which requires the use of the sequential asymptotic approach

developed by Phillips and Moon (1999). Indeed, the only way we could

increase parsimony in our framework is by doing without any bias correction.

To test the usefulness of performing bias correction, we developed a zero-

mean test for the average bias which draws upon the work of Conley (1999)

on random �elds.

Despite the lack of panel-data work on the pooling of forecasts, there has
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been panel-data research on forecasting focusing on pooling of information;

see Stock and Watson (1999 and 2002a and b) and Forni et al. (2000, 2003).

The former is related to forecast combination and operates a reduction on

the space of forecasts. The latter operates a reduction on a set of highly

correlated regressors. In principle, forecasting can bene�t from the use of

both procedures. However, the payo¤of pooling forecasts is greater than that

of pooling information: while pooling information delivers optimal forecasts

in the mean-squared error sense (Stock and Watson), it cannot drive the

mean-squared forecast error to zero as the pooling of forecasts can.

One important element of our technique is the introduction of a bias-

correction term. If a WLLN applies to a equal-weight forecast combination,

we cannot guarantee a non-zero mean-squared error in forecasting, since the

limit average bias of all forecasts may be non-zero. In this context, one inter-

esting question that can be asked is the following: why are forecasts biased?

From an economic standpoint, Laster, Bennett and Geoum (1999) show that

professional forecasters behave strategically (i.e., they bias forecasts) if their

payo¤s depend mostly on publicity from the forecasts than from forecast-

accuracy itself. Since one way to generate publicity is to deviate from a

consensus (average) forecast, rewarding publicity may induce bias. From an

econometric point of view, Patton and Timmermann (2006) consider an addi-

tional reason for the existence of bias in forecasts: what may look like forecast

bias under a speci�c loss function may be just the consequence of the fore-

caster using a di¤erent loss function in producing the forecast1. Hoogstrate,

Palm and Pfann (2000) show that pooling cross-sectional slopes can help

in forecasting. One of the potential reasons why this procedure works in

practice is that only cross-sectional slopes are pooled, not individual e¤ects,

showing that the latter may be working as a bias-correction device. A �nal

reason for bias in forecasts is non-stationarity of the variable being forecast

or of a subset of the conditioning variables. This is explored by Hendry and

1Also, Clements and Hendry�s (1999) work on intercept correction can be viewed as a

study of bias.
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Clements (2002) and Clements and Hendry (2006).

Given that important forecast studies are motivated by bias in forecast-

ing, it seems desirable to build a forecasting device that incorporates bias

correction. We view the introduction of the bias-corrected average forecast

as one of the original contributions of this paper. The way we estimate the

bias-correction term relies on the use of a forecast-speci�c component to cap-

ture the bias in individual forecasts. Of course, this can only be fully studied

asymptotically within a panel-data framework, which reinforces our initial

choice of approach.

The ideas in this paper are related to research done in two di¤erent �elds.

From econometrics, it is related to the common-features literature after En-

gle and Kozicki (1993). Indeed, we attempt to bridge the gap between a

large literature on common features applied to macroeconomics, e.g., Vahid

and Engle (1993, 1997), Engle and Issler(1995), Issler and Vahid (2001, 2006)

and Vahid and Issler (2002), and the econometrics literature on forecasting

related to common factors, forecast combination, bias correction, and struc-

tural breaks, perhaps best represented by the work of Bates and Granger

(1969), Granger and Ramanathan(1984), Forni et al. (2000, 2003), Hendry

and Clements (2002), Stock and Watson (2002a and b), Elliott and Tim-

mermann (2003, 2004, 2005), and, more recently, by the excellent surveys

of Clements and Hendry (2006), Stock and Watson (2006), and Timmer-

mann (2006) �all contained in Elliott, Granger and Timmermann (2006).

From �nance and econometrics, our approach is related to the work on fac-

tor analysis when the number of assets is large, to recent work on panel-data

asymptotics, and to panel-data methods focusing on �nancial applications,

perhaps best exempli�ed by the work of Ross (1976), Chamberlain and Roth-

schild (1983), Connor and Korajzcyk (1986, 1993), Phillips and Moon (1999),

Bai and Ng (2002, 2004), Bai (2005), and Pesaran (2005), and Araujo, Issler

and Fernandes (2006).

The rest of the paper is divided as follows. Section 2 presents our main

results and the assumptions needed to derive them. Proofs are presented in

5



the Appendix. Section 3 presents the results of a Monte-Carlo experiment.

Section 4 presents an empirical analysis using the methods proposed here,

confronting the performance of the bias-corrected average forecast with that

of other types of forecast combination. Section 5 concludes.

2 Econometric Setup

Suppose that we are interested in forecasting a weakly stationary and ergodic

univariate process fYtg using a large number of forecasts that will be com-
bined to yield an optimal forecast in the mean-squared error (MSE) sense.

These forecasts could be the result of using several econometric models that

need to be estimated prior to forecasting, or the result of using no formal

econometric model at all, e.g., just the result of an opinion poll on the vari-

able in question using a large number of individual responses.

We consider 3 consecutive distinct time periods, where time is indexed

by t = 1; 2; : : : ; T1 : : : ; T2 : : : ; T . The period from t = 1; 2; : : : ; T1 is labeled

the �estimation sample,�where models are usually �tted to forecast Yt, if

that is the case. The period from t = T1 + 1; : : : ; T2 is labeled the post-

model-estimation or �training sample�, where realizations of Yt are usually

confronted with forecasts produced in the estimation sample, if that is the

case. The �nal period is t = T2 + 1; : : : ; T , where genuine out-of-sample

forecasting is entertained, bene�ting from the results obtained during the

training sample. In what follows, we let T2 be O (T ). In order to guarantee

that the number of observations in the training sample will go to in�nity at

rate T , we let T1 be O (1). Hence, asymptotic results will not hold for the

estimation sample.

Regardless of whether forecasts are the result of a poll or of the estimation

of econometric models, we label forecasts of Yt, computed using conditioning

sets lagged h periods, by fhi;t, i = 1; 2; : : : ; N . Therefore, f
h
i;t are h-step-ahead

forecasts and N is either the number of models estimated to forecast Yt or

the number of respondents of an opinion poll regarding Yt.
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In what follows we will let N go to in�nity, which raises the question of

whether this is plausible in our context. On the one hand, if forecasts are

the result of estimating econometric models, they will di¤er across i if they

are either based upon di¤erent conditioning sets or upon di¤erent functional

forms of the conditioning set (or both). Since there is an in�nite number

of functional forms that could be entertained for forecasting, this gives an

in�nite number of possible forecasts. On the other hand, if forecasts are the

result of a survey, although the number of responses is bounded from above,

for all practical purposes, if a large enough number of responses is obtained,

then the behavior of forecast combinations will be very close to the limiting

behavior when N !1.
We will focus on the following decomposition of Yt:

Yt = f
h
i;t �Ki � "i;t; i = 1; 2; : : : ; N; t > T1; (1)

where Ki is a time-invariant forecast bias of model i or of respondent i. This

makes the error term "i;t a zero-mean process, although it will be serially

correlated in general. Because fhi;t is an h-step-ahead forecast, Ki and "i;t are

respectively the h-step-ahead forecast bias and the forecast error associated

with either model i or respondent i. Here, to simplify notation, we do not

use an h superscript on Ki and "i;t, although they clearly depend on h.

At this point, it is desirable to discuss the nature of the term Ki. In

particular, it is important to explain why we need to model it, which is

related to the question of why we cannot focus solely on unbiased forecasts,

for which Ki = 0. At �rst sight, (1) looks like an identity, but it is not,

since we may also have a time-varying bias term. Therefore, the role of Ki

in (1) is to capture the long-run e¤ect in the time dimension of model-bias

misspeci�cation (econometric models of Yt) or the long-run e¤ect in the time

dimension of the bias of respondent i. When considering econometric models,

it is natural to assume that we do not know the data-generating process of Yt.

Therefore, all models that we might consider are inherently misspeci�ed. In

this case, Ki captures the long-run e¤ect, in the time dimension, of forecast-

bias misspeci�cation of model i. By the same token, in the case of surveys,
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some of the surveyors may gain something by having a biased forecast. An

interesting example in �nance is that of a bank selling an investment fund.

In this case, the bank�s forecast of the fund return may be upward-biased

simply because it may use this forecast as a marketing strategy to attract new

clients; see Laster, Bennett and Geoum (1999). Patton and Timmermann

(2006) consider an additional reason for the existence of Ki �the fact that

there is uncertainty about the type of loss function used by forecasters in

forming a speci�c forecast. There, forecasts that are unbiased under the

loss function used by the forecaster may look biased under a di¤erent loss

function.

Next, we have an assumption on how Ki relates to "i;t.

Assumption 1: We assume that E("i;tjKi) = 0, for all t and that Ki is an

identically distributed random variable in the cross-sectional dimen-

sion, but not necessarily independent2, i.e.,

Ki � id(B; �2k); (2)

where B and �2k are respectively the mean and variance of Ki. It is

important to distinguish between Ki and its realization ki. In the time-

series dimension, ki has no variation, therefore, it is a �xed parameter.

The error term "i;t is assumed to be weakly stationary and ergodic, re-

�ecting the fact that, if forecasts are such that "i;t is not weakly station-

ary and ergodic, then these forecasts could be simply discarded3. Because

forecasts are computed h-steps ahead, forecast errors are serially correlated

in general even if they are unbiased. Forecast errors are also likely to be

2The assumption of dependence is consistent with the idea that forecasters learn from

one another by meeting, discussing, debating, and reading each other�s analyses. Through

their ongoing interactions, forecasters maintain a current, collective understanding of

where the economy is most likely heading and its upside and downside risks.
3It is beyond the scope of this paper to discuss forecast combination for non-stationary

processes. Also, note that although Yt and "i;t are ergodic for the mean, fhi;t is non ergodic

since Ki is a random variable.
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cross-sectionally correlated, since the information set used by di¤erent mod-

els tends to overlap and poll responses tend to be similar for respondents

with similar characteristics. In order to limit the degree of time-series and

cross-sectional dependence of the errors, we assume the following:

Assumption 2: Let "t = ("1;t; "2;t; ::: "N;t)
0 be an N � 1 vector stacking the

errors associated with all possible forecasts. Then, the vector process

f"tg is assumed to be covariance-stationary and ergodic for the �rst
and second moments, uniformly on N . Further, de�ning as �i;t = "i;t�
Et�1 ("i;t), the innovation of "i;t, where Et�1 (�) denotes the conditional
expectation operator, we assume that

lim
N!1

1

N2

NX
i=1

NX
j=1

��E ��i;t�j;t��� = 0: (3)

Assumption 2 controls the degree of time-series and cross-sectional de-

pendence in the data. It does not rule out errors displaying conditional

heteroskedasticity, since the latter can coexist with the assumption of weak

stationarity; see Engle (1982). A similar assumption is made in Araujo, Issler

and Fernandes (2006) to control the time-series and the cross-sectional de-

cay within the framework of factor models applied to �nance. Following the

forecasting literature with large N and T , e.g., Stock and Watson (2002b),

and the �nancial econometric literature, e.g., Chamberlain and Rothschild

(1983), the condition lim
N!1

1
N2

PN
i=1

PN
j=1

��E ��i;t�j;t��� = 0 simply controls the
degree of cross-sectional dependence present in forecast errors. It is noted

by Bai (2005, p. 6), that Chamberlain and Rothschild�s cross-sectional error

decay requires:

lim
N!1

1

N

NX
i=1

NX
j=1

��E ��i;t�j;t��� <1: (4)

Notice that this is the same cross-sectional decay used in Stock and Watson.

Of course, (4) implies (3), but the converse is not true. Hence, Assumption

9



2 has a less restrictive condition than those commonly employed for factor

models. It guarantees convergence in probability of cross-sectional means,

which is why we use it here.

We start the discussion on forecast combination by solving (1) for fhi;t:

fhi;t = Yt +Ki + "i;t; i = 1; 2; : : : ; N; t > T1: (5)

Equation (5) shows that we can decompose all forecasts into a common com-

ponent Yt, and two idiosyncratic components Ki and "i;t. The series being

forecast (Yt) is a common feature, in the sense of Engle and Kozicki(1993),

of all forecasts. For any two series, a common feature exists if it is present in

both of them and can be removed by linear combination. Here, subtracting

any two forecasts eliminates Yt. Araujo, Issler and Fernandes (2006) exploit

this property to develop an estimator for the stochastic discount factor within

a panel-data context. Here, we also exploit this property of Yt in devising an

optimal predictor for its realizations. We now state our �rst result.

Proposition 1 If Assumptions 1 and 2 hold, then, the bias-corrected average

forecast obeys plim
N!1

 
1
N

NX
i=1

fhi;t � 1
N

NX
i=1

ki

!
= yt and

lim
N!1

MSE

 
1
N

NX
i=1

fhi;t � 1
N

NX
i=1

ki

!
= 0, t > T1, where MSE(�) denotes the

mean-squared error in forecasting Yt, yt denotes period-t realization of Yt,

and ki denotes the realization of Ki.

Proof. See Appendix.
Proposition 1 implies that the bias-corrected average forecast is an opti-

mal forecast as N goes to in�nity in the MSE sense. Because the MSE is

bounded from below at zero, it has an MSE as small as that of any other

individual forecast or as that of any other type of forecast combination.

The latter is an important result which discourages estimating �optimal

weights� in situations where N is large. This stems from the fact that,

for large N , forecast combinations using �optimal population weights�and
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bias-corrected equal weights (1=N) will both have a zero MSE. However, in

practice, one cannot resort to �optimal population weights,�but rather has

to estimate �optimal weights�from the data. Since the estimation period is

�xed, t = 1; 2; : : : ; T1 (although the training period is not), the performance

of �optimal estimated weights�will not be as good as that of �optimal popu-

lation weights,�which explains the poor performance of �optimal estimated

weights�compared with bias-corrected equal weights. From that perspective,

there is no �forecast-combination puzzle.�

Understanding the puzzle required using a weak law-of-large-numbers in

a panel-data context. We see this as a major advantage of our approach vis-

à-vis the commonly employed time-series approach with �xed N . Only in a

panel-data framework can we formally state a weak law-of-large-numbers for

forecast combinations and take full advantage of asymptotic results in both

N and T . The lack of a broad of use of panel-data analysis in forecasting so

far has limited our understanding of important phenomena in this literature.

Of course, the lead of Stock and Watson(1999 and 2002a and b) and Forni

et al. (2000, 2003) towards panel data has shed light on several important

results on pooling information. We hope that our work will do the same as

far as the pooling of forecasts is concerned.

One important feature of 1
N

NX
i=1

fhi;t� 1
N

NX
i=1

ki is that it is unfeasible, since

we do not observe the ki�s. Therefore, below we propose replacing ki by a

consistent estimator. The underlying idea behind the consistent estimator of

ki is that in the training sample one observes the realizations of Yt and of the

double-index process fhi;t, i = 1:::N , and T1 < t < T2. Hence, one can form a

panel of forecasts:�
fhi;t � yt

�
= ki + "i;t; i = 1; 2; : : : ; N; T1 < t < T2; (6)

where i indexes forecasts, t indexes time, and it becomes obvious that ki
represents the �xed e¤ect on this panel. It is natural to exploit this property

of ki in constructing a consistent estimator. This is exactly the approach

taken here. In what follows, we propose a non-parametric estimator of ki.
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It does not depend on any distributional assumption on Ki � id(B; �2k)

and it does not depend on any knowledge of the models used to compute

the forecasts fhi;t. This feature of our approach widens its application to

situations where the �underlying models are not known, as in a survey of

forecasts��Kang (1986); see also our empirical-application section.

Due to the nature of our problem �large number of forecasts �and the

nature of ki in (6) � time-invariant bias term �we need to consider large

N , large T asymptotic theory to devise a consistent estimator for ki. Panels

with such a character are di¤erent from large N , small T panels. In order to

allow the two indices N and T to pass to in�nity jointly, we could consider

a monotonic increasing function of the type T = T (N), known as diagonal-

asymptotic method; see Quah (1994) and Levin and Lin (1993). One draw-

back of this approach is that the limit theory that is obtained depends on

the speci�c relationship considered in T = T (N). A joint-limit theory allows

both indices (N and T ) to pass to in�nity simultaneously without imposing

any speci�c functional-form restriction. Despite that, it is substantially more

di¢ cult to derive and will usually apply only under stronger conditions, such

as the existence of higher moments.

Searching for a method that allows robust asymptotic results without

imposing too many restrictions (on functional relations and the existence of

higher moments), we consider the sequential asymptotic approach developed

by Phillips and Moon (1999). There, one �rst �xes N and then allows T

to pass to in�nity using an intermediate limit. Phillips and Moon write

sequential limits of this type as (T;N !1)seq.
In order to clarify the idea behind sequential asymptotics, consider the

following double-indexed process:

XN;T =
1

kN

NP
i=1

Zi;T ;

and denote by Zi the limit of Zi;T as T ! 1. Phillips and Moon derive
the sequential limit of XN;T as follows. By passing T ! 1 for �xed N , an
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intermediate limit XN =
1
kN

NP
i=1

Zi is found. Then, by letting N !1 and by

applying an appropriate limit theory to the standardized sumXN =
1
kN

nP
i=1

Zi,

the �nal sequential limit is obtained. When kN = N , this results in a law-of-

large numbers being applied. When kN =
p
N , this results in a central-limit

theorem being applied.

In general, Phillips andMoon argue that a joint limit (N and T go to in�n-

ity simultaneously) is a more robust result than a sequential limit. However,

these two could be equivalent. Following the intuition behind the conver-

gence of a double-indexed real-number sequence, they show that if �rst-stage

convergence in the sequential limit holds uniformly on the other index, then

the sequential limit is equivalent to a joint limit, e.g., if XN;T converges to

XN uniformly in N , as T ! 1, then sequential limit of XN;T is the same

as the joint limit of XN;T . Sequential panel-data asymptotics were applied

in Phillips et al. (2001) and in Lima and Xiao (2007), among others. By

using the sequential-limit approach, we can now state the second result of

this paper.

Proposition 2 If Assumptions 1 and 2 hold, the feasible bias-corrected av-

erage forecast obeys plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t� 1
N

NX
i=1

bki! = yt and
lim

(T;N!1)seq
MSE

 
1
N

NX
i=1

fhi;t� 1
N

NX
i=1

bki! = 0, t > T1, where bki = 1
T

PT
t=1 f

h
i;t �

1
T

PT
t=1 yt is a consistent estimator of ki, as T !1.

Proof. See Appendix.
In what follows we make explicit the role of bB, the consistent estimator

of B proposed in the proof of Proposition 2..

Proposition 3 If Assumptions 1 and 2 hold, then, plim
(T;N!1)seq

� bB �B� = 0.
Proof. See Appendix.
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The results above provide important tools for large N; T forecasting. To

get optimal forecasts, in the MSE sense, one has to combine all forecasts using

simple averaging, appropriately centering it by using a bias-correction term.

It is important to stress that, even though N !1, the number of estimated
parameters is kept at unity: bB. This is a very attractive feature compared to
models that combine forecasts estimating optimal weights. There the number

of estimated parameters increases at the same rate as N , a clear disadvantage

from the point of view of obtaining a small forecast variance.

The feasible bias-corrected average forecast can be made an even more

parsimonious estimator of yt when there is no need to estimate B. Of course,

this raises the issue of whether B = 0, in which case the optimal forecast

becomes 1
N

NX
i=1

fhi;t �the simple forecast combination originally proposed by

Bates and Granger (1969). We next propose the following test statistic for

H0 : B = 0.

Proposition 4 Under the null hypothesis H0 : B = 0, the test statistic:

bt = bBpbV d�!
(T;N!1)seq

N (0; 1) ;

where bV is a consistent estimator of the asymptotic variance of B = 1
N

NX
i=1

ki.

Proof. See Appendix.

3 Monte-Carlo Study

We considered the following data-generating process (DGP):

Yt = �Xt + �t

t = 1; 2; :::; T1; :::; T2; :::T ,
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where fXtg is an ARFIMA(1; d; 0) process, in which (1 � L)dXt = �t,

(1 � �L)�t = �t, and �t � iid N(0; 1). We also assumed that �t � iid

N(0; 1) and �t and �t are mutually independent. The data were generated

by using functions of the ARFIMA package (Doornik and Ooms, 2001) for

Ox programming language. In particular, we set � = 0:8, � = 5 and d = 0:1,

0:4, 0:49.

According to Beran (1998), one of the typical features of the above DGP

(a stationary long-memory process) is that it generates local trends and cy-

cles, but these are potentially spurious and disappear after some time. There-

fore, for short sample sizes, we expect that this property will lead to poor

forecasts since the estimated models will only capture the spurious local

trend or cycle, which does not represent the true dynamics of Yt. For this

reason, we paid special attention to models that are estimated with a small

sample. In this experiment, we considered the estimation sample to be as

small as T1 = 30; 60; 120, which are sample sizes commonly found in applied

macroeconometrics.

As for the training sample, T2 � T1, this experiment included T2 � T1 =
30; 60. Recall that T2 = O(T ) and, therefore we need to increase T to

accommodate larger training samples. In this experiment, we set the number

of out-of-sample observations as (T � T2) = 10. Hence, when T1 = 30 and
T2� T1 = 30; the total sample size T will be equal to 70. If T1 = 30, but the
training samples goes up to 60, then T must be equal to 100, etc.

We �tted the following auto-regressive distributed-lag models for Yt,

Yt = c0 +
JP
j=1

�jYt�j +
IP
i=0

�iXt�i + �t (7)

for J = 1; 2; :::; 6,

I = 1; 2; :::; 5:

For each J , we estimated a model with I = 1; 2; :::; 5, respectively. In

all, we have estimated 30 models. We considered three forecast methods
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explained below, in addition to the simple average forecast (equal weights

1=N without any bias correction):

1. We estimated each model using observations up to period T1, which is

our estimation sample. The estimated models are next used to make

one-step-ahead forecasts (h = 1) in the training sample, from T1+1 to

T2. These forecasts are then used to estimate the model bias and the

average bias. Without updating the estimation sample, each model

is used to forecast observations from T2 + 1 to T . Finally, the bias-

corrected average forecasts is computed.

2. The same procedure as in 1 above is implemented without any bias

correction: this is the simple average forecast combination.

3. After estimating all models in (7) using the estimation sample, the

training sample is used to estimate the weights according to the follow-

ing OLS regression:

ys = !0 +
30P
i=1

!itf
1
i;s + "s, s = T1 + 1; :::T2, (8)

where f 1i;s is the one-step ahead forecast made by the i-th model for the s-

th observation in the training sample. The estimated weights are used to

compute the weighted-average forecast from T2 + 1 to T .

We then compute the MSE of the simple average forecast, the bias-

corrected average forecast, and the weighted-average forecast for the peri-

ods T2 + 1; :::; T . All the forecasts are one-step-ahead static forecasts, i.e.,

forecasts for t+ 1 used observed data for Yt.

The number of Monte-Carlo replications was set to 5; 000. For each repli-

cation, 30 models are estimated and forecasts are made according to each of

the three aforementioned strategies. After 5; 000 replications, we computed

two distributions of relative MSEs, using the bias-corrected average forecast

as numeraire. The �rst distribution is that of the relative MSE of the aver-

age forecast (the MSE of the simple average forecast divided by that of the

16



bias-corrected average forecast). The second is that of the weighted-average

forecast (the MSE of the weighted-average forecast divided by that of the

bias-corrected average forecast).

We report the mean of each distribution in Table 1. The notationRMSEpi
i = 1; 2 denotes the mean of the relative MSE of the average forecast

(RMSEp1) and weighted-average forecast (RMSE
p
2). The superscript p in-

dicates the number of observations in the training sample.

The results in Table 1 show that, for estimation sample as small as

T1 = 30, the bias-corrected average forecast outperforms the simple aver-

age forecast. In particular, such advantage increases as the presence of long

memory is stronger, that is, as the fractional-integration parameter d in-

creases. Indeed, for d = 0:1, RMSE301 = 1:23, whereas RMSE301 = 1:65

when d = 0:49.4 The forecast can be improved if more observations are

used in the training sample. For example, when 120 observations are used

to compute the average bias, we obtain RMSE1201 = 1:75 for d = 0:49.

The good performance of the bias-corrected average forecast results from

the fact that stationary long-memory processes generate local trends and

cycles that disappear only after a long time. For short-estimation samples,

the econometric models (7) will all include irrelevant regressors, which may

lead to non-trivial forecast biases, the smaller the estimation sample. Of

course, as the estimation sample increases, the coe¢ cients of these irrelevant

regressors will be approximately zero and we should expect the gains of bias

correction to decrease. Our Monte-Carlo experiment shows that the method

proposed in this paper can improve forecast accuracy by estimating and re-

moving this short-sample forecast bias. As the estimation sample increases,

say, to T1 = 120, the local trends and cycles become less important and

therefore the misspeci�cation problem diminishes.5 As a result, the econo-

4Recall that a long-memory process is stationary as long as 0 < d < 0:5.
5As motivated by Hendry and Clements (2002), model bias can be corrected by in-

cluding intercept in the regressions. Notice, however, that when the estimation sample is

short, the spurious trend or cycle (generated by the presence of long memory) becomes

in�uential, and the estimation of the intercept may also be strongly biased.
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metric models will give rise to small bias and, consequently, bias-correction

will not be as important as in the case of a small estimation sample.

A striking result presented in Table 1 is the e¤ect of long memory on

the performance of the weighted-average forecast. Such forecast method has

the worst performance among the three methods considered. Its performance

deteriorates signi�cantly when the fractional-integration parameter increases.

This result suggests that local trends and cycles generated by a stationary

long-memory process (along with a small estimation sample) strongly bias the

estimation of the �optimal�weights used to compute the weighted-average

forecast. In this way, the well-known forecast-combination puzzle may simply

be a re�ection of the potential misspeci�cation of econometric models used

in forecasting.

4 Empirical Application

Professional forecasts guide market participants and inform them about fu-

ture economic conditions. However, many analysts argue that forecasters

might strategically bias forecasts as long as they receive economic incen-

tives to do so. The importance of microeconomic incentives for forecasters

and analysts is stressed by a number of empirical studies, such as Ehrbeck

and Waldmann (1996), Graham (1999), Hong et al. (2000), Lamont (2002),

Welch (2000), and Zitzewitz (2001).

In this section, we present an application of the method proposed here

for the case of forecast surveys, focusing on two di¤erent surveys. Our re-

sults show that bias correction can indeed help forecasting. We also test the

hypothesis that professional forecasters behave strategically in a statistical

sense, perhaps because they earn more from forecast publicity than from fore-

cast accuracy. When this is accounted for, the bias-corrected average forecast

introduced in this paper outperforms simple forecast averages (consensus). It

is important to stress that, although our techniques were conceived for a large

N; T environment, the empirical results presented here show the usefulness
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of our method even in a small N; T environment. Also, the forecasting gains

from bias correction, whenever the average forecast is biased, are non-trivial.

4.1 Philadelphia Fed�s Survey of Professional Forecast-
ers

In our �rst empirical application, we consider a panel data of individual re-

sponses from the Philadelphia Fed�s Survey of Professional Forecasters avail-

able at quarterly frequency. The forecasters in this Survey come largely from

the business world and Wall Street. One important feature of this Survey

is anonymity of the institution supplying a given forecast. This is designed

to encourage forecasters to provide their best forecast without fearing the

consequences of making mistakes.

For a long time it has been common knowledge that the average forecast

usually performs better than alternative forecast combinations when survey

data is used. In fact, Kang (1986) concludes that �A simple average should be

used when underlying models are not known, as in a survey of forecasts...�

In this section we show how a macroeconomist using survey data can use

the bias-corrected average forecast to improve upon the consensus (average)

forecast.

In order to construct our panel of forecasts, we have to consider the fact

that many forecasters report missing values for di¤erent reasons, which is

a problem in trying to obtain a long-balanced panel of forecasts. To that

end, we included forecasters who reported nine consecutive one-step-ahead

forecasts from 2002:4 to 2004:4. Hence, our time dimension is T = 9. To

compute the average bias, we compared one-step-ahead forecasts with real-

izations of the forecasting variables from 2002:4 through 2003:4, comprising 5

observations. Therefore, we were left with observations from 2004:1 through

2004:4 for out-of-sample forecast evaluation (4 observations).

We focused our exercise on two important macroeconomic variables cov-

ered by this survey: the annualized CPI in�ation rate and the unemployment
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rate, both seasonally adjusted. For CPI in�ation we observed a maximum

of N = 19 forecasters, whereas for the unemployment rate, we observed a

maximum of N = 22 forecasters.

Table 2 exhibits the estimate of the sample average bias for CPI in�ation

and the Unemployment Rate. We also test whether the average bias is zero

(p-values in parenthesis). Our estimates reveal a negative average bias for

the annualized in�ation rate and a positive bias for the unemployment rate.

Both are statistically signi�cant at the 10% level, but only the unemployment

average bias is signi�cant at the 5% level. This result suggests that we could

use these average-bias estimates to improve forecasting, although we should

expect a larger improvement in the case of unemployment. Indeed, the simple

average forecast is 9% worse than the feasible bias-corrected average forecast

for CPI in�ation and 56% worse for the Unemployment Rate.

4.2 The Central Bank of Brazil�s �Focus Forecast Sur-
vey�

The �Focus Forecast Survey,� organized by the Central Bank of Brazil, is

a unique panel database of forecasts. It collects forecast information on al-

most 120 institutions, including commercial banks, asset managers and non-

�nancial institutions, which are followed throughout time. Forecasts have

been collected since 1998, which potentially can serve to approximate a large

N; T environment. Besides that, it also has the following desirable features:

the anonymity of forecasters is preserved, although the names of the top-�ve

forecasters for a given economic variable is released by the Central Bank of

Brazil; forecasts are collected at di¤erent frequencies (monthly, semi-annual,

annual), as well as at di¤erent forecast horizons (e.g., short-run forecasts are

obtained for h from 1 to 12 months); there is a large array of macroeconomic

time series included in the survey.

To save space, below we focus our analysis only on the behavior of fore-

casts of the monthly in�ation rate (�t) in Brazil, measured by the o¢ cial
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Consumer Price Index (CPI), computed by FIBGE. In order to obtain the

largest possible balanced panel (N � T ), we used N = 18 and a time-series

sample period covering the period 2002:11 through 2006:3 (T = 41). Of

course, in the case of a survey panel, there is no estimation sample. We chose

the �rst 23 time observations to compute bB �the average bias �leaving 18

time-series observations for out-of-sample forecast evaluation. The forecast

horizon chosen was h = 6, this being an important horizon to determine

future monetary policy within the Brazilian In�ation-Targeting program.

The results of our empirical exercise are presented in Tables 3 and 4.

They show that the average bias is positive for the 6-month horizon �about

0:075 �and signi�cant at the 10% level, with a p-value of 0:09. Out-of-sample

forecast comparisons between the simple average and the bias-corrected av-

erage forecast show that the former has an MSE 11% bigger than that of the

latter.

5 Conclusions and Extensions

In this paper, we propose a novel approach to econometric forecasting of sta-

tionary and ergodic series within a panel-data framework, where the number

of forecasts and the number of time periods increase without bounds. The

advantages of our approach are many. First, only in an asymptotic panel-

data context we can fully understand why the pooling of forecasts works

in practice. Second, we can also propose improvements on simple forecast-

combination schemes �such as the simple forecast combination. Here, we

propose the bias-corrected average forecast. Third, our techniques are ap-

plicable in two important contexts: when forecasts are a result of model es-

timation, and when they are the result of opinion polls. Fourth, the method

proposed here is non-parameteric: it requires no distributional assumption

whatsoever on the variables involved, and also no knowledge of the models

used in forecasting.

The basis of our technique is to decompose individual forecasts into three
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components: the series being forecast, a time-invariant forecast bias, and a

zero-mean forecast error. The series being forecast is viewed as a common

feature of all individual forecasts. Standard tools from panel-data asymptotic

theory are then used to devise an optimal forecasting combination that has

a zero limiting mean-squared forecast error. This optimal forecast combina-

tion uses equal weights and a bias-correction term. The use of equal weights

avoids estimating forecast weights, which contributes to reduce forecast vari-

ance, although potentially at the cost of an increase in bias. The use of a

bias-correction term eliminates any possible detrimental e¤ect arising from

equal weighting. We label this optimal forecast as the bias-corrected average

forecast.

In theory �large N and T �the use of a bias-corrected average forecast is

potentially superior to the use of any single forecast and is equal or superior

to any other combining technique. Moreover, in practice �small N and/or

T �an important element of the use of the bias-corrected average forecast is

that the forecast combination puzzle works to our advantage, now augmented

with a bias-correction term. Hence, there will be situations in which we can

improve upon the simple average forecast by using a bias-correction, and

others which we cannot. Our framework o¤ers a statistical test for excluding

the bias-correction term.

The Monte-Carlo experiment and the empirical analyses performed here

show the usefulness of our new approach. Regarding model misspeci�cation

bias, the Monte-Carlo experiment shows important improvement over con-

ventional combination techniques �from about 5% to about 75%. compared

to the simple forecast combination under MSE loss. A much larger improve-

ment is observed in the case of �optimal forecasting weights.�In the empirical

exercise, we showed that using our method leads to an improvement in fore-

casting accuracy under MSE loss �from about 10% to about 60% relative

to the simple forecast combination under MSE loss. As one should expect,

higher gains for bias correction are observed when the null hypothesis of a

zero bias is rejected in testing.
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For reasons of space, we refrain from fully discussing here natural ex-

tensions of our proposed method. A partial account of those includes the

following:

1. In the panel of forecasts:�
fhi;t � yt

�
= ki + "i;t; i = 1; 2; : : : ; N; T1 < t < T2; (9)

we imposed a unity coe¢ cient for yt, but we could have had an encom-

passing panel-regression system:

fhi;t = �iyt + ki + "i;t; i = 1; 2; : : : ; N; T1 < t < T2; (10)

where �i can be interpreted as the beta of forecast-model i vis-à-vis

yt. A natural hypothesis to test is H0 : �i = 1, for all i, which can be

implemented using standard panel techniques.

2. There may be instances where forecast models produce forecasts that

are too highly correlated. In theory, this may prevent a weak law-of-

large-numbers from holding for the error terms. In this case we can

combine pooling of information and pooling of forecasts:

�
fhi;t � yt

�
= ki+

KX
k=1

�i;kfk;t+�i;t; i = 1; 2; : : : ; N; T1 < t < T2;

(11)

where fk;t are zero-mean pervasive factors and, as is usual in factor

analysis,

plim
N!1

1
N

PN
i=1 �i;t = 0. In this context, we implemented the following

decomposition:

"i;t =
KX
k=1

�i;kfk;t + �i;t; i = 1; 2; : : : ; N; T1 < t < T2:

Thus, factor and principal-component analyses (Stock andWatson(1999

and 2002a and b) and Forni et al. (2000, 2003)) are combined with the

idea of bias-corrected average forecasts. Hence, we could combine pool-

ing of forecasts with pooling of information within the same model.
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3. The �nal extension considered here is to allow for a time-varying bias

term �t. In this case,�
fhi;t � yt

�
= ki + �t + "i;t; i = 1; 2; : : : ; N; T1 < t < T2: (12)

The techniques of Fuller and Battese (1974) can be a starting point to

generate consistent estimates of ki and �t in a context where N and T

are large.
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A Proofs of Propositions in Section 2

Proof of Proposition 1. Because "i;t is weakly stationary and mean-zero,

for every i, there exists a scalar Wold representation of the form:

"i;t =
1X
j=0

bi;j�i;t�j (13)
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where, for all i, bi;0 = 1, �i <1,
P1

j=0 b
2
i;j <1, and �i;t is white noise. We

consider now the sample cross-sectional average of equation (5):

1

N

NX
i=1

fhi;t = yt +
1

N

NX
i=1

ki +
1

N

NX
i=1

"i;t; (14)

and examine the convergence in probability (N !1) of each term in (14).

Under Assumption 1,

plim
N!1

1

N

NX
i=1

ki = B.

We now examine the convergence in probability of 1
N

NX
i=1

"i;t. Our strategy

is to show that, in the limit, the variance of 1
N

NX
i=1

"i;t is zero, a su¢ cient

condition for a weak law-of-large-numbers (WLLN) to hold for f"i;tg. In

computing the variance of 1
N

NX
i=1

1X
j=0

bi;j�i;t�j we use the fact that there is no

cross correlation between �i;t and �i;t�k, k = 1; 2; : : :. Therefore, we need only

to consider the sum of the variances of terms of the form 1
N

PN
i=1 bik�i:t�k.

These variances are given by:

VAR

 
1

N

NX
i=1

bi;k�i;t�k

!
=

1

N2

NX
i=1

NX
j=0

bi;kbj;kE
�
�i;t�j;t

�
; (15)

due to weak stationarity of "t. We now examine the limit of the generic term

in (15) with detail:

VAR

 
1

N

NX
i=1

bi;k�i;t�k

!
=

1

N2

NX
i=1

NX
j=1

bi;kbj;kE
�
�i;t�j;t

�
�

1

N2

NX
i=1

NX
j=1

��bi;kbj;kE ��i;t�j;t��� = 1

N2

NX
i=1

NX
j=1

jbi;kbj;kj
��E ��i;t�j;t��� � (16)

�
max
i;j
jbi;kbj;kj

�
1

N2

NX
i=1

NX
j=1

��E ��i;t�j;t��� : (17)
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Hence:

lim
N!1

VAR

 
1

N

NX
i=1

bi;k�i;t�k

!
� lim

N!1

�
max
i;j
jbi;kbj;kj

�
�

lim
N!1

1

N2

NX
i=1

NX
j=1

��E ��i;t�j;t��� = 0;
since the sequence fbi;jg1j=0 is square-summable, yielding limN!1

�
max
i;j
jbi;kbj;kj

�
�

1, and Assumption 2 imposes lim
N!1

1
N2

PN
i=1

PN
j=1

��E ��i;t�j;t��� = 0.
Thus, all variances are zero in the limit, as well as their sum, which gives:

plim
N!1

1

N

NX
i=1

"i;t = 0, and,

plim
N!1

 
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

Ki

!
= yt; (18)

where yt is the realization of Yt. We are now ready to compute MSEs for

1
N

NX
i=1

fhi;t � 1
N

NX
i=1

ki. In doing so, we confront realizations fytgTt=T1+1 with(
1
N

NX
i=1

fhi;t � 1
N

NX
i=1

ki

)T
t=T1+1

. However, as N ! 1, these two sequences

become identical. Therefore,

lim
N!1

MSE

 
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

ki

!
= 0:

Proof of Proposition 2. We search for a feasible consistent estimator of

the bias-corrected average forecast. This entails a feasible estimator for B,

the mean of Ki. Although Yt and "i;t are ergodic for the mean, fhi;t is non

ergodic since Ki � id(B; �2k) . This implies that:
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1

T

PT
t=1 f

h
i;t =

1

T

PT
t=1 yt +

1

T

PT
t=1 "i;t + ki

p! E (Yt) + ki + E ("i;t)

= E(fhi;tj=);

where = is the invariant �eld spanned by Ki, (see Phillips 1995, for a more

complete discussion). The last line makes clear the dependence of simple

average forecast on the realizations of Ki, which explains why fhi;t is non

ergodic although Yt and "i;t are.

Using the fact that,

E ("i;t) = 0, for i = 1; 2; :::; N;

we obtain:

ki = E(fhi;tj=)� E (Yt) :

This leads us to propose the following consistent estimator for ki,

bki =
1

T

PT
t=1 f

h
i;t �

1

T

PT
t=1 yt, i = 1; :::; N

=
1

T

PT
t=1(yt + ki + "i;t)�

1

T

PT
t=1 yt

= ki +
1

T

PT
t=1 "i;t. or,bki � ki =

1

T

PT
t=1 "i;t.

Since 1
T

PT
t=1 "i;t

p! E ("i;t) = 0, we have that bki p! ki.

Notice that:

bB = 1

N

PN
i=1
bki = 1

N

PN
i=1

�
1

T

PT
t=1 f

h
i;t �

1

T

PT
t=1 yt

�
. (19)
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Now, we can write the feasible bias-corrected average forecast as:

1

N

NX
i=1

fhi;t � bB =
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

bki = 1

N

NX
i=1

fhi;t �
1

N

NX
i=1

�
ki +

1

T

PT
t=1 "i;t

�

=
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

ki +
1

N

NX
i=1

1

T

PT
t=1 "i;t:

By the argument of sequential asymptotics in Phillips and Moon (1999), we

let T !1 �rst. Since "i;t is ergodic for the mean, 1T
PT

t=1 "i;t
p! 0. However,

in this case, as N !1, the asymptotic behavior of 1
N

NX
i=1

fhi;t� 1
N

NX
i=1

bki will
be identical of that of 1

N

NX
i=1

fhi;t� 1
N

NX
i=1

ki. Now letting N !1, we are back

to the result in Proposition 1, proving Proposition 2.

As a �nal issue in the proof, it is worthwhile analyzing the last term in :

1

N

NX
i=1

fhi;t � bB = 1

N

NX
i=1

fhi;t �
1

N

NX
i=1

ki +
1

N

NX
i=1

1

T

PT
t=1 "i;t:

By passing T ! 1 for �xed N , we note that intermediate limit holds uni-

formly on N , since the process f"i;tgTt=1 is ergodic for the mean, uniformly in
N . Therefore, the sequential limit is equivalent to the joint limit, showing

that we do not need to impose stringent moment restrictions on "i;t to prove

Proposition 2.

Proof of Proposition 3. De�ne, B = 1
N

NX
i=1

ki. Then,

� bB �B� = 1

N

NX
i=1

�bki � ki� :
By the WLLN, as T !1,

bki p! ki, and,

1

N

NX
i=1

bki p! 1

N

NX
i=1

ki.
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As N !1,
1

N

NX
i=1

ki
p! B;

where B is the mean of ki of the cross-sectional distribution of ki under

Assumption 1.

Hence, as (T;N !1)seq,

bB p! B, and B
p! B as well. Then,

plim
(T;N!1)seq

� bB �B� = 0:

Proof of Proposition 4. Under H0 : B = 0, we have shown in Proposition

3 that bB is a (T;N ! 1)seq consistent estimator for B. To compute the
consistent estimator of the asymptotic variance of B we follow Conley(1999),

who matches spatial dependence to a metric of economic distance. Denote by

MSEi (�) andMSEj (�) the MSE in forecasting of forecasts i and j respectively.
For any two generic forecasts i and j, we use MSEi (�)�MSEj (�) as a measure
of distance between these two forecasts. ForN forecasts, we can choose one of

them to be the benchmark, say, the �rst one, computing MSEi (�)�MSE1 (�)
for i = 2; 3; � � � ; N . With this measure of spatial dependence at hand, we can
construct a two-dimensional estimator of the asymptotic variance of B andbB following Conley(1999, Sections 3 and 4). We label V and bV the estimates
of the asymptotic variances of B and of bB, respectively.
Once we have estimated the asymptotic covariance of B, we can test the

null hypothesis H0 : B = 0, by using the following t-ratio statistic:

t =
Bp
V
:

By the central limit theorem, t d�!
N!1

N (0; 1) under H0 : B = 0. Now

consider bt = bBpbV , where bV is computed using bk = (bk1;bk2; :::;bkN)0 in place of
k = (k1; k2; :::; kN)

0. We have proved that bki p! ki as T ! 1, then the test
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statistics t and bt are asymptotically equivalent and therefore
bt = bBpbV d�!

(T;N!1)seq
N (0; 1) :

B Tables and Figures

Table 1: Monte-Carlo Results

d RMSE301 RMSE302 RMSE1201 RMSE1202

T1 = 30

0.1 1.23 37.8 1.23 20.33

0.4 1.53 319 1.56 629.11

0.49 1.65 1,405 1.75 2,148

T1 = 60

0.1 1.06 46.1 1.08 17.9

0.4 1.15 762 1.20 664

0.49 1.20 1,813 1.26 2,145

T1 = 120

0.1 1.00 81.8 1.03 20.86

0.4 1.05 565.1 1.07 1,970

0.49 1.07 8,942 1.11 1,235
Notes: (A) RMSEpi i = 1; 2 denotes the mean of the relative MSE of: (1)

the simple average forecast (RMSEp1), and, (2) the weighted-average

forecast (RMSEp2). In both cases, the MSE of the bias-corrected average

forecast is taken as numeraire. (B) The superscript p indicates the number

of observations in the training sample.
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Table 2: Forecast Performance of Philadelphia FED�s Survey
of Professional Forecasters

Comparing the Simple Average Forecast with the
Bias-Corrected Average Forecast

Forecasting Sample Avg. Bias Estimate Relative MSE to Feasible

Variable Size H0 : B = 0 (P-Value) Bias-Corr. Avg. Forecast

CPI in�ation
N = 19

T = 9

�0:12
(0:09)

1:09

Unemployment
N = 22

T = 9

0:032

(0:03)
1:56

Table 3: The Brazilian Central Bank Focus Survey
Computing Average Bias and Testing the No-Bias Hypothesis

Horizon (h) Avg. Bias bB H0 : B = 0

p-value

6 0:075065217 0:09342

Table 4: The Brazilian Central Bank Focus Survey
Comparing the MSE of Simple Average Forecast with that of

the Bias-Corrected Average Forecast
Forecast Horizon (a) MSE (b) MSE (b)/(a)

(h) Bias-Corr. Avg. Forecast Avg. Forecast

6 0:076 0:085 1:11

Notes: (1) Number of out-of-sample Forecast Periods: 18.
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